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1 Introduction

A surprising relationship between gauge theories and gravity has been shown to exist not

only for scattering amplitudes but also in more general cases. In the scattering amplitudes

context, an example of this relationship is the BCJ (Bern, Carrasco, Johannson) dou-

ble copy [1–3] which consists of applying color-kinematics replacements to the Yang-Mills

scattering amplitudes in order to obtain the scattering amplitudes of a gravitational theory

involving a graviton, a dilaton, and a two-form field. In this case, there is a duality between

the color factors and the kinematic factors, since both can satisfy the same algebra. In

the cases where the double copy maps observables other than scattering amplitudes, the

idea of performing color-kinematics replacements persists, but the existence of an algebra

satisfied by the analogue of the kinematic factors has been scarcely explored. An example

of these duality satisfying kinematic factors in the classical context was introduced in [4].

Some of the new cases consist of a classical realization of the double copy and follow two

main directions: exact results [5–13], and perturbative results [4, 14–23]. While the con-

struction of the double copy in the case of amplitudes relies heavily on the cubic structure

(or rather the ability to write the theory in a form in which there is a cubic interaction),

in the classical double copy this technical requirement is not always obvious. In the case

of exact results, one starts from the gravitational side with a solution in the form of a

Kerr-Schild metric and applies the corresponding color-kinematics replacements to obtain

the single copy, i.e., the gauge theory analogue. Applying these replacements one more
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time leads to the bi-adjoint scalar analogue, the zeroth copy. In the perturbative case,

one can take the opposite direction and start from the bi-adjoint scalar, then apply the

corresponding replacements and obtain Yang-Mills theory, perform this one more time and

obtain the gravitational theory. Other surprising examples of the double copy have been

discovered in different contexts — see for example [24–30]. In this paper, we will focus on

the perturbative implementation of the classical double copy.

Such a procedure applies more broadly than between gauge and gravitational theories.

For example, by considering a “dimensional reduction” of the gauge and gravity theories

one can obtain the scattering amplitudes of the non-linear sigma model (NLSM) and the

special Galileon, respectively [31, 32]. The relation between these scalar theories and the

gauge and gravity theories can also be explained from another point of view: if we con-

sider massive Yang-Mills and massive gravitational fields, the corresponding longitudinal

modes are described by the non-linear sigma model and the (special1 [31, 33–35] ) Galileon

respectively [36, 37]. This suggests the possibility of a broader relationship between these

sets of theories. Indeed, it has been shown that there is a web of relationships between

their scattering amplitudes [31, 32, 38–41], see figure 1.

In this paper, we begin by analyzing the existence of a classical perturbative double

copy for the NLSM radiation. The setup consists of point-particles weakly coupled to

pions which evolve consistently with the NLSM field and whose deviations from their

initial trajectories and color degrees of freedom are small. We assume that the NLSM

coupling to the point-particles is invariant under the unbroken symmetry. This coupling

is motivated by the fact that the NLSM can arise as the longitudinal mode of a massive

Yang-Mills field which gives rise to pion couplings invariant under the unbroken symmetry.

Similarly, we assume that the special Galileon couples through a conformal transformation

which is motivated by the coupling that would arise in the decoupling limit of massive

gravity for the Galileons. In addition to the double copy relation between these theories, it

is also expected that one can perform a color-kinematics replacement from the bi-adjoint

scalar and obtain the NLSM radiation as in the Yang-Mills case. Given this, we will also

consider the zeroth copy case where the point-particles couple to the bi-adjoint scalar field,

thus spanning the entire r.h.s. of figure 1.

The observable that we want to map between theories is the radiation amplitude at

spatial infinity |~x| → ∞. For example, the on-shell radiation amplitude for the bi-adjoint

scalar φa ã is defined as

Aa ã(k) = yJ a ã(k)
∣∣∣
k2=0

, (1.1)

where the on-shell current J a ã(k)
∣∣∣
k2=0

gives the flux of energy-momentum, color and

angular momentum at spatial infinity, and is defined by the equations of motion �φa ã =

yJ a ã, with coupling constant y. Similar definitions hold for the non-linear sigma model

1One can choose the parameters of massive gravity such that the resulting scalar field theory in the

decoupling limit is the special Galileon although a coupling of the form h∂2π∂2π∂2π between the massless

graviton h and the galileon π will be present.
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Figure 1. Web of relationships between various field theories. The operations in CHY representa-

tion correspond to those in [31] and the transmutations with differential operators are given in [39].

Some examples of the Kerr-Schild double copy can be found in [5–13]. For examples of the BCJ

double copy, see [42–44] and references there in. Classical perturbative double copy examples are

found in [4, 17–22]. The dimensional reduction refers to that in [32]. Besides the relations shown

in this figure, there are other cases of relations between extended theories; some of these examples

are found in [45–47].

and the special Galileon. In 4d, the probability of emission of a scalar can be written as [48]

dProb.(0→ φa ã) = |Aa ã|2 dk

(2π)3

1

2|k|
. (1.2)

As the observation time grows, T →∞, the differential radiated power is given by

dP

dΩd|k|
=
∣∣Aa ã∣∣2 |k|2

2(2π)2 T
. (1.3)

The final goal is to be able to map the scalar radiation power emitted by a set of point-

particles among different theories. In order to do so, we will only need to map between

on-shell currents.

1.1 Summary of results

In this section, we summarize the procedure for obtaining the classical double copy for

the radiation of scalar modes. We show that by applying a special set of color-kinematics
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replacements, it is possible to transform the radiation field generated by point-particles

interacting through a bi-adjoint scalar field to the one in which these particles interact

through a non-linear sigma model field. Similarly, one can act on the NLSM radiation field

to obtain the equivalent object for the double copy, i.e., the special Galileon radiation.

We consider the case where the impact parameters of the particles are large, and thus

the particle number is conserved, since no particles are created or annihilated. The large

separation of the particles accounts for the consistency of the perturbative calculation, a

point that will be made more precise in the body of the paper. A crucial fact for the

existence of the double copy is that the couplings of the scalar fields to the point-particles

have the same coupling strength as the self-interactions of such fields. This is similar to

the case of Yang-Mills and gravity.

For each theory, the point-particles carry different degrees of freedom depending on the

couplings being considered. In the bi-adjoint scalar field case, the point-particles carry two

color charges, ca and c̃ã, each in the adjoint representation of the groups G and G̃. In the

case of the NLSM corresponding to the symmetry breaking pattern GL×GR → G (with G

the diagonal subgroup), we will consider a coupling to the point-particles that is manifestly

invariant under the unbroken symmetries. This means that the coupling will involve the

“covariant derivative” of the Goldstone modes, ∇µφa ≡ fabc(U−1∂µU)bc, which in our case

will couple to the color dipole moment Maµ of the point-particles. Manifest invariance

under G is sufficient to ensure invariance under the full group GL × GR [49]. Finally,

the special Galileon coupling we will be using follows from a conformal transformation

gµν → (1 + 2π/Λ)gµν of the point-particle action. This transformation is motivated by the

one implemented in massive gravity to remove the kinetic mixing between the helicity-2

modes and the longitudinal mode before taking the decoupling limit, in that case Λ = MPl.

