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1 Introduction

The AdS/CFT correspondence [1–3] finds a very interesting area of application in the

context of the higher spin theories/vector model correspondence [4]. Of particular interest

to us, in this context, is the AdS4/CFT3 correspondence.
1 Although the higher spin degrees

of freedom of Fronsdal and Vasiliev are not those of string theory,2 there are several reasons

why this correspondence is of great interest. These include the absence of supersymmetry

and the fact that vector models are “solvable” in the large N limit, allowing for a more

concrete and detailed study of the workings of the correspondence, and possibly even

providing a definition of (gauge fixed) higher spin theories themselves, through their dual

vector valued field theories.

We are in particular interested in and motivated by the constructive approach of [17–

21]. In this approach, the singlet sector of O(N) invariant field theories is described in

terms of equal time bilocals:

ψ ~x1 ~x2
=

N
∑

a=1

φa (t, ~x1)φ
a (t, ~x2) , (1.1)

where ~x1 and ~x2 are two dimensional space vectors. These 5 degrees of freedom and their

canonical conjugates are mapped, in the free UV fixed point, to AdS4 × S1 where the S1

1There is a vast literature on the subject; [5–12] are representative of the work on the subject, but they

do not form by any means an exhaustive list.
2For attempts to link the two, see for instance [13–16].
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encodes the spin degrees of freedom. Originally formulated in a light cone gauge, the map

has since been obtained in a temporal gauge [18, 19]. In momentum space it is a point

transformation and is given by:

E = E1 + E2 = |~p1|+ ~p2| (1.2)

~p = ~p1 + ~p2 (1.3)

pz = 2
√

|~p1| |~p2| sin
(

ϕ2 − ϕ1

2

)

(1.4)

θ = arctan

(

2~p2 × ~p1
(|~p1| − |~p2|) pz

)

(1.5)

with ϕ2 − ϕ1 being the angle between ~p1 and ~p2 [18, 19].

The holographic coordinate is given by

z =
( ~x1 − ~x2) · (~p1|p2| − ~p2|p1|)

pz(|~p1|+ |~p2|)
. (1.6)

The three dimensional O(N) vector theory with a λ
N (φaφa)2 interaction has a IR

fixed critical point. At this critical point, the theory is expected to contain a state with

dimension ∆ = 2, a boundary field in the standard AdS/CFT correspondence with the

standard positive branch for the expression of the dimension of the operator [4], and no

longer the ∆ = 1 state of present in the UV critical point. Although general arguments

exist relating the two through a Legendre transformation [22], in practice the IR fixed point

is described in terms of a non-linear sigma model [23–29]. In this description, the Lagrange

multiplier field is naturally identified with the ∆ = 2 state, but it is certainly not apparent

that the ∆ = 1 is no longer present in the theory, or equivalently, that the constraint is

enforced beyond the leading large N order.

It is the purpose of this article to elucidate these issues directly in terms of the
λ
N (φaφa)2 theory, using a bilocal approach that allows for a systematic expansion in

1/N . Keeping in mind that the AdS4/CFT3 constructive approach developed for the

UV free fixed point is canonical (ensuring that the correct number of degrees of freedom

are matched), it is important to have a single time bilocal field description of the field

theory IR fixed point. This is developed in this article. However, it is not the purpose

of this article to discuss the map [18, 19] at the IR fixed point. This is left for a later

communication.

This paper is organized as follows: in section 2, the collective field theory [31, 32]

Hamiltonian, expressed in terms of equal time bilocal fields and their canonical conjugates,

is presented. The large N conformal background is obtained. The bilocal fluctuations about

this background are obtained for large but finite λ and the equations of motion cast in the

form of a highly non-trivial integral equation in momentum space. In sections 3 and 4, we

consider the path integral description of the theory. This requires the introduction of (two-

time) covariant bilocals. In section 3, we consider the description of the non-linear sigma

model in terms of (two-time) bilocal fields plus the dynamical Lagrange multiplier field.

We obtain the two point function for the (shifted) bilocals and for the dynamical Lagrange
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multiplier field. The two point function for the bilocal fields takes the same form as that

of the free theory, and the two point function of the dynamical Lagrange multiplier is that

of a ∆ = 2 conformal field. In section 4, we present the (two time) bilocal description

of the λ
N (φaφa)2 theory. The two point function of the bilocal fields, which is equivalent

to the Bethe-Salpeter equation for the underlying fundamental vector fields, consists of a

disconnected (free) piece and a connected diagram describing the s-channel scattering of a

composite field. For finite λ, it has a pole at3

E2 − (~p1 + ~p2)
2 = − λ2

482
. (1.7)

At the critical (λ → ∞) point, the connected diagram is identical, up to external leg

factors, to the two point function of the dynamical Lagrange multiplier field, and hence is

identified with the ∆ = 2 state. The disconnected piece is the same as that of the free case.

In section 5, we successfully integrate over an intermediate energy variable in the

bound state integral equation identified in the connected diagram of the two point function

of section 4, and establish that the result is the same as that obtained in the Hamiltonian

approach of section 2. It is left then to understand the role of the disconnected (free) piece

of the (two time) bilocal propagator and how the corresponding states are solutions of

the quadratic Hamiltonian equations of motion. After all, we require bilocals to construct

the bulk. The answer, which we discuss in section 6, is that these are scattering states of

positive squared energy. The problem can then be formulated as that of potential scattering

off a delta function potential in the relative coordinates. An equation for the local ∆ = 1

composite is obtained, and is shown to vanish at the critical point as λ → ∞. Further

evidence of the disappearance of this state from the spectrum is provided at the level of the

path integral approach, where we show that the correlator of two ∆ = 1 composites vanishes

at the critical point. This makes explicit the conjectured cancellation between disconnected

and connected diagrams in the original proposal of Klebanov and Polyakov [4].

