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1 Introduction and summary

Continuous spin fields provide an interesting example of field theory systems with an infinite

number of physical degrees of freedom [1, 2] (for recent review see [3]). Group-theoretically,

continuous spin particles are unitary representations of Poincaré algebra iso(d − 1, 1), in-

duced from unitary representations of the stability subalgebra iso(d − 2) ⊂ iso(d − 1, 1).1

Contrary to the standard helicity fields where one induces from finite-dimensional unitary

representations of the little algebra o(d−2), the continuous spin representations correspond

to infinite-dimensional iso(d− 2)-modules.

1See e.g. [4] for a review of the Poincaré representations relevant in the present context.
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A continuous spin parameter denoted by a real number µ is an eigenvalue of the squared

iso(d− 2) momentum or of the quartic iso(d− 1, 1) Casimir operator [5]. Remarkably, the

standard mass parameter associated to the quadratic iso(d−1, 1) Casimir operator is zero,

m = 0, so that the continuous spin fields are massless fields simultaneously characterized

by the dimensionful parameter µ.2

Since the original Wigner’s equations for the continuous spin fields were proposed [1, 2],

several interesting descriptions were developed both at the level of equations of mo-

tion [7–11] and of the action functional [12–20]. A characteristic feature of these for-

mulations is that the space of fields is infinite-dimensional [7] in accord with infinite di-

mensionality of the respective little group representation.

The relation between the continuous spin and usual helicity fields becomes manifest

within the Schuster-Toro formulation [12, 15]. In this approach a single continuous spin

field is described by an infinite collection of Fronsdal tensors with ranks running from zero

to infinity, making it quite similar to the standard interacting higher spin theory [21, 22] (for

a review see e.g. [23]) whose free limit is an infinite tower of the helicity spin fields.3 In par-

ticular, for vanishing continuous spin parameter µ = 0 Schuster-Toro system decomposes

into an infinite collection of decoupled Fronsdal spin-s fields with s = 0, 1, 2, . . . ,∞. In

this regard, the continuous spin field is somewhat similar to the standard Minkowski space

massive field which also decomposes into a collection of massless ones in the zero mass limit,

see e.g. [26]. One can also draw an analogy with a generic massless higher spin field in AdS

that in the flat limit decomposes into a collection of Minkowski space massless fields [27].

A rather concise unified BRST formulation of the bosonic continuous spin fields that

explicitly manifests all of the above features has been proposed recently in [10]. It is based

on a constrained system which is a deformation of the one employed in studying mixed

symmetry helicity fields [28]. This formulation is suitable for analyzing the content of the

system through studying its BRST cohomology. In particular, in this way it was shown

that with the naive choice of the functional class in the sector of auxiliary variables the

system is pure gauge, i.e. there are no degrees of freedom. Nevertheless, it turns out that

with the proper choice of the functional class the system indeed describes proper degrees

of freedom [10].

An additional attractive feature of the unified formulation is that its different reduc-

tions reproduce various other equivalent formulations including the metric-like [7, 12] and

frame-like [16, 17, 29] formulations as well as the light-cone formulation [24].

In this paper we propose a fermionic extension of the unified BRST formulation of

both the helicity and continuous spin fields.4 Just like in the bosonic case, the underlying

2In this respect, the original term “continuous spin” is somewhat misleading because such systems

behave like massive ones. For instance, they can be obtained through a dimensional reduction of the

standard higher spin massive systems where the mass m→ 0 and the spin s→∞, while a combination ms

is kept finite [6, 7].
3Note that continuous spin fields themselves can consistently interact with massive higher spin fields, at

least in the cubic order [24, 25].
4For the previous results on higher spin fermions propagating in Minkowski and (A)dS backgrounds

in the frameworks of both metric-like and frame-like formulations see e.g. [30–45]. Other descriptions of

fermionic continuous spin fields can be found in [7, 14, 17, 18].

– 2 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
0

formulation is the constrained system whose constraints belong to a subalgebra of osp(1|2n)

superalgebra in the representation where osp(1|2n) and o(d − 1, 1) form a reductive dual

pair in the sense of Howe [46].

The paper is structured as follows. There are two main parts divided between the helic-

ity and the continuous spin cases. In section 2 we describe o(d− 1, 1)-osp(1|2n) bimodule

(which is also a Poincaré one) on the functions of auxiliary (anti)commuting variables,

which serves as a representation space of the constrained system. In section 3 we formulate

one-parameter constraint system such that helicity and continuous spin fields correspond

to different values of the parameter. In two main sections 4 and 5 we build the triplet,

metric-like, light-cone formulations for respectively helicity and continuous spin fermionic

fields. The analysis of BRST cohomology is performed in section 6. Appendices A and B

consider various aspects of the space-time and symplectic (super)algebras.

2 Algebraic preliminaries

2.1 Spinor-tensor fields

Let us introduce Grassmann even variables aaI and āJb , where a, b = 0, . . . , d − 1, I, J =

0, . . . , n and Grassmann odd variables θa satisfying the canonical commutation relations

[āIa, a
b
J ] = δIJ δ

b
a , {θa, θb} = 2ηab , (2.1)

where ηab = (−+ · · ·+) is the Minkowski tensor. These variables generate the associative

algebra which is then promoted to the operator algebra of a quantum constrained system.

Consider the linear space Pdn(aI) = S ⊗ C[aI ], where S is the Dirac representation of

the Clifford algebra generated by θa and C[aI ] is the space of polynomials in aaI . Elements

of Pdn(aI) have the component form

ψ(a) = eαψ
α(a) ,

ψα(a) =
∑
mI

ψαa1 ... am0 ; ...... ; b1 ... bmn−1
aa10 . . . a

am0
0 . . . ab1n−1 . . . a

bmn−1

n−1 ,
(2.2)

where mI ≡ (m0, . . . ,mn) are arbitrary non-negative integers, eα is a basis in S, and

α = 1, . . . , 2[d/2] is the Dirac spinor index. It is also useful to regard Pdn(aI) as the space

of polynomial functions in aaI with values in S.