Because we have different degrees of freedom carrying a color index in the bi-adjoint

scalar and the non-linear sigma model, we will also need a replacement rule to map one to

the other, see figure 2. Thus, for the single copy we need not only the usual color-kinematics

replacements, which schematically are of the form

C̃(c̃ã)→ Ñ({q}) , (1.4)

but also the color-color replacements

C({q}; ca)→ C({q} ·Ma) , (1.5)

where {q} stands for the collection of momenta involved in the process. At second order

in the couplings, the single copy color-color replacements are given by eq. (4.2) and the

color-kinematics by eq. (4.3). These replacements map the on-shell current eq. (2.20) into

the on-shell current eq. (3.25). At quartic order, the color-color replacements are given

by eq. (4.5) and the color-kinematics by eq. (4.7), these give a map between the on-shell

currents in eq. (2.23) and eq. (3.29).

For the double copy case instead we can simply perform a color-kinematics replacement

of the form

C({q} ·Ma)→ N({q}) . (1.6)
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The replacement rules at second order are found in eq. (6.2), and the ones at quartic order

in eq. (6.4). These replacements create a map between on-shell currents: eq. (3.25) maps

onto eq. (5.15), and eq. (3.29) maps onto eq. (5.17). There are four main features that is

worth highlighting about these replacements:

1. Coupling constants. The coupling constants in the three different theories are mapped

into each other as follows:

y →
√

2

F
→ 1

Λ
. (1.7)

Thus, a result obtained in the biadjoint case with a precision of O(yn) will be mapped

onto an equivalent result for NLSM and special Galileon at order O(1/Fn) and

O(1/Λn) respectively. For the sake of brevity, from now on we will denote this

level of precision as O(n).

2. Color charges. The color charges and dipole moments are mapped as

c̃ãca → q ·Ma → 1 ,

where q represents different momentum factors, depending on the specific color struc-

ture. This can be compared to the Yang-Mills-gravity case where the replacement is

ca → pµ. In this case, we are mapping between scalar theories so no new structure

with a Lorentz index appears uncontracted.

3. Three-point vertex. Color factors which involve only one structure constant are

mapped to zero,

f · c · c→ 0.

In the gravitational double copy the color factor of the Yang-Mills three-point func-

tion, fabc, is mapped to the color-stripped Yang-Mills three-point vertex. This is

motivated by the BCJ double copy where one replaces the Yang-Mills color factor by

a second copy of the Yang-Mills kinematic factor in order to obtain a gravitational

amplitude. In the present case, the NLSM does not have a cubic vertex and thus the

above color structure is mapped to zero.

4. Color-kinematics duality for the double copy. The replacement rules that take the

NLSM four-point amplitude color factor to the NLSM four point amplitude, i.e.

i 4
√

2 fabcf bde(qβ ·Mβ)d(qγ ·Mγ)e(qα ·Mα)c →
(qβ + qα)2 − (qγ + qα)2

3
,

maps color factors satisfying the Jacobi identity∑
cyclic

fabcf bde(qβ ·Mβ)d(qγ ·Mγ)e(qα ·Mα)c = 0 ,

to kinematic factors that satisfy another Jacobi identity∑
cyclic

((qβ + qα)2 − (qγ + qα)2) = 0 .

This provides a new example of the color-kinematics duality at the classical level.

The analogue case for the gravitational double copy was studied in [4].
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Figure 2. Summary of color-kinematics replacements used in this paper.

In the following, we carry out the perturbative calculation for each theory in detail.

In section 2, we compute the bi-adjoint scalar radiation and in section 3 that for the non-

linear sigma model case. In section 4 we then explain the color-kinematics and color-color

replacements that transform the bi-adjoint scalar result into the NLSM one. We continue

in section 5 with the calculation of the special Galileon radiation and in section 6 derive

the color-kinematics replacements that lead to the double copy. We conclude in section 7.

2 Bi-adjoint scalar radiation

In this section, we compute the radiation field produced by color charges coupled through

the bi-adjoint scalar field. The O(2) result was first computed in [18] and extended to

order O(4) in [4]. In the following, we show these results for completeness while clarifying

some technical details of the calculation.

The bi-adjoint scalar field transforms in the adjoint representation of the group G× G̃
and has cubic interactions, described by the Lagrangian

LBS =
1

2

(
∂ϕa ã

)2 − y

3
fabc f̃ ãb̃c̃ ϕa ãϕb b̃ϕc c̃ . (2.1)

Our goal is to compute perturbatively the scalar radiation field generated by a set of

color charges coming from infinity, which will evolve consistently together with the field

they generate. The point-particles carry color charges also transforming in the adjoint

representation of G × G̃ and move along the worldlines xµα(λ), where λ is the coordinate

along the worldline, and α labels the individual particles. These point-particles are coupled

to the scalar field in the following way:

Spp = −1

2

∑
α

∫
dλ

[
η−1(λ)

dxα
dλ
· dxα

dλ
+ η(λ)

(
m2
α − 2 y ϕa ã(xα) caα(λ)c̃ãα(λ)

)]
, (2.2)
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where the einbein η(λ) is a Lagrange multiplier that ensures invariance under reparametriza-

tions of λ, and ca and c̃ã are color charges transforming in the adjoint representations of G

and G̃ respectively. For the purpose of this paper, the specific Lagrangian realization giving

rise to the color charges is not relevant and thus is not considered here, but a discussion

regarding this can be found in [18]. The total color currents are

Jµ, a = Jµ, aN. BS + Jµ, app , Jµ, ã = Jµ, ãN. BS + Jµ, ãpp . (2.3)

Here, Jµ, aN. BS and Jµ, ãN. BS are the Noether currents derived from LBS due to the invariance

under G and G̃ and read

Jµ, aN. BS = fabcϕb b̃ ∂µϕc b̃ , Jµ, ãN. BS = f̃ ãb̃c̃ϕb b̃ ∂µϕb c̃ , (2.4)

while the leading order currents produced by the point-particles are given by

Jµ, app =
∑
α

∫
dλ caα(λ)vµα δ

d(x− xα(λ)) , Jµ, ãpp =
∑
α

∫
dλ c̃ãα(λ)vµα δ

d(x− xα(λ)) , (2.5)

where vµα is the velocity of the point-particle α carrying color charge caα(λ) or c̃ãα(λ). The

next to leading order contributions to these currents include finite size effects. By varying

the action SBS + Spp and considering current conservation, we obtain the equations of

motion for the coordinates and the color charges

dpµα
ds

+ y caα(s)c̃ãα(s)∂µϕa ã(x
µ
α) = 0 , (2.6)

dcaα
ds

+ y fabcccα(s)c̃b̃α(s)ϕb b̃(xµα) = 0 ,
dc̃ãα
ds

+ y f̃ ãb̃c̃c̃c̃α(s)cbα(s)ϕb b̃(xµα) = 0 , (2.7)

where pµα ≡ dxµα/ds is the momentum of the particle α and ds = η dλ.