In summary, we explicitly demonstrate in this article that in a conformal background,

the large N spectrum of the three dimensional O(N) vector model with a λ
N (φaφa)2 in-

teraction consists of a (negative energy squared) bound state that at the IR critical point

becomes a ∆ = 2 state and of scattering states, with an energy dispersion the same as that

of the free theory, but with a ∆ = 1 state that is removed from the spectrum at the IR

critical point.

2 Hamiltonian

Our main interest is to investigate the collective large-N spectrum of the critical O(N)

vector-model

L =
1

2

(

∂µφ
a∂µφa −m2φaφa

)

− λ

4!N
(φaφa)2 . (2.1)

3Our Minkowski signature is (+,−,−).
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As such, the starting point is an Hamiltonian expressed in terms of equal time collective

bilocals and their canonical conjugates. The equal time bilocals have been defined earlier:

ψ~x~y =
N
∑

a=1

φa (t, ~x)φa (t, ~y ) . (2.2)

Changing variables from the φa (a = 1, · · · , N) fields to the bilocals introduces a non-

trivial Jacobian that, to leading order in N , is given by

log J =
N

2
Tr logψ. (2.3)

The trace is in (spatial) functional space.

It is by now well known that the collective field theory hamiltonian can be written

as [18, 19, 33] (d = 3 in this article):4

H =
2

N
Tr (ΠψΠ) +

N

8
Trψ−1 +N

∫

dd−1~x

(

1

2
m2ψ~x~x +

1

2
lim
~y→~x

−∂2ψ~y~x +
λ

4!
ψ2
~x~x

)

, (2.4)

where the conjugate momentum is

Π~x~y = −i
δ

δψ~x~y
. (2.5)

In the large-N limit the kinetic term is subleading and, with the large N translationally

invariant ansatz

ψ~x~y =

∫

dd−1~k

(2π)d−1
ei
~k(~x−~y )ψ~k

, (2.6)

the saddle-point equations yields:

ψ0
~k
=

1

2

(

~k
2
+m2 +

λ

6

∫

dd−1~k′

(2π)d−1
ψ~k′

)−1/2

. (2.7)

Integrating both sides one obtains the standard gap equation:

s =
1

2

∫

dd−1~k

(2π)d−1

1
√

~k2 +m2 + λ
6 s

, (2.8)

where

s =

∫

dd−1~k′

(2π)d−1
ψ~k′

. (2.9)

Defining

α = m2 +
λ

6
s,

one has

6

λ
(α−m2) =

∫

dd−1~k

(2π)d−1

1

2
√

~k2 + α
=

∫

ddk

(2π)d
i

k2 − α
=

∫

ddkE

(2π)d
1

k2E + α
.

4The fields have been rescaled ψ → Nψ to evidence explicitly the N dependence.
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Our regularization is defined as:

∫

ddkE

(2π)d
1

k2E + α
=

1

(4π)d/2
Γ

(

1− d

2

)

α
d−2

2 . (2.10)

Thus, for d = 3 one obtains the equation α+ λ
24π

√
α−m2 = 0. The IR fixed point is

associated with the root:
√
α =

24πm2

λ
+O

(

m4

λ3

)

(2.11)

and is approached by keeping m2 finite and taking λ → ∞. At the critical point then, the

background propagator takes the conformal form:

ψ0
~k
=

1

2
√

~k2
, (2.12)

and is the O(N) invariant two point function of the underlying scalar fields.

For the next 1/N correction, we study the spectrum of fluctuations about the large N

conformal background. We let

ψ = ψ0 +
1√
N

η, Π =
√
Np, (2.13)

and expand the Hamiltonian up to quadratic order. We find:

H(2) = 2Tr
(

pψ0p
)

+
1

8
Tr

(

ψ−1
0 ηψ−1

0 ηψ−1
0

)

+
λ

4!

∫

dd−1~xη2~x~x. (2.14)

The fluctuations satisfy the Hamiltonian equations of motion. We note:5

η̇~x~y =
δH2

δp~x~y

= 2
(

(pψ0)~y~x + (ψ0p)~y~x

)

= η̇~y~x, (2.15)

and obtain

η̈ ~x1 ~x2
= −1

4

(

ηψ0−1

ψ0−1

+ ψ0−1

ηψ0−1

+ ψ0−1

ηψ0−1

+ ψ0−1

ψ0−1

η
)

~x1 ~x2

+
λ

6

(

ηδψ0
)

~x1 ~x2

+
λ

6

(

ψ0ηδ
)

~x1 ~x2

. (2.16)

We look for eigen-frequencies in momentum space,

η ~x1 ~x2
(t) = e−iEtη ~x1 ~x2

η ~x1 ~x2
=

∫

dd−1~k1

(2π)
d−1

2

∫

dd−1~k2

(2π)
d−1

2

ei
~k1~x1+i~k2~x2η~k1~k2 . (2.17)

5We consistently use the coordinate exchange symmetry of the bilocals.
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and obtain the following equation for the spectrum of fluctuations:

E2η~k1~k2 =
1

4

(

ψ0−1

~k1
+ ψ0−1

~k2

)2
η~k1~k2 +

λ

6

(

ψ0
~k1

+ ψ0
~k2

)

