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1 Introduction

For a supersymmetric (SUSY) gauge theory on a compact space, we can apply the local-

ization technique to compute some SUSY invariant quantities exactly [1–3]. In particular,

for N = 2 three dimensional SUSY gauge theories on S3, the partition function and the

SUSY Wilson loop can be expressed by the matrix model type integration, instead of the

path-integral [4–6]. There are many interesting phenomena in three dimensional SUSY

gauge theories, which have been studied by the localization technique. On the other hand,

in the three dimensional SUSY gauge theory SUSY, is often broken spontaneously. Indeed,

the N = 2 SUSY Chern-Simons theory is believed to be in the mass gapped phase, in

which SUSY is spontaneously broken, for N > k where k is the Chern-Simons level and

the gauge group is SU(N) [7–9]. This phase will be realized for varieties of the three di-

mensional SUSY gauge theory if all of the matter fields are massive and can be regarded

to be decoupled. On the flat space, such decoupling of matter fields occurs at the origin of

the Coulomb branch which may be regarded as the metastable vacuum.

In the large N limit with finite k, the topological degrees of freedom in the low energy

may not be relevant in the leading order in the 1/N expansion and the phase will be

considered as the SUSY breaking phase in the large N limit. It may be interesting to

study this phase through the exact results obtained by the localization technique because
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such a phase can appear in many interesting models. Indeed, such a spontaneously broken

SUSY phase has been argued to appear in the large N mass deformed ABJM theory on

S3, which will have a gravity dual with an asymptotic AdS4 geometry, for an enough large

mass parameter [10, 11].

In this paper, we study this phase in the large N limit with finite k, using the local-

ization technique for the theory on the ellipsoid, which interpolates the sphere and the flat

space compactified on S1. Because of the large N limit, we can evaluate the matrix model

integral by the saddle point approximation. We find a large N saddle point solution for the

gauge theory (with massive matter fields which transform as the adjoint representation of

the gauge group). The solution gives the vanishing free energy in the leading order in 1/N

expansion except for the contributions from the decoupling matter fields. This indicates

that the O(N2) gluons are confined. We also see that the solution is consistent with the

exact results of the low energy N = 2 SUSY Chern-Simons theory which is believed to be

in a SUSY breaking phase.

The SUSY Wilson loop on the ellipsoid for this solution is also computed and shown

to vanish in the leading order in 1/N expansion. In the flat limit of the ellipsoid, the

Wilson loop can be regarded as (SUSY generalized) Polyakov loop. Thus, the solution

corresponds to the confining phase (i.e. the center symmetry preserving phase) in the large

N limit. This result is somewhat surprising because the localization technique reduces the

path integral variables to the integrations over the constant scalars where the gauge fields

are fixed to zero although ZN symmetric configurations for the non-vanishing gauge fields

give the vanishing Polyakov loop. In our solution, the nonzero imaginary scalars values are

similar to the ZN symmetric configurations for the gauge fields. Furthermore, the scalars

and gauge fields are combined like complex variables in the SUSY Wilson loop, then the

vanishing (generalized) Polyakov loop is realized.

The theory which we will expect to have such a SUSY breaking phase is the mass

deformed ABJM theory with a sufficiently large mass. In [10, 12] and [11], it has been

argued that there is a critical mass in this theory and if the mass is larger than this critical

value, the SUSY breaking occurs. In this phase, it is possible that the large N solution

discussed in this paper is valid. One thing we need to consider for the mass deformed

ABJM theory is the critical value of the mass for the theory on the ellipsoid. In order to

do this we study the large N solution for a small mass on the ellipsoid.

The rest of paper is as follows: in section 2, we introduce the ellipsoid S3
b and see

that the manifold is regarded as the S1 × R
2 in a large b limit. Then we review some

ingredients of the localization technique and apply it to the supersymmetric gauge theory

on S3
b . In section 3, we investigate large N solutions of several kinds of gauge theories and

show that there exists the solution corresponding to the SUSY breaking phase. In section

4, we solve the saddle point equation of the mass deformed ABJM theory on S3
b and find

the critical mass discussed in [10, 12] for S3
b . In section 5 we summarize this paper and

discuss some problems. In appendix A, we discuss which solution is dominant in the large

N limit. We introduce the theory whose saddle point equation has at least two types of the

solutions. We investigate when the solution in the SUSY breaking phase tends to become

the dominant one.
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2 Three dimensional ellipsoid S
3

b

The metric of the 3d ellipsoid S3
b is

ds2 = l2
(

1

b2
cos2 θdϕ2 + b2 sin2 θdχ2 + f2dθ2,

)

(2.1)

where 0 ≤ θ < π/2, 0 ≤ ϕ < 2π, 0 ≤ χ < 2π and

f2 =
sin2 θ

b2
+ b2 cos2 θ. (2.2)

Later, we will consider the flat limit in which we take

b → ∞, l → ∞, l1 ≡
l

b
= finite, (2.3)

and consider only the region θ ≪ 1 with

r ≡ b2θ = finite. (2.4)

In this limit, we have

ds2 → (l1)
2
(

dϕ2 + r2dχ2 + dr2
)

, (2.5)

which is S1
l1
× R

2, near θ = 0. The theory in the gapped phase with the gap E is isolated

to be in this geometry near θ = 0 if l ≫ 1/E except the remaining topological degrees of

freedom.

Below, we will set l = 1 for notational simplicity. We can recover l dependence by the

dimensional analysis.

Let us consider the SUSY gauge theory on it. For this, we need the non-zero back

ground gauge field

V = −1

2

(

1− 1

bf

)

dϕ+
1

2

(

1− b

f

)

dχ, (2.6)

which couples to the R-symmetry current. Then, a natural choice for the dreibein is

e1 =
1

b
cos θdϕ, e2 = b sin θdχ, e3 = fdθ, (2.7)

and the “Killing spinors” of the SUSY generators can be taken as

ǫ =
1√
2

(

−e
i
2
(χ−ϕ+θ)

e
i
2
(χ−ϕ−θ)

)

, ǭ =
1√
2

(

e
i
2
(−χ+ϕ+θ)

e
i
2
(−χ+ϕ−θ)

)

, (2.8)

where the R-charges of ǫ and ǭ are 1 and −1, respectively. They satisfy Dmǫ = i
2f γmǫ and

Dmǭ = i
2f γmǭ. In the flat limit near θ = 0, the background becomes

V → −1

2
dϕ, (2.9)

which implies dV = 0, and

ǫ → 1√
2
e

i
2
(χ−ϕ)

(

−1

1

)

, ǭ =
1√
2
e

i
2
(−χ+ϕ)

(

1

1

)

, (2.10)

which are indeed constant spinors in S1 × R
2 with the factor e±iϕ/2 coming from the

background (2.9), where χ dependence comes from the local Lorentz transformation. They

satisfy Dmǫ = 0 and Dmǭ = 0.
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2.1 Localization

The partition function and some Wilson loops of any 3d N = 2 SUSY gauge theory on the

ellipsoid S3
b can be computed exactly by the localization technique [13]. First, we will review

shortly the results in [13–15]. The saddle points are Fmn = Dmσ = D = φ = φ̄ = F =

F̄ = 0, which mean that only scalars σ in the vector multiplets can have non-zero values.