The associative algebra generated by aaI , ā
J
b and θa can be represented on Pdn(aI) in a

natural way if one defines the action of the generators according to

aaIψ(a) := aaIψ(a) , āIaψ(a) :=
∂

∂aaI
ψ(a) , θaψ(a)α := (γa)αβψ

β(a) , (2.3)

where the gamma-matrices (γa)αβ are defined in terms of the basis eα in S as

θaeβ = (γa)αβeα.
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2.2 Lorentz algebra and orthosymplectic superalgebra

The Lorentz algebra so(d − 1, 1) can be embedded as a Lie subalgebra into the above

operator algebra by postulating

Mab = aIaā
I
b − aI bāIa +

1

4
(θaθb − θbθa) . (2.4)

This also defines a representation of so(d − 1, 1) on Pdn(aI). It follows that the expansion

coefficients in (2.2) transform as Lorentz spinor-tensors.

Simultaneously, the orthosymplectic superalgebra osp(1|2n+ 2) can also be embedded

into the operator algebra, and, hence, is also represented on Pdn(aI). The even and odd

basis elements are given respectively by

TIJ = aaIaJa , TI
J =

1

2

(
aaI ā

J
a + āJaa

a
I

)
, T IJ = āIaā

Ja , (2.5)

and

ΥI = aaIθa , ΥI = āIaθ
a , (2.6)

with the graded commutation relations given in appendix A. The space Pdn(aI) is now

so(d − 1, 1) − osp(1|2n + 2) bimodule. The two algebras mutually commute forming a

reductive dual pair [46].

2.3 Poincaré algebra

The Poincaré algebra iso(d − 1, 1) can be realized on the same set of auxiliary variables.

To this end, we split the original variables as aa0 ≡ xa, aaI ≡ aai , I > 0 with i = 1, . . . , n.

Then, translations and Lorentz rotations are given by

Pa = ∂a , Mab = xa∂b − xb∂a + aiaā
i
b − aibāia +

1

4
(θaθb − θbθa) , (2.7)

and naturally act in the space Pdn(x, a) of smooth functions in xa with values in Pdn(ai).

We also introduce special notation for some of sp(2n+ 2) even basis elements

� ≡ T 00 = ∂a∂
a , Di ≡ T 0i = āai ∂a , D†i ≡ Ti

0 = aai ∂a ,

Ni
j ≡ Tij = aai āja i 6= j , Ni ≡ Tii −

d

2
= aai āia ,

(2.8)

and for the odd basis element

D̂ ≡ Υ0 = θa∂a . (2.9)

In particular, from the osp(1|2n+ 2) graded commutation relations we have {D̂, D̂} = 2�
meaning that the Dirac operator D̂ squares to the Klein-Gordon operator �.

3 One-parameter family of constraint systems

We claim that both helicity and continuous spin fermionic fields can be uniformly described

by a one-parameter system of constraints which are (deformed) generators of a subalgebra

of osp(1|2n+ 2). The constraints are imposed on a spinor-tensor field ψ ∈ Pdn(x, a).

– 4 –
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The constraint algebra is generated by the Dirac constraint

D̂ψ = 0 , (3.1)

the gamma-trace conditions(
Υi + νiΓ

)
ψ = 0 , νi = νδi1, i = 1, . . . , n , (3.2)

and the spin weight and Young symmetry conditions

Nmψ = smψ , Nm
kψ = 0 (m < k) , m, k = 2, . . . , n . (3.3)

Here, ν ∈ R, spin weights sm ∈ N, and Γ is the extra Clifford element satisfying {Γ, θa} = 0

and Γ2 = 1.

The additional constraint is implemented in a dual way through the equivalence rela-

tion determined by the following gauge transformation law

δψ =
(
D†i + µi

)
χi , µi = µδi1 , i = 1, . . . , n . (3.4)

Here, µ ∈ R, and χi ∈ Pdn(x, a) are the gauge parameters satisfying relations following from

the gauge invariance of the differential/algebraic constraints (3.1)–(3.3).

The complete set of constraints also involves

�ψ = 0 , Diψ = 0 , (T ij + νiνj)ψ = 0 , (3.5)

which are consequences of (3.1) and (3.2). Indeed, D̂2 = �, {D̂,Υi + νiΓ} = 2Di, {Υi +

νiΓ,Υj + νjΓ} = 2(T ij + νiνj). In what follows, it is also useful to split the constraints

into differential ones that necessarily involve space-time derivatives ∂a and the algebraic

constraints that involve only aai and θa auxiliary variables.

A few comments are in order.

• At µ, ν = 0 the system enjoys extra reducibility which can be removed by imposing

in addition N1ψ = s1ψ and N1
kψ = 0, where k = 2, . . . , n and s1 ∈ N. Then,

the resulting constraint system describes fermionic helicity fields (see section 4). For

µ, ν 6= 0 the additional constraints are not consistent with the gauge transformations.

• The extra Clifford element Γ in (3.2) is introduced to have a parity-preserving defor-

mation of the Grassmann odd elements of the constraint superalgebra. Definition of

Γ depends on whether the spacetime dimension d is even or odd. More precisely, for

even d the Γ can be chosen as the “fifth gamma” Γ := Γd+1, where

Γd+1 =
id/2−1

d!

√
− det ηab εa1...adθ

a1 . . . θad = id/2−1θ0θ1 . . . θd−1 , (3.6)

that is Γ can be realized in terms of the original Clifford algebra (2.1) and its mod-

ule. In odd d it is not the case and Γ extends the original Clifford algebra to

{θA, θB} = 2ηAB, where A = (a, d), and ηdd = 1, and θd := Γ. In this case, the

– 5 –
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spinor representation also gets extended, and, hence, the spectrum of fields is dupli-

cated. However, the extended Clifford algebra is even dimensional, and, therefore,

there is a new “fifth gamma” Γ̃ = iΓd+1Γ that can be used to project out a half of

the spinor components via the standard P± = 1
2(1 ± Γ̃). For simplicity, throughout

the paper we explicitly treat the case of even d unless otherwise indicated.

• The values of the quadratic and quartic Casimir operator of the Poincaré algebra

evaluated on the subspace (3.1)–(3.4) are given by (see appendix B)

C2

(
iso(d− 1, 1)

)
ψ = 0 , C4

(
iso(d− 1, 1)

)
ψ = −µ2ν2ψ . (3.7)

At µ, ν 6= 0 we find out that the above constraint system describes massless fields

characterized by the continuous spin parameter µν. Thus, we indeed have one-

parameter constraint system. At µ, ν = 0 the constraint system describes a collection

of higher spin massless fields with arbitrary half-integer helicity. In this case, the

eigenvalue in (3.7) is zero what exactly matches vanishing eigenvalue of the quartic

Casimir operator in the helicity case.

