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1 Introduction

After the discovery of the 125 GeV Higgs boson in 2012 at the CERN LHC [1, 2], the long

missing particle content of the Standard Model(SM) has finally been verified. In spite of the

impressive triumph of SM, many physicists still believe that new physics may be revealed

at LHC. Among the many new physics models that can solve the fine-tuning problem, the

most elegant and compelling resolution is low energy supersymmetry. Augmented with

weak scale soft SUSY breaking terms, the quadratic cutoff dependence is absent, leav-

ing only relatively mild but intertwined logarthmic sensitivity to high scale physics. As

such soft SUSY breaking spectrum is determined by the SUSY breaking mechanism, it is

interesting to survey the phenomenology related to supersymmetry breaking mechanism.

In Type IIB string theory compactified on a Calabi-Yau (CY) orientifold, the presence

of NS and RR 3-form background fluxes can fix the dilaton and the complex structure

moduli, leaving only the Kahler moduli in the Wilsonian effective supergravity action af-

ter integrating out the superheavy complex structure moduli and dilaton. The remaining

Kahler moduli fields could be stabilized by non-perturbative effects, such as instanton

or gaugino condensation. In order to generates SUSY breaking in the observable sec-

tor and obtain a very tiny positive cosmological constant, Kachru-Kallosh-Linde- Trivedi

(KKLT) [3] propose to add an anti-D3 brane at the tip of the Klebanov-Strassler throat

(or adding F-term, D-term SUSY breaking contributions [4–6]) to explicitly break SUSY
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and lift the AdS universe to obtain a dS one. In addition to the anomaly mediation contri-

butions, SUSY breaking effects from the light Kahler moduli fields could also be mediated

to the visible sector and result in a mixed modulus-anomaly mediation SUSY breaking sce-

nario [7, 8]. It is interesting to note that the involved modulus mediated SUSY breaking

contributions can be comparable to that of the anomaly mediation [9, 10]. With certain

assumptions on the Yukawa couplings and the modular weights, the SUSY breaking contri-

butions from the renormalization group running and anomaly mediation could cancel each

other at a ‘mirage’ unification scale, leading to a compressed low energy SUSY breaking

spectrum [11]. Such a mixed modulus-anomaly mediation SUSY breaking mechanism is

dubbed as ′mirage mediation′.

Anomaly mediation contribution is a crucial ingredient of such a mixed modulus-

anomaly mediation. It is well known that the pure anomaly mediation is bothered by the

tachyonic slepton problem [12–18]. One of its non-trivial extensions with messenger sectors,

namely the deflected anomaly mediated SUSY breaking (AMSB), can elegantly solve such

a tachyonic slepton problem through the deflection of the renormalization group equation

(RGE) trajectory [19–25]. Such a messenger sector can also be present in the mirage

mediation so that additional gauge contributions by the messengers [26–28] can deflect the

RGE trajectory and change the low energy soft SUSY predictions. Additional deflection in

mirage mediation can be advantageous in phenomenological aspect. For example, apparent

gaugino mass unification at TeV scale could still be realized with the simplest ′no scale′

Kahler potential, which, in ordinary mirage mediation, can only be possible with the not

UV-preferable α = 2 case. Relevant discussions on mirage-type mediation scenarios can be

seen, for example, in [29–39].

In mirage type mediation scenarios, analytical expressions for the soft SUSY breaking

parameters are no not given at the messenger scale M (or scale below M), but given at

the GUT scale instead. One needs to numerically evolve the spectrum with GUT scale

input to obtain the low energy SUSY spectrum. This procedure obscures the appearance

of ‘mirage’ unification scale from the input. In mirage mediation scenarios with deflection

from Kahler potential, analytical results of mirage mediation are necessary to predict the

low energy SUSY spectrum. So it is preferable to give the analytical expressions for the

soft SUSY breaking parameters in mirage type mediation scenarios at arbitrary low energy

scale. Besides, possible new Yukawa-type interactions involving the messengers may give

additional Yukawa mediation contributions to the low energy soft SUSY spectrum (See [40]

for example). Such a generalization of deflected mirage mediation scenario shows new

features in phenomenological studies. The inclusion of Yukawa mediation contributions at

(or below) the messenger scale M are non-trivial and again prefer analytical expressions

near the messenger scale.

This paper is organized as follows. We briefly review the mirage type mediation sce-

narios in section 2. A general discussion on the analytical expressions for the soft SUSY

parameters in the generalized deflected mirage mediation is given in section 3. We discuss

some applications of our analytical results in section 4, including the proof of the ‘mirage’

unification scale in mirage mediation with our analytical results and the discussions on

deflection from Kahler potential. Section 5 contains our conclusions.
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2 Brief review of the mirage type mediation scenarios

Inspired by string-motivated KKLT approach to moduli stabilization within Type IIB

string theory, mirage mediation supersymmetry breaking is proposed, in which the modulus

mediated supersymmetry breaking terms are suppressed by numerically a loop factor so

that the anomaly mediated terms can be competitive.

After fixing and integrating out the dilaton and the complex structure moduli, the

four-dimensional Wilsonian effective supergravity action (defined at the boundary scale Λ)

in terms of compensator field and a single Kahler modulus parameterizing the overall size

of the compact space [11] is given as

e−1L =

∫
d4θ

[
φ†φ

(
−3e−K/3

)
− (φ†φ)2θ̄2θ2Plift

]
+

∫
d2θφ3W +

∫
d2θ

fi
4
W a
i W

a
i (2.1)

with a holomorphic gauge kinetic term

fi =
1

g2
i

+ i
θ

8π
. (2.2)

The Kahler potential takes the form

K = −3 ln(T + T †) + ZX(T †, T )X†X + ZΦ(T †, T )Φ†Φ

+
∑
i

ZPi,P̄i(T
†, T )

[
P †i Pi + P̄ †i P̄i

]
, (2.3)

with the ‘no-scale’ kinetic term for the Kahler modulus T . The gauge kinetic term fi, the

messenger superfields Pi, the MSSM superfields Φ and the pseudo-moduli superfields are

all assumed to depend non-trivially on the Kahler moduli T as

ZX(T †, T ) =
1

(T † + T )nX
, ZΦ(T †, T ) =

1

(T † + T )nΦ
,

fi(T ) = T li , ZPi,P̄i(T
†, T ) =

1

(T † + T )nP
. (2.4)

Choices of nX , nΦ, nP , li depend on the location of the fields on the D3/D7 branes. Besides,

universal li = 1 are adopted in our scenario to keep gauge coupling unification, so the gauge

fields should reside on the D7 brane.