For the saddle points, they should be covariantly constant and we will denote them as

σ|saddle = a, (2.11)

which is in a Cartan sub-algebra by the gauge transformation. Then, for the saddle points

the Chern-Simon terms and the FI term are evaluated as

e−SChern-Simons = eiπkTr(a
2), e−SFI = e4πiζTr(a). (2.12)

The Yang-Mills terms for the vector multiplets and the kinetic terms and the superpoten-

tial terms for the chiral multiplets can not contribute to the partition function at least

classical level. The 1-loop factor for the vector multiplet with the integration measure for

a is given by

1

|W|
r
∏

i=1

dai
∏

α∈∆+

4 sinh(πb a · α) sinh
(

π
1

b
a · α

)

, (2.13)

where G is the gauge (simple) group, |W| is the order of the Weyl group and ∆+ is the

set of the positive roots. For the chiral multiplet whose bottom component has R-charge

r, the 1-loop factor is
∏

w∈R
sb

(

iQ

2
(1− r)− a · w

)

, (2.14)

where w runs the weights in the representation of G for the chiral multiplet,

Q = b+
1

b
, (2.15)

and

sb(z) ≡
∞
∏

m,n=0

mb+ nb−1 + Q
2 − iz

mb+ nb−1 + Q
2 + iz

, (2.16)

is the double sine function. We introduce some properties of the function studied in [16, 17].

sb(x) satisfies

sb(z) = sb−1(z), sb(z)sb(−z) = 1, (2.17)

and the expansion around Re(z) = ∞:

i log sb(z) = −πz2

2
− π

24
(b2 + b−2) +

∞
∑

l=1

(−1)l−1

l

(

e−2πlbz

2 sin(πlb2)
+

e−2πlz/b

2 sin(πlb−2)

)

, (2.18)

and around Re(z) = −∞:

i log sb(z) =
πz2

2
+

π

24
(b2 + b−2) +

∞
∑

l=1

(−1)l

l

(

e2πlbz

2 sin(πlb2)
+

e2πlz/b

2 sin(πlb−2)

)

. (2.19)
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For the vector like matters, the 1-loop factor becomes

(

∏

w∈R
sb

(

iQ

2
(1− r)− a · w

)

)(

∏

w∈R
sb

(

iQ

2
(1− r) + a · w

)

)

=
∏

w∈R
D−iQ(1−r)/2(a · w),

(2.20)

where

Dα(x) ≡
sb(x− α)

sb(x+ α)
. (2.21)

This function satisfies

Dα(x) = Dα(−x). (2.22)

We also define

Db(x) ≡ D−iQ/4(x), (2.23)

which satisfies Db(x)|b=1 = 1
2 cosh(πx) . When |Im(x)| < |ReQ|

2 , logDb(x) has the following

integral form:

logDb(x) =

∫

R+i0

dt

2t

sinh
(

Qt
2

)

cos(2xt)

sinh(bt) sinh(b−1t)
. (2.24)

Another useful formula we will use later is the following expansion for x with a large

positive real part:

logDb(x) = −πQ

2
x+

∞
∑

n=1

(

e−2πnbx

2n cos(πnbQ2 )
+

e−2πnb−1x

2n cos(πnb
−1Q
2 )

)

. (2.25)

The SUSY Wilson loop on S1 at θ = 0

WR(θ = 0) ≡ TrRPexp

∮

θ=0
(iA+ σdl), (2.26)

is also evaluated by the localization technique. At the saddle points, the Wilson loop

becomes

WR(θ = 0)|saddle = TrR(e
2π a

b ). (2.27)

This will be considered as a generalized Polyakov loop in the b → ∞. This wraps

around the S1 in S1×R
2. There are some differences between the usual Polyakov loop and

the one considered in the paper. The theory is on S1 × R
2 instead of S1 × R

3 and there

is the non-zero background gauge field corresponding to the R-charge. Furthermore, the

SUSY Wilson loop (2.26) includes the scalar σ. Although these differences exist, the SUSY

Wilson loop (2.26) can be regarded as an external particle of the representation R on S1.

Furthermore, there is the center symmetry ZN in the flat space limit and the usual Polyakov

loop is the order parameter of this symmetry. We expect that the SUSY Wilson loop (2.26)

also is the order parameter of the center symmetry because the center symmetry does not

act the scalar in it and the SUSY Wilson loop is expected to be transformed under the

symmetry as the non-SUSY Wilson-loop. Thus, if 〈WR〉 6= 0 the center symmetry is spon-

taneously broken although the SUSY and no SUSY Wilson loops will take different values.

Note that only the R
2 is the non-compact space, thus there are no spontaneous breaking

– 5 –
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of symmetries if N is finite. However, in this paper, we consider the large N limit of the

theory and thus symmetries can be broken spontaneously. Therefore, we will call the phase

with 〈WR〉 = 0 “confinement phase” although it is only meaningful for the large N limit.

3 Large N analysis of N = 2 gauge theories on S
3

b

In this section, using the localization results,

Z =

∫ r
∏

i=1

dai e
−S(a), (3.1)

we will compute the partition function and the Wilson loop in the large N limit in which

we keep other parameters (the Chern-Simons level k, FI parameter or mass, b and the

length scale l) finite. In the limit, the integrations over the localization saddle points ai
may be dominated by the large N saddle points which are given by

∂S(a)

∂ai

∣

∣

leading
= 0, (3.2)

where |leading means taking the large N leading order part.

Below, we will take the gauge group G=U(N) and denote a · αij = ai − aj with

i, j = 1, . . . , N for the adjoint representation.1

3.1 Large N solution for confinement phase

Here we investigate the existence of the solution corresponding to the confinement phase

in various theories on ellipsoid S3
b .

2 Depending on the theory with the parameters, there

is another solution which approximates the matrix integral in the large N limit instead of

the solution for the confinement phase. In this section, we will not discuss which solution

indeed approximates the matrix integral. However, for the mass deformed ABJM, which is

discussed in the next section, we argue that the solution for the confinement phase can be

appropriate for large enough mass. For the theories with massive adjoint matter fields with

mass m, we will discuss this problem in the appendix and see that the large N solution is

expected to be valid if km/N is finite and large enough.

1In the large N analysis in this paper can be trivially extended to SU(N) case by imposing the condition
∑N

i=1
ai = 0 and the results will not change.

2This type of the solution exists even in the theory whose matrix model does not converge. In that case,

it is not guaranteed that the solution is meaningful.

– 6 –
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3.1.1 Pure N = 2 SUSY Chern-Simons Yang-Mills theory

First, we consider the theory without chiral multiplets.3 The matrix model action S in (3.1)

becomes

S(a) = iπk
N
∑

i=1

a2i − 2πiζ
N
∑

i=1

ai

− 1

2

∑

i,j=1, i>j

(

log 4 sinh(πb(ai − aj) + log 4 sinh(πb−1(ai − aj)
)

+N logN, (3.3)

up to a constant.4 In particular, for k = 0, the matrix integral is not convergent and the

theory is the pure N = 2 SUSY Yang-Mills theory which has the runaway type effective

potential [20]. The saddle point equation is written down as

0 =
∂S(a)

∂aj
= 2iπkaj − 2iπζ − bπ

∑

k 6=j

cothπb(aj − ak)− b−1π
∑

k 6=j

cothπb−1(aj − ak). (3.4)

Let us take the special class of the ellipsoids which have

b =

√

p

q
, (3.5)

where p, q ∈ Z. For these special values, we will find large N solutions corresponding to

the confinement phase.5

Extending the solution given in [10], the solution is given by

aj = i

(

j

N
− c

)√
pqM, (3.6)

where M = Z>0 and c = N+1
2N . Note that we took the constant c such that

∑N
j=1 aj = 0.