For general parameters µ, ν we fix the functional class in aai to be that of formal power

series in aai such that a decomposition of a given element ψ with respect to traces, i.e.

ψ = ψ0 + T ijψ1
ij + T ijT klψ2

ijkl + . . . , Tmnψ
k
ij... = 0 (3.8)

is such that all coefficients are polynomials of bounded order (that means that for a given

ψ there exists N ∈ N such that any ψkij... is of order not exceeding N). This functional

class was introduced in [10] in the context of bosonic continuous spin fields. Note that in

contrast to [10] now we are concerned with series with coefficients in S. Equivalently, one

can characterize the functional class using the gamma-trace decomposition

ψ =

∞∑
k=0

Υi1 . . .Υikψ
i1,...,ik
(k) , i1 < i2 < . . . < ik , Υiψ

...

(k) = 0 , (3.9)

where all coefficients are also required to be polynomials in aai of finite order.

4 Fermionic helicity fields

In this section, we explicitly study the constraint system (3.1)–(3.4) in the helicity case,

µ, ν = 0. As we noted before, the constraints can be augmented by adding more algebraic

conditions so that the resulting system describes a single massless half-integer spin field.

The augmented system still contains Dirac equation

D̂ψ = 0 , (4.1)

while the complete set of algebraic constraints now reads as

Υiψ = 0 , Niψ = siψ , Ni
jψ = 0 (i < j) , i, j = 1, . . . , n . (4.2)

– 6 –
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The spin weight conditions imposed on each type of auxiliary variables constrain functions

ψ to be homogeneous polynomials in ai. The Young symmetry and gamma-tracelessness

conditions are the standard irreducibility conditions for the o(d − 1, 1)-representation of

spin s1 + 1
2 ≥ s2 + 1

2 ≥ . . . ≥ sn + 1
2 , where si ∈ N.

The gauge transformations read

δψ = D†iχ
i, i = 1, . . . , n , (4.3)

where the gauge parameters χi satisfy the same constraints as the fields ψ except for the

spin weight and Young symmetry constraints which are replaced by

Niχ
j = (si − δji )χ

j , Ni
jχk = −δki χj (i < j). (4.4)

Note that the Klein-Gordon operator, the divergence and the trace conditions are imposed

by virtue of D̂2 = �, {D̂,Υi} = 2Di, {Υi,Υj} = 2T ij .

4.1 Simplest BRST formulation

Let us introduce the anticommuting ghost variables bi of ghost number gh(bi) = −1. The

gauge symmetries can be realized via the BRST operator

Q = D†i
∂

∂bi
, (4.5)

which acts on the space of functions Ψ(x, a|b) regarded as functions in xa taking values in

Pdn(a)⊗ C[bi], where C[bi] is the Grassmann algebra generated by b1, . . . , bn.

Homogeneous components of Ψ in bi carry definite ghost degree and are introduced

according to

Ψ =
n∑
k=0

Ψ(−k) , gh(Ψ(−k)) = −k . (4.6)

The spinor-tensor field ψ above is identified with the ghost number 0 component Ψ(0),, the

gauge parameters are Ψ(−1) component, and the order k reducibility parameters are the

ghost degree −k components.

The function Ψ is subject to the BRST invariant extension of the constraints (4.2),

D̂Ψ = 0 , ΥiΨ = 0 , NiΨ = siΨ , NijΨ = 0 (i < j) , (4.7)

where

Nij = Ni
j + bi

∂

∂bj
, Ni = Ni + bi

∂

∂bi
. (4.8)

The component form of these constraints reproduce that for fields and gauge parame-

ters (4.2) and (4.4).

Starting with the above BRST formulation one can systematically rederive unfolded

formulation [31, 38] of mixed-symmetry fermionic helicity fields in Minkowski space. In-

deed, according to [47] the set of fields of the unfolded formulation is given by cohomology

of Q evaluated in the subspace (4.7). Strictly speaking in so doing one should also replace

– 7 –
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xa with formal coordinate ya and consider elements that are formal series in ya. Moreover,

the nilpotent differential determining the unfolded equations and gauge symmetries is just

the differential induced by dxa( ∂
∂xa −

∂
∂ya ) +Q in the cohomology of the second term. Note

that the first term has an interpretation of the flat connection of the Poincaré algebra.

The procedure is a straightforward generalization of the derivation [28] of the unfolded

formulation for general bosonic helicity fields.

4.2 Extended triplet formulation

Let us impose all the differential constraints via BRST operator, while all the algebraic con-

straints or, more precisely, their appropriate BRST invariant extensions we impose directly

in the representation space. In the case of integer spin fields, this reproduces [28, 47] the

triplet formulation discussed previously in [48–53]. As we are going to see for half-integer

spin fields this gives the extended description from which the familiar triplet formulation

of [49, 50] can be obtained by eliminating auxiliary fields and solving constraints.

The extended triplet BRST operator for fermionic helicity fields is given by

Ω = αD̂ + c0� + ciD
i +D†i

∂

∂bi
− αα ∂

∂c0
− ci

∂

∂bi

∂

∂c0
, (4.9)

where in addition to the ghost variables bi we introduced a new anticommuting ghost

variables c0, ci, i = 1, . . . , n and commuting ghost variable α with ghosts numbers gh(c0) =

gh(α) = 1. As α is a commuting variable there is an ambiguity in the functional class to

work with. We choose functions Ψ(x, a|α, c0, c, b) to be polynomials in α.

BRST operator (4.9) is defined on the subspace singled out by the following BRST-

invariant extended constraints

ÑiΨ = siΨ , Ñi
jΨ = 0 (i < j) , Υ̃iΨ = 0 , (4.10)

where

Ñi
j = Ni

j + bi
∂

∂bj
+ ci

∂

∂cj
, Ñi = Ñi

i , Υ̃i = Υi − 2α
∂

∂ci
+

∂

∂α

∂

∂bi
. (4.11)

Note that the BRST operator (4.9) is well-defined and is nilpotent on the entire represen-

tation space and not only on the subspace (4.10).

4.3 Homological reduction and the triplet formulation

The triplet formulation can be used as a starting point to obtain various other dynamically

equivalent formulations including the metric-like formulation and the light-cone formula-

tion. In so doing it is convenient to employ the method of homological reduction developed

in [47] (see also [54]) and applied earlier to bosonic mixed-symmetry fields in Minkowski

space [10, 28] in a similar framework.