The superpotential takes the most general form involving the KKLT setup [3], the

messenger sectors WM and visible sector WMSSM

W =
(
ω0 −Ae−aT

)
+WM +WMSSM , (2.5)

where the first term is generated from the fluxes and the second term from non-perturbative

effects, such as gaugino condensation or D3-instanton. Within WM , interactions between

messengers and MSSM fields can possibly arise which will be discussed subsequently. The

modulus T , which is not fixed by the background flux, can be stabilized by non-perturbative

gaugino condensation with its VEV satisfying

a <〈T 〉 ≈ ln

(
A

ω0

)
≈ ln

(
MPl

m3/2

)
≈ 4π2 (2.6)

up to O(ln[MPl/m3/2]−1). Boundary value of the soft SUSY breaking parameters at the

GUT scale can be seen in [11].
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3 Analytical expressions of soft SUSY breaking parameters

Mirage mediation can be seen as a typical mixed modulus-anomaly mediation SUSY break-

ing mechanism with each contribution of similar size. Adding a messenger sector will add

additional gauge mediation contributions. Besides, upon the messenger thresholds, new

Yukawa interactions involving the messengers could arise. Such interactions may cause

new contributions to trilinear couplings and sfermion masses (As an example, see our pre-

vious work [40]). Additional deflection with Yukawa mediation can be advantageous in

several aspects.

• The value of trilinear coupling |At| can be increased by additional contributions in-

volving the new Yukawa interactions. Larger value of At is always welcome in MSSM

and NMSSM not only to accommodate the 125 GeV Higgs but also to reduce [41] the

EW fine tuning [42–44] involved.

• As noted in [40, 45, 46], pure gauge mediation contributions are not viable to generate

either trilinear couplings Aκ, Aλ or soft scalar masses m2
S for singlet superfields S

which are crucial to solve the mu-problem of NMSSM. Deflection with Yukawa

interactions will readily solve such difficulty.

To take into account such Yukawa mediation contributions in soft SUSY breaking

parameters, it is better to derive the most general results involving the deflection. There

are two approaches to obtain the low energy SUSY spectrum in the (deflected) mirage type

mediation scenario:

• In the first approach, the mixed modulus-anomaly mediation soft SUSY spectrum is

given by their boundary values at the GUT scale [11]. Such a spectrum will receive

additional contributions towards its RGE running to low energy scale, especially

the threshold corrections related to the appearance of messengers [47, 48]. The soft

SUSY breaking parameters are obtained by combing numerical RGE evolutions with

threshold corrections. In [47], following this approach, some analytical expressions

of the soft SUSY spectrum, for example the gaugino masses, are given. General

expressions of the soft scalar masses and trilinear couplings are not given explicitly

except for some simplified cases.

• In the second approach which we will adopt, the soft SUSY spectrum at low energy

scale is derived directly from the low energy effective action. We know that the

SUGRA description in eq. (2.1) can be seen as a Wilsonian effective action after inte-

grating out the complex structure moduli and dilaton field. After the pseudo-modulus

acquires a VEV and determines the messenger threshold, the messenger sector can be

integrated out to obtain a low energy effective action below the messenger threshold.

So we anticipate the Kahler metric ZΦ and gauge kinetic fi will depend non-trivially

on the messenger threshold M2
mess/φ

†φ and Mmess/φ, respectively. The resulting soft

SUSY spectrum below the messenger threshold can be derived from the wavefunction

renormalization approach [49]. The main difficulty here is to find the boundary value

dependencies of the wavefunction and gauge kinetic term.

– 4 –
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In this approach, the most general expressions for soft SUSY breaking parameters

in deflected modulus-anomaly (mirage) mediation SUSY breaking mechanism are

derived below. Ordinary mirage mediation results can be obtained by setting the

deflection parameter ′d′ to zero.

– The gaugino masses are given by

Mi = −g2
i

(
FT
2

∂

∂T
−
Fφ
2

∂

∂ lnµ
+
dFφ

2

∂

∂ ln |X|

)
fa

T, µ
φ
,

√
X†X

φ†φ

 . (3.1)

– The trilinear terms are given by

AYabc ≡ Aabc/yabc (3.2)

=
1

2

∑
i=a,b,c

(
F T

∂

∂T
− Fφ

∂

∂ lnµ
+ dFφ

∂

∂ ln |X|

)
ln
[
e−K0/3Zi(µ,X, T )

]
.

– The soft sfermion masses are given by

−m2
soft(µ) =

∣∣∣∣FT2 ∂

∂T
−
Fφ
2

∂

∂ lnµ
+
d

2
Fφ

∂

∂ ln |X|

∣∣∣∣2 ln
[
e−K0/3Zi(µ,X,T )

]
(3.3)

=

(
|FT |2

4

∂2

∂T∂T ∗
+
F 2
φ

4

∂2

∂(lnµ)2
+
d2F 2

φ

4

∂2

∂(ln |X|)2
−
FTFφ

2

∂2

∂T∂ lnµ

+
dFTFφ

2

∂2

∂T∂ ln |X|
−
dF 2

φ

2

∂2

∂ ln |X|∂ lnµ

)
ln
[
e−K0/3Zi(µ,X,T )

]
.

From the previous general expressions, we can deduce the concrete analytical results

for soft SUSY parameters. In our notation, we define the modulus mediation part

M0 ≡
FT

T + T ∗
, qYijk ≡ 3− (ni + nj + nk) . (3.4)

The gauge and Yukawa couplings are used in the form

αi =
g2
i

4π
, αλijk =

λ2
ijk

4π
. (3.5)

3.1 Gaugino mass

The gaugino mass below the messenger scale can be obtained from eq. (3.1). At the GUT

(compactification scale) MG, the gauge coupling unification requires

T la =
1

g2(GUT)
. (3.6)

The gauge coupling at scale µ just below the messenger threshold M is given as

1

g2
i (µ)

=
1

g2
i (GUT)

+
bi + ∆bi

8π2
ln
MG

|X|
+

bi
8π2

ln
|X|
µ

,

= T la +
bi + ∆bi

8π2
ln
MG

M
+

bi
8π2

ln
M

µ
. (3.7)
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The derivatives are given as

∂

∂ lnµ

(
1

g2
i (µ)

)
= − bi

8π2
,

∂

∂ lnM

(
1

g2
i (µ)

)
= −∆bi

8π2
, (3.8)

and

∂

∂T

(
1

g2
a(µ)

)
= laT

la−1 =⇒ −2
1

g3
a

∂ga(µ)

∂T
= laT

la−1 . (3.9)

So we can obtain the analytical results for gaugino mass

Mi(µ) = g2
i (µ)

[
la
FT
2T

1

g2
a(GUT)

+
Fφ
2

bi
8π2
− d

2
Fφ

∆bi
8π2

]
, (3.10)

with ∆bi ≡ b′i − bi and b′i, bi the gauge beta function upon and below the messenger

thresholds, respectively. This results can coincide with the gaugino masses predicted from

RGE running with threshold corrections at the messenger scale. Following the approach

in [26–28], the gaugino mass at the scale µ slightly below the messenger scale M will receive

additional gauge mediation contributions

Mi(µ .M) =
g2
i (M)

g2
i (GUT)

Mi(GUT)− Fφ
g2
i (M)

16π2
(d+ 1)∆bi ,

= g2
i (M)

[
la
FT
2T

1

ga(GUT)
+
Fφ
2

bi + ∆bi
8π2

]
− Fφ

g2
i (M)

16π2
(d+ 1)∆bi, (3.11)

with

Mi(GUT) = g2
i (GUT)

[
la
FT
2T

1

g2
a(GUT)

+
Fφ
2

bi + ∆bi
8π2

]
. (3.12)

Then we can obtain the gaugino mass at scale µ < M from one-loop RGE

Mi(µ) =
g2
i (µ)

g2
i (M)

Mi(µ . lnM) ,

= g2
i (µ)

[
la
FT
2T

1

g2
a(GUT)

+
Fφ
2

bi
8π2

]
− Fφ

g2
i (µ)

16π2
d∆bi . (3.13)

So we can see that the two results agree with each other.