∫

dd−1~l

(2π)d−1
η~k1+~k2−~l,~l

, (2.18)

Note that for λ = 0

E2
~k1~k2

=
1

4

(

ψ0−1

~k1
+ ψ0−1

~k2

)2
=

(

| ~k1|+ | ~k2|
)2

, (2.19)

a result known for some time [33] and at the root of the AdS4/CFT3 constructive map [18,

19] in the free UV fixed point. For finite λ, equation (2.18) can be recast in the form:

η~k1~k2 =

λ
6

(

ψ0
~k1

+ ψ0
~k2

)

E2 − 1
4

(

ψ0−1

~k1
+ ψ0−1

~k2

)2

∫

dd−1~l

(2π)d−1
η~k1+~k2−~l,~l

. (2.20)

A solution only exists for this equation if the following condition is satisfied:

1 =
λ

12

∫

dd−1~k

(2π)d−1

1

E2
p −

(∣

∣

∣

~k
∣

∣

∣
+
∣

∣

∣
~p− ~k

∣

∣

∣

)2





1
∣

∣

∣

~k
∣

∣

∣

+
1

∣

∣

∣~p− ~k
∣

∣

∣



 . (2.21)

This is obtained when we multiply both sides of (2.20) with δ
(

~k1 + ~k2 − ~p
)

and inte-

grate over ~k1 and ~k2.

We will be able to obtain the solution to (2.20) and (2.21), and show that they cor-

respond to a relativistic bound state with the energy momentum relation given by (1.7).

Scattering states with energies given by (2.19) (or (1.2)), are general solutions of (2.18)

which can be thought of as a relativistic version of a quantum mechanical potential scat-

tering problem. We will establish that as λ → ∞ the ∆ = 1 field η~x~x is no longer present

in the spectrum.

In order to do so, in the next two sections we first examine the two-time bilocal

formulation of the same problem in the path integral formalism, which is the standard

approach to conformal field theories in terms of their correlators, and where one hopes to

find a covariant description of the spectrum of the theory by the identification of poles in

the appropriate propagators. We will then show how the equations and conditions of this

section can be obtained by successfully integrating over an appropriate energy variable.

3 Bilocal description of the non-linear σ model

In this section, we consider the non-linear sigma model in the collective field theory

approach. The reason behind this is the argument [23–25] that in the large-N limit,

the O (N) vector-model at its infra-red critical point is described by a non-linear sigma

model [11, 26–29].

Recall that the action for the non-linear sigma model can be written as6

S = N

∫

ddx

(

1

2
∂µ~S∂µ~S +

α (x)

2

(

~S
2 − 1

λ

))

(3.1)

with the α (x) field playing the role of a Lagrange multiplier enforcing the constraint ~S
2
= 1

λ .

6In this section we use an euclidean signature.
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We introduce the covariant bilocals

ψxy = ~S (x) · ~S (y) . (3.2)

For the log of the Jacobian, we have (e.g. [34]):

log J =
N

2
Tr logψ . (3.3)

The trace is now taken in functional (euclidean) space time. In terms of the collective

bilocals, the action for the non-linear sigma model reads

Seff = N

[

−1

2
Tr lnψ +

∫

ddx

(

−1

2
lim
y→x

∂2ψxy +
1

2
αxψxx −

1

2λ
αx

)]

. (3.4)

The large N saddle point equations of motion can be obtained by varying the action

above with respect to the bilocals and the Lagrange multiplier.

With a large N translational invariant ansatz

ψxy =

∫

ddk

(2π)d
eik(x−y)ψk,

we vary the effective action with respect to the bilocals and find that

ψ0
k =

1

k2 + α
, (3.5)

or in coordinate space

ψxy =

∫

ddk

(2π)d
eik(x−y)

k2 + α
. (3.6)

Likewise, varying the effective action with respect to αx leads us to

ψxx =
1

λ
. (3.7)

We then have the gap equation

∫

ddk

(2π)d
1

k2 + α
=

1

λ
. (3.8)

Thus, from (2.10), one has [11, 26–29]

1

(4π)d/2
Γ

(

1− d

2

)

α
d−2

2 =
1

λ
. (3.9)

For d = 3,
√
α = −4π

λ
(3.10)

and the critical point is reached as λ → ∞, corresponding to the large-N conformal back-

ground configuration:

ψ0
k =

1

k2
. (3.11)
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To generate 1/N corrections, we expand about this large-N background:7

α = 0 +
1√
N

α̃ (x) (3.12)

ψxy = ψ0
xy +

1√
N

ηxy . (3.13)

and insert (3.12) and (3.13) into the effective action, keeping only terms quadratic in the

fields. This quadratic effective action reads:

S
(2)
eff =

1

4
Tr

(

ψ−1
0 η̃ψ−1

0 η̃
)

− 1

4
Tr (α̃ψ0α̃ψ0) (3.14)

after a shift of the bilocal fields defined by η̃ = ψ0α̃ψ0 + η which decouples the η and α̃

fields [35].