2.1 Perturbative solutions

The equation motion for the bi-adjoint scalar field can be written as

�ϕa ã = yJ a ã , (2.8)

where the source current is

J a ã = −fabc f̃ ãb̃c̃ ϕb b̃ϕc c̃ +
∑
α

∫
dscaα(λ)c̃ãα(λ)δd(x− xα(s)) . (2.9)

This allows us to compute the radiation field at |~x| → ∞ in terms of the Fourier transform

of the source:

ϕa ã = y

∫
ddk

(2π)d
e−i k·x

k2
J a ã(k) . (2.10)

The initial configuration consists of N charged particles that are moving with constant

velocity at s = −∞. Thus, the initial conditions for the color-charged point-particles are:

xµα|s→−∞ = bµα + pµαs , (2.11)

caα|s→−∞ = caα , c̃ãα|s→−∞ = c̃ãα , (2.12)

where bµα are the (spacelike) impact parameters.

– 7 –
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In what follows, we compute the solutions perturbatively in powers of the coupling

strength. The actual dimensionless parameter that controls the expansion is a combination

of the coupling strength and kinematic factors, given by [17]

ε ∝ y2 c
2 c̃2

E3 b
,

where E & m is the energy of the point-particle and b is its impact parameter. In this

expression we have neglected the phase space volume. Notice that the perturbation param-

eter is inversely proportional to the impact parameter. This is consistent with our set up

of particles that are far apart from each other and which only experience small deviations

as they interact through the scalar field. Indeed, the fact that ε � 1 ensures that the

deviations are small compared to the impact parameter. We can now find the O(1) field

ϕa ã
∣∣
O(1)

= −y
∫

ddk

(2π)d
e−i k·x

k2
J a ã(k)

∣∣
O(0)

= −y
∑
α

∫
ddk

(2π)d
caαc̃

ã
α

e−i k·(x−bα)

k2
2πδ(k · pα) . (2.13)

Notice that on-shell (k2 = 0) the field vanishes unless kµ ∝ pµ but pµ is timelike, therefore

there is no radiation at this order, as we should expect, since static point-particles do not

radiate. We now proceed to obtain the next order perturbation for the deviations of the

point-particle trajectories and color charges. These are obtained by considering

xµα = bµα + pµαs+ x̄µα(s) , (2.14)

caα = caα + c̄aα(s) , c̃ãα = c̃ãα + ¯̃cãα(s) , (2.15)

where the barred quantities vanish at s = −∞. Substituting the O(1) field into the

equations of motion (2.6) and (2.7) we find

x̄µα
∣∣
O(2)

= iy2
∑
β 6=α

cα · cβ c̃α · c̃β
∫

ddq

(2π)d
qµ
e−i q·(bαβ+pαs)

q2 (q · pα)2
2π δ(q · pβ) , (2.16)

c̄aα
∣∣
O(2)

= iy2fabc
∑
β 6=α

ccαc
b
β c̃α · c̃β

∫
ddq

(2π)d
e−i q·(bαβ+pαs)

q2(q · pα)
2π δ(q · pβ) , (2.17)

c̃ãα
∣∣
O(2)

= iy2f̃ ãb̃c̃
∑
β 6=α

c̃c̃αc̃
b̃
β cα · cβ

∫
ddq

(2π)d
e−i q·(bαβ+pαs)

q2(q · pα)
2π δ(q · pβ) , (2.18)

where bαβ ≡ bα − bβ . The source J a ã(k) at O(y2) is given by

J a ã(k)
∣∣
O(2)

=
∑
α

∫
ds ei k·(bα+pαs)

[
ik · x̄α(s)

∣∣
O(2)

caαc̃
ã
α + c̄aα(s)

∣∣
O(2)

c̃ãα

+ caα(s)¯̃cãα
∣∣
O(2)

]
− fabc f̃ ãb̃c̃

∫
ddxeik·xϕb b̃

∣∣
O(1)

ϕc c̃
∣∣
O(1)

. (2.19)
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p.p. interaction field self-interactions

Figure 3. Interactions contributing to the current at O(2). The scalar field theory for the right-

hand side graph has cubic self-interactions. If this were not the case, such graph would not con-

tribute to J |O(2). The solid lines are the worldlines of the point-particles (which can carry color

charge degrees of freedom depending on the theory under consideration) and the dashed lines rep-

resent the scalar field.

After using our previous results, the source current becomes

J a ã(k)
∣∣
O(2)

= y2
∑
α, β 6=α

∫
qα, qβ

ρa ãαβ(k)µα,β(k) , (2.20)

where

ρa ãαβ(k) ≡ − q2
α

(k · pα)

[
caα(cα ·cβ) c̃ãα(c̃α ·c̃β)

k · qβ
k · pα

− i fabcccαcbβ c̃ãα(c̃α · c̃β)

− if̃ ãb̃c̃c̃c̃αc̃b̃βcaα(cα · cβ)

]
− fabc f̃ ãb̃c̃cbαccβ c̃b̃αc̃c̃β , (2.21)

with
∫
q ≡

∫ ddq
(2π)d

, and

µα,β(k) ≡ (2π)δ(qα · pα)
ei qα·bα

q2
α

(2π)δ(qβ · pβ)
ei qβ ·bβ

q2
β

(2π)dδd(k − qβ − qα) . (2.22)

The above result for the source current heavily relies on the use of the delta functions in

µα,β(k). This will be the case for all the final results that we present. One can think of this

perturbative solution in terms of Feynman diagrams. At second order in the coupling, the

contributions to the bi-adjoint current are given by the graphs in figure 3. The first term

in the parentheses in eq. (2.19) corresponds to the graph on the left-hand side of figure 3.

This graph only shows the case of the scalar field radiated by particle α, but we should also

include the case where it is radiated from particle β. This is taken into account by the sum

over point-particles. The last term of eq. (2.19) comes from the graph on the right-hand

side which corresponds to the self-interactions of the field.

As we will see in the next section, the NLSM self-interactions will only contribute at

next to leading order in perturbations. Hence, in order to construct a satisfactory copy

we will compute the source current for the radiation field for the bi-adjoint scalar at O(4).