3.2 Trilinear terms

From the form of wavefunction

Zi(µ) = Zi(Λ)
∏

l=yt,yb,yτ

(
yl(µ)

yl(Λ)

)Al ∏
k=1,2,3

(
gk(µ)

gk(Λ)

)Bk
(3.14)

we can obtain the trilinear terms for scales below the messenger M from eq. (3.2). The

main challenge is the calculation of ∂Zi/∂T .

– 6 –
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Before we derive the final results involving all yt, yb, yτ and g3, g2, g1, we will study first

the simplest case in which only the top Yukawa αt ≡ y2
t /4π and αs ≡ g2

3/4π are kept in

the anomalous dimension. The RGE equation for αt and αs takes the form

d

dt
lnαt =

1

π

(
3αt −

8

3
αs

)
,

d

dt
lnαs = − 1

2π
b3αs . (3.15)

Note the definition b3 differs by a minus sign. Define A = ln

(
αtα

− 16
3b3

s

)
, the equation can

be written as

d

dt
e−A = − 3

π
α

16
3b3
s . (3.16)

So we can exactly solve the differential equation to get[
αt(µ)

αt(Λ)

(
αs(µ)

αs(Λ)

)− 16
3b3

]−1

= 1− 3αt(Λ)

π

2π
16
3 −b3

[
αs(Λ)−1−

(
αs(µ)

αs(Λ)

) 16
3b3

α−1
s (µ)

]
. (3.17)

Expanding the expressions and neglect high order terms, we finally have

∂

∂T
[lnαt(µ)− lnαt(Λ)] ≈ ∂

∂T

[
− 8

3π
αs(µ) +

3

π
αt(µ)

]
ln

(
Λ

µ

)
, (3.18)

after calculations. It can be observed that the expression within the square bracket is just

the beta function of top Yukawa coupling.

Now we will calculate ∂Zi/∂T with all yt, yb, yτ and g3, g2, g1 taking into account in

the expression.

• Deduction of ∂Zi/∂T without messenger deflections.

From the form of wavefunction

Zi(µ) = Zi(MG)
∏

l=yt,yb,yτ

(
yl(µ)

yl(MG)

)Al ∏
k=1,2,3

(
gk(µ)

gk(MG)

)Bk
(3.19)

and renormalizatoin Z = Z0(1 + δZ), we have

∂ ln e−K0/3Zi
∂T

=
∂

∂T
ln e−K0/3Zi(MG) +

∂

∂T
δZi ,

=
1− ni
T

+
∑
m=1,2

∑
a

∂ga;m

∂T

∂δZi
∂ga;m

+
∑
a,b,c

∂ ln yabc;m
∂T

∂δZi
∂ ln yabc;m

 ,
with m = 1, 2 corresponding to the value at the scale µ and the GUT scale, respectively.

The derivative with respect to gm gives

∂ ln e−K0/3Zi
∂gm(µ)

=
Bm
gm(µ)

,
∂ ln e−K0/3Zi
∂gm(MG)

= − Bm
gm(MG)

, (3.20)
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and

∂gi(µ)

∂T
= − laT

la−1

2
g3
i (µ) ,

∂gi(MG)

∂T
= − laT

la−1

2
g3
i (MG) . (3.21)

The derivative with respect to yl gives

∂ ln e−K0/3Zi
∂yl(µ)

=
Al
yl(µ)

,
∂ ln e−K0/3Zi
∂yl(MG)

= − Al
yl(MG)

, (3.22)

and

∂yl(MG)

∂T
= −yl(MG)

2

[
3− aijk

T

]
,

∂ lnαYabc(µ)

∂T
= −

[
3− aijk

T

]
. (3.23)

From the beta function of the Yukawa couplings, we have

∂ lnαYabc(µ)

∂T
=
∂ lnαYabc(MG)

∂T
− ∂

∂T

MG∫
µ

(
d

d lnµ′
lnαYabc

)
d lnµ′ ,

=−3−aabc
T

− 1

2π

MG∫
µ

d lnµ′

∑
Ylmn

clmn
∂

∂T
αYlmn(µ′)+

∑
m

dm
∂

∂T
αm(µ′)

 ,

≈−3−aabc
T

+
1

2π

∑
Ylmn

clmn
3−almn

T
αYlmn(µ)+

∑
m

dm
la
T

α2
m(µ)

αm(MG)

 ln

(
MG

µ

)
,

with aabc = na + nb + nc .

So the derivative with respect to T is given by

∂

∂T
δZi =

∑
m=1,2

∑
a

∂ lnαa;m

∂T

∂δZi
∂ lnαa;m

+
∑
Yabc

∂ lnαYabc;m
∂T

∂δZi
∂ lnαYabc;m

 ,
=
∑
a

Ba
2

[
∂

∂T
ln

(
αa(µ)

αa(Λ)

)]
+
∑
Yabc

AYabc
2

[
∂

∂T
ln

(
αYabc(µ)

αYabc(Λ)

)]
,

≈
∑
a

Ba
2

[
∂

∂T

(
− ba

2π
αa(µ) ln

(
Λ

µ

))]

+
∑
Yabc

AYabc
2

1

2π

∑
Ylmn

clmn
3−almn

T
αYlmn(µ)−

∑
m

dm
∂

∂T
αm(µ)

 ln

(
Λ

µ

)
. (3.24)

We know from the expression of the wavefunction, the coefficients satisfy

∑
Yabc

AYabc
2

dm + bm
Bm
2

= −∂GZi
∂αm

, (3.25)

– 8 –
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for coefficients of αm. While the coefficients for Yukawa couplings Ylmn within Zi satisfy

∑
Yabc

AYabc
2

clmn = − ∂GZi
∂αYlmn

. (3.26)

So the final results reduces to

∂

∂T
ln e−K0/3Zi ≈ −

1

2π

[
dijk
2

3− aYijk
T

αYijk(µ)− 2Ca(i)
la
T
αa(µ)

]
ln

(
GUT

µ

)
+

1− ni
T

,

=
1

2π

∂

∂T

[
dijk
2
αYijk(µ)− 2Ca(i)αa(µ)

]
ln

(
GUT

µ

)
+

1− ni
T

(3.27)

with the expressions in the second square bracket being the anomalous dimension of Zi.

• Deduction of ∂Zi/∂T with messenger deflections.