Let us briefly recap the main ingredients of the homological reduction method. Suppose

we have a linear gauge theory (H,Ω) defined in terms of the BRST operator Ω acting

on the representation space H graded by the ghost number. Let H be split into three

subspaces: H = E ⊕ F ⊕ G in such a way that a linear operator
GF
Ω : F → G defined

– 8 –
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by
GF
Ω f = ΠGΩf for f ∈ F is invertible. It turns out that all the fields associated with

F and G are generalized auxiliary fields that are usual auxiliary fields and Stueckelberg

fields as well as the associated ghosts and antifields. Generalized auxiliary fields can be

eliminated, resulting in an equivalent formulation (E , Ω̃) of the same theory. The reduced

BRST operator can be expressed explicitly as

Ω̃ =
EE
Ω −

EF
Ω (
GF
Ω )−1

GE
Ω , (4.12)

where
EE
Ω and

GE
Ω are the respective components of Ω.

In applications, a triple decomposition of H is often determined by a certain piece of

Ω. More specifically, suppose that H admits an additional grading

H =

∞⊕
−N
Hi , N is a finite integer , (4.13)

such that Ω decomposes into homogeneous components as follows

Ω = Ω−1 + Ω0 + Ω1 + . . . . (4.14)

Then, the lowest grade part Ω−1 of the BRST operator is nilpotent and defines the

triple decomposition according to

E ⊕ G = Ker Ω−1 , G = Im Ω−1 , E ' Ker Ω−1

Im Ω−1
≡ H(Ω−1) . (4.15)

Note that the subspaces G ⊂ H and G ⊕ E ⊂ H are defined by Ω−1 unambiguously while

the embedding of F and E into H is defined up to an ambiguity. The reduced operator Ω̃

can be explicitly expressed [47] in terms of the inverse of
GF
Ω −1.

Typically (though not always) one is interested in local gauge field theories in which

case one requires that generalized auxiliary fields can be eliminated algebraically. In our

case, it means that additional gradings give rise to Ω−1 that do not involve x-differential

pieces of the triplet BRST operator.

Triplet formulation. The triplet and metric-like formulations can be obtained from the

extended triplet formulation through the homological reduction by taking as additional

degree the homogeneity in c0. The BRST operator (4.9) then decomposes as Ω = Ω−1 +

Ω0 + Ω1 with

Ω−1 = −
(
αα+ ci

∂

∂bi

)
∂

∂c0
, Ω0 = αD̂ + ciD

i +D†i
∂

∂bi
, Ω1 = c0� , (4.16)

and, therefore, we can reduce the theory to the cohomology H(Ω−1).

Because Ω−1 is algebraic it is enough to compute cohomology in the space of x-

independent elements. Let us decompose a generic element as Φ = φ0 + c0φ1, where

φ0,1 = φ0,1(a, b, c, α). The cocycle and the coboundary condition take the form

Z+φ1 = 0 , φ0 ∼ φ0 + Z+λ , Z+ ≡ αα+ ci
∂

∂bi
. (4.17)

– 9 –
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It is easy to check that in the space of polynomials in α the first equation implies φ1 = 0

while φ0 can be assumed to be at most linear in α thanks to the second equation. Moreover,

each equivalence class has a unique representative which is at most linear in α.

To summarize, the cohomology of Ω−1 is concentrated in degree 0 and can be realized

as a subspace E of c0-independent elements which are at most linear in α. The space of

fields with values in this subspace is equipped with the induced BRST operator Ω̃ which in

this case is simply Ω0 defined on the equivalence classes. In terms of representatives which

are at most linear in α it is given by

Ω̃(φ0 + αφ1) = αD̂φ0 − ci
∂

∂bi
D̂φ1 +

(
ciD

i +D†i
∂

∂bi

)
(φ0 + αφ1) . (4.18)

The second term arises from α2D̂φ1 which does not belong to E , and, hence, one needs to

pick another representative of the same equivalence class.

To see what are the equations of motion encoded in Ω̃, let us restrict ourselves to

totally symmetric fields. The field of ghost degree 0 is then given by

Φ = ψ + αbχ+ cbλ , (4.19)

where components ψ, χ, λ form the fermionic triplet [49]. The equations of motion Ω̃Φ = 0

take the form of the fermionic triplet equations

D̂ψ +D†χ = 0 , D̂χ+Dψ = D†λ , D̂λ+Dχ = 0 , (4.20)

familiar from [49, 50]. The gauge transformations δΞΦ = Ω̃Ξ, where Ξ = bε is the ghost

number −1 field, take the form

δψ = D†ε , δχ = −D̂ε , δλ = Dε . (4.21)

The above equations and transformations can be supplemented by algebraic con-

straints (4.10) which are well-defined in E . In the case of totally symmetric fields they

are given by the spin weight conditions

Nψ = sψ , Nχ = (s− 1)χ , Nλ = (s− 2)λ , Nε = (s− 1)ε , (4.22)

along with the trace conditions

ΥΥΥψ = 0 , ΥΥχ = 0 , Υλ = 0 , Υε = 0 . (4.23)

Moreover, it follows that χ = −Υψ so that the first equation in (4.20) gives the Fang-

Fronsdal equations [30]

D̂ψ −D†Υψ = 0 . (4.24)
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Let us now consider the case of mixed-symmetry fields. Elements of E of ghost numbers

0 and −1 are given respectively by

Φ = ψ +
n∑
k=1

ci1 . . . cikbj1 . . . bjkλ
i1...ik|j1...jk+

+ α

n∑
k=1

ci1 . . . cik−1
bj1 . . . bjkχ

i1...ik−1|j1...jk , (4.25)

Ξ = bjε
j +

n∑
k=2

ci1 . . . cik−1
bj1 . . . bjkε

i1...ik−1|j1...jk+

+ α
n∑
k=2

ci1 . . . cik−2
bj1 . . . bjkξ

i1...ik−2|j1...jk . (4.26)

From the algebraic constraints (4.10) it follows that the lowest components ψ and εi satisfy

the triple trace conditions

Υ(iΥjΥk)ψ = 0 , Υ(iεj) = 0 , (4.27)

as well as the Young symmetry and spin conditions

Ni
jψ = 0 (i < j) , Niψ = siψ , Ni

jεk = −δki εj (i < j) , Niε
j = (si − δji )ε

j . (4.28)

One concludes that ψ and εi are precisely the original Fang-Fronsdal-Labastida spinor-

tensor fields and their associated gauge parameters [30, 55, 56].