We move into momentum space by writing

η̃xy =

∫

ddk1

(2π)d/2

∫

ddk2

(2π)d/2
eik1xeik2yη̃k1k2 (3.15)

α̃x =

∫

ddk

(2π)d/2
eikxα̃k. (3.16)

The quadratic effective action then becomes

S
(2)
eff =

1

4

∫

ddk1

∫

ddk2η̃k1k2
(

ψ−1
0

)

k1

(

ψ−1
0

)

k2
η̃−k2,−k1

− 1

4

∫

ddk1α̃k1

(

∫

ddp

(2π)d
ψ0
pψ

0
k1+p

)

α̃−k1 . (3.17)

Since [17, 26–29]

∫

ddp

(2π)d
1

p2
1

(k − p)2
= −

(

k2
) d

2
−2

πΓ
(

d
2 − 1

)

(4π)d/2 sin
(

πd
2

)

Γ (d− 2)

=
1

8 |k| , d = 3 . (3.18)

we can then write the quadratic effective action as

S
(2)
eff =

1

4

∫

ddk1

∫

ddk2η̃k1k2k
2
1k

2
2 η̃−k2,−k1 −

1

4

∫

ddk1α̃k1

(

1

8 |k|

)

α̃−k1 . (3.19)

Therefore, the propagators — which can be read off from the quadratic effective action

— are

〈η̃k1k2 η̃p1p2〉 =
2

k21k
2
2

δ (k2 + p2) δ (k1 + p1) (3.20)

7In [26–29], Lang and Ruhl introduce an imaginary α̃. Here, we will keep α̃ real, to ensure that the

coefficient of the two point function is positive; this is also the choice of Giombi and Yin [11] and the later

work of Leonhardt and Ruhl [30].
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and

〈α̃k1α̃k2〉 = −16 |k1| δ (k1 + k2) . (3.21)

In coordinate space, the above propagators are

〈ηx1x2
ηx3x4

〉 =
(

2d−2

(4π)d/2
Γ

(

d

2
− 1

)

)2
(

(

x213
)1− d

2

(

x224
)1− d

2 +
(

x214
)1− d

2

(

x223
)1− d

2

)

→
(

1

4π

)2
(

1
(

x213
)1/2

1
(

x224
)1/2

+
1

(

x214
)1/2

1
(

x223
)1/2

)

(3.22)

and

〈α̃x1
α̃x2

〉 = 2

[

(4π)d/2 sin
(

πd
2

)

Γ (d− 2)

πΓ
(

d
2 − 1

)

]

∫

ddk

(2π)d
eik(x1−x2)

(

k2
)2− d

2

= 25

(

sin
(

πd
2

)

π

)

Γ (d− 2)

Γ
(

d
2 − 1

)

Γ
(

d
2 − 2

)

1
(

x212
)2

→ 16

π2

1
(

x212
)2 d = 3. (3.23)

It follows that the conformal scaling dimension of the Lagrange multiplier field is, as

expected, ∆ = 2. However, it is clear that the scaling dimension of the local field ηxx is

given by ∆ = 1 — this can be seen by setting x1 = x2 and x3 = x4 in (3.22).

In conclusion, the non linear sigma model points to two types of excitations at the

IR critical point: a ∆ = 2 state, and bilocal excitations identical to the free theory which

contain a local ∆ = 1 state. We will evidence an entirely similar structure in the λ
N (φaφa)2

theory propagator in the next section.

4 (φ2)
2
in two-time bilocal approach

We now consider the path integral formulation of the
(

φ2
)2

theory (2.1), in terms of the

two-time (covariant) collective O(N) invariant bilocals:8

ψxy =
N
∑

a=1

φa (x)φa (y) . (4.1)

Including the Jacobian (3.3) resulting from the change of variables to bilocal fields,

the effective action for the O(N)
(

φ2
)2

vector theory in Minkowski spacetime, is

Seff = N

∫

ddx

[

1

2

(

− lim
y→x

∂2
yψxy

)

− 1

2
m2ψxx −

λ

4!
(ψxx)

2

]

− Ni

2
Tr lnψ . (4.2)

8Recall the notation x ≡ xµ = (t, ~x), and similarly for momentum, k ≡ kµ = (E,~k). Our signature is

(+,−,−).
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The large-N background is now a saddle point solution with the translational invariant

ansatz

ψxy =

∫

ddk

(2π)d
eik(x−y)ψk,

and it yields

ψ0
k =

i

k2 −m2 − λ
6

∫

ddk′

(2π)d
ψ0
k′

. (4.3)

The solution to the ensuing gap equation has been described in detail in section 2, as

well as the approach and identification of the IR critical point. At the critical point, the

large N background takes the conformal form:

ψ0
k =

i

k2
. (4.4)

We expand about this large-N background and write

ψxy = ψ0
xy +

1√
N

ηxy . (4.5)

The quadratic effective action can be written as

S
(2)
eff =

i

4
Tr

(

ψ−1
0 ηψ−1

0 η
)

− λ

4!

∫

ddxη2xx (4.6)

or

iS
(2)
eff = −1

2

∫

ddk1

∫

ddk2

∫

ddk3

∫

ddk4ηk1k2Ôk1k2;k3k4ηk3k4 , (4.7)

with

Ôk1k2;k3k4 =
1

2
ψ0−1

k3 ψ0−1

k4 δ (k2 + k3) δ (k1 + k4) +
2iλ

4!

1

(2π)d
δ (k1 + k2 + k3 + k4) . (4.8)

The Fourier transformation has been defined as:

ηxy =

∫

ddk1

(2π)d/2

∫

ddk2

(2π)d/2
e−ik1xe−ik2yηk1k2 . (4.9)

The inversion of this operator to yield the (collective field bilocal) propagator has been

described in [34]. It corresponds to a Bethe-Salpeter equation for quartic correlators of the

underlying vector theory. The answer is:9

Ô−1
k1k2;p1p2

= 2ψ0
p1ψ

0
p2δ (k1 + p2) δ (k2 + p1)

+
− iλ

3
1

(2π)d
ψ0
k1
ψ0
k2
ψ0
p1ψ

0
p2

1 + iλ
6

1
(2π)d

∫

ddk1
∫

ddk2δ (k1 + k2 − p1 − p2)ψ0
k1
ψ0
k2

δ (k1 + k2 + p1 + p2) .