The form of wavefunction should be

Zi(µ) = Zi(MG)
∏

l=yt,yb,yτ

(
yl(M)

yl(MG)

)Al ∏
k=1,2,3

(
gk(M)

gk(MG)

)Bk ∏
k=yU

(
yk(M)

yk(MG)

)Ck
∏

l=yt,yb,yτ

(
yl(µ)

yl(M)

)A′
l ∏
k=1,2,3

(
gk(µ)

gk(M)

)B′
k

, (3.28)

with yU the interaction involving the messengers which will be integrated below the mes-

senger scale.

We have

∂ ln e−K0/3Zi
∂T

=
∂

∂T
ln e−K0/3Z0

i +
∂

∂T
δZi ,

=

∑
ga

∂ ln
(
ga(µ)
ga(M)

)
∂T

∂δZi

∂ ln
(
ga(µ)
ga(M)

) +
∑
yabc

∂ ln
(
yabc(µ)
yabc(M)

)
∂T

∂δZi

∂ ln
(
yabc(µ)
yabc(M)

) ,

+
∑
ga

∂ ln
(
ga(M)
ga(MG)

)
∂T

∂δZi

∂ ln
(
ga(M)
ga(MG)

) +
∑
yabc

∂ ln
(
yabc(M)
yabc(MG)

)
∂T

∂δZi

∂ ln
(
yabc(M)
yabc(MG)

) ,
+
∑
yU

∂ ln
(
yU (M)
yU (MG)

)
∂T

∂δZi

∂ ln
(
yU (M)
yU (MG)

)
+

1− ni
T

, (3.29)

with m = 1, 2 corresponding to the value at the scale µ and the GUT scale, respectively.
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Using similar deductions for Yukawa couplings, we can obtain

∂ lne−K0/3Zi
∂T

=
1−ni
T
− 1

4π

∑
ga

(
Bab

′
a

∂αa(M)

∂T
ln

(
MG

M

)
+B′aba

∂αa(M)

∂T
ln

(
M

µ

))

+
∑

yabc∈yt,yb,yτ
Ayabc ln

(
MG

M

)
1

4π

 ∑
Ylmn∈yt,yb,yτ

clmn
3−almn

T
αYlmn(M) ,

+
∑

Ylmn∈yU

c̃lmn
3−aU
T

αYU (M)−
∑
gm

dm
∂

∂T
αm(M)

 .
+

∑
yabc∈yt,yb,yτ

A′yabc ln
( µ
M

) 1

4π

 ∑
Ylmn∈yt,yb,yτ

clmn
3−almn

T
αYlmn(M)−

∑
gm

dm
∂

∂T
αm(M)

 .
+
∑
yU

CyU ln

(
M

MG

)
1

4π

 ∑
Ỹlmn∈yt,yb,yτ

dlmn
3−almn

T
αYlmn(M)−

∑
gm

fm
∂

∂T
αm(M) ,

+
∑

Ỹlmn∈yU

d̃lmn
3−aU
T

αYU (M)

 , (3.30)

with the beta function for yt, yb, yτ Yukawa couplings

16π2βYabc(µ) =


∑

Ylmn∈yt,yb,yτ
clmnαYlmn +

∑
Ylmn∈yU

c̃lmnαYU −
∑
gm

dmαm , µ &M,∑
Ylmn∈yt,yb,yτ

clmnαYlmn −
∑
gm

dmαm , µ .M,

and the beta function for new messenger-matter yU Yukawa couplings

16π2βYU =
∑

Ỹlmn∈yt,yb,yτ

dlmnαỸlmn +
∑

Ỹlmn∈yU

d̃lmnαYU −
∑
m

fmαm . (3.31)

The coefficients satisfy∑
Yabc

(
Ayabc −A

′
yabc

)
clmn +

∑
YU

CyUdlmn = 0 , (for yt, yb, yτ coefficients)

∑
Yabc

Ayabc c̃lmn +
∑
YU

CyU d̃lmn = 0 , (for yU coefficients)

Bmb
′
m +

∑
Yabc

Ayabcdm +
∑
YU

CYU fm = B′mbm +
∑
Yabc

A′yabcdm (3.32)

and similarly for gm, the sum then reduces to the previous case. So we have for µ < M

∂

∂T
ln
(
e−K0/3Zi(µ)

)
− 1− ni

T
, (3.33)

≈ − 1

2π

[
1

2
dijk

3− aYijk
T

αYijk(µ)− 2Ca(i)
la
T
αa(µ)

]
ln

(
MG

µ

)
.

– 10 –



J
H
E
P
1
1
(
2
0
1
8
)
0
6
2

Note that the expressions within the square bracket agree with the anomalous dimension

of Z−i below the messenger threshold M

G−i ≡
dZ−i
d lnµ

≡ − 1

8π2

(
1

2
diklλ

2
ikl − 2cirg

2
r

)
. (3.34)

The G+
i , which is the anomalous dimension of Zi upon the messenger threshold M , do not

appear in the final expressions.

The dependence of Zi on messenger scale M can be derived following the techniques [50, 51]

developed in gauge mediated SUSY breaking (GMSB) [52–58] scenarios. From the expres-

sions of the wavefunction, we can obtain

∂

∂ lnM
ln
[
e−K0/3Zi

]
=

1

4π

∑
gk

[
(Bk−B′k)(bk+NF )αk(M)+B′kNFαk(µ)

]
(3.35)

+
∑
Yl

[
(Al−A′l)G+

Yl
(lnM)+A′l

∂Yl(lnµ,M)

∂ lnM

]
+
∑
YU

[
ClG

+
YU

(lnM)
]
.

So the main challenge is to calculate ∂ lnYa(µ, lnM)/∂ lnM .

From the beta functions for Yukawa couplings upon and below the messenger thresh-

olds, the Yukawa couplings at scale µ < M is given as

lnYa(µ, lnM) = lnYa(MG) +

lnM∫
MG

G+
Ya

(t′)dt′ +

lnµ∫
lnM

G−Ya(t′, lnM)dt′ , (3.36)

with the Yukawa beta functions expressed as

βYa ≡ GYa ≡ −
1

2

∑
i∈a

Gi ≡ 1

4π

(
1

2
d̃iklαλikl − 2c̃rαr

)
,

Gi =
d lnZi
d lnµ

≡ − 1

2π

(
1

2
diklαλikl − 2cirαr

)
. (3.37)

We can derive the Yukawa couplings dependence on ′ lnM ′ at scale µ < M

∂

∂ lnM
lnYa(µ, lnM) =

[
G+
Ya

(lnM)−G−Ya(lnM, lnM)
]
+

lnµ∫
lnM

∂

∂ lnM
G−Ya(t′, lnM)dt′ ,

≈∆GYa(lnM)− 1

16π2

[
d̃iklλikl(µ)∆Gλikl−4c̃r

∆br
16π2

g4
r (µ)

]
ln

(
M

µ

)
.