To derive the metric-like equations we only need the analog of the first equation

in (4.20) which reads as

D̂ψ +D†iχ
|i = 0 . (4.29)

The BRST-extended gamma-trace conditions (4.10) imply χ|i = −Υiψ thereby giving the

reduced equations of motion (
D̂ −D†iΥ

i
)
ψ = 0 . (4.30)

This is the Fang-Fronsdal-Labastida equations for mixed-symmetry fermionic helicity

fields [30, 40, 55]. Note that, just like the standard Dirac equation, the Fang-Fronsdal-

Labastida equation can be squared, resulting in(
�−D†iD

i +
1

2
D†iD

†
jT

ij

)
ψ = 0 , (4.31)

which is the Labastida equations for mixed-symmetry bosonic helicity fields [56]. Here we

made use of D̂D†iΥ
iψ = �ψ which is the result of acting by D̂ on (4.30).

By construction, the reduced equations (4.30) are invariant with respect to the gauge

transformations

δψ = D†i ε
i , (4.32)

where the gauge fields and parameters satisfy the algebraic conditions (4.27)–(4.28).
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4.4 Triplet Lagrangian

The triplet BRST formulation in terms of E-valued fields and BRST operator Ω̃ can be made

Lagrangian by observing that E is equipped with a natural non-degenerate inner product.

Let us consider the operator algebra generated by aai , ci, bi, as well as their canonically

conjugated variables denoted by āia, c̄
i, b̄i, and consider the following involution † :

(aai )
† = āia , (āia)

† = aai , (ci)
† = −b̄i , (b̄i)† = −ci , (bi)

† = −c̄i , (c̄i)† = −bi ,
(AB)† = B†A† ,

(4.33)

where A,B are generic elements of the algebra. Note that this involution is compatible with

the notations for Di, D†i employed before. Consider the following Fock space generated by

these operators from the following vacuum

āia, b̄
i, c̄i|0〉 = 0 . (4.34)

Its elements can be identified with the polynomials in aai , bi, ci while āia, c̄
i, b̄i are represented

by ∂
∂aai

, ∂
∂ci

, ∂
∂bi

.

The above involution uniquely determines the inner product on the Fock space which

makes † into conjugation. Tensoring this Fock space with S (see section 2.1) and equipping

S with an inner product such that (θa)† = −θa we end up with the space equipped with

an inner product 〈, 〉′. Finally, the formal inner product on E is taken to be

〈φ, ψ〉 ≡ 〈φ0 + αφ1, ψ0 + αψ1〉 :=

∫
ddx
(
〈φ0, ψ1〉′ + 〈φ1, ψ0〉′

)
. (4.35)

It is straightforward to see that Ω̃ is formally symmetric with respect to the inner prod-

uct (4.35). Indeed, the only nontrivial part is to show that α† = α which is clear from the

following explicit expressions

〈αφ, ψ〉 = 〈αφ0 − ci
∂

∂bi
φ1, ψ0 + αψ1〉 =

∫
ddx

(
〈φ0, ψ0〉′ − 〈ci

∂

∂bi
φ1, ψ1〉′

)
,

〈φ, αψ〉 = 〈φ0 + αφ1, αψ0 − ci
∂

∂bi
ψ1〉 =

∫
ddx

(
〈φ0, ψ0〉′ − 〈φ1, ci

∂

∂bi
ψ1〉′

)
,

(4.36)

and (ci
∂
∂bi

)† = (ci
∂
∂bi

).

The equations of motion Ω̃Ψ(0) = 0 for Ψ(0) taking values in E follows from the action

S =
1

2
〈Ψ(0), Ω̃Ψ(0)〉 , (4.37)

where Ψ(0) is the ghost number 0 field. Moreover, the above action is invariant under

the gauge transformations δΨ(0) = Ω̃Ψ(−1). It can be supplemented by the off-shell con-

straints (4.10) in which case it is equivalent to the Fang-Fronsdal-Labastida action.

4.5 Light-cone formulation

Starting from the triplet BRST operator (4.9) and eliminating unphysical degrees of free-

dom by means of the homological reduction we arrive at the standard light-cone formulation
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for half-integer spin massless fields (see, e.g., [57]). This is done by employing the approach

developed in [28, 58] (see also [59] for an earlier important contribution).

As usual, the light-cone coordinates are introduced as (x+, x−, xm), m = 1, . . . , d− 2.

The light-cone description of the Clifford elements is more tricky. Let us represent θ+ and

θ− on the Grassmann algebra C[θ+] generated by θ+ as θ+ and 2 ∂
∂θ+

, respectively. Then,

consider the representation of the Clifford algebra with generators θ+, θ−, θm as a tensor

product of C[θ+] and irreducible representation of the Clifford algebra generated by θm.

In this way, we realize the representation of the Clifford algebra with generators θ+, θ−, θm

as polynomials in θ+ with coefficients in o(d− 2) spinors ψα̂, where the Dirac spinor index

α̂ = 1, . . . , 2[d/2]−1. In other words, the light-cone spinor is half of the original spinor.

To do the light-cone reduction of the fermionic triplet formulation we introduce the

grading (this is a generalization of the one employed in [28, 58, 59])

deg a±i = ±2 , deg ci = 1 , deg bi = −1 , deg θ+ = 2 , degα = 1 ,

deg am = 0, deg c0 = 0 .
(4.38)

The operator (4.9) decomposes into the homogeneous degree components as Ω = Ω−1+

Ω0 + Ω1 + Ω2 + Ω3, where

Ω−1 = p+

(
2α

∂

∂θ+
+ ci

∂

∂a+
i

+ a−i
∂

∂bi

)
, Ω0 = c0�,

Ω1 = αθmpm + cip
m ∂

∂ami
+ ami pm

∂

∂bi
, Ω2 = −

(
αα+ ci

∂

∂bi

)
∂

∂c0
,

Ω3 = p−
(
αθ+ + ci

∂

∂a−i
+ a+

i

∂

∂bi

)
.

(4.39)

We assume p+ 6= 0. Then, we observe that Ω−1 is just the de Rham differential on

the superspace so that the only non-vanishing cohomology H(Ω−1) is in degree 0 and

can be identified with the subspace E of elements ψα̂ = ψα̂(x|am, c0) depending on the

spacetime coordinates, transverse auxiliary variables, and ghost c0 taking values in the

representation of the Clifford algebra generated by transverse θm (in what follows we omit

the spinor index).