For this, the saddle point equation in the large N limit (3.2) becomes

0 = b

∫ 1

0
dy cotπp(x− y) + b−1

∫ 1

0
dy cotπq(x− y), (3.7)

where we assume the continuous limit in which we replace the discrete valuable j and the

summation of it from continuous ones x and the integral over x as

j

N
→ x ∈ [0, 1],

1

N

N−1
∑

j=1

→
∫ 1

0
dx. (3.8)

3In this case, although the integrations over ai diverge, even for non-zero k without a precise regulariza-

tion. We will analyze them assuming the regularization is done. In fact we can introduce the imaginary part

of the Chern-Simons-level for the matrix model to converges and finally take it to zero. The existence of this

imaginary part of the Chern-Simons-level does not change the solution of the saddle point equation because

the solution we will consider does not depend on the Chern-Simons-level. In the recent works [18, 19], it

was shown that we can take the contour so that the integrations of the matrix models converge.
4We have approximated logN ! ≈ N logN .
5It is interesting to extend the solution without this conditions on b. It is also interesting to find the

reason why this condition should be imposed. By now, we do not have any answers.
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The integrals are defined as the principal values because the zero of the sinh is not included

in (3.3).6 Here the Chern-Simons term and the FI term were neglected in the large N limit

because k and ζ are finite. Then, indeed, the integrations over y in (3.7) vanish for any x

because the integration of the cot over the period vanishes and p, q are integers.7

The v.e.v. of the Wilson loop at θ = 0 for the fundamental representation is computed

in the leading order in the large N limit as

〈W 〉 ≈ e−πiq
N
∑

j=1

exp

(

2πi
j

N
q

)

= 0, (3.9)

where we neglected the sub-leading term which will be O(N0). This means that the theory

is in the confining phase, at least in the large b limit which can be taken, for example, by

taking q = 1 and p → ∞.

The free energy, which is defined as F ≡ − log |Z|, is computed for the solution (3.6) as

F = 0 ·N2 +O(N). (3.10)

N2

4

∫

1≥x>y≥0
dxdy

[

log sin2 πp(x− y) + log sin2 πq(x− y)
]

= 0. (3.11)

This result also supports that the theory is in the confining phase where the O(N2) gluons

and other fields are confined.

Note that at the saddle point, σ is pure imaginary. This would be related to the

expected value of the usual Polyakov loop because the combination of the gauge field iAµ

and σ appears in the supersymmetric Wilson loop.

We have considered the large N limit of the N = 2 SUSY Chern-Simons Yang-Mills

theory, however, even for finite N the partition function and Wilson loop have been com-

puted. Under the certain regularization, the partition function for the N = 2 SUSY SU(N)

Chern-Simons theory on the three-sphere can be explicitly computed as [4]

|ZChern-Simons| =
2N(N−1)/2

kN/2

N−1
∏

m=1

∣

∣

∣

∣

sinN−m
(πm

k

)

∣

∣

∣

∣

=
1

kN/2

∏

1≤j<l≤N

∣

∣

∣

∣

2 sin

(

π(l − j)

k

) ∣

∣

∣

∣

,

(3.12)

which is same as the one for the bosonic Chern-Simons theory with the level k −N . This

result is same for the theory on the ellipsoid as expected from the fact that the Chern-

Simons theory is topological. The v.e.v of the (SUSY) Wilson loop of the fundamental

representation was also computed as [4]

〈W 〉 ∼
∏

1≤j<l≤N

sin
(

π(l−j+δ1,j−δ1,l)
k

)

sin
(

π(l−j)
k

) =
sin(πNk )

sin
(

π
k

) (3.13)

where we neglected the phase factor which is related to the flaming dependence.

6Here we assumed pq and N are coprime. Even if we do not assume this, we expect that there are

appropriate regularizations to avoid the singular point.
7For this solution, there are infinitely many discrete moduli, aj = i

(

j

N
− c+ n(j)

)√
pqM where n(j)

is an O(N0) integer, which do not change the values of the free energy and the Wilson loop [10]. The

summation over these may not affect the large N results although these could be important to obtain

Z = 0, which is expected for the theory in the SUSY breaking, through the Chern-Simons term.
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For N > k, this partition function (3.12) becomes zero and this is related to the sponta-

neous symmetry breaking of SUSY Chern-Simons theory, which is scale invariant. Although

the partition function is diverging, the v.e.v of the Wilson loop is not diverging8 and O(N0)

for the large N limit with finite k( 6= 1), which is same as for the large N solution.9 On the

other hand, the free energy is divergent for N > k, which is different from the large N solu-

tion for the confinement phase. However, below we will argue that in the large N expansion

the free energy − log |ZChern-Simons| is consistent with the one for the large N solution. Thus

we expect that the large N solution corresponds to the SUSY breaking phase.

Now we will evaluate the (3.12) in the large N limit and compare it to the saddle point

approximation by the large N solution. We take logarithm of (3.12) and take continuous

limit by the following replacements of the discrete index m and the summation:

m

N
→ x ∈ [0, 1],

1

N

N−1
∑

m=1

→
∫ 1

0
dx. (3.14)

Then, the large N leading part of the logarithm of (3.12) is given by

F (t)

N2
≡ − log

∣

∣ZChern-Simons

∣

∣

N2
∼ −

∫

0≤y<x≤1
dxdy log

∣

∣

∣

∣

2 sin
π(x− y)

t

∣

∣

∣

∣

(3.15)

= −
∫ 1

0
dx(1− x) log

∣

∣

∣

∣

2 sin
πx

t

∣

∣

∣

∣

, (3.16)

where N is infinite while keeping k
N = t finite.10 In the first line of the R.H.S is same

as (3.11) except 1/t factor. We can find that there are infinite zeros of (3.16) as a function

of t at t = 1
n , n ∈ Z and no singularities for t > 0. The behavior of (3.16) is shown in the

figure 1 and we can see that F (t)
N2 → 0 in t → 0 limit. This is consistent with the large N

solution with finite k. Note that in this large N leading analysis it may be impossible to

recover the singular behavior where k is an integer.

Finally, we will comment on the numerical results on the large N solution in the ’t

Hooft limit. In the region k ≪ N the solution is indeed the confinement solution we

discussed above since the Chern-Simons term can be ignored. In the region k ≫ N we

found the solution also in [10] and the distribution of aj lies on a line in the complex

plane. The numerical result suggests that as k decreases and goes beyond to k = N , the

imaginary part of the saddle point solution tends to become a double valued function as a

function of the real part. The confinement solution (3.6) seems to be also a double valued

8There may be Nambu-Goldstone fermion zero modes which make the partition function vanishes. It is

expected that the Wilson loop does not include these zero modes and the contributions of the zero modes

are canceled.
9For k → 1, we find 〈W 〉 ∼ N . Thus, for k = 1, the large N solution does not seem to correspond to

the pure Chern-Simons theory.
10In [21, 22] the authors discuss this free energy of the pure Chern-Simons theory in the ’t Hooft limit.

They argue that when λ < 1 the integrand of the free energy has a logarithmic branch cut on a part of

the integral interval and the integral is ill-defined. However, in this paper, we only consider the absolute

value of the partition function and then its singular properties does not change. The integrand of (3.16) is

well-defined even when λ < 1. t is a inverse ’t Hooft coupling.
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Figure 1. The left figure shows the numerical plot of − log
∣

∣ZChern-Simons

∣

∣ divided by N2 with

N = 400. The horizontal axis corresponds to k ∈ [390, 410] as real value. The function is diverging

when k < N and k is integer. The right figure shows (3.16) as a function of t. The zeros only

appear in t ≤ 1 region.

function including the real part of the confinement solution, which is O( 1
N ) and ignored in

this paper.11 These similarities also suggest that the confinement solution corresponds to

the SUSY breaking phase.