In the case ∆G = 0 in which no additional Yukawa couplings involving the messengers are

present, we have

∂

∂ lnM
lnYa(µ, lnM) ≈ c̃r

4π2
∆brα

2
r(µ) ln

(
M

µ

)
. (3.38)
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Note that at the messenger scale

∂

∂ lnM
lnYa(lnM, lnM) = ∆Ga(lnM). (3.39)

The expressions takes a simple form at the scale µ slightly below the messenger scale M

AYabc(µ .M)− (3− aabc)
FT

T + T ∗

=
∑
l=a,b,c

{
− FT
T + T ∗

1

2π

[
1

2
dijk(3− aYijk)αYijk(µ)− 2Ca(i)laαa(µ)

]
ln

(
GUT

µ

)

+dFφ
∆Gi

2
−
Fφ
2
G−i

}
,

with ∆Gi ≡ G+
i − G

−
i [here ′G+

i (G−i )′ denotes respectively the anomalous dimension of

Zi upon (below) the messenger threshold] the discontinuity of anomalous dimension across

the messenger threshold.

3.3 Soft scalar masses

The soft scalar masses are given as

−m2
soft =

∣∣∣∣FT2 ∂

∂T
−
Fφ
2

∂

∂ lnµ
+ dFφ

∂

∂ lnX

∣∣∣∣2 ln
[
e−K0/3Zi(µ,X, T )

]
,

=

(
|FT |2

4

∂2

∂T∂T ∗
+
F 2
φ

4

∂2

∂(lnµ)2
+
d2F 2

φ

4

∂

∂(ln |X|)2
−
FTFφ

2

∂2

∂T∂ lnµ

+
dFTFφ

2

∂2

∂T∂ ln |X|
−
dF 2

φ

2

∂2

∂ ln |X|∂ lnµ

)
ln
[
e−K0/3Zi(µ,X, T )

]
. (3.40)

The new ingredients are the second derivative of Zi with respect to T

∂2

∂T 2
ln
[
e−3K0Zi

]
=− 1

2π

∂

∂T

[
1

2
dijk

3−aYijk
T

αYijk(µ)−2Ca(i)
la
T
αa(µ)

]
ln

(
GUT

µ

)
− 1−ni

T 2
,

=− 1

2π

[
1

2
dijk

3−aYijk
T

αYijk(µ)

[
−

3−aYijk
T

+
1

2π

(
d̃pmn

2

3−aYijk
T

αYmnp−2cr
la
T
αa

)
ln

(
GUT

µ

)]

− 1

2
dijk

(3−aYijk)

T 2
αYijk(µ)−2Ca(i)

(
− la
T 2
αa(µ)− l2a

T 2

α2
a(µ)

αa(GUT)

)]
ln

(
GUT

µ

)
− 1−ni

T 2
,

(3.41)

with the beta function of Yijk given by

d lnYijk
d lnµ

=
1

16π2

[
d̃pmn

2
αYmnp − 2cirαi

]
, (3.42)
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and

αa(µ)

αa(GUT)
= 1− ba

2π
αa(µ) ln

(
GUT

µ

)
. (3.43)

The other terms within eq. (3.40) can be found in GMSB (not involving ∂T ) or

calculated directly using eq. (3.21) and eq. (3.23) (involving ∂T ). We list the analytical

results of deflected mirage mediation in appendix B.

4 Applications of the general analytical results

4.1 Analytical results for mirage mediation

Equipped with the previous deduction, we can readily reproduce the ordinary mirage me-

diation results by setting d→ 0. As the visible gauge fields originate from D7 branes and

gauge coupling unification is always assumed, we adopt la = 1. The following definitions

are used

M0 ≡
FT
2T
≡

Fφ

α ln
(
MPl
m3/2

) ≈ Fφ
4π2α

, (4.1)

with the parameter α defined as the ratio between the anomaly mediation and modulus

mediation contributions and the approximation ln(MPl/m3/2) ≈ 4π2. We have

• Gaugino mass:

Mi(µ) = laM0
g2
i (µ)

g2
a(GUT)

+
Fφ

16π2
big

2
i (µ) ,

= laM0

[
1− bi

8π2
g2
i (µ) ln

GUT

µ

]
+
M0

4
αbig

2
i (µ) . (4.2)

So we can see that at the scale µMi which satisfies

1

8π2
ln

(
MGUT

µMi

)
=
α

4
, (4.3)

the gaugino masses unify at such ‘mirage’ unification scale

µMi = MGUTe
−2απ2 ≈MGUT

(
m3/2

MPl

)α
2

. (4.4)

• Trilinear term:

AYabc(µ .M)

=
∑
l=a,b,c

{
−M0

1

2π

[
1

2
dijk(3− aYijk)αYijk(µ)− 2Ca(i)laαa(µ)

]
ln

(
GUT

µ

)

+
Fφ
4π

[
1

2
dijkαYijk(µ)− 2Ca(i)αa(µ)

]
+ (3− aabc)M0 .
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In case the effect of Yukawa couplings are negligible or aYijk = 2, the trilinear term also

“unify” at a mirage scale at which the last two terms cancel

1

2π
ln

(
MGUT

µMi

)
= πα, (4.5)

which is just the mirage scale for gaugino mass “unification”.

• Soft scalar masses:

−m2
i =

M2
0

2π
ln

(
MGUT

µ

){
dijk
2

(
q2Yijk

+qYijk

)
αYijk

(µ)−2Ca(i)
(
la+l2a

)
αa

+
1

2π

[
dijk
2
αYijk

(µ)

(
− d̃

p
mn

2
qYmnp

αYmnp
+2crlaαa

)
+2Ca(i)baα

2
a

]
ln

(
GUT

µ

)}

+
M0Fφ

2π

[
dijk
2
αYijk

(
−qYikl

+
1

2π

[
d̃pmn

2
qYmnp

αYmnp
−2crlrαr

]
ln

(
MGUT

µ

))
+2Ca(i)la

α2
a

αa(GUT)

]

−
F 2
φ

8π

[
dijk
2

1

2π

(
d̃pmn

2
αYmnp−2crαr

)
αYijk

−2Ca(i)
ba
2π
α2
a

]
−(1−ni)M2

0 , (4.6)

with qYijk ≡ 3 − (ni + nj + nk) = 3 − aijk. Again, we can check that for qYijk = 1 or

negligible Yukawa couplings, the soft scalar masses apparent unify at µMi defined above

−m2
i +(1−ni)M2

0

=παM2
0

{
2
dijk
2
αYijk

(µ)−4Ca(i)αa+
1

2π

[
dijk
2
αYijk

(
− d̃

p
mn

2
αYmnp

+2crαa

)
+2Ca(i)baα

2
a

]
2π2α

}

+2παM2
0

[
dijk
2
αYijk

(
−1+

1

2π

[
d̃pmn

2
αYmnp

−2cirαi

]
2π2α

)
+2Ca(i)

(
αa−

1

2π
baα

2
a2π2α

)]

−2π3α2M2
0

[
dijk
2

1

2π

(
d̃pmn

2
αYmnp−2cirαi

)
αYijk

−2Ca(i)
ba
2π
α2
a

]
= 0. (4.7)

The subleading terms within ∂2Zi/∂T
2 are crucial for the exact cancelation of anomaly

mediation and RGE effects.