The source at this order is given by

J aã(k)
∣∣
O(4)

=−fabc f̃ ãb̃c̃
∫

ddxeik·xϕb b̃
∣∣
O(1)

ϕc c̃
∣∣
O(3)

+
∑
α

∫
dseik·(bα+pαs)

{
c̄aα(s)

∣∣
O(4)

c̃ãα

+caα(s)¯̃cãα
∣∣
O(4)

+c̄aα(s)
∣∣
O(2)

¯̃cãα
∣∣
O(2)

+ik ·x̄α(s)
∣∣
O(2)

[
c̄aα(s)

∣∣
O(2)

c̃ãα+caα(s)¯̃cãα
∣∣
O(2)

]
+ik ·x̄α(s)

∣∣
O(4)

caαc̃
ã
α+

1

2
[ik ·x̄α(s)

∣∣
O(2)

]2caαc̃
ã
α

}
, (2.23)
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p.p. interactions bi-adjoint self-interactions

Figure 4. Interactions contributing to the current at O(4). The left-hand side shows the contri-

bution from the interactions between the point-particles and the bi-adjoint scalar field. The center

and right-hand side graphs show the contributions from the bi-adjoint scalar 3-point vertex.

which corresponds to the graphs in figure 4. The term in curly brackets contains the

deflections of the point-particle coordinates and color charges at next to leading order,

which are given by

x̄µα
∣∣
O(4)

= y4
∑
β 6=α,

γ 6={α,β}

∫
qβ , qγ qδ

e−iqδ ·(bα+pαs)

(qδ ·pα)2 µβ,γ(qδ)

{
qµγ

qβ ·pα

[
fabccbαc

c
βc
a
γ(c̃α ·c̃β)(c̃α ·c̃γ)

+f̃ ãb̃c̃c̃b̃αc̃
c̃
β c̃
ã
γ(cα ·cβ)(cα ·cγ)+i

qβ ·qγ
qβ ·pα

(cα ·cβ)(cα ·cγ)(c̃α ·c̃β)(c̃α ·c̃γ)

]
+
iqµδ
q2
δ

ρaãβγ(qδ)c
a
αc̃
ã
α

}
(2.24)

c̄aα
∣∣
O(4)

= y4fabc
∑
β 6=α,

γ 6={α,β}

∫
qβ , qγ qδ

e−iqδ ·(bα+pαs)

(qδ ·pα)
µβ,γ(qδ)

{
1

qβ ·pα

[
f bdeceαc

d
βc
c
γ(c̃α ·c̃β)(c̃α ·c̃γ)

+f̃ b̃d̃ẽc̃ẽαc̃
d̃
β c̃
b̃
γ(cα ·cβ)cbαc

c
γ−i

qβ ·qγ
qβ ·pα

cbαc
c
γ(cα ·cβ)(c̃α ·c̃β)(c̃α ·c̃γ)

]
+
i

q2
δ

ρb b̃βγ(qδ)c
c
αc̃
b̃
α

}
,

(2.25)

¯̃cãα
∣∣
O(4)

= y4f̃ ãb̃c̃
∑
β 6=α,

γ 6={α,β}

∫
qβ , qγ qδ

e−iqδ ·(bα+pαs)

(qδ ·pα)
µβ,γ(qδ)

{
1

qβ ·pα

[
f bdeceαc

d
βc
b
γ(c̃α ·c̃β)b̃c̃α c̃

c̃
γ

+f̃ b̃d̃ẽc̃ẽαc̃
d̃
β c̃
c̃
γ(cα ·cβ)(cα ·cγ)−i

qβ ·qγ
qβ ·pα

(cα ·cβ)(cα ·cγ)(c̃α ·c̃β)c̃b̃αc̃
c̃
γ

]
+
i

q2
δ

ρb b̃βγ(qδ)c̃
c̃
αc
b
α

}
,

(2.26)

Notice that the momentum involved in the propagators that appear in these calculations

corresponds to the momentum exchanged with the point-particle. After using the fact that

ϕa ã
∣∣
O(3)

= −y
∫

ddk

(2π)d
e−i k·x

k2
J a ã(k)

∣∣
O(2)

, (2.27)

with J a ã(k)
∣∣
O(2)

given by eq. (2.20), the first term, which comes from the field self-

interactions, reads

J a ã(k)
∣∣
O(4)
⊃ −2y4

∑
α, β 6=α,
γ 6={α,β}

∫
qα, qβ , qγ qδ

fabc f̃ ãb̃c̃cbαc̃
b̃
α

ρc c̃βγ(qδ)

q2
δ

µα,β,γ(k) (2π)dδd(qδ − qβ − qγ) ,

(2.28)

– 10 –



J
H
E
P
1
1
(
2
0
1
8
)
0
6
5

where µα,β,γ(k) is the straightforward generalization of µα,β(k), namely

µα,β,γ(k) ≡ (2π)δ(qα · pα)
ei qα·bα

q2
α

(2π)δ(qβ · pβ)
ei qβ ·bβ

q2
β

× (2π)δ(qγ · pγ)
ei qγ ·bγ

q2
γ

(2π)dδd(k − qβ − qα − qγ) . (2.29)

Notice that the current J a ã(k) should be symmetric under interchange of particles. This

symmetry is not manifest in eq. (2.28), but it is realized by the sum over the particle indices

α, β and γ.

3 Non-linear sigma model radiation

Consider now the non-linear sigma model (NLSM) based on the simple compact Lie group

G; that is, the model corresponding to the symmetry breaking GL × GR → Gdiag, where

GL = GR = Gdiag ≡ G. The leading order effective Lagrangian is given by

L(2)
NLSM =

F 2

4
Tr
(
∂µU∂

µU−1
)
, (3.1)

where U = gRg
−1
L , and gR(L) is an element of the group GR(L). We will use the exponential

parametrization

U = ei
√
2
F
φaTa , (3.2)

where φa are the Goldstone boson fields and T a are the generators of G. Given that the

pattern GL × GR → Gdiag is a simple generalization of the one describing QCD pions, in

what follows we will often refer to the NLSM fields simply as pions. Since all quantities

with a color index will transform in the adjoint representation, we’ll find it convenient to

follow the conventions that are often adopted in the amplitudes literature (see e.g. [50–53]).

Hence, our generators satisfy the following relations:

Tr
(
T aT b

)
= δab, [T a, T b] = i

√
2fabcT c, (T a)bc = −i

√
2fabc . (3.3)

With this parametrization, the strength of self-interactions is determined by the coupling√
2/F . In terms of the Goldstone fields, the Lagrangian can be rewritten as

L(2) = −∂φT ·G(φ) · ∂φ , (3.4)

where we have defined

G(φ) ≡
∞∑
n=1

(−1)n

(2n)!

(
2Dφ

F

)2n−2

, Dab
φ ≡ −ifabcφc . (3.5)

In this case, we want to consider a coupling to the point-particle that preserves the un-

broken symmetry G, which means that it involves the pion covariant derivative ∇µφa ≡
fabc(U−1∂µU)bc. Consider a coupling to a dipole moment Ma

µ(λ) localized on the worldline:

Spp = −1

2

∑
α

∫
dλ

[
η−1(λ)

dxα
dλ
· dxα

dλ
+ η(λ)m2

α (1− 2Ma
α
µ(λ)∇µφa)

]
, (3.6)
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where the pion covariant derivative in the exponential parametrization is

∇µφa =
2

F
∂µφ

a − 2

F 2
fabc∂µφ

b φc +
4

3F 3
fabcf bdeφcφe∂µφ

d + · · · . (3.7)

From this coupling, we can read off the current generated by the color charges. Up to next

to next leading order this current is

Jµ,app =
√

2
∑
α

m2
α

∫
ds

(
Ma
α
µ(s)+

1

F
fabcM b

α
µ
(s)φc+

2

3F 2
fabcf bdeφcφeMd

α
µ
)
δd(x−xα(λ)) .