3.1.2 N = 2 SUSY gauge theory with fundamental matter fields

Here we consider the Nf non-chiral pair of chiral multiplets (Qa, Q̃
a) in the fundamental

and the anti-fundamental representations of the gauge group G and a is a flavor index which

runs from 1 to Nf . The total flavor symmetry is U(Nf )×U(Nf ) and we will introduce the

mass ma for the a-th flavor by gauging U(1)Nf part of flavor symmetry as usual [13].12

For this theory, the charge can be screened and we do not expect the confinement of the

charges. Furthermore, the center symmetry ZN does not exist. For this theory, we have

S(a)= iπk
N
∑

i=1

a2i −2πiζ
N
∑

i=1

ai−
1

2

N
∑

i,j=1, i>j

(

log4sinh(πb(ai−aj)+log4sinh(πb−1(ai−aj)
)

−
Nf
∑

a=1

N
∑

i=1

(logsb(α+ma−ai)+logsb(α−ma+ai))+N logN, (3.17)

where

α =
iQ(1− r)

2
. (3.18)

In the large N limit, the matter parts do not contribute to the saddle point equation for

Nf = O(N0). Thus, the previous solution (3.6) without matter fields is valid for this case

although the O(N) part of the free energy F is changed.

11The real part of the solution was considered in the appendix of [10].
12When we take the gauge group G=U(N) we take the overall U(1) symmetry of U(N) to cancel one

of the flavor mass. When the Chern-Simons level and FI parameter is vanishing the matrix model always

have the contribution of one massless hypermultiplet. We do not consider such a case.

– 10 –



J
H
E
P
1
1
(
2
0
1
8
)
0
6
4

For Nf = O(N), the saddle point equation has the following extra terms:

−
Nf
∑

a=1

∂

∂ai
(log sb(α+ma − ai) + log sb(α−ma + ai)) , (3.19)

which will make the solution completely different, which may correspond to the general fact

that definitions of the confinement phase are ambiguous13 for the theory with the matter

fields of the fundamental representations. However, for the large mass limit e−2πb±1|ma| ≪
1, the extra terms in the action can be approximated to

− i
π

2

Nf
∑

a=1

N
∑

i=1

sign(ma)
(

(α+ma − (ai))
2 − (α−ma + (ai))

2
)

(3.20)

= −2πiα

Nf
∑

a=1

N
∑

i=1

sgn(ma)(ma − ai),

thus we have

S(a) ≈ −1

2

N
∑

i,j=1, i>j

(

log 4 sinh(πb(ai − aj)) + log 4 sinh(πb−1(ai − aj))
)

+N logN

+ iπk
N
∑

i=1

(

ai −
1

k
ζ̃

)2

− 2πiαN

Nf
∑

a=1

|ma| − i
π

k
ζ̃2, (3.21)

where

ζ̃ = ζ − α

Nf
∑

a=1

sgn(ma). (3.22)

This action is the same form as the one without the matter fields. Thus, by shifting the

U(1) part of ai in the solution (3.6), the saddle point solution is obtained as

aj = i

(

j

N
− c

)√
pqM +

ζ̃

k
, (3.23)

and the free energy is

F = πQ(1− r)N

Nf
∑

a=1

|ma| − i
π

k
ζ̃2 +O(N). (3.24)

The Wilson loop vanishes also because the shift changes the overall phase only. Note that

for the SU(N) gauge theory, (3.21) with ζ̃ = 0 is correct.

Without the vector multiplets, in the large mass limit we have F = πQ(1 −
r)N

∑Nf

a=1 |ma|. Naively considering, by choosing ζ̃ = 0, the result of the pure N = 2

super Yang-Mills Chern-Simons theory is recovered by subtracting the contribution of the

decoupled massive matter fields.

As discussed in the appendix for the adjoint matter fields, we need to choose the

coupling constants to realize the solution for the confinement phase for this theory with

fundamental matter field although we do not explicitly do this.

13The center symmetry is explicitly broken by the matter fields and the Wilson loop will not obey the

area law by the pair creations.
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3.1.3 N = 2 SUSY gauge theory with adjoint matter fields

Next we consider the Na chiral multiplets of the adjoint representation of the gauge group

G.14 We will introduce the mass ma for the adjoint chiral multiplets. Then, we have

S(a)= iπk
N
∑

i=1

a2i −2πiζ
N
∑

i=1

ai−
1

2

N
∑

i,j=1, i>j

(

log4sinh(πb(ai−aj)+log4sinh(πb−1(ai−aj)
)

+N logN−
Na
∑

a=1

N
∑

i,j=1

logsb(α+ma−(ai−aj)). (3.25)

Comparing with the pure Chern-Simons Yang-Mills case, the additional terms in the

saddle point equations are

Na
∑

a=1

N
∑

j 6=i

∂

∂ai
(log sb(α+ma − (ai − aj))− log sb(α+ma − (aj − ai))) (3.26)

where x = j
N . We will expand log sα using (2.18) and (2.19).

Then, the matter contributions to the action is

− i
π

2

Na
∑

a=1

N
∑

i,j=1

sgn(ma) (3.27)

×
(

(α+ma − (ai − aj))
2 +

(Q2 − 2)

12
− 2

π
H (sgn(ma)(α+ma − (ai − aj)))

)

,

where

H(z) =

∞
∑

l=1

(−1)l−1

l

(

e−2πlbz

2 sin(πlb2)
+

e−2πlz/b

2 sin(πlb−2)

)

. (3.28)

Now we assume
Na
∑

a=1

sgn(ma) = 0, (3.29)

to solve the saddle point equations.

Below, we will show that

aj = 2i

(

j

N
− c

)√
pqM, (3.30)

is a solution of the saddle point equation for the theory with the adjoint matter fields.15 We

see that the terms including H ′(x) vanish because H(x) is the periodic function with the

14When G is SU(N) case, the matrix model of the gauge theory with gauge group G with Na ≥ 2

converges. However, G =U(N) case, the matrix model with any Na diverges because the integrand depends

only on the difference of the integral valuables as ai − aj . Generally, the condition that the determinant is

1 makes the matrix model to converge depending on the Na.
15There is an additional factor 2 in (3.30) compared with the pure Yang-Mills case. This is because H(x)

contains eπb±1x instead of e2πb±1x for sinh2(πb±1x). If (1 + b±2)(1− r) = m± where m± ∈ Z, we can show

that this factor 2 can be dropped, although these mean b = 2r = m± = 1 for r > 0.
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period 2i
√
pq, i.e.H(x+2i

√
pq) = H(x), which can be seen from

√
pq = qb = p/b, and then,

N
∑

j 6=i

H ′
(

sgn(ma)

(

α+ma± i

√
pqM

N
(i−j)

))

=
N−1
∑

ℓ=1

H ′
(

sgn(ma)

(

α+ma± i

√
pqM

N
ℓ

))

.

(3.31)

We can also see that the remaining terms are canceled each others:

Na
∑

a=1

sgn(ma)



α+ma + 2i

√
pqM

N

N
∑

j 6=i

(i− j)− (α+ma) + 2i

√
pqM

N

N
∑

j 6=i

(i− j)



 = 0.