(4.10)

9We freely use the property that ψ0

k = ψ0

−k.
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The integral in the denominator follows from its euclidean version (3.18) with result (in 3d):

1

(2π)3

∫

d3k1

∫

d3k2δ (k1 + k2 − p1 − p2)ψ
0
k1ψ

0
k2 = − i

8

1

|p1 + p2|E
. (4.11)

As a result, the 3d two-time collective bilocal propagator is

Ô−1
k1k2;p1p2

= 2ψ0
p1ψ

0
p2δ (k1 + p2) δ (k2 + p1) +

− iλ
3

1
(2π)3

ψ0
k1
ψ0
k2
ψ0
p1ψ

0
p2

1 + λ
48

1
|p1+p2|E

δ (k1 + k2 + p1 + p2) .

(4.12)

The bilocal propagator consists of a free, disconnected piece (identical to the UV

critical point) associated with the free propagation of two underlying scalars, and of a

s-channel scattering of a composite state. The mass shell condition is as usual obtained by

identifying the pole of the propagator, after removal of external legs. The pole condition

in (4.12), is

1 = − λ

48

1

|p1 + p2|E
, (4.13)

or

E2 − (~p1 + ~p2)
2 = (E1 + E2)

2 − (~p1 + ~p2)
2 = − λ2

482
. (4.14)

It may be of concern that (4.13) was obtained with background large N exact massless

propagators whereas for the pole condition λ was kept large, but finite. This is unfounded,

as the result (4.11) is finite and does not require regularization. As a matter of fact, it has

been obtained in closed form with massive propagators in the first of [26–29], from which

one can obtain:

|p1 + p2|E = − λ

48
− 4

π

m2

λ
+ . . . (4.15)

The limit λ → ∞ results in the finite (independent of λ) propagator presented below.

We also remark that equation (4.13) requires λ < 0, i.e., an attractive quartic poten-

tial. This is the case if to agree with the non linear sigma model approach, as it can be

seen by comparing (2.11) with (3.10). It is also “natural” in the standard auxiliary field

formulation of the quartic theory. A close examination of, for instance, [23–25], shows that

for the associated gaussian integral to be well defined, either λ < 0 or the auxiliary field

is imaginary. This is related to the discussion in the footnote just before equation (3.12).

The discussion of the sign of the coupling is reminiscent of the Gross-Neveu model [36],

although in this case it applies to fermionic theories.

Returning to (4.12), we note that at the infra-red fixed point (λ → ∞) the propagator

takes the finite form:

Ô−1
k1k2;p1p2

= 2
i

p21

i

p22
δ (k1 + p2) δ (k2 + p1)−

i

k21

i

k22

16i |p1 + p2|E
(2π)3

i

p21

i

p22
δ (k1 + k2 + p1 + p2) .

(4.16)

This result for the bilocal propagator is in direct agreement with the non-linear sigma

model results (3.20) and (3.21), up to leg-factors in the ∆ = 2 channel, confirming the
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identification of the intermediate state as a ∆ = 2 state at criticality. Conformal invariance

and dimensional analysis dictates for such a state an infinite “pole” in the two point

function. Equation (4.14) makes precise how this limit is approached.10

5 From covariant bilocals to equal time bilocals

It is of interest to consider the equations of motion satisfied by the covariant bilocals

fluctuations Ôη = 0. With Ô defined in (4.8), one has:

ψ0−1

k1 ψ0−1

k2 ηk1k2 = −4iλ

4!

1

(2π)d

∫

ddkηk,k1+k2−k , (5.1)

or

k1
2k2

2ηk1k2 =
iλ

6

1

(2π)d

∫

ddkηk,k1+k2−k . (5.2)

In coordinate space,

∂2
x∂

2
yηxy =

iλ

6
δ(x− y)ηxx. (5.3)

Rewriting (5.2) as

ηk1k2 =
iλ

6

1

(2π)d
1

k21

1

k22

∫

ddkηk,k1+k2−k . (5.4)

One can show that

ηk1k2 =
αk1+k2

k21k
2
2

, (5.5)

is a solution of (5.4) for arbitrary αk, provided

1 = −4iλ

4!

1

(2π)d

∫

ddk1ψ
0
k1ψ

0
k1−p1−p2 (5.6)

is satisfied. We recognize this equation as the pole condition of the previous section. The

ηk1k2 of the form (5.5) are nothing but the (momentum space) bound state eigenfunctions.

We have so far two descriptions viz. one in terms of the covariant bilocals and the other

one in terms of the single time bilocals. The results in the two descriptions look super-

ficially different. However, the single time equations (2.20) and (2.21) should correspond

to equations (5.4) and (5.6) respectively. In the following we show that they are indeed

equivalent.

Recall that

ηxy = ηtx,~x;ty ,~y =

∫

ddk1

(2π)d/2

∫

ddk2

(2π)d/2
e−ik1xe−ik2yηk1k2

=

∫

dE1d
d−1 ~k1

(2π)d/2

∫

dE2d
d−1 ~k2

(2π)d/2
e−iE1tx+i ~k1~xe−iE2ty+i ~k2~yη

E1
~k1;E2

~k2
. (5.7)

10In conformal field theories, mass states are not in their Cartan subalgebras, but it is legitimate to

discuss the approach to conformal criticality.
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Equal time bilocals are obtained from covariant bilocals by setting tx = ty = t or,

equivalently, they only depend on E = E1+E2 and as such can be obtained by integration

of an intermediate energy variable (in this case, E1 − E2).

