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1 Introduction

The Schwarzian theory is the basic element of various physical models including the SYK

model and the two-dimensional dilaton gravity [1–15] (see also [16–20] and references

therein).

The Schwarzian theory inherits the symmetry properties that ensue from the time

reparametrization independence of the physical picture. The point is that in some ap-

proximations, the above-mentioned physical models appear to be reparametrization invari-

ant. However, in these models, this emergent reparametrization symmetry is broken to its

SL(2,R) subgroup leading to the action

−
∫ [(

f ′′(t)

f ′(t)

)′
− 1

2

(
f ′′(t)

f ′(t)

)2
]
dt , (1.1)

which is the unique lowest order in derivatives action that is SL(2,R) invariant.

An extraordinary universality of the Schwarzian theory is a consequence of its rich

symmetry structure. At the same time, one can use the invariance of the Schwarzian

theory to link it to another theory [21] where the corresponding calculations are much

simpler than in the original one (see also another approach in [22]).
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An idea of a slightly different way of studying the theory is to substitute the action

1

2

∫ (
f ′′(t)

f ′(t)

)2

dt (1.2)

for the action (1.1). Now the correlation functions in SYK model can be written as the

functional integrals of Liouville quantum mechanics. Using spectral decomposition, one

can represent the functional integrals as the sums over the quantum eigenstates. Liouville

theory is well studied, and the approach turned out to be very popular and fruitful [23–26].

Note however that the Lagrangian in (1.2) differs from that in (1.1) by a total deriva-

tive, and is not invariant under SL(2,R). The action (1.2) is SL(2,R) invariant only if

the boundary terms in the integral of the total derivative are equal to zero. In this case,

Liouville quantum mechanics is an adequate way to handle the Schwarzian theory.

In general, a special technique of functional integration is needed in the Schwarzian

theory. The point is that one should integrate over the elements of the group of diffeo-

morphisms and factor the (infinite) input of the SL(2,R) subgroup out. In this paper, we

present such a technique and evaluate the functional integrals for correlation functions.

It is convenient to rewrite the action of the Schwarzian theory in the form

I = − 1

σ2

1∫
0

[
Sϕ(t) + 2π2

(
ϕ′(t)

)2]
dt , (1.3)

where ϕ(t) is a diffeomorphism of the interval [0, 1], f = cotπϕ, and

Sϕ(t) =

(
ϕ′′(t)

ϕ′(t)

)′
− 1

2

(
ϕ′′(t)

ϕ′(t)

)2

(1.4)

is the Schwarzian derivative.

The presence of the term (ϕ′(t))2 in the action (1.3) makes the functional integral

∫
F (ϕ) exp {−I} dϕ =

∫
F (ϕ) exp

 1

σ2

1∫
0

[
Sϕ(t) + 2π2

(
ϕ′(t)

)2]
dt

 dϕ (1.5)

look as if it is the integral over the Wiener measure

wκ(dϕ) = exp

− 1

κ2

1∫
0

(
ϕ′(t)

)2
dt

 dϕ (1.6)

analytically continued to the point κ = i σ√
2π

. However, the attempt to treat (1.5) as

the integral over the Wiener measure is a misleading one. The point is that the Wiener

measure is concentrated on the trajectories that are nondifferentiable almost everywhere.

The set of smooth, or even differentiable at a point, functions has zero Wiener measure.

Nevertheless, the formal representation (1.6) is correct and very useful if the derivative

ϕ′(t) is considered in a generalized sense [27]. However, the Schwarzian derivative cannot

be understood in this way.
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A correct approach is based on the quasi-invariant measure on the group of diffeomor-

phisms (see the next section)

µσ(dϕ) = exp

 1

σ2

1∫
0

Sϕ(t) dt

 dϕ . (1.7)

And the functional integrals in the Schwarzian theory should be considered as the integrals

over the measure (1.7).

In [28], the integral for the partition function in the Schwarzian theory

ZSchw(g) =
1√
2πg

∫
Diff1(S1)/SL(2,R)

exp

 1

2πg2

1∫
0

[
Sϕ(t) + 2π2

(
ϕ′(t)

)2]
dt

 dϕ (1.8)

was explicitly evaluated with the result

ZSchw(g) =
1

2πg3
exp

{
π

g2

}
, (1.9)

thereby confirming the conjecture about the exactness of the one-loop result [3, 21].