(3.32)

Therefore (3.30) is the large N saddle point solution. The Wilson loop vanishes in the large

N limit as for the pure Chern-Simons Yang-Mills case. We can also compute the free energy

and find F = 0·N2+O(N) where we used the periodicity of the functionH(z) like as (3.31).

For this theory with fundamental matter fields, there is another large N solution as

discussed in the appendix. To realize the confinement phase, we need to choose the coupling

constants as we will see in the appendix.

4 Mass deformed ABJM theory on S
3

b

The mass deformed ABJM theory [23, 24], which is obtained from the ABJM theory by

a mass deformation, has some interesting properties. This mass deformed ABJM theory

preserves N = 6 SUSY and it is known that the vacuum solutions compose the Fuzzy three

sphere [24] and corresponds to the M2-M5 branes system, which is an analog of the Myers

effects [25].

In [12] and [10], we considered the large N limit of the round sphere partition function

of the mass deformed ABJM theory and found that the large N solution of the saddle point

equation, for which the free energy is proportional to N
3

2 , is valid only when ζ
k < 1

4 , where

ζ is the FI parameter and k is Chern-Simons level. If the mass is larger than this critical

value, it was argued that the SUSY breaking occurs in [11]. In this phase, the large N

solution of the confinement phase can be realized. Indeed, for the bi-fundamental matter

fields as in the ABJM theory, we will follow the previous discussion on the adjoint matter

field and easily find the large N solution obtained there on the ellipsoid is the solution for

the bi-fundamental matter fields. Furthermore, there are some extensions of this model to

M2-branes in other backgrounds. They have generally gauge theories with a product group

and bi-fundamental matter fields, then the large N solution of the confinement phase can

be relevant. Thus, these models are interesting candidates for which the large N solution

of the confinement phase is relevant.

One thing we need to consider for the mass deformed ABJM theory is the critical

value of the mass for the theory on the ellipsoid. In order to do this, we study the large N

solution, for which the free energy is proportional to N
3

2 , on the ellipsoid. In this section,

we will consider the partition function of the mass deformed ABJM theory on ellipsoid S3
b

in the large N limit. We will see that how the critical value for the mass parameter is

modified by the ellipsoid parameter.
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For the mass deformed ABJM, the action is

S(a) = S0 + S1 + 2N logN, (4.1)

where

S0 = iπk
N
∑

i=1

(a2i − ã2i )− 2πiζ
N
∑

i=1

(ai + ãi), (4.2)

and

S1 = −1

2

N
∑

i,j=1, i>j

(

log 4 sinh2(πb(ai − aj) + log 4 sinh2(πb−1(ai − aj)
)

− 1

2

N
∑

i,j=1, i>j

(

log 4 sinh2(πb(ãi − ãj) + log 4 sinh2(πb−1(ãi − ãj)
)

−
N
∑

i,j=1

(logDb(ai − ãj) + logDb(ai − ãj)) . (4.3)

For the large N solution which has a gravity dual, we use the continuous notation

ai → a(s) with s ∼ i
N + const. and take the following form [10]:

a(s) =
√
Nz1(s) + z2(s),

ã(s) =
√
Nz1(s)− z2(s), (4.4)

where z1,2 are independent arbitrary complex valued functions of s. For S0 which is the

classical part of S(a), we can easily evaluate the large N leading contribution as

iπk

N
∑

i=1

(a2i − ã2i )− 2πiζ

N
∑

i=1

(ai + ãi) ≈ 4πN
3

2

∫

ds(ikz1z2 − iζz1), (4.5)

For the remaining 1-loop part S1, we define

z(s) =
√
N(z1(s)− z1(s

′)), w±(s) = z2(s)± z2(s
′), (4.6)

with a fixed s′. Then, we find

S1 = −1

2
N2

∫ 1

0
ds′

∫ 1

s′
ds
[

log 4 sinh2(πb(z(s) + w−(s))) + log 4 sinh2(πb(z(s)− w−(s)))

+ log 4 sinh2(πb−1(z(s) + w−(s))) + log 4 sinh2(πb−1(z(s)− w−(s)))
]

−N2

∫ 1

0
ds′

∫ 1

s′
ds
[

logDb(z(s) + w+(s)) + logDb(−z(s) + w+(s))

+ logDb(z(s) + w+(s)) + logDb(−z(s) + w+(s))
]

,

≡ −N2

∫ 1

0
ds′

∫ 1

s′
ds log Y. (4.7)
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where we defined Y as

Y ≡ V+ · V− ·Db(z + w+) ·Db(z + w+) ·Db(z − w+) ·Db(z − w+), (4.8)

where the vector multiplet 1-loop function is rewritten as

log V±(s) =
1

2
log

(

4 sinh2 πb (z(s)± w−(s)) 4 sinh
2 πb−1 (z(s)± w−(s))

)

. (4.9)

In the large N limit the leading part of log V±(s) is evaluated as

log V±(s) = πQ(z(s)± w−(s)) + log
[(

1− e−2πb(z(s)±w−(s))
)(

1− e−2πb−1(z(s)±w−(s))
)]

.

(4.10)

The first term is the leading term which is order O(
√
N) and this term cancels with

the one-loop part of the bi-fundamental of hypermultiplets. The one-loop part of the bi-

fundamental hypermultiplets can be written for suitable form when x has a positive real

part as

logDb(x) = −πQx

2
+

∫

R+i0

dt

4t

sinh
(

Qt
2

)

e2ixt

sinh bt sinh b−1t
+

∫

R−i0

dt

4t

sinh
(

Qt
2

)

e−2ixt

sinh bt sinh b−1t
. (4.11)

This form is followed from the integral representation of theDb (2.24). The integral contour

R±i0 in (4.11) means starlight line from −∞ to ∞ which avoids from the origin by moving

slightly to upper/lower half complex plane respectably. In order to get the (4.11) we expand

cos(2xt) as exponential and change integral contour R + i0 to R− i0 and pick up residue

at the origin. The residue contribution is given by the first linear term and the second and

third terms are O(e−
√
N ) in this case and can be ignored except when Re(z) = 0.

The leading order of log Y seems to be O(
√
N), however, the leading parts cancel

totally between the vector multiplets and bi-fundamental hypermultiplets part as follows:

∫ 1

2

− 1

2

ds′
∫ 1

2

s′
ds log Y (4.12)

∼ πQ

∫ 1

2

− 1

2

ds′
∫ 1

2

s′
ds (z(s) + w−(s) + z(s)− w−(s))− (z(s) + w+(s) + z(s)− w+(s)) = 0.