(3.8)

We obtain the equation of motion that determines the evolution of the point-particle co-

ordinates xµα by varying the point-particle action Spp. At next to leading order in the

coupling this yields

dpµα
ds

+
2

F
m2
αM

a
α
ν∂µ

(
∂νφ

a − 1

F
fabc∂νφ

b φc + · · ·
)

= 0 . (3.9)

Similarly, we obtain the equations of motion determining the evolution of the dipole mo-

ment from the conservation of the total color current

Jµ, a = Jµ, aN. NLSM + Jµ, app . (3.10)

Here, Jµ, aN. NLSM is the Noether current derived from L(2)
NLSM and reads

Jµ, aN. NLSM =
√

2fabcφbG(φ) ∂µφc . (3.11)

Given this, ∂µJ
µ, a = 0 implies that the dipole evolves according to

k ·Ma
α
µ = −2i

F
fabc∂µφ

c

(
M b
α
µ

+
1

F
f bdeMd

α
µ
φe
)

+
1

F
fabckµφ

c

(
M b
α
µ

+
4

3F
f bdeMd

α
µ
φe
)
.

(3.12)

The above equation is found after performing a Fourier transformation and using the

equation of motion obtained from varying SNLSM + Spp that reads

2G(φ)�φa + 2∂G(φ) · ∂φa − ∂φT · ∂φG(φ)a · ∂φ−
√

2

F
∂µJ

µ, a
pp = 0 . (3.13)

3.1 Perturbative solutions

We proceed to find an expression for the radiation field φa produced due to the interactions

of the point-particles. We will again assume that the point-particles are well separated and

that the impact parameters are large, so that we can construct a perturbative solution in

powers of the NLSM coupling. As in the previous case, the actual perturbation parameter

is a combination of the coupling strength and kinematic factors, given by

ε ∝ 1

F 2

E (k ·Mα) · (k ·Mβ)

bαβ
,
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where k = O(E) and the dipole is Ma ∝ cad, where d � x̄ is a measure of the size of the

point-particle. We start by rewriting the NLSM equation of motion (3.13) as

�φa =

√
2

F
J a , (3.14)

where the source current J a is defined as

J a(x) ≡
[
(δab + 2G(φ)ab)

F�φb√
2
− ∂φT ·

F ∂φG(φ)a√
2

· ∂φ+ 2
F ∂G(φ)√

2
· ∂φa

]
− ∂µJµ, app .

(3.15)

Now, we can read off the radiation field at r →∞ in terms of the Fourier transform of the

source:

φa = −
√

2

F

∫
ddk

(2π)d
e−i k·x

k2
J a(k) . (3.16)

As before, the initial configuration consists of N particles that are moving with constant

velocity at s = −∞, and the initial conditions for the color-charged point-particles are:

xµα|s→−∞ = bµα + pµαs , (3.17)

Ma
α
µ|s→−∞ = Ma

α
µ . (3.18)

From (3.15) we can see that the O(1) field is

φa
∣∣
O(1)

= i
2

F

∑
α

m2
α

∫
q

e−iq·(x−bα)

q2
(q ·Ma

α) 2πδ(q · pα) . (3.19)

Similarly to the previous case, we compute the deflections x̄µα and k · M̄a
α defined by

xµα(s) = bµα + pµαs+ x̄µα(s) , (3.20)

k ·Ma
α(s) = k ·Ma

α + k · M̄a
α(s) , (3.21)

where the barred quantities vanish at s = −∞. At leading order, these are given by:

x̄µα
∣∣
O(2)

=−i 4

F 2

∑
β 6=α

∫
ddq

(2π)d
m2
αm

2
βq
µ(q ·Ma

α)(q ·Ma
β )
e−iq·(bαβ+pαs)

q2 (q ·pα)2
2πδ(q ·pβ) ,

(3.22)

(k ·M̄a
α)
∣∣
O(2)

= i
2

F 2
fabc

∑
β 6=α

∫
ddq

(2π)d
m2
β

[
(k−2q)·M b

α

]
(q ·M c

β)
e−iq·(bαβ+pαs)

q2
2πδ(q ·pβ) .

(3.23)

Once we have the deflections at this order, we may compute J a(k) at O(2):

J ap.p.(k)
∣∣
O(2)

=
√

2
∑
α

∫
ds ei k·(bα+pαs)m2

α

[
k · x̄α(s)

∣∣
O(F ′−2)

(k ·Ma
α)− i(k · M̄a

α(s))
∣∣
O(F−2)

− i 1

F
fabc(k ·M b

α)φc
∣∣
O(F ′−1)

]
, (3.24)
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which, after substituting in the corresponding deflections, becomes

J ap.p.(k)
∣∣
O(2)

= i
√

2
4

F 2

∑
α, β 6=α

∫
qα, qβ

m2
αm

2
βρ

a
αβ(k)µα,β(k) , (3.25)

where

ρaαβ(k) ≡ q2
α

[
m2
α (k ·Ma

α)(qβ ·M b
α) (qβ ·M b

β)
k · qβ

(k · pα)2
+ i fabc(qα ·M b

α)(qβ ·M c
β)

]
. (3.26)

Once again, this expression is not manifestly invariant under permutations of the particle

indices. Such invariance is ensured by the sum over the indices α and β.

We now proceed to compute the deflections of the point-particle coordinates and the

dipole at next to leading order. These are given by

x̄µα
∣∣
O(4)

=
8

F 4
m2
α

∑
β 6=α,

γ 6={α,β}

∫
qβ , qγ qδ

e−iqδ ·(bα+pαs)

(qδ ·pα)2 µβ,γ(qδ)m
2
βm

2
γ

[
i2(qδ ·Ma

α)qµδ ρ
a
βγ(qδ)

+fabc((qγ−2qβ)·M b
α)(qβ ·M c

β)(qγ ·Ma
γ )qµγ−fabc(qβ ·M b

β)(qγ ·M c
γ)(qβ ·Ma

α)qµδ

+i2qµγm
2
α

qβ ·qα
(qβ ·pα)2

(qβ ·Mα)·(qβ ·Mβ) (qγ ·Mα)·(qγ ·Mγ)

]
(3.27)

k ·M̄a
α

∣∣
O(4)

=−i 8

F 4
fabc

∑
β 6=α,

γ 6={α,β}

∫
qβ , qγ qδ

e−iqδ ·(bα+pαs)

(qδ ·pα)
µβ,γ(qδ)m

2
βm

2
γ

[
1

q2
δ

((k−2qδ ·M b))ρcβγ(qδ)

+m2
α ((k−2qγ)·M b)(qγ ·M c

γ)(qβ ·Mα)·(qβ ·Mβ)
qβ ·qγ

(qβ ·pα)2

−if bde((7

6
k−qβ)·Md

α)(qβ ·M e
β)(qγ ·M c

γ)