The cohomology of Ω−1 is concentrated in one degree so that the reduced operator Ω̃

is given by (see e.g. [58])

Ω̃ = c0� . (4.40)

The reduced form of the light-cone algebraic constraint (4.10) reads

ami
∂

∂amj
ψ = 0 , 1 ≤ i < j ≤ n , θm

∂

∂ami
ψ = 0 , i = 1, . . . , n ,

ami
∂

∂ami
ψ = siψ , i = 1, . . . , n .

(4.41)

Thus, the field content is given by spinor-tensors with transversal components only, and

subject to the light-cone condition p2 = 0 and the algebraic conditions (4.41).
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The iso(d − 1, 1) generators in the light-cone basis are split into two groups of kine-

matical Gkin = (P+, Pm,M+m,M+−,Mmk) and dynamical Gdyn = (P−,M−k) generators.

After reduction to the Ω−1-cohomology both types of generators give rise to the reduced

generators G̃kin and G̃dyn defined on the subspace E . While G̃kin retain its form upon the

reduction, the explicit expressions for G̃dyn are given by

P̃− = −pmp
m

2p+
, M̃−m =

(
1

2
− ∂

∂p+

)
pm +

∂

∂pm

pkp
k

2p+
+

1

p+

(
Smkpk

)
, (4.42)

where the elements

Smn = am
∂

∂an
+

1

4
θmθn − (m↔ n) , (4.43)

form a little Wigner algebra o(d− 2) with the standard commutation relations.

5 Continuous spin fermionic fields

Now, we turn to the continuous spin fermionic field system introduced in section 3. Based

on our analysis of the standard fermionic fields in section 4 we propose the deformed triplet

formulation and describe its metric-like and light-cone reductions.

5.1 Deformed triplet formulation

As before, there are anticommuting ghost variables c0, ci, bi and commuting ghost variable

α, with ghosts numbers gh(c0) = gh(ci) = gh(α) = 1, gh(bi) = −1. The BRST operator

associated to the constraint system (3.1), (3.2), and (3.4) is given by

Ω = αD̂ + c0� + ciD
i + (D†i + µi)

∂

∂bi
− αα ∂

∂c0
− ci

∂

∂bi

∂

∂c0
. (5.1)

It acts on the subspace singled out by the ghost extended algebraic constraints (3.3)(
Υi + νiΓ− 2α

∂

∂ci
+

∂

∂α

∂

∂bi

)
Ψ = 0, i = 1, . . . , n ,(

Nm + bm
∂

∂bm
+ cm

∂

∂cm

)
Ψ = smΨ, m = 2, . . . , n ,(

Nm
k + bm

∂

∂bk
+ cm

∂

∂ck

)
Ψ = 0 , m, k = 2, . . . , n (m < k) .

(5.2)

Recall that µi = δi1µ and νi = δi1ν so that the deformed triplet operator (5.1) differs from

the undeformed triplet operator (4.9) only by the term µ ∂
∂b1

. Also, just as in the helicity

case, (5.1) retains the property of being nilpotent on the whole space, not only on the

subspace (5.2).

5.2 Metric-like formulation

Similarly to the helicity case of section 4.3 the representation space can be endowed with

an additional grading with respect to the ghost c0 so that the lowest component Ω−1 of

the deformed BRST operator (5.1) remains the same, while the deformation term enters
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Ω0. Furthermore, one can check that H(Ω−1) cohomology remains unchanged except that

now the entire subspace is singled out by the deformed constraints (5.2) rather than the

undeformed ones.

Repeating the same steps as in the helicity case we obtain the reduced equations

of motion [
D̂ −

(
D†i + µi

) (
Υi + νiΓ

)]
ψ = 0 , (5.3)

which are invariant with respect to the gauge transformations

δψ =
(
D†i + µi

)
εi , (5.4)

where both fields and parameters are subjected to the modified trace conditions

Υ(iΥjΥk)ψ = 0 , Υ(iεj) = 0 , (5.5)

where the notation for the deformed gamma-trace operator Υi = Υi + νiΓ is introduced.

In the case of spin- 1
2 continuous spin field (i.e. n = 1 so that there is only one commuting

auxiliary variable am1 ) the equation (5.3) reproduces the field equations obtained in [7, 14].

It is worth noting that the equation (5.3) can be squared to yield[
�−

(
D†i + µi

)
Di +

1

2

(
D†i + µi

)(
D†j + µj

) (
T ij + νiνj

)]
ψ = 0 , (5.6)

which is the bosonic continuous spin metric-like equation [10].

To conclude this section we describe the field space in the case of spin- 1
2 continuous

spin field. The corresponding metric-like fields were previously considered in [17, 18].

Solving the deformed constraints (5.5) we find that both the fields and parameters can be

equivalently represented as infinite chains of the Fang-Fronsdal tensors

ψ :=

∞⊕
k=0

ψ(k) , Υ3ψ = 0 ,

ε :=

∞⊕
k=0

ε(k) , Υε = 0 .

(5.7)

Technically, the above decompositions are obtained by substituting (3.9) into (5.5) and

solving the recurrence equations for expansion coefficients. Using (5.7) in the metric-like

equations (5.3) and the gauge transformations (5.4) gives rise to the Schuster-Toro type

equations invariant with respect to the µ-deformed gauge transformations [18].

5.3 Light-cone formulation

We start with the BRST operator (5.1) and use the grading (4.38). In the considered func-

tional class (3.9) any element has a finite grading because deg Υi = 0, and, by assumption,

the degree of coefficients in (3.9) is bounded so that we can use the homological reduction

technique.

– 15 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
0

The operator (5.1) decomposes into the homogeneous degree components as Ω = Ω−1+

Ω0 + Ω1 + Ω2 + Ω3, where

Ω−1 = p+

(
2α

∂

∂θ+
+ ci

∂

∂a+
i

+ a−i
∂

∂bi

)
, Ω0 = c0�,

Ω1 = αθmpm + cip
m ∂

∂ami
+ (ami pm + µi)

∂

∂bi
, Ω2 = −

(
αα+ ci

∂

∂bi

)
∂

∂c0
,

Ω3 = p−
(
αθ+ + ci

∂

∂a−i
+ a+

i

∂

∂bi

)
.