Thus, the only region near |Re(z)| = 0, i.e. s = s′, in the integration of s′ gives the

large N true leading contribution of S1. Furthermore as discussed in [10], the saddle point

solution z1(s) should be a monotonically increasing function of s. Assuming this, we can

evaluate the large N leading contribution of S1 by the following relation:

∫ 1

2

s′
ds log

(

V+(s)V−(s)e
−2πQz(s)

)

∼ 1√
Nż1(s)

∫

C0

dz log(1− e−2πbz)2(1− e−2πb−1z)2

= − 1√
Nż1(s′)

π

6
Q, (4.13)
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∫ 1

2

s′
ds log

(

eπQz(s) (Db(z(s) + w+(s))Db (z(s)− w+(s)))
)

∼
(∫

C+

+

∫

C−

)

dz
1√

Nż1(s′)
log

(

e
πQz

2 Db(z)
)

=
1√

Nż1(s′)

(

2

∫ ∞

0
+

∫ 0

2z2(s′)
+

∫ 0

−2z2(s′)

)

dz log
(

e
πQz

2 Db(z)
)

=
1√

Nż1(s′)



2

∫ ∞

0
dz





∫

R+i0

dt

4t

sinh
(

Qt
2

)

e2izt

sinh bt sinh b−1t
+

∫

R−i0

dt

4t

sinh
(

Qt
2

)

e−2izt

sinh bt sinh b−1t





+

∫ 0

2z2(s)
dz log

(

eπQz
)

)

= − πQ√
Nż1(s′)

(

1

24

(

b2 + b−2 − Q2

4

)

+ 2 (z2(s))
2

)

. (4.14)

z(s) is varied vary largely even when s is slightly change around s = s′ because z(s) is

proportional to
√
N . Then the C0 is regarded as the half-starlight line from the origin

towards z(12). The integral contours C± also are regarded as the half-starlight line from

±2z2(s) towards z(12) respectably. ż1(s) can be replaced by ż1(s
′) and we can take w− =

0, w+ = 2z2(s
′). In the second line of (4.14) we change the integral contour without

crossing the poles of logDb assuming the condition is satisfied

− Q

8
< Im (z2(s))− Re (z2(s)))

Im(ż1(s))

Re (ż1(s))
<

Q

8
. (4.15)

The first and second terms in the third line of (4.14) are evaluated as by commuting the

integrals


−
∫

R+i0

dt

8it2

sinh
(

Qt
2

)

sinh bt sinh b−1t
+

∫

R−i0

dt

8it2

sinh
(

Qt
2

)

sinh bt sinh b−1t



 =

∮

t=0

dt

8it2

sinh
(

Qt
2

)

sinh bt sinh b−1t

=
πQ

48

(

Q2

4
− (b2 + b−2)

)

. (4.16)

Then the leading part of one-loop action is evaluated as

S1 = −πQN
3

2

∫ 1

2

− 1

2

ds

ż1(s)

(

1

12

(

b2 + b−2 + 2− Q2

4

)

+ 4(z2(s))
2

)

= −4πQN
3

2

∫ 1

2

− 1

2

ds

ż1(s)

(

Q2

64
+ (z2(s))

2

)

. (4.17)

Consequently, the leading part of total action of the mass deformed ABJM theory is

S = 4πN
3

2

∫ 1

2

− 1

2

ds

(

ikz1(s)z2(s)− iζz1(s)−
Q

ż1(s)

(

Q2

64
+ (z2(s))

2

))

= πQ2N
3

2

∫ 1

2

− 1

2

ds

(

ikz̃1(s)z̃2(s)− iζ̃z̃1(s)−
2

˙̃z1(s)

(

1

16
+ (z̃2(s))

2

))

, (4.18)
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where in the last line we rescale variables as following:

z1,2(s) =
Q

2
z̃1,2(s) , ζ =

Q

2
ζ̃ . (4.19)

Then the action (4.18) is same as that of mass deformed ABJM on round three-sphere

which we obtained in [10] up to overall factor. The solution of the saddle point equation

is same in terms of z̃1,2(s). The interesting point is that the bound where the saddle point

solution exists depends on ellipsoid parameter Q like as

ζ̃

k
<

1

4
⇔ ζ

k
<

Q

8
. (4.20)

The free energy is given by

F =
πQ2

√
2kN

3

2

12



1 +

(

4ζ̃

k

)2


 =
πQ2

√
2kN

3

2

12

(

1 +

(

8ζ

Qk

)2
)

, (4.21)

in the largeN limit.16 We expect that the largeN solution considered in this section is valid

for (4.20) and the SUSY breaking occurs if the mass is above this region. In particular, in

the large b limit, the critical value for ζ is ζc = kb/8. Thus, l1ζc = k/8 is finite in this large

b limit where l1 is the length of S1 in the limiting geometry, i.e. S1 × R
2. This indicates

that the SUSY breaking phase also appears above the critical mass on S1 × R
2. This

might be possible because of the boundary condition of the spatial infinity of R2, which

should be determined by the b → ∞ limit of the ellipsoid, may select the metastable SUSY

vacuum which may be stable in the large N limit. Note that the free energy F contains

the contributions from the outside of θ ∼ 0 region which is approximated by S1 × R
2 and

diverges in the b → ∞ limit.

5 Summary and discussion

In this paper, we have studied the properties of the confinement solution which we discov-

ered in [10] and the theory which has that type of the theory.

First, we have considered the theory on S3
b for supersymmetric Wilson loops to the

Polyakov loop by taking b → ∞ limit in the sense that S3
b become locally S1 ×R

2 and the

supersymmetric Wilson loop is wrapping on the S1. In the large N limit supersymmetric

Wilson loop can be evaluated with the solution of the saddle point equation. We showed

that various gauge theories have the special kind of solution. With this solution, the Wilson

loop is vanishing in the large N limit. We call the solution as confinement solution in the

sense that this Wilson loop can be regarded as the generalized Polyakov loop. We expect

this solution corresponds to the spontaneously SUSY breaking phase. One reason for this

expectation is that this solution only valid in the region N ≫ k. This is consistent with

the fact the SUSY breaking phase may be gapped and confined [8].

Then, we discussed the parameter region where this solution is valid for the mass

deformed ABJM theory and other theories on S3
b . In [10] it is showed that the mass

deformed ABJM theory has the large N solution whose free energy is proportional to N
3

2

16When we take ζ = 0 this result coincides with that obtained in [26].
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and it is valid when ζ
k < 1

4 . When ζ
k ≥ 1

4 it is expected that the theory is in the SUSY

breaking phase in the large N limit and the confinement solution can become dominant.

This might reflect into the fact that pure CS theory in a SUSY breaking phase appears

if all massive bi-fundamental hypermultiplets decouple. In this paper, we found that the

solution of the saddle point equation of the mass deformed ABJM whose free energy is

proportional to N
3

2 and that solution is also valid only when ζ
k < Q

8 . Thus, we expect that

the theory is in the SUSY breaking phase and the confinement solution can be relevant in

the large N limit when ζ
k ≥ Q

8 .

One of the interesting future work is to consider the large N solution for the confine-

ment phase in the theory on the Seifert manifold [18, 19]. Indeed, we expect that this

solution for the confinement phase exists for the theory on the Seifert manifold also by the

following reasons. In the 1-loop part of the twisted index of the Seifert manifold, a com-

plex scalar, in which the real part is the holonomy a along the S1 fiber direction and the

imaginary part is the σ, appears. Moreover, the 1-loop part is periodic under the constant

shift of the holonomy which is regarded as the large gauge transformation and essentially

equivalent to the action of the center symmetry. This also means that there is the periodic-

ity under the shift of the imaginary part of the σ because this also gives the same constant

shift of the complex scalar, thus the large N solution for the confinement phase exists as for

the theory on the squashed S3. Note that if there is no non-trivial one-cycle, the holonomy

a does not exist, however, for the Seifert manifold with a non-trivial fundamental group,

the large N solution for the confinement is just the usual symmetric configuration of the

Polyakov loop for the confinement phase. This might explain our observation that the

large N solution for the theory on the squashed S3 may exist only when the square of the

squashed parameter b is a rational number because the partition function for the theory

on the squashed three-sphere with the rational squashing parameter is represented by the

one on a Seifert manifold. It will be interesting to investigate the large N solution for the

theory on a Seifert manifold further and the corresponding gravity solutions [27, 28].17

In appendix A, we introduce an example which has the confinement solution and the

other solution and investigate which is dominant in the large N limit. We propose that

the confinement solution can be dominant in the large N limit with a specific region of

parameters. It is interesting to find the confinement solution by the resolvent methods and

interpolate it with the solution in the weak ’t Hooft coupling limit. It is also interesting to

know the condition where the confinement solution becomes dominant analytically.
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ma = 1 ma = 2 ma = 5 ma = 8

Nf = 2 49746 94563 233023 372313

Nf = 3 83582 160235 337392 632638

Nf = 5 148258 287081 699586 1125850

Nf = 10 306535 600494 1486380 2379170

Table 1. The free energies correspond to the real solution.