]
. (3.28)

Once we have the deflections at next to leading order, we can use them to compute the cur-

rent at O(4). There are two contributions to this current, one coming from self-interactions

of the NLSM and the other one coming from the coupling to the point-particles. The con-

tribution to the current from the interactions with the point-particles reads

J ap.p.
∣∣
O(4)

(k) =− i
√

2

∫
ds ei k·(bα+pαs)m2

α

[
i k · x̄α(s)

∣∣
O(4)

(k ·Ma
α) + (k · M̄a

α(s))
∣∣
O(4)

+ ik · x̄α(s)
∣∣
O(2)

(k · M̄a
α)
∣∣
O(2)

+
1

2
(ik · x̄α(s)

∣∣
O(2)

)2(k ·Ma
α)

+
1

F
fabc(k · M̄ b

α)
∣∣
O(2)

φc
∣∣
O(1)

+
2

3F 2
fabcf bde(k ·Md

α)φe
∣∣
O(1)

φc
∣∣
O(1)

+
1

F
fabc(k ·M b

α)
(
ik · x̄α(s)

∣∣
O(2)

φc
∣∣
O(1)

+ φc
∣∣
O(3)

)]
, (3.29)

and corresponds to the left-hand side diagram of figure 5. Meanwhile, the contribution from

the NLSM self-interactions, which comes from the right-hand side diagram in figure 5, is

J as.i.(x)
∣∣
O(4)

=

√
2

3F
fabcf cdeφe

∣∣
O(1)

(
∂µφb

∣∣
O(1)

∂µφ
d
∣∣
O(1)

+
1

2
�φd

∣∣
O(1)

φb
∣∣
O(1)

)
. (3.30)
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p.p. interactions pions self-interactions

Figure 5. Interactions contributing to the NLSM source at O(4). The left-hand side shows the

contribution from the interactions between the point-particles and pions and the right-hand side

shows the contribution from the pion 4-point vertex.

After using the leading order contribution to the NLSM field we find

J as.i.(k)
∣∣
O(4)

=−i8
√

2

3F 4

∑
α,β 6=α,
γ 6={α,β}

∫
qα, qβ , qγ qδ

(2π)dδd(qδ−qβ−qγ)µα,β,γ(k)m2
αm

2
βm

2
γσ

a
αβγ , (3.31)

where

σaαβγ = fabcf cde(qα ·M b
α)(qβ ·Md

β )(qγ ·M e
γ)

(
qα · qβ +

1

2
q2
β

)
. (3.32)

Notice that if we set Maµ = capµ then there is no radiation at any order. This is under-

stood by realizing that the coupling cap
µ∇µφa arises from the Yang-Mills gauge invariant

coupling capµAaµ after introducing the Stückelberg field. Since the starting point is a gauge

invariant term, when we introduce the Stückelberg field we are simply performing a gauge

transformation and thus the physics does not change.

4 Single copy: bi-adjoint scalar to non-linear sigma model

So far, we have computed the radiation amplitude at order O(4) for both the bi-adjoint

scalar and the non-linear sigma model. It is now possible to identify the generalized

color-kinematics replacements needed to obtain the single copy. Since the color degrees

of freedom of the group G are different in the bi-adjoint scalar and the NLSM, we need

to perform replacements to take the color charges to the color dipoles. Schematically, the

color-kinematics and color-color replacements that we use are

C̃(c̃ã)→ Ñ({q}) , C({q}; ca)→ C({q} ·Ma). (4.1)

From dimensional analysis we know that when transforming from the color charges to the

color dipoles for the radiation at O(3) we need to have a factor with mass dimension six

on the NLSM side. This is due to the discrepancy in the mass dimension of the couplings

of these theories. Considering this, we find that the replacements are:

cα (cα · cβ)→ −i 2
√

2m4
αm

2
β (k ·Mα)(qβ ·Mα) · (qβ ·Mβ) , (4.2a)

fabccbαc
c
β

qβ · pα
→ −i 2

√
2m2

αm
2
β f

abc(qα ·Mα)b(qβ ·Mβ)c , (4.2b)
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and

c̃α (c̃α · c̃β)→ 1 , (4.3a)

f̃ ãb̃c̃c̃b̃αc̃
c̃
β → 0 . (4.3b)

The fact that the terms involving one structure constant are set to zero can be traced back

to the fact that the non-linear sigma model cubic vertex is zero. Under these replacements,

we can see that on-shell:

ρa ãαβ(k)→ i 2
√

2m2
αm

2
β ρ

a
αβ(k) , (4.4)

which implies that the radiation amplitude for the bi-adjoint scalar at O(2), eq. (2.20),

maps to the radiation amplitude of the NLSM at O(2), eq. (3.25).

In order to find the mapping for the radiation at order O(5) we require color-kinematics

and color-color replacements for color factors involving contractions of five color structures.

In this case, the NLSM side should have mass dimension ten. These replacements are

given by

caα(cα ·cβ)(cα ·cγ)→ i4
√

2m6
αm

2
βm

2
γ(k ·Mα)a(qβ ·Mα)·(qβ ·Mβ)(qγ ·Mα)·(qγ ·Mγ) , (4.5a)

caα(cα ·cβ)(cβ ·cγ)→ i4
√

2m4
αm

4
βm

2
γ(k ·Mα)a(qδ ·Mα)·(qδ ·Mβ)(qγ ·Mβ)·(qγ ·Mγ) , (4.5b)

caα (f ·cα ·cβ ·cγ)

qβ ·pα
→ i4

√
2m4

αm
2
βm

2
γ(k ·Mα)(f ·((qγ−3qβ/2)·Mα)·(qβ ·Mβ)·(qγ ·Mγ)) , (4.5c)

caα (f ·cα ·cβ ·cγ)

qβ ·pγ
→ i4

√
2m4

αm
2
βm

2
γ(k ·Mα)(f ·(qδ ·Mα)·(qβ ·Mβ)·((qβ−qδ)·Mγ)) , (4.5d)

(cα ·cγ)fabccbαc
c
β

qβ ·pα
→ i4

√
2m4

αm
2
βm

2
γ(qγ ·Mα)·(qγ ·Mγ)fabc((k−qβ)·Mα)b(qβ ·Mβ)c) , (4.5e)

(cα ·cγ)fabccbαc
c
β

qδ ·pα
→ i4

√
2m4

αm
2
βm

2
γ(qγ ·Mα)·(qγ ·Mγ)fabc((k−qβ)·Mα)b(qβ ·Mβ)c) , (4.5f)

(cα ·cγ)fabccbαc
c
β

qδ ·pβ
→ i4

√
2m4

αm
2
βm

2
γ(qγ ·Mα)·(qγ ·Mγ)fabc(qδ ·Mα)b((k−qδ)·Mβ)c) , (4.5g)

fabcf bdecdαc
e
βc
c
γ

(qβ ·pα)(qδ ·pα)
→ i4

√
2m2

αm
2
βm

2
γf

abcf bde
[
(k− qδ

2
+qα

1

12q2γ
n(α,β,γ)