(5.8)

The deformation term µ ∂
∂b1

is contained in Ω1 only, and, therefore, the reduced BRST

operator is the same as in the helicity case,

Ω̃ = c0� . (5.9)

The light-cone algebraic constraint following from (5.2) read(
θm

∂

∂ami
+ νiΓ

)
ψ = 0, i = 1, . . . , n ,

ami
∂

∂amj
ψ = 0, 2 ≤ i < j ≤ n ,

ami
∂

∂ami
ψ = siψ, i = 2, . . . , n .

(5.10)

Thus, the light-cone fields ψ are o(d − 2) spinor-tensors (with doubled spectrum for the

odd d) subjected to the light-cone condition p2 = 0 and the algebraic conditions (5.10).

Poincaré algebra realization. Just as in section 4.5 we reduce the Poincaré genera-

tors to obtain the same expressions for all Poincaré generators except for the dynamical

generators, cf. (4.42). The translation generator P̃− remains the same in the continuous

spin case, while the Lorentz generator M̃−m gets a new contribution proportional to the

deformation parameter µ,

M̃−m =

(
1

2
− ∂

∂p+

)
pm +

∂

∂pm

pkp
k

2p+
+

1

p+

(
Smkpk −Hm

)
, (5.11)

where

Smn = ami
∂

∂ain
+

1

4
θmθn − (m↔ n) , Hm = µ

∂

∂a1m
. (5.12)

Elements Smn and Hm satisfy the commutation relations

[Skl, Sps] = δkpSls + 3 terms , [Skl, Hp] = δkpH l − δlpHk , [Hk, H l] = 0 , (5.13)

thereby forming the iso(d− 2) algebra.

Let us evaluate the first two Casimir operators of the iso(d − 2) algebra on the sub-

space (5.10) following the analogous considerations in section 3. We find

c2≡H2≈−µ2ν2 , (5.14)

c4≡ (HS)2− 1

2
H2S2≈−µ2ν2

(
n∑
i=2

si(si+d−1−2i)+

{
n∑
i=2

si+
(d−3)(d−4)

8

})
,
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where H2 = HmHm, S2 = SmkS
mk, (HS)m = HkS

km. See (B.6) and (B.7) for explicit

expressions for the Casimir operators c2 and c4 in terms of the osp(1|2n) basis elements.

Higher order Casimir operators can be found analogously. Note that if we drop terms in

the curly brackets we get the Casimir eigenvalue for a bosonic field.

Let us solve the modified trace constraint explicitly and describe the o(d−2) structure

of the field space. For simplicity, we consider the case of spin- 1
2 continuous spin field, where

all the o(d−3) spin weights are zero. Solving the constraints (5.10) we find that the original

light-cone spinor-tensor can be represented as an infinite direct sum

ψ :=
∞⊕
k=0

ψ(k) , (5.15)

where ψ(k) are o(d− 2) totally symmetric rank-k spinor-tensors satisfying the undeformed

gamma-tracelessness condition. Both the o(d− 2) light-cone and o(d− 1, 1) covariantized

form of the above infinite-dimensional space appeared in the earlier literature [5, 17, 18],

cf. (5.7). For higher values of n which correspond to non-zero spins the modified con-

straints (5.10) can be solved to obtain extended infinite-dimensional field spaces along the

lines of [10].

6 Weyl and gauge modules

A linear gauge system is essentially determined by the space of gauge inequivalent formal

solutions to the equations of motion, known as Weyl module, and the space of (higher-

order) global reducibility parameters, known as gauge module. These spaces are usually

considered as modules over the space-time global symmetry algebra. In particular, if

the gauge module vanishes the system is non-gauge, i.e. all the gauge symmetries are

Stueckelberg-like. Note also, that if the gauge module vanishes and the space-time global

symmetries (e.g. Poincaré or AdS or conformal) act transitively, the system is entirely

determined by the Weyl module structure. This property is manifest in the unfolded

approach.5

We are now interested in the gauge and Weyl modules of the fermionic (continuous)

spin system. To this end, we extend the analysis of [10, 28] to the case of fermionic

fields. To study formal solutions in this section we replace space-time coordinates xa by

formal coordinates ya. In particular, it is implicitly assumed that in all the expressions for

fields, parameters, operators, etc. xa and ∂
∂xa are replaced with ya and ∂

∂ya , respectively.

Moreover, instead of smooth functions in xa we work with formal power series in ya. The

relevant space is that of formal series in ya and aai with coefficients in S such that for a

given element the coefficients of the trace decomposition are polynomials in aai .

The gauge and Weyl modules can be defined as the cohomology Hk(Q,H0) of the

continuous spin generalization

Q =
(
D†i + µi

) ∂

∂bi
, where D†i = aia

∂

∂ya
, i = 1, . . . , n , (6.1)

5For a review of the unfolded approach, see e.g. [23]. Within the present framework, more details on the

gauge and Weyl modules can be found in [60, 61] and references therein.
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of the BRST operator (4.5). It is defined on the subspace H0 singled out by the Dirac

constraint (3.1), modified trace constraint (3.2), and BRST extended Young symmetry

and spin weight constraints

D̂ψ = 0 , (Υi + νiΓ)ψ = 0 , Diψ = 0 , Nmkψ = 0 , (Nm − sm)ψ = 0 , (6.2)

where i = 1, . . . , n, and m, k = 2, . . . , n for continuous spin case (µ, ν 6= 0), and m, k =

1, . . . , n for the helicity one (µ, ν = 0). The Weyl module is the zero ghost number coho-

mology H0(Q,H0), the gauge module is a collection of modules identified with negative

ghost degree cohomology Hk(Q,H0) at k < 0 [28, 47, 62, 63].

To compute the Q-cohomology we realize the space H0 defined by (6.2) as a subspace

of the tensor product

H = S ⊗ G ,
G = {ψ : (T ij + νiνj)ψ = Diψ = �ψ = Nm

kψ = (Nm − sm)ψ = 0} ,
(6.3)

where ψ is a formal series in aai and ya with coefficients in C such that the coefficients of its

trace decomposition are polynomials in aai . Indeed, H0 is just a subspace of (6.3) singled

out by

(Υi + νiΓ)ψ = D̂ψ = 0 . (6.4)

As a next step, we note that it is enough to compute the Q-cohomology in H. Indeed, H
can be represented as a direct sum of H0 and the complementary subspace H1 in such a

way that Q preserves both subspaces. As H1 one can take a subspace of elements that

can be represented as (γ · a)α + (γ · y)β for some α, β ∈ H0 (the dot denotes summation

over Lorentz indices). As representatives of the Q-cohomology in H0 one can take those

representatives of the Q-cohomology in H that belong to H0.