A Dominant saddle point solution of matrix models of S3

We have studied the large N saddle point solution which corresponds to the confining

phase. In general, a large N saddle point solution is not guaranteed to give the dominant

contribution to the partition function. Namely, if there are many solutions, then, we need

to find which solution will really give the dominant contribution to the partition function

in the large N limit. In this appendix, we will focus on SU(N) SUSY Chern-Simons Yang-

Mills theory with Nf adjoint massive hypermultiplets on S3 and investigate whether there

are other solutions of the saddle point equation and the confinement phase is realized or

not. We will see that for the large N limit with N ≫ k and km
N finite and large the

confinement phase is expected to be realized.

First, we will consider k = 0 case. Here the massive hypermultiplets mean that the

matrix model is given by

Z =
1

N !

∫

dNaδ

(

N
∑

i

ai

)

N
∏

i>j

4 sinh2 π(ai − aj)

(2 coshπ(ai − aj +m)2 coshπ(ai − aj −m))Nf
, (A.1)

where δ(
∑N

i ai) are reflected into the condition of SU(N). The matrix model converges

when we take Nf ≥ 2. Then we take Nf ≥ 2 and there are no subtleties since the matrix

model is well-defined. The saddle point equation of this matrix model is difficult to solve

analytically. However, with the help of the numerical analysis of the saddle point equation

we find two solutions of the saddle point equation, one of which is confinement solution. The

other saddle point solution admits the real value solution while the confinement solution

is complex. These two type of solutions are showed in figure 2 and 3. The free energy for

the real solution is smaller than that for the confinement one. Then the confinement phase

can not be realized in the large N limit. We will show some numerical values of the free

energy for the two solutions in the following tables:

Thus, the numerical results suggest that this theory with k = 0 whose matrix model

converges has at least the two solutions of the saddle point equation, and the confinement

solution is not dominant saddle point solution in any regions ofm andNf . However, naively

considering, in the infinite mass limit the theory become pure SU(N) SYM since the matter

fields become decoupled. Thus if this naive expectation might be true the confinement

solution should be dominant in that limit. However, this naive expectation is not always

true. This is because the naive discussion of decoupling is based on the assumption that

the theory is on the origin of the Coulomb branch. In fact, the numerical results suggest
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ma = 1 ma = 2 ma = 5 ma = 8

Nf = 2 61742 123947 310557 497168

Nf = 3 92844 186150 466066 745982

Nf = 5 155047 310557 713310 1243610

Nf = 10 310555 621575 1554630 2487680

Table 2. The free energies correspond to the confinement solution.
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Figure 2. The left figure shows the numerical solution which corresponds to the confinement phase

plotted on the Complex plane with the parameters (N,Nf ,m) = (100, 3, 8). The solution actually

lies on the Imaginary axis. The right one shows the density function of it. We can check that the

solution does not depend on the parameters.

-10 -5 5 10
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1.0

-10 -5 5 10

0.05

0.10

0.15

Figure 3. The left figure shows the other numerical solution plotted on the Complex plane with

(N,Nf ,m) = (100, 3, 8). The solution actually lies on the real axis. The right one shows the density

function of it.

that the dominant solution of the saddle point equation does not correspond to the origin

of the Coulomb branch of the flat space. We will discuss this from the numerical result

with the case Nf ≥ 3 in the next subsection.
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A.1 The meaning of saddle point solutions

The matrix model is written by the integral of the eigenvalues of the Coulomb branch

parameters. The saddle point solution is a specific configuration of the Coulomb branch.18

Then it is plausible to consider that in the large N limit the specific point of the Coulomb

branch is selected. This means that in the large N limit we can argue which massive

hypermultiplets are effectively massless based on the saddle point solution.

Let us consider the meaning of the real solution we introduced above. When we take

mass sufficiently large the real saddle point configuration split into two parts and the half of

the N eigenvalues are distributed around −m
2 and the others are around m

2 . This solution

means that a non-trivial point of the Coulomb branch is selected in the large N limit

where the theory has effective massless degrees of freedom in the deep IR of the RG flow

and the theory may flow to a non-trivial interacting superconformal field theory. On the

other hands, the confinement type solution is expected that all the massive hypermultiplets

become decoupled from the theory in the infinite mass limit and the theory may be in the

SUSY breaking phase.

Below we will study the split type solution and its effective theory, which is a so-called

“good” theory defined in [29]. We assume that the eigenvalues which have two separated

positive and negative region near ±m
2 . We assume the first N

2 eigenvalues are negative

region I− and the other eigenvalues are positive region I+.
19 First we consider that i ∈ I−

and the saddle point equation:

0 =
∂S(a)

∂ai
= 2

∑

j∈I−
cothπ (ai − aj) + 2

∑

j∈I+
cothπ (ai − aj)

−Nf

∑

j∈I+
(tanhπ(ai − aj +m) + tanhπ(ai − aj −m))

−Nf

∑

j∈I−
(tanhπ(ai − aj +m) + tanhπ(ai − aj −m)) + µ. (A.2)

From the assumption we can take the eigenvalue as

{

ai =
m
2 + λi i ∈ I+,

ai = −m
2 + λ̃i i ∈ I−

, (A.3)

where λi and λ̃i are O(1) and the saddle point equation is evaluated as by using this

18Exactly speaking, the solution corresponds to the real part of the classical Coulomb branch parameter.
19Here we also describe the indexes of the eigenvalue which is in positive region as I+ and that of in

negative as I−.
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assumption

0 = 2
∑

j∈I−
cothπ(λi − λj) + 2

∑

j∈I+
cothπ(−m+ λi − λ̃i)

−Nf

∑

j∈I−
(tanhπ(λi − λj +m) + tanhπ(−m+ λi − λj))

−Nf

∑

j∈I+

(

tanhπ(λi − λ̃j) + tanhπ
(

λi − λ̃j − 2m
))

+ µ (A.4)

→ 0 = N

(

Nf

2
− 1

)

+ 2
∑

j∈I+
cothπ(λi − λj)−Nf

∑

j∈I−
tanhπ

(

λi − λ̃j

)

+ µ, (A.5)

where we have taken the infinite mass limit in the last line. We also obtain i ∈ I+ case by

the same calculation. That is

0 = N

(

1− Nf

2

)

+ 2
∑

j∈I+
cothπ(λ̃i − λ̃j)−Nf

∑

j∈I−
tanhπ(λ̃i − λj) + µ. (A.6)

These two equations are same as the large N saddle point equations of the following matrix

model:

∫

dN/2λdN/2λ̃δ

(

∑

i

(

λi + λ̃i

)

)

(A.7)

×
eN(

Nf

2
−1)

∑
i λieN(1−Nf

2
)
∑

i λ̃j
∏

i>j sinh
2 π(λi − λj) sinh

2 π(λ̃i − λ̃j)
∏

i,j cosh
Nf π(λi − λ̃j)

.