In this paper, we evaluate the functional integrals assigning correlation functions in

the Schwarzian theory. As the technique of functional integration over quasi-invariant

measures on infinite-dimensional groups is not common knowledge, we try to make the

presentation maximally explicit giving the detailed proof of the basic formulas, and thus

providing guidelines on the evaluation of functional integrals in the Schwarzian theory.

Section 2, and appendix A contain some preliminary material on quasi-invariant mea-

sures. In section 3, the explicit evaluation of the correlation functions is presented. In ad-

dition, some relevant technical results are obtained in appendices B, C and D. In section 4,

we give the concluding remarks.

2 Preliminaries

For finite-dimensional groups, there is the invariant Haar measure. However, the invariant

measures analogous to the Haar measure do not exist for the infinite-dimensional groups

H [29]. Nevertheless, sometimes one has succeeded in constructing the measure that is

quasi-invariant with respect to the action of a more smooth subgroup G ⊂ H. The quasi-

invariance means that under the action of the subgroup G the measure transforms to itself

multiplied by a function Rg(h) parametrized by the elements of the subgroup g ∈ G

µ ( d(g ◦ h) ) = Rµg (h)µ( dh ) .

The function Rµg (h) is called the Radon-Nikodim derivative of the measure µ (see,

e.g., [27, 30]).

The quasi-invariance of the Wiener measure (1.6) under the shifts of the argument of

the measure by a differentiable function is the simplest example [27].

– 3 –
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The Wiener measure (1.6) turns out to be quasi-invariant under the group of diffeo-

morphisms. The proof of the quasi-invariance and the explicit form of the Radon-Nikodim

derivative was first obtained in [31] (see a more simple derivation of the result, e.g., in [32]).

The evaluation of the functional integrals considered in this paper is based on the

equation:

∫
ξ(0)=ξ(1)=0

exp


−2β2

σ2(β+1)

1
1∫
0

eξ(t)dt

 wσ(dξ) =
1√
2πσ

exp

{
− 2

σ2
(log(β + 1) )2

}
. (2.1)

It is a consequence of the quasi-invariance of the Wiener measure with respect to the

action of the group of diffeomorphisms Diff3
+([0, 1]). In [28], we postponed the proof of the

equation (2.1) till the next paper, “Hanc marginis exiguitas non caparet.” (P. Fermat).

Now, the explicit proof of the more general formula

∫
ξ(0)=0, ξ(1)=x

exp


−2β

σ2

[
1− ex

β + 1

]
1

1∫
0

eξ(t)dt

 wσ(dξ)

=
1√
2πσ

exp

{
− 1

2σ2
(x− 2 log(β + 1) )2

}
(2.2)

is given in [33] (see, also, appendix B of the present paper).

In [34–36], the measures

µσ(X) =

∫
X

exp

 1

σ2

1∫
0

Sϕ(t) dt

 dϕ (2.3)

on the groups of diffeomorphisms of the interval X ⊂ Diff1
+([0, 1]), and of the circle X ⊂

Diff1
+

(
S1
)

were proposed.

The measures are quasi-invariant with respect to the action of the subgroups

Diff3
+([0, 1]) and Diff3

+(S1) respectively. The proof of the quasi-invariance and the form

of the Radon-Nikodim derivatives can be obtained by some special substitution of vari-

ables [34–36] (see, also, appendix A of the present paper). Specifically, under the

substitution

ϕ(t) =

t∫
0

eξ(τ)dτ

1∫
0

eξ(η)dη

, (2.4)

the measure µσ(dϕ) on the group Diff1
+([0, 1]) turns into the Wiener measure wσ(dξ) on

C([0, 1]).

Consider the function ξ ∈ C0([0, 1]). That is, ξ(t) is a continuous function on the

interval satisfying the boundary condition ξ(0) = 0. Then

ξ(t) = logϕ′(t)− logϕ′(0) . (2.5)

– 4 –
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The integral over the group Diff1(S1) can be transformed into the integral over the

group Diff1([0, 1]). Note that if we fix a point t = 0 on the circle S1 then it is necessary

“to glue the ends of the interval”. That is, to put ϕ′(0) = ϕ′(1) or ξ(0) = ξ(1) = 0. In

this case, the function ξ is a Brownian bridge, and we denote the corresponding functional

space by C0, 0([0, 1]). The Wiener measures on C0([0, 1]) and C0, 0([0, 1]) are related by

the equation

wσ(dξ) = wBrown
σ (dξ)

1√
2πσ

exp

(
− x2

2σ2

)
dx .