So the numerical results of ‘mirage’ unification can be proved rigourously with our ana-

lytical expressions.

4.2 Deflection in mirage mediation from the Kahler potential

It is well known that AMSB is bothered by tachyonic slepton problems. Such a problem in

AMSB can be solved by the deflection of RGE trajectory with the introduction of messenger

sector. There are two possible ways to deflect the AMSB trajectory with the presence of

messengers, either by pseudo-moduli field [19, 20] or holomorphic terms (for messengers) in

the Kahler potential [59]. Mirage mediation is a typical mixed modulus-anomaly mediation

– 14 –



J
H
E
P
1
1
(
2
0
1
8
)
0
6
2

scenario. So the messenger sector, which can give additional gauge or Yukawa mediation

contributions, can also be added in the Kahler potential.

The Kahler potential involving the vector-like messengers P̄i, Pi contain the ordinary

kinetic terms as well as new holomorphic terms

K ⊇ φ†φ
[
ZPi,P̄i(T

†, T )
(
P †i Pi + P̄ †i P̄i

)
+
(
Z̃Pi,P̄i(T

†, T )cP P̄iPi + h.c.
)]
, (4.8)

with

ZPi,P̄i(T
†, T ) =

1

(T + T †)nP
, Z̃Pi,P̄i(T

†, T ) =
1

(T + T †)ñP
. (4.9)

After normalizing and rescaling each superfield with the compensator field Φ → φΦ and

substituting the F-term VEVs of the compensator field φ = 1 + Fφθ
2, the relevant Kahler

potential reduces to

W =

∫
d4θ

φ†

φ

1

(T + T †)ñP−nP

(
cPRP̄P

)
. (4.10)

For simply, we define ñP − nP ≡ aP . Especially, aP = nP for ñP = 0.

The SUSY breaking effects can be taken into account by introducing a spurion super-

fields R with the spurion VEV as

R ≡MR + θ2FR =
1

(2T )aP

(
Fφ −

aP
2T

FT

)
+ θ2

[
aP (aP + 1)

|FT |2

4T 2
− |Fφ|2

]
, (4.11)

with the value of the deflection parameter

d ≡ FR
MRFφ

− 1 , (4.12)

depending on the choice of aP and α which gives d = −2 for aP = 0. We can see that

adding messenger sector in the Kahler potential within mirage mediation will display a

new feature in contrast to the AMSB case which always predicts d = −2.

The appearance of spurion messenger threshold will affect the AMSB RGE trajectory

after integrating out the heavy messenger modes. The soft SUSY breaking parameters can

be obtained by substituting ′d′ into the general formula given in the appendix. Note that

we can derive the final results directly with its low energy analytical expressions. Besides,

we can also add messenger-matter mixing to induce new Yukawa couplings between the

messengers and the MSSM fields. In this case, new Yukawa mediated contributions will

also contribute to the low energy soft SUSY parameters (See refs. [61–63] for an example

in AMSB).

4.3 Deflected mirage mediation with messenger-matter interactions

In ordinary deflected mirage mediation SUSY breaking scenarios, additional messengers are

introduced merely to amend the gauge beta functions which will subsequently feed into the

low energy soft SUSY breaking parameters. In general, it is possible that the messengers

will share some new Yukawa-type interactions with the visible (N)MSSM superfields, which
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subsequently will appear in the anomalous dimension of the superfields and contribute to

the low energy soft SUSY breaking parameters. Such realizations have analogs in AMSB

(see [61–63]) and can be readily extended to include the modulus mediation contributions.

Similar to the deflected mirage mediation scenarios, the superpotential include possible

pseudo-modulus superfields X, the relevant nearly flat superpotential W (X) to determine

the deflection and a new part that includes messenger-matter interactions

Wmm = λφijXQiQj + yijkQiQjQk +W (X) , (4.13)

with the Kahler potential

Km = ZU

(
T + T †,

µ√
φ†φ

)
1

(T + T †)nQi
Q†iQi . (4.14)

Here ′φ′ denotes the compensator field with Weyl weight 1. The indices ′i, j′ run over all

MSSM and messenger fields and the subscripts ′U,D′ denote the case upon and below the

messenger threshold, respectively.

After integrating out the heavy messenger fields, the visible sector superfields Qa will

receive wavefunction normalization

L =

∫
d4θQ†aZ

ab
D

T + T †,
µ√
φ†φ

,

√
X†X

φ†φ

Qb +

∫
d2θyabcQ

aQbQc , (4.15)

which can give additional contributions to soft supersymmetry breaking parameters. Here

the analytic continuing threshold superfield ′X ′ will trigger SUSY breaking mainly from

the anomaly induced SUSY breaking effects with the form < X >= M+θ2FX . So we have

X̃ ≡ X

φ
=
M + FXθ

2

1 + Fφθ2
≡M(1 + dFφθ

2), (4.16)

with the value of the deflection parameter ′d′ determined by the form of superpotential

W (X).

Integrating out the messengers, the messenger-matter interactions will cause the dis-

continuity of the anomalous dimension upon and below the threshold. Such discontinuity

will appear not only directly in the expressions for the trilinear couplings but also indi-

rectly in the soft scalar masses. For example, the trilinear couplings at the messenger scale

receive additional contributions

∆Aijk|µ=M =
∑
a=i,j,k

d

2
Fφ

∂

∂ ln |X|
ln
[
e−K0/3Za(µ,X, T )

]∣∣∣
µ=M

=
d

2
Fφ

∑
a=i,j,k

∆Gi|µ=M . (4.17)

We know that large trilinear couplings, especially At, is welcome in low energy phenomeno-

logical studies to reduce fine tuning and increase the Higgs mass. So the introduction of

messenger-matter interactions can open new possibilities for mirage phenomenology.
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5 Conclusions

We derive explicitly the soft SUSY breaking parameters at arbitrary low energy scale in

the (deflected) mirage type mediation scenarios with possible gauge or Yukawa mediation

contributions. Based on the Wilsonian effective action after integrating out the messengers,

we obtain analytically the boundary value (at the GUT scale) dependencies of the effective

wavefunctions and gauge kinetic terms. Note that the messenger scale dependencies of the

effective wavefunctions and gauge kinetic terms had already been discussed in GMSB. The

RGE boundary value dependencies, which is a special feature in (deflected) mirage type

mediation, is the key new ingredients in this study. The appearance of ‘mirage’ unification

scale in mirage mediation is proved rigorously with our analytical results. We also discuss

briefly the new features in deflected mirage mediation scenario in the case the deflection

comes purely from the Kahler potential and the case with messenger-matter interactions.