In the appendix we establish the result:

∫

dE

2π

1

E2 − ~k2 + iǫ

1

(E − Ep)
2 −

(

~k − ~p
)2

+ iǫ
=

− i

2

1

E2
p −

(∣

∣

∣

~k
∣

∣

∣+
∣

∣

∣

~k − ~p
∣

∣

∣

)2





1
∣

∣

∣

~k
∣

∣

∣

+
1

∣

∣

∣

~k − ~p
∣

∣

∣



 . (5.8)

In other words,

∫

dd−1~k

(2π)d−1

1

E2
p −

(∣

∣

∣

~k
∣

∣

∣
+
∣

∣

∣
~p− ~k

∣

∣

∣

)2





1
∣

∣

∣

~k
∣

∣

∣

+
1

∣

∣

∣~p− ~k
∣

∣

∣



 = 2i

∫

ddk1

(2π)d
1

k2
1

(k − p)2
. (5.9)

Note that p = pµ = (Ep, ~p ), with Ep otherwise arbitrary. These results establish the

equivalence of (2.20), (2.21) and equations (5.4), (5.6) respectively. Explicitly, it follows

immediately that the pole condition (5.6)

1 =
iλ

6

1

(2π)d

∫

ddk1
1

k2
1

(k − p1 − p2)
2

is equivalent to

1 =
λ

12

∫

dd−1~k

(2π)d−1

1

E2
p1+p2 −

(∣

∣

∣

~k
∣

∣

∣
+
∣

∣

∣
~p1 + ~p2 − ~k

∣

∣

∣

)2





1
∣

∣

∣

~k
∣

∣

∣

+
1

∣

∣

∣
~p1 + ~p2 − ~k

∣

∣

∣



 , (5.10)

which is nothing but the Hamiltonian pole condition (2.21). The solution is the bound

state with dispersion (1.7). At the critical point λ → ∞ this state has been identified in

the path integral as a ∆ = 2 conformal field, both directly in the non-linear sigma model

treatment of the IR critical point, and for the λ
N (φaφa)2 theory.

6 Potential scattering, the fate of the ∆ = 1 state and the ∆ = 2 bound

state

There is a puzzle when one considers the results of the previous sections. Both bilocal

propagators (3.20)–(3.21) and (4.12) display disconnected diagrams identical to those of

the (free) UV critical point, in addition to the s-channel ∆ = 2 bound state. One would

expect the states associated with these disconnected diagrams to include a ∆ = 1 boundary

state, which should not be present at the IR critical point. On the other hand, it is not clear

how these free states are solutions of the Hamiltonian equations of motion (2.18), certainly

when written in the form (2.20). But these are the states needed to “build” the bulk.
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The answer is that the most general scattering state solution to the equation

E2η~k1~k2 =
1

4

(

ψ0−1

~k1
+ ψ0−1

~k2

)2
η~k1~k2 +

λ

6

(

ψ0
~k1

+ ψ0
~k2

)

∫

dd−1~l

(2π)d−1
η~k1+~k2−~l,~l

, (6.1)

best regarded as a (relativistic) potential scattering problem, is given by11

η ~k1,~p− ~k1
= ϕ ~k1,~p− ~k1

+

λ
12

(

1

| ~k1| +
1

|~p− ~k1|

)

E2 −
(∣

∣

∣

~k1

∣

∣

∣
+

∣

∣

∣
~p− ~k1

∣

∣

∣

)2

∫

d2~l

(2π)2
η~l,~p−~l , (6.2)

where ϕ~k1~k2
solves the free equation of motion, i.e.,

E2 = (|~p1|+ |~p2|)2 , ϕ~k1~k2
∼ δ

(

~k1 − ~p1

)

δ
(

~k2 − ~p2

)

. (6.3)

Integrating both sides of (6.2) leads to

∫

d2~k

(2π)2
η~k,~p−~k

=

∫

d2~k

(2π)2
ϕ~k,~p−~k

− λ

48 |p|E

∫

d2~k

(2π)2
η~k,~p−~k

, (6.4)

where in order to arrive at the final expression we have made use of (4.11) and (5.9).

Note that

pµ = (|~p1|+ |~p2|, ~p1 + ~p2) , (6.5)

with pE the corresponding euclidean 3-vector. Thus,

∫

d2~k

(2π)2
η~k,~p−~k

=
1

1 + λ
48|p|E

∫

d2~k

(2π)2
ϕ~k,~p−~k

. (6.6)

This can be substituted back into (6.2), resulting in the equivalent expression

∫

d2~k

(2π)2
η~k,~p−~k

=

(

1− λ

48 |p|E
1

1 + λ
48|p|E

)

∫

d2~k

(2π)2
ϕ~k,~p−~k

. (6.7)

Either way, at the infra-red conformal point λ → ∞,

ηxx ∼
∫

d2~k

(2π)2
η~k,~p−~k

→ 0 , (6.8)

and this state with ∆ = 1 is removed from the spectrum.