]
·Mα)d(qβ ·Mβ)e(qγ ·Mγ)c ,

(4.5h)

fabcf bdecdβc
e
γc
c
α

(qβ ·pγ)(qδ ·pα)
→ i4

√
2m2

αm
2
βm

2
γf

abcf bde(qβ ·Mβ)d(qγ ·Mγ)e
[(
k−qδ+qα

q2δ
12q2αq2γ

n(α,β,γ)

)
·Mα

]c
,

(4.5i)

where qδ = qβ + qγ , n(α, β, γ) is the 4-point amplitude of the non-linear sigma model

n(α, β, γ) ≡
(qβ + qα)2 − (qγ + qα)2

3
, (4.6)

and

c̃ãα(c̃α · c̃β)(c̃α · c̃γ)→ 1 , (4.7a)

c̃ãα(c̃α · c̃β)(c̃β · c̃γ)→ 1 , (4.7b)

c̃ãα (f̃ · c̃α · c̃β · c̃γ)→ 0 , (4.7c)

(c̃α · c̃γ)f̃ ãb̃c̃c̃b̃αc̃
c̃
β → 0 , (4.7d)

f̃ ãb̃c̃f b̃d̃ẽc̃d̃β c̃
ẽ
γ c̃
c̃
α → 0 . (4.7e)
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Under these, the on-shell current of eq. (2.23) is mapped to the on-shell current of eq. (3.29).

Note that, in the color-color replacements we see that the left side involves denominators

when the structure constants are present. These factors appeared due to the difference

between the equations of motion for the color charges, where an integration gives rise to

denominators, and the dipoles, which are contracted with momentum factors. There is also

an ambiguity in how to pick the splitting in the replacement rules since now we also map

the color factors to new color factors. By shifting kinematic factors from the color-color to

the color-kinematics replacements it is possible to find a different set of rules that give the

desired map between theories.

5 Special Galileon radiation

In this section, we compute the scalar radiation generated by point-particles coming from

infinity that are coupled to the special Galileon. The Lagrangian for the special Galileon

theory is [34]

LSG =
1

2
(∂π)2 − 1

12Λ6
(∂π)2

[
(�π)2 − (∂µ∂νπ)2

]
+ · · · , (5.1)

where Λ is the strong coupling scale. In four dimensions it only contains the quartic

Galileon term but it includes higher order terms in higher dimensions. The action for the

special Galileon is invariant under

δπ = c+ bµx
µ + sµνx

µxν +
1

Λ6
sµν∂µπ∂νπ , (5.2)

where c is a constant, bµ is a constant vector, and sµν is a traceless symmetric constant

tensor. As we mentioned previously, we assume that the special Galileon is coupled to the

point-particles through a conformal rescaling of the metric gµν → (1 + 2π/Λ)gµν . This

is motivated by the coupling that arises in the decoupling limit of massive gravity for

Galileons. Hence, the point-particle action is:

Spp = −
∑
α

mα

∫
dλ

√
1 + 2

π

Λ

√
dxα
dλ
· dxα

dλ
, (5.3)

or, by introducing the einbein η,

Spp = −1

2

∑
α

∫
dλ

(
η−1(λ)

dxα
dλ
· dxα

dλ
+ η(λ)m2

α

)√
1 + 2

π

Λ
. (5.4)

If we assumed that this interaction arises from the decoupling limit of massive gravity, then

the coupling strength would be 1/MPl. In this case, the couplings of the Galileon with

itself and with the point-particles would be suppressed by two different scales, satisfying

the hierarchy Λ�MPl. The current calculation for the radiation amplitude will not hold

in this case since the leading terms would come from the self-interactions. We find that

in order to identify the special Galileon as the double copy of the NLSM, the coupling

with the point-particles should have the same strength as the self-interactions coupling

– 17 –



J
H
E
P
1
1
(
2
0
1
8
)
0
6
5

therefore we assume the interactions in eq. (5.3). The equation of motion that determines

the evolution of the point-particle coordinates xµ is

dpµα
ds
− ∂νπ

Λ
(

1 + 2 π
Λd/2−1

) (m2
α δ

µν − pµαpνα
)

= 0 , (5.5)

while the equation of motion for the special Galileon is

�π− 1

6Λ6

[
(�π)3+2(∂µ∂νπ)3−3(�π)(∂µ∂νπ)2

]
+

1

Λ

∑
α

∫
ds

m2
α√

1+2 πΛ
δd(x−xα(s)) = 0 .

(5.6)

5.1 Perturbative solutions

We compute the solution in powers of the coupling constant, but the actual perturbation

parameter for the special Galileon is

ε ∝ 1

Λ2

E

b
(5.7)

Rewriting the special Galileon equation of motion as

�π =
1

Λ
J , (5.8)

where the source current J is defined as

J ≡ 1

6Λ5

[
(�π)3+2(∂µ∂νπ)3−3(�π)(∂µ∂νπ)2

]
−
∑
α

∫
ds

m2
α√

1+ 2π
Λ

δd(x−xα(s)) , (5.9)

we can write the leading order special Galileon field as

π(x) = − 1

Λ

∫
ddk

(2π)d
e−i k·x

k2
J (k) . (5.10)

Note that the contributions from the special Galileon self-interactions will only appear at

O(8). As before, the point-particles are moving with constant velocity at s = −∞ and

thus the initial conditions are:

xµα|s→−∞ = bµα + pµαs . (5.11)

From this we find that the field at O(Λ−1) is given by

π
∣∣
O(1)

=
1

Λ

∑
α

∫
ddk

(2π)d
m2
α

e−i k·(x−bα)

k2
2πδ(k · pα) . (5.12)

As in the previous cases, to obtain the O(Λ−2) field, we need to find the deflection

xµα = bµα + pµαs+ x̄µα(s) . (5.13)
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Using the O(Λ−1) field in the equation of motion (5.5), we find

x̄µα
∣∣
O(2)

= i
1

Λ2

∑
β 6=α

m2
β

∫
ddq

(2π)d
(
m2
α q

µ − (q · pα)pµα
) e−i q·(bαβ+pαs)

q2 (q · pα)2
2πδ(q · pβ) , (5.14)

which leads to the current:

J (k)
∣∣
O(2)

=
1

Λ2

∑
α, β 6=α

∫
qα, qβ

m2
αm

2
β µα,β(k)ραβ(k) , (5.15)

where

ραβ(k) ≡ −m2
αq

2
α

k · qβ
(k · pα)2

. (5.16)

This current comes from the point-particle interactions diagram in figure 3. We can now

obtain theO(4) current which comes from the point-particle interactions diagram in figure 5

and is given by

J
∣∣
O(4)

=
∑
α

m2
α

∫
ds ei k·(bα+pαs)

[
− ik · x̄α

∣∣
O(4)

+ Λ−1π
∣∣
O(3)