We should note that our approach is in principle different from that of ref. [47] in which

the soft SUSY breaking parameters are obtained by numerical RGE evolution, matching

and threshold corrections. For example, mixed gauge-modulus mediation contributions,

which will not appear in previous approach, will be necessarily present for the soft scalar

masses in our approach.
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A Coefficients in wavefunction expansion

We can construct the RGE invariants

d

dt
lnZi =

∑
l=yt,yb,yτ

Al
d ln yl
dt

+
∑

l=g3,g2,g1

Bl
d ln gl
dt

, (A.1)

by solving the equation in the basis of (y2
t , y

2
b , y

2
τ , g

2
3, g

2
2, g

2
1)

6 1 0 0 0 0

1 6 3 0 0 0

0 1 4 0 0 0

−16
3 −

16
3 0 b3 0 0

−3 −3 −3 0 b2 0

−13
15 −

7
15 −

9
5 0 0 b1





At
Ab
Aτ
B3

B2

B1


=



−2c1

−2c2

−2c3

−2d1

−2d2

−2d3


, (A.2)

with c1, c2, c3, d1, d2, d3 the relevant coefficients of (y2
t , y

2
b , y

2
τ , g

2
3, g

2
2, g

2
1) within the anoma-

lous dimension. So from

d

dt

Zi(µ)
∏

l=yt,yb,yτ

[yl(µ)]−Al
∏

k=1,2,3

[gk(µ)]−Bk

 = 0 , (A.3)
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A1(yt) A2(yb) A3(yτ ) B3(g3) B2(g2) B1(g1)

Q3 −17
61 -20

61
5
61 -128

183
87
61 - 5

183

U3 −42
61

8
61 - 2

61 -48
61 −108

61
48
671

D3
8
61 -48

61
12
61 -112

183 −84
61

112
2013

L3 − 3
61

18
61 −35

61 - 80
183

123
61 - 103

2013

E3 − 6
61

36
61 −70

61 -160
183 −120

61
160
2013

Hu −63
61

12
61 − 3

61
272
183

21
61 - 89

2013

Hd
9
61 -54

61 −17
61

80
61 − 3

61 - 19
671

Q2 0 0 0 -16
9 3 1

99

U2 0 0 0 -16
9 0 16

99

D2 0 0 0 -16
9 0 4

99

L2 0 0 0 0 3 1
11

E2 0 0 0 0 0 4
11

Table 1. Relevant coefficients in wavefunction expansion with NF = 0 messengers.

we have

Zi(µ) = Zi(Λ)
∏

l=yt,yb,yτ

(
yl(µ)

yl(Λ)

)Al ∏
k=1,2,3

(
gk(µ)

gk(Λ)

)Bk
. (A.4)

The general expressions of wavefunction at ordinary scale µ below the messenger scale

M are given as

Zi(µ) = Zi(Λ)
∏

l=yt,yb,yτ

(
yl(M)

yl(Λ)

)Al ∏
k=1,2,3

(
gk(M)

gk(Λ)

)Bk ∏
k=yU

(
yk(M)

yk(Λ)

)Ck
∏

l=yt,yb,yτ

(
yl(µ)

yl(M)

)A′
l ∏
k=1,2,3

(
gk(µ)

gk(M)

)B′
k

, (A.5)

with yU the interactions involving the messengers which will be integrated below the mes-

senger scale. The coefficients are listed in table 1 and table 2.

B Low energy spectrum in deflected mirage mediation

In order to show some essential features of our effective theory results, we list the pre-

dicted soft SUSY breaking parameters in deflected mirage mediation mechanism with NF

messengers in 5⊕ 5̄ representations of SU(5).

At energy µ below the messenger thresholds, we have

• The gaugino masses:

Mi(µ) = laM0
g2
i (µ)

g2
a(GUT)

+
Fφ

16π2
big

2
i (µ)− d

Fφ
16π2

NF g
2
i (µ) , (B.1)
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Bg3(i) Bg2(i) Bg1(i)

Q3 (−128
183 ,−

64
61 ,−

128
61 ,

128
61 ) (87

61 ,
87
122 ,

29
61 ,

87
305) (− 5

183 ,−
55

2318 ,−
55

2623 ,−
55

3233)

U3 (−48
61 ,−

72
61 ,−

144
61 ,

144
61 ) (−108

61 ,−
54
61 ,−

36
61 ,−

108
305) ( 48

671 ,
72

1159 ,
144
2623 ,

144
3233)

D3 (−112
183 ,−

56
61 ,−

112
61 ,

112
61 ) (−84

61 ,−
42
61 ,−

28
61 ,−

84
305) ( 112

2013 ,
56

1159 ,
112
2623 ,

112
3233)

L3 (− 80
183 ,−

40
61 ,−

80
61 ,

80
61) (123

61 ,
123
122 ,

41
61 ,

123
305) (− 103

2013 ,−
103
2318 ,−

103
2623 ,−

103
3233)

E3 (−160
183 ,−

80
61 ,−

160
61 ,

160
61 ) (−120

61 ,−
60
61 ,−

40
61 ,−

24
61) ( 160

2013 ,
80

1159 ,
160
2623 ,

160
3233)

Hu ( 272
183 ,

136
61 ,

272
61 ,−

272
61 ) (21

61 ,
21
122 ,

7
61 ,

21
305) (− 89

2013 ,−
89

2318 ,−
89

2623 ,−
89

3233)

Hd ( 80
61 ,

120
61 ,

240
61 ,−

240
61 ) (− 3

61 ,−
3

122 ,−
1
61 ,−

3
305) (− 19

671 ,−
3

122 ,−
57

2623 ,−
57

3233)

Q2 (−16
9 ,−

8
3 ,−

16
3 ,

16
3 ) (3, 3

2 , 1, 3
5) ( 1

99 ,
1

144 ,
1

129 ,
1

159)

U2 (−16
9 ,−

8
3 ,−

16
3 ,

16
3 ) (0, 0, 0, 0) (16

99 ,
8
57 ,

16
129 ,

16
159)

D2 (−16
9 ,−

8
3 ,−

16
3 ,

16
3 ) (0, 0, 0, 0) ( 4

99 ,
2
57 ,

4
129 ,

4
159)

L2 ( 0, 0, 0, 0) (3, 3
2 , 1, 3

5) ( 1
11 ,

3
38 ,

3
43 ,

3
53)

E2 ( 0, 0, 0, 0) (0, 0, 0, 0) ( 4
11 ,

6
19 ,

12
43 ,

12
53)

Table 2. The coefficients with NF = 0, 1, 2, 4 messengers without new Yukawa couplings involving

the messengers-matter interactions. The coefficients for yt, yb, yτ , namely A1(yt),A2(yb),A3(yτ ), are

the same as the case NF = 1.

with

(b3 , b2 , b1) =

(
−3, 1,

33

5

)
. (B.2)

• The trilinear couplings At, Ab and Aτ .