11Here, ~p = ~k1 + ~k2.
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We provide a further check by examining the propagator 〈ηxxηyy〉, in the path integral

approach:

〈ηxxηyy〉 =
∫

d3k1

(2π)3/2
d3k2

(2π)3/2
d3p1

(2π)3/2
d3p2

(2π)3/2
e−ix(k1+k2)e−iy(p1+p2)Ô−1

k1k2;p1p2

=

∫

d3k1

(2π)3/2
d3k2

(2π)3/2
d3p1

(2π)3/2
d3p2

(2π)3/2
e−ix(k1+k2)e−iy(p1+p2)

×
(

−2
1

p21

1

p22
δ (k1+p2) δ (k2+p1)−

16i |p1+p2|E
(2π)3

1

k21

1

k22

1

p21

1

p22
δ (k1+k2+p1+p2)

)

= −2

∫

d3k1

(2π)3
d3k2

(2π)3
eik1(y−x)

k21

eik2(y−x)

k22

−16i

∫

d3k1

(2π)3
d3k2

(2π)3

(∫

d3p1

(2π)3
1

p21

1

(p1+k1+k2)
2

)

eik1(y−x)

k21

eik2(y−x)

k22
|k1+k2|E .

(6.9)

From (4.11), we have

∫

d3p1

(2π)3
1

p21

1

(p1 + k1 + k2)
2 =

i

8 |k1 + k2|E
. (6.10)

Accordingly,

− 16i

∫

d3k1

(2π)3
d3k2

(2π)3

(∫

d3p1

(2π)3
1

p21

1

(p1 + k1 + k2)
2

)

eik1(y−x)

k21

eik2(y−x)

k22
|k1 + k2|E

= −16i

∫

d3k1

(2π)3
d3k2

(2π)3

(

i

8 |k1 + k2|E

)

eik1(y−x)

k21

eik2(y−x)

k22
|k1 + k2|E

= −2 (−1)

∫

d3k1

(2π)3
d3k2

(2π)3
eik1(y−x)

k21

eik2(y−x)

k22
. (6.11)

Thus,

〈ηxxηyy〉 = −2

∫

d3k1

(2π)3
d3k2

(2π)3
eik1(y−x)

k21

eik2(y−x)

k22
− 2 (−1)

∫

d3k1

(2π)3
d3k2

(2π)3
eik1(y−x)

k21

eik2(y−x)

k22

= 0 . (6.12)

How is one able to extract ∆ = 2 correlators from the bilocal fields? This is suggested

from the discussion after equation (4.16) and the eigenfunctions (5.5):

ηxy = (ψ0αψ0)xy, (6.13)

where α is the ∆ = 2 field. Inverting,

α(x)δ(x− y) = (ψ0−1
ηψ0−1

)xy . (6.14)
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Note that there is no a priori guarantee from this definition that correlators calculated

with the right hand side of the above equation will always appear multiplied by a delta

function, allowing one to extract α correlators. We will show this to be the case.

For convenience, we change to an euclidean signature (with the Jacobian remaining

unchanged, this simply requires λ → −iλ and ψ0
k = 1/k2) so that the critical bilocal

propagator (4.16) takes the form:

ÔE
−1

k1k2;p1p2 = 2
1

p21

1

p22
δ (k1 + p2) δ (k2 + p1)−

1

k21

1

k22

16 |p1 + p2|E
(2π)3

1

p21

1

p22
δ (k1 + k2 + p1 + p2) .

(6.15)

One has

〈

(ψ0−1
ηψ0−1

)x1y1(ψ
0−1

ηψ0−1
)x2y2

〉

=

∫

d3k1

(2π)3/2
d3k2

(2π)3/2
d3p1

(2π)3/2
d3p2

(2π)3/2
eik1x1eik2y1eip1x2eip2y2k21k

2
2p

2
1p

2
2 〈ηk1k2ηp1p2〉 .

(6.16)

The contribution from the connected piece of the bilocal propagator is

〈

(ψ0−1
ηψ0−1

)x1y1(ψ
0−1

ηψ0−1
)x2y2

〉

= δ(x1 − y1)δ(x2 − y2)

∫

d3p

(2π)3
eip(y2−y1)(−16|p|) = δ(x1 − y1)δ(x2 − y2) 〈α(x1)α(x2)〉

(6.17)

in agreement with (3.21). For the contribution from the disconnected piece of the bilocal

propagator, recall that we consistently use:

∫

ddp(p2)αeipx = πd/222α+dΓ(α+ d/2)

Γ(−α)

(

x2
)−d/2−α

. (6.18)

With this definition, it is straightforward to check that the disconnected contributions

are proportional to 1/Γ(−1) and hence vanish.12

7 Summary and outlook

The O(N) invariant λφ4 theory in 3 dimensions has been studied systematically in a 1/N

expansion at its infrared critical point, both in the Hamiltonian as well as in the path

integral formalism. This systematic 1/N expansion is generated through O(N) invariant

bilocals following the collective field theory method of Jevicki and Sakita [31, 32]. The

presence of bilocal scattering states in the spectrum of the theory with free dispersion

12There is also a concept of orthogonality. One can easily show that
〈

ηxx(ψ
0−1

ηψ0−1
)x1y1

〉

∼ 0 δ(x1−

y1), as it should be the case for two fields with different conformal dimensions. This follows from a

cancellation, again, between the contributions of the connected and disconnected pieces of the critical

bilocal propagator.
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relations needed to generate the bulk according to the map of [18, 19] was established, and

the nature of the ∆ = 1 and ∆ = 2 fields has been elucidated. These fields have different

origins. The ∆ = 1 field is part of the bilocal scattering states, and it has been explicitly

demonstrated in this article that it is absent from the spectrum at criticality. Marginally

away from criticality and in the large N conformal background, the ∆ = 2 state is identified

with a negative energy squared s-channel bound state with a finite (independent of λ) two

point function at criticality.