This matrix model is obtained from the S[U(N2 )×U(N2 )] gauge theory with the Nf massless

bi-fundamental hypermultiplets and FI term deformation part related to the each U(N2 ),

where we consider the indexes i ∈ I+ corresponds to the indexes of one of the U(N2 ) and

i ∈ I− corresponds to the indexes of the other U(N2 ). In fact this matrix model converges.

Thus it is expected that the matrix model (A.1) become (A.7) in the infinite mass limit.

When we consider Nf = 2 case the FI term is vanishing. This may be the critical point

which distinguishes the saddle point equation in the infinite mass limit with Nf = 2 with

other cases.20

Let us consider the following point of Coulomb branches of the original SU(N) theory

on the flat space:

σ =





−m
2 1N

2
×N

2

0

0 m
2 1N

2
×N

2



 . (A.8)

Then the theory is higgsed and the gauge group SU(N) is broken to S[U(N2 )×U(N2 )] and

the Nf massive adjoint hypermultiplets become effectively massless around this vacuum.

20This FI term is related to the vector U(1) gauge group of U(N
2
)× U(N

2
). The axial U(1) gauge part

is now forbidden by the condition
∑

i

(

λi + λ̃i

)

. These FI terms can be interpreted as one-loop effects of

massive adjoint fermions and massive gauginos of U(N
2
) [30, 31].
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This effective theory is same as the theory introduced above whose matrix model is given

by (A.7). Then we can conclude that this split type solution corresponds to the point of

the Coulomb branch (A.8).

This result also means that we can not obtain the well-defined matrix model of pure

SYM theory by regarding the massive hypermultiplets as the regularization.

We have seen that the confinement solution is not a dominant saddle point solution

for k = 0. However, in the next subsection we propose the theory where the confinement

solution is the dominant saddle point solution by adding the Chern-Simons term to the

theory we considered here. With the help of CS term the eigenvalues feel the central force

in the sense that we regard the saddle point equation as the E.O.M of the mechanics of

the eigenvalues. Then the eigenvalues tend not to be split and the solution is forbidden.

A.2 A theory in which confinement solution is dominant

Here we consider the SU(N) Chern-Simons Yang-Mills theory21 with Nf massive adjoint

hypermultiplets. The matrix model is given by

Z =
1

N !

∫

dNaδ

(

N
∑

i

ai

)

eiπk
∑

i a
2
i

N
∏

i>j

4 sinh2 π(ai − aj)

(2 coshπ(ai − aj +m)2 coshπ(ai − aj −m))Nf
.

(A.9)

The saddle point equation is

0 = 2ikai +2
∑

j 6=i

cothπ(ai − aj)−Nf

∑

j

(tanhπ(ai − aj +m) + tanhπ(ai − aj −m))+µ,

(A.10)

where the first term of the R.H.S of the above equation is from the Chern-Simons term

and causes the central force in the real and imaginary parts of the saddle point equation.

With the help of the Chern-Simons term the split type solution no longer can exist.

We will argue that the confinement solution is dominant for the large N limit with

N ≫ k with km
N finite and large. To do this in detail we repeat the same argument in the

previous subsection. The saddle point equation under the assumption that the solution

which splits into two parts is given by

0 = 2i
k

N

(

λi −
m

2

)

+

(

Nf

2
− 1

)

+
2

N

∑

j∈I−
cothπ(λi − λj) (A.11)

− Nf

N

∑

j∈I+
tanhπ

(

λi − λ̃j

)

+ µ, i ∈ I−,

0 = 2i
k

N

(

λ̃i +
m

2

)

+

(

1− Nf

2

)

+
2

N

∑

j∈I+
cothπ(λ̃i − λ̃j) (A.12)

− Nf

N

∑

j∈I−
tanhπ(λ̃i − λj) + µ, i ∈ I+.

21For U(N) group, the similar discussions can be done.

– 23 –



J
H
E
P
1
1
(
2
0
1
8
)
0
6
4

-15 -10 -5 5 10 15

0.05

0.10

0.15

0.20

-0.5 0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4. These figure show that density functions of the real part of saddle point solution for

N = 100. The left one is with parameter (k,ma) = (10, 10). The right one is with parameter

(k,ma) = (150, 10). The horizontal line means the value of the real part of the eigenvalue.

(N,m) = (100.10) WR − log |Z|
k = 10 2.60356× 1015 − 2.87161× 1015i 834190

k = 20 11.3867− 0.10577i 965491

k = 30 4.29052× 1014 − 2.57048× 1015i 53126

k = 40 22.56929− 3.50511i 940792

k = 50 −0.914496 + 0.185339i 935889

k = 60 −3.46485− 3.57006i 939455

k = 70 1.0154 + 0.434397i 935684

Table 3. The value of Wilson loop and free energy corresponding to the split solution discussed in

the previous subsection from numerical analysis.

Here, we consider a strong t’ Hooft coupling limit k
N ≪ 1 and m

N ≪ 1 in order to

make the confining solution valid. If a combination of the parameters km
N is small, then

the Chern-Simons term can be neglected and the split type solution is valid. However, if
km
N = O(N0), the solution should be deformed and if km

N is large we expect the split type

solution can not exist. We will not explicitly determine how large km
N should be for the

confinement phase to be realized because it is difficult analytically. The numerical analysis

shown below suggests that the critical value of km/N is in 2 / km/N / 4. In figure 4, we

show the density functions of some examples for these saddle point solutions.

To show the behavior of the solution as the Chern-Simons level become large we

summarize the value of the Wilson loop WR (2.26) and the free energy − log |Z| from
the numerical analysis in the following tables:

These values are evaluated by finding the solution of the saddle point equation numeri-

cally and using the saddle point approximation with the solution. From the result the value

of the Wilson loop is drastically changed for 20 / k / 40 when we take N = 100,m = 10.

The solution of the saddle point equation no longer splits in this region although we still

call this the split type solution. The solution sits around the origin when k is bigger than
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(N,m) = (100.10) WR − log |Z|
k = 10 −0.000341459− 1.60786i 932650

k = 20 −0.00133768− 3.21552i 932824

k = 30 −0.00289594− 4.82279i 933113

k = 40 −0.00484618− 6.42953i 933518

k = 50 0.0468883− 7.95619i 933976

k = 60 0.0197115− 9.61648i 934642

k = 70 −0.075207− 8.80006i 934371

Table 4. The value of Wilson loop and free energy corresponding to the confinement type saddle

solution (3.30) from numerical analysis.

30, however the solution is different from the confinement solution.22 When k ≥ 30 there

may be the solutions which do not depend on the mass, which also become close to the

weak ’t Hooft solution as the Chern-Simons level k become large.23 However, the value of

the Wilson loop which is evaluated by the each of the two solutions is O(N0) which means

there are some cancellations in TrR in the definition of the Wilson loop in the fundamental

representation. This is nothing but a characteristic property of the confinement phase.

In the tables, we also showed the F = − log |Z|. The values for the two different

solutions are almost the same except k = 10, for which the density function splits for one

solution. Thus, we can not say which solution is dominant because the 1/N corrections will

be important. In order to decide which solution is dominant, we need to compute them

numerically for larger N . We hope to do it in near future.

Note that we have assumed that the probe approximation of the Wilson loop is appro-

priate in this numerical computations. Indeed, the values of F are much larger than the

values of the logarithm of the Wilson loop. This fact justifies the probe approximation.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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