Note that at the messenger scale, the third contribution ∂XZi vanishes. The trilinear At
term is given at arbitrary low energy scale µ < M

At(µ)− qytM0

=
M0

2π

[
6
qyt
2
αyt(µ) +

qyb
2
αyb(µ)− 16

3
l3α3(µ)− 3l2α2(µ)− 13

15
l1α1(µ)

]
ln

(
MGUT

µ

)
+
Fφ
4π

[
6αyt(µ) + αyb(µ)− 16

3
α3(µ)− 3α2(µ)− 13

15
α1(µ)

]
+ δG . (B.3)

Note that additional GMSB-type contributions are

δG = d
Fφ
8π

∑
k=1,2,3

∑
F=Q3

L,U3,Hu

[
(Bk(F )−B′k(F ))(bk +NF )αk(M) +B′k(F )NFαk(µ)

]
+ d

Fφ
8π

∑
yl=yt,yb,yτ

∑
k=1,2,3

A′l
1

4π2
NF c̃r(yl)α

2
r(µ) ln

(
M

µ

)

= d
Fφ
8π

[
−2

1

8π2
NF

(
16

3
α2

3(µ) + 3α2
2(µ) +

13

15
α2

1(µ)

)
ln

(
M

µ

)]
, (B.4)
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with 2c̃r(yl) the coefficients of g2
r within −16π2βyl and∑

F=Q3
L,U3,Hu

Bk(F ) =
∑

F=Q3
L,U3,Hu

B′k(F ) = 0. (B.5)

The trilinear Ab term is

Ab(µ)−qybM0

=
M0

2π

[
qyt
2
αyt(µ)+6

qyb
2
αyb(µ)+

qyτ
2
αyτ (µ)− 16

3
l3α3(µ)−3l2α2(µ)− 7

15
l1α1(µ)

]
ln

(
MGUT

µ

)
+
Fφ
4π

[
αyt(µ)+6αyb(µ)+αyτ (µ)− 16

3
α3(µ)−3α2(µ)− 7

15
α1(µ)

]
+d

Fφ
8π

[
−2

1

8π2
NF

(
16

3
α2

3(µ)+3α2
2(µ)+

7

15
α2

1(µ)

)
ln

(
M

µ

)]
. (B.6)

The trilinear Aτ term is

Aτ (µ)− qyτM0

=
M0

2π

[
3
qyb
2
αyb(µ) + 4

qyτ
2
αyτ (µ)− 3l2α2(µ)− 9

5
l1α1(µ)

]
ln

(
MGUT

µ

)
+
Fφ
4π

[
3αyb(µ) + 4αyτ (µ)− 3α2(µ)− 9

5
α1(µ)

]
+ d

Fφ
8π

[
−2

1

8π2
NF

(
3α2

2(µ) +
9

5
α2

1(µ)

)
ln

(
M

µ

)]
. (B.7)

• The soft SUSY breaking scalar masses are parameterized by several terms:

−m2
0 = −(1− ni)M2

0 + δI + δII + δIII + δIV + δV . (B.8)

The anomalous dimension of Zi is supposed to take the form

Gi ≡ d lnZi
d lnµ

= − 1

2π

(
1

2
diklαλikl − 2Ca(i)αa

)
, (B.9)

with αλikl = λ2
ikl/4π and αa = g2

a/4π.

– Pure modulus mediation contributions

δI =
M2

0

2π
ln

(
MGUT

µ

){
dijk
2

(
q2
Yijk

+ qYijk

)
αYijk(µ)− 2Ca(i)

(
la + l2a

)
αa

+
1

2π

[
dijk
2
αYijk(µ)

(
− d̃

p
mn

2
qYmnpαYmnp + 2crlaαa

)
+ 2Ca(i)baα

2
a

]
ln

(
GUT

µ

)}
.

(B.10)
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– Pure anomaly mediation contributions

δII =
F 2
φ

4

∂2

∂(lnµ)2
ln
[
e−K0/3Zi

]
(B.11)

= −
F 2
φ

8π

∂

∂(lnµ)

[
1

2
diklαλikl − 2Ca(i)αa

]
,

= −
F 2
φ

8π

[
1

2
diklαλikl2G

−
λikl
− 2Ca(i)

1

2π
baα

2
a

]
, (B.12)

with the beta function for Yukawa coupling λikl being

d lnλikl
d lnµ

= Gλikl =
1

4π

[
1

2
dpmnαλmnp − 2crαr

]
. (B.13)

– Pure gauge mediation contributions

As no new interactions involving the messengers are present, we have

∂

∂ lnM
ln
[
e−K0/3Zi

]
=

1

4π

∑
gk

[
(Bk −B′k)(bk +NF )αk(M) +B′kNFαk(µ)

]
+
∑
Yl

A′l
c̃r

4π2
∆brα

2
r(µ) ln

(
M

µ

)
. (B.14)

So

δIII = d2
F 2
φ

4

∂2

∂(lnM)2
ln
[
e−K0/3Zi

]
(B.15)

= d2
F 2
φ

32π2

∑
gk

[
(Bk−B′k)(bk+NF )2α2

k(M)+B′kN
2
Fα

2(µ)
]
+
∑
Yl

A′l
c̃r

4π2
∆brα

2
r(µ)

 .
Here

∂

∂ lnM
αk(M) =

b+k
2π
αk(M) ,

∂

∂ lnM
αk(µ,M) =

b+k − b
−
k

2π
αk(µ,M) ≡ ∆bk

2π
αk(µ,M) . (B.16)

– The gauge-anomaly interference term

δIV = −
dF 2

φ

2

∂2

∂ lnM∂ lnµ
ln
[
e−K0/3Zi(µ,X, T )

]
,

= −
dF 2

φ

2

∂

∂ lnµ

 1

4π

∑
gk

[
(Bk −B′k)(bk +NF )αk(M) +B′kNFαk(µ)

]

+
∑
Yl

A′l
c̃r

4π2
∆brα

2
r(µ) ln

(
M

µ

) ,

= −
dF 2

φ

16π2
B′kbkNFα

2
k(µ)− dF 2

φ

c̃r
8π2

A′l∆brα
2
r(µ). (B.17)
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– The modulus-anomaly and modulus-gauge interference terms are given as

δV = −
FTFφ

2

∂2

∂T∂ lnµ
ln
[
e−K0/3Zi

]
+
dFTFφ

2

∂2

∂T∂ ln |X|
ln
[
e−K0/3Zi

]
,

=
FTFφ

4π

∂

∂T

[
1

2
diklαλikl − 2Ca(i)αa

]

+
dFTFφ

2

∂

∂T

 1

4π

∑
gk

[
(Bk −B′k)(bk +NF )αk(M) +B′kNFαk(µ)

]

+
∑
Yl

A′l
c̃r

4π2
∆brα

2
r(µ) ln

(
M

µ

) ,

=
M0Fφ

2π

[
dikl
2
αλikl

(
−qyλikl +

1

2π

[
dpmn

2
qyλmnpαλmnp − 2crlrαr

]
ln

[
MG

µ

])
+2Ca(i)

la
T

α2
a

αa(GUT)

]
−
dFφM0

4π

∑
gk

[
(Bk −B′k)(bk +NF )lk

α2
k(M)

αk(GUT)
+B′kNF lk

α2
k(µ)

αk(GUT)

]

−
∑
Yl

A′l
dM0Fφ

4π2
c̃r∆brlr

2α3
r(µ)

αr(GUT)
ln

(
M

µ

) , (B.18)

with

∂

∂T
αk(µ) = − lk

T

αk(µ)

αk(GUT)
αk(µ) . (B.19)
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