A related simpler model that can be used to provide physical intuition to the features

identified in this article is the non-relativistic one dimensional quantum mechanics with

an attractive delta function potential V = v0δ(x),v0 < 0. As is well known, this system

has scattering states with E > 0 and one bound state. In the limit that v0 → −∞, an

argument entirely similar to the one leading to (6.8) shows that ψ(0) = 0. In other words,

the particles are prevented from “falling into the (infinitely deep) well”. Despite the bound

state having infinite negative energy in this limit, the second quantized two point function

is finite and independent of v0, in analogy with the critical bilocal propagator presented

above.

The general picture that emerges is then clear, following from the general properties

of the map [18, 19], and particularly from (1.6). Of the states in the bulk, the ∆ = 1 state

η ~x1 ~x1
(it follows from (1.6) that ~x2 → ~x1 corresponds to the boundary) is not present at

the boundary. In terms of the bilocal description, these scattering states are prevented

from reaching the boundary. At the boundary, as it follows from the identification (6.14),

a decoupled ∆ = 2 state is present which originates from a bound state in the three

dimensional field theory.

Of immediate future interest is to include this state in the map of [18, 19]. Furthermore,

as a spin 2, ∆ = 2 state with exponential real time dependence, it deserves further study.

A Integrating out the intermediate energy variable

In this appendix, we derive the result in (5.8), viz.

∫

dE

2π

1

E2 − ~k2 + iǫ

1

(E − Ep)
2 −

(

~k − ~p
)2

+ iǫ

= − i

2
× 1

E2
p −

(∣

∣

∣

~k1

∣

∣

∣
+
∣

∣

∣

~k2

∣

∣

∣

)2





1
∣

∣

∣

~k
1

∣

∣

∣

+
1

∣

∣

∣

~k
2

∣

∣

∣



 . (A.1)

Define

f (E) =
1

E2 − ~k2 + iǫ

1

(E − Ep)
2 −

(

~k − ~p
)2

+ iǫ
. (A.2)

The poles of the integrand are at E = ±
(∣

∣

∣

~k
∣

∣

∣
− iǫ

)

and E = Ep ±
(∣

∣

∣

~k − ~p
∣

∣

∣
− iǫ

)

. We

will choose to close the contour along the LHP. As a result, we need to compute the residues

at E =
∣

∣

∣

~k
∣

∣

∣
− iǫ and E = Ep +

∣

∣

∣

~k − ~p
∣

∣

∣
− iǫ.
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The residue at E =
∣

∣

∣

~k
∣

∣

∣− iǫ is

Res
[

f
(∣

∣

∣

~k
∣

∣

∣

)]

=
1

2
∣

∣

∣

~k
∣

∣

∣

1
∣

∣

∣

~k
∣

∣

∣
− Ep −

∣

∣

∣

~k − ~p
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and the one at E = Ep +
∣
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Using the residue theorem, we have

∫

dE

(2π)
f (E) = −i







1

2
∣

∣

∣

~k
∣

∣

∣

1
∣

∣

∣

~k
∣

∣

∣− Ep −
∣

∣

∣

~k − ~p
∣

∣

∣

1
∣

∣

∣

~k
∣

∣

∣− Ep +
∣

∣

∣

~k − ~p
∣

∣

∣

+
1

2
∣

∣

∣

~k − ~p
∣

∣

∣

1

Ep +
∣

∣

∣

~k − ~p
∣

∣

∣−
∣

∣

∣

~k
∣

∣

∣

1

Ep +
∣

∣

∣

~k − ~p
∣

∣

∣+
∣

∣

∣

~k
∣

∣

∣






. (A.5)

We define ~k = ~k1 and ~p−~k = ~k2. and symmetrize the r.h.s. of (A.5). This leads us to

the result

∫

dE

(2π)
f (E) =

− i

4







1
∣

∣

∣

~k1

∣

∣

∣

1
∣

∣

∣

~k1

∣

∣

∣
− Ep −

∣

∣

∣

~k2

∣

∣

∣

1
∣

∣

∣

~k1

∣

∣

∣
− Ep +

∣

∣

∣

~k2

∣

∣

∣

+
1

∣

∣

∣

~k2

∣

∣

∣

1
∣

∣

∣

~k2

∣

∣

∣
+ Ep −

∣

∣

∣

~k1

∣

∣

∣

1
∣

∣

∣

~k2

∣

∣

∣
+ Ep +

∣

∣

∣

~k1

∣

∣

∣

+
1

∣

∣

∣

~k2

∣

∣

∣

1
∣

∣

∣

~k2

∣

∣

∣
− Ep −

∣

∣

∣

~k1

∣

∣

∣

1
∣

∣

∣

~k2

∣

∣

∣
− Ep +

∣

∣

∣

~k1

∣

∣

∣

+
1

∣

∣

∣

~k1

∣

∣

∣

1
∣

∣

∣

~k1

∣

∣

∣
+ Ep −

∣

∣

∣

~k2

∣

∣

∣

1
∣

∣

∣

~k1

∣

∣

∣
+ Ep +

∣

∣

∣

~k2

∣

∣

∣






.

(A.6)

After some trivial but tedious manipulations, we obtain
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 (A.7)

which is what we set out to prove in the beginning.
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