+ Λ−1x̄µα
∣∣
O(2)

∂µπ
∣∣
O(1)

+ iΛ−1k · x̄α(s)
∣∣
O(2)

π
∣∣
O(1)
− 3

2
Λ−2π

∣∣2
O(1)

+
1

2

(
−ik · x̄α

∣∣
O(2)

)2
]
, (5.17)

where

x̄µα
∣∣
O(4)

=
i

Λ4

∑
β 6=α,

γ 6={α,β}

∫
qβ , qγ qδ

e−i qδ ·(bα+pαs)

(qδ · pα)2 m2
βm

2
γ µβ,γ(qδ)

[
1

qγ · pα

(
−m2

αq
ν
β

(
qνγp

µ
α + pναq

µ
γ

)

+ 2(qβ · pα)(qγ · pα)pµα

)
+
(
−m2

αδ
µ
ν + pµαpαν

)( 1

q2
δ

ρβγ(qδ)q
ν
δ

+ 2qνγ +
1

(qγ · pα)2

(
−m2

αqβ · qγ + (qβ · pα)(qγ · pα)
)
qνγ

)]
. (5.18)

Once we substitute the corresponding trajectory deviations and field profiles into the equa-

tion for the current at next to leading order, we find that the terms whose mass factors

are of the form m2
αm

2
βm

2
γ and m4

αm
2
βm

2
γ become zero after using the corresponding delta

functions.

6 Double copy: non-linear sigma model to special Galileon

In the previous section we computed the special Galileon radiation at next to leading

order and previously we performed the analogue calculation for the NLSM. We are now

in position to propose the color-kinematics replacements that lead to the double copy. In

this case, the replacements are of the form

C({q} ·Ma)→ N({q}) . (6.1)
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Specifically, to transform the NLSM to the special Galileon at order O(2) we use the

color-kinematics replacements:

−i 2
√

2 (k ·Mα)(qβ ·Mα) · (qβ ·Mβ)→ 1 , (6.2a)

−i 2
√

2 fabc(qα ·Mα)b(qβ ·Mβ)c → 0 , (6.2b)

Under these replacements, we can see that on-shell:

ρaαβ(k)→ ραβ(k) , (6.3)

and thus the radiation from eq. (3.25) is mapped to that of eq. (5.15). At O(4) we need

replacements for higher order contractions of dipole moments. These color-kinematics

replacements are:

i4
√

2(k ·Mα)a(qβ ·Mα)·(qβ ·Mβ)(qγ ·Mα)·(qγ ·Mγ)→−1 , (6.4a)

i4
√

2(k ·Mα)a(qδ ·Mα)·(qδ ·Mβ)(qγ ·Mβ)·(qγ ·Mγ)→−1 , (6.4b)

i4
√

2(k ·Mα)[f ·(qγ ·Mα)·(qβ ·Mβ)·(qγ ·Mγ)]→ 0 , (6.4c)

i4
√

2(k ·Mα)[f ·(qδ ·Mα)·(qβ ·Mβ)·(qγ ·Mγ)]→ 0 , (6.4d)

i4
√

2(qγ ·Mα)·(qγ ·Mγ)fabc(q ·Mα)b(qβ ·Mβ)c→ 0 , (6.4e)

i4
√

2(qγ ·Mα)·(qγ ·Mγ)fabc(q ·Mβ)b(qδ ·Mα)c→ 0 , (6.4f)

i4
√

2fabcf bde(qδ ·Mα)d(qβ ·Mβ)e(qγ ·Mγ)c→−2n(γ,α,β)

(
1+

qβq
2
γ

qδq2
α

+
n(γ,α,β)

8q2
γ

)
,

(6.4g)

i4
√

2fabcf bde(qβ ·Mβ)d(qγ ·Mγ)e(qα ·Mα)c→n(α,β,γ) , (6.4h)

where q represents either the radiated momentum k, or the momenta any of the fields,

such as qα. Under these replacements the NLSM radiation from eq. (3.29) is transformed

into the special Galileon one from eq. (5.17). While the color factors involving only one

structure constant are set to zero as a consequence of the lack of a cubic interaction in both

the NLSM and the special Galileon, the color factors involving two structure constants give

rise to a more interesting relation. The replacement in eq. (6.4h) exchanges the color factor

of the four-point amplitude of the NLSM (from the right-hand side diagram in figure 5)

with the corresponding color-stripped amplitude. Note that both the color and kinematic

sides satisfy the Jacobi identity even though none of the involved momenta {q} are on shell.

7 Discussion and outlook

In this paper we have computed the amplitude of radiation emitted by point-like particles

coupled to a bi-adjoint scalar, a set of pions, and a special Galileon at next-to-leading

order in the couplings. While one might naively expect that the NLSM coupling to point-

particles should be of the form capµ∂µφ
a, this coupling gives rise to no radiation at any

perturbative order. This can be understood from the fact that this coupling arises from

the Yang-Mills gauge invariant coupling capµAaµ after introducing the Stückelberg field φ.
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A similar situation happens for the special Galileon and the coupling pµpν∂µ∂νπ. Instead,

for the NLSM we consider a coupling to a color dipole moment, which is invariant under

G, and for the special Galileon we consider the coupling arising after the conformal trans-

formation gµν → (1 + 2π/Λ)gµν . These couplings are motivated by those that would arise

for longitudinal modes of massive Yang-Mills and massive gravity. Using these couplings

we have shown that up to next to leading order the double copy of the radiation of pions

corresponds to the radiation of special Galileons. We have also constructed the single copy

starting from the bi-adjoint scalar. To do so, we have used a generalized set of color-

kinematics replacements to map from color charges to color dipole moments. Compared

to the gravitational double copy, in the case of the scalar modes the simple replacement

of the color structure by its corresponding vertex arises for the four-point case, since there

are no cubic interactions.

At the order to which we have worked, the special Galileon self-interactions do not

contribute to the radiation. It would be interesting to investigate the structure of the

color-kinematics replacement rules at O(8), which is where the first contribution from

these interactions is bound to appear. Our expectation is that at O(6) the color structures

involving three structure constants will be set to zero, since these are related to the five-

point vertex. At even higher order, the color structures with four structure constants —

corresponding to the six-point vertex — will have a more complicated replacement rule,

similar to what happens in the gravitational case at O(4).

At higher order one must also contend with another challenge, namely the fact that

higher derivative corrections to the NLSM and special Galileon actions can contribute to

the radiation field. This challenge is not limited to the classical double copy, since it is

far from understood what are the correct higher derivative corrections that give rise to

the amplitudes double copy relation [54–57]. Another question that would be interesting

to explore is whether it is possible to construct a wider web of classical color-kinematic

relations, in the spirit of [31, 39]. This web should include not only Yang-Mills, gravity,

and the scalar theories we have considered in this paper, but also other theories whose am-

plitudes admit a CHY representation — e.g. Born-Infeld theory, Dirac-Born-Infeld theory,

and others. We plan to tackle some of these interesting questions in the near future.
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