Finally, the action of Q on S ⊗ G originates from the action of Q on G because Q

does not affect S, and, hence, the Q-cohomology in H is just a tensor product of S with

the Q-cohomology in G. In its turn, the Q-cohomology in G is known for both helicity

fields [28] and continuous spin fields [10].

6.1 Q-cohomology for helicity fermionic fields

For µ, ν = 0, the space G defined by (6.3) is precisely the representation space involved

in describing bosonic helicity fields of general Young symmetry type. Let us spell out

the explicit description [28] of the representatives of Q-cohomology classes. Introduce the

following subspaces Mk ⊂ G, k = 0, . . . , n− 1

Mk =

{
ψ ∈ G : gh(ψ) = −k ,

(
y · ∂

∂am

)
ψ = 0 , D†lψ = 0

}
,

m = 1, . . . , n− k − 1 , l = n− k, . . . , n− 1 .

(6.5)

For any k = 1, . . . , n−1 each cohomology class from H−k(Q,G) has a unique representative

belonging to Mk.
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Taking into account the above characterization of the cohomology classes one concludes

that

H−k(Q,H0) '
{
ψ ∈Mk ⊗ S : Υiψ = D̂ψ = 0

}
= (Mk ⊗ S) ∩H0 . (6.6)

Note that the last equality makes sense as Mk is naturally a subspace in G.

6.2 Q-cohomology for continuous spin fields

In the case µ, ν 6= 0 the subspace G is again a relevant subspace. The cohomology Hk(Q,G)

was studied in [10], where it was shown that Hk(Q,G) = 0 for k < 0 and H0(Q,G) 6= 0

with our choice of the functional class. Since

Hk(Q,H0) = (Hk(Q,G)⊗ S) ∩H0 , (6.7)

it follows that Hk(Q,H) = 0 at k < 0. In particular, we conclude that fermionic continuous

spin fields are not gauge fields as well, i.e. all gauge fields present in the formulation are

actually Stueckelberg ones.

The Weyl module for bosonic continuous spin fields is given by H0(Q,G) 6= 0. Let us

show that the same applies to H0(Q,H0). Let ψ be a nontrivial representative of H0(Q,G),

then one can choose ξ ∈ S such that ψ0 = (ψ⊗ ξ)∩H0 is also non-vanishing. Furthermore,

Qψ0 = 0 because Q preserves both H0 and H1.
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A osp(1|2n) commutation relations

The basis osp(1|2n) elements are defined in (2.5) and (2.6). Their non-zero commutation

relations in the even sector are

[TI
J , TK

L] = δJKTI
L − δLI TKJ , [T IJ , TKL] = δIKTL

J + δILTK
J + δJKTL

I + δJLTK
I ,

[TK
L, TIJ ] = δLJ TKI + δLI TKJ , [T IJ , TK

L] = δIKT
JL + δJKT

IL ,
(A.1)

in the odd sector are

{ΥI ,ΥJ} = 2TIJ , {ΥI ,Υ
J} = 2TI

J , {ΥI ,ΥJ} = 2T IJ , (A.2)

in the cross-sector are

[TIJ ,Υ
K ] = −δKI ΥJ − δKJ ΥK , [T IJ ,ΥK ] = 0 , [TI

J ,ΥK ] = −δKI ΥJ ,

[T IJ ,ΥK ] = δKI ΥJ + δJKΥI , [TIJ ,ΥK ] = 0 , [TI
J ,ΥK ] = δJKΥI .

(A.3)
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B Casimir operators

The quadratic and quartic Casimir operators of the iso(p, q) algebra are

C2

(
iso(p, q)

)
= PaP

a ≡ P 2 , C4

(
iso(p, q)

)
= MabP

bMacPc −
1

2
M2P 2 , (B.1)

where Pa stands for translation and Mab for rotation generators, respectively. In what

follows, we express (B.1) in terms of the osp basis elements.

Regular spinor-tensor representation. Let iso(d−1, 1) basis elements Pa ,Mab , a, b =

0, . . . , d− 1 act as

Pa = ∂a , Mab = xa∂b − xb∂a + aiaā
i
b − aibāia +

1

4
(θaθb − θbθa) , (B.2)

i = 1, . . . , n. Expressing them in terms of the osp(1|2n+ 2) basis elements we find

C2

(
iso(d− 1, 1)

)
= � , (B.3)

C4

(
iso(d− 1, 1)

)
=
(
(d− n− 2)Ni

i +Nj
iNi

j − TijT ij
)
�

+ TijD
iDj + (2− d)D†iD

i − 2D†jNi
jDi +D†iD

†
jT

ij

+

{(
ΥiD

i −D†iΥ
i
)
D̂ +

(
Ni

i −ΥiΥ
i +

(d− 1)(d− 2)

8

)
�

}
. (B.4)

Note that dropping terms in curly brackets we get the bosonic Casimir operator. Also, the

above osp(1|2n+ 2) representation holds for any iso(k, l) with k + l = d.

Light-cone realization. Let iso(d−2) basis elements Hm , Smk, m, k=0, . . . , d−3 act as

Hm = µ
∂

∂am1
, Smn = aim

∂

∂ani
+

1

4
θmθn − (m↔ n) , (B.5)

i = 1, . . . , n. Then, we find

C2

(
iso(d−2)

)
=µ2T 11 , (B.6)

C4

(
iso(d−2)

)
=µ2

((
(d−n−2)Ni

i+Nj
iNi

j−TijT ij
)
T 11

+TijT
i1T j1+(3−d)Ni

1T i1−2Nj
1Ni

jT i1+Ni
1Nj

1T ij

+

{(
ΥiT

i1−Ni
1Υi
)

Υ1+

(
Ni

i−ΥiΥ
i+

(d−3)(d−4)

8

)
T 11

})
. (B.7)

The terms in curly brackets are again the fermionic addition to the bosonic Casimir oper-

ator. Expression (B.7) goes to (B.4) under substitution

(d− 2) 7→ d , (n+ 1) 7→ n , am1 7→ xa , µ
∂

∂am1
7→ ∂

∂xa
,

am2 7→ aa1 ,
∂

∂am2
7→ ∂

∂aa1
, . . . , amn+1 7→ aan ,

∂

∂amn+1

7→ ∂

∂aan
.

(B.8)
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