Now, the integral over Diff1(S1) turns into the integral over Diff1([0, 1]) as follows:

1√
2πσ

∫
Diff1(S1)

F (ϕ)µσ(dϕ)

=
1√
2πσ

∫
C0, 0([0,1])

F (ϕ(ξ))wBrown
σ (dξ) =

∫
C0([0,1])

δ (ξ(1))F (ϕ(ξ))wσ(dξ)

=

∫
Diff1([0,1])

δ

(
log

ϕ′(1)

ϕ′(0)

)
F (ϕ)µσ(dϕ) =

∫
Diff1([0,1])

δ

(
ϕ′(1)

ϕ′(0)
− 1

)
F (ϕ)µσ(dϕ) . (2.6)

Here, we have used the equation

+∞∫
0

δ(log x)g(x)dx = g(1) =

+∞∫
−∞

δ(x− 1)g(x)dx .

The quasi-invariance of the measure and the explicit form of the Radon-Nikodim deriva-

tive can be used to evaluate nontrivial functional integrals. For the measure µ on the

interval [0, 1] in particular, the Radon-Nikodim derivative is

Rµf (ϕ) ≡ dµfσ
dµσ

(ϕ) =
1√

f ′(0)f ′(1)
(2.7)

× exp

 1

σ2

[
f ′′(0)

f ′(0)
ϕ′(0)− f ′′(1)

f ′(1)
ϕ′(1)

]
+

1

σ2

1∫
0

Sf (ϕ(t))
(
ϕ′(t)

)2
dt

,
where

µfσ(X) = µσ(f ◦X) .

Here, the well known property of the Schwarzian derivative:

Sf◦ϕ(t) = Sf (ϕ(t))
(
ϕ′(t)

)2
+ Sϕ(t) , ( f ◦ ϕ )(t) = f (ϕ(t)) ,

has been used.

Thus, for functional integrals over the measure µ, we have∫
Diff1([0,1])

F (ϕ)µσ(dϕ) =
1√

f ′(0)f ′(1)

∫
Diff1([0,1])

F (f ◦ ϕ)

× exp

 1

σ2

[
f ′′(0)

f ′(0)
ϕ′(0)− f ′′(1)

f ′(1)
ϕ′(1)

]
+

1

σ2

1∫
0

Sf (ϕ(t))
(
ϕ′(t)

)2
dt

µσ(dϕ) . (2.8)
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In what follows, we assume the function f to be

f(t) = fα(t) =
1

2

[
1

tan α
2

tan

(
α

(
t− 1

2

))
+ 1

]
. (2.9)

In this case,

f ′α(0) = f ′α(1) =
α

sinα
, −f

′′
α(0)

f ′α(0)
=
f ′′α(1)

f ′α(1)
= 2α tan

α

2
, Sfα(t) = 2α2 , (2.10)

and the equation (2.8) looks like:

α

sinα

∫
Diff1([0,1])

F (ϕ)µσ(dϕ) =

∫
Diff1([0,1])

F (fα(ϕ))

× exp

{
−2α

σ2
tan

α

2

(
ϕ′(0) + ϕ′(1)

)}
exp

2α2

σ2

1∫
0

(
ϕ′(t)

)2
dt

µσ(dϕ) . (2.11)

Generally speaking, the functional integrals (2.11) converge for 0 ≤ α < π, and diverge

for α = π.

The Schwarzian action is invariant under the noncompact group SL(2,R). There-

fore, integrating over the quotient space Diff1([0, 1])/SL(2,R) we exclude the infinite

volume of the group SL(2,R) and get the finite results for functional integrals in the

Schwarzian theory. In our approach, we evaluate regularized (α < π) functional integrals

over the group Diff1([0, 1]) and then normalize them to the corresponding integrals over

the group SL(2,R).

In particular, in [28], to get the partition function (1.9), we first evaluated the regu-

larized integral

Zα(σ) =
1√
2πσ

∫
Diff1(S1)

exp {−I} exp

−2
[
π2 − α2

]
σ2

1∫
0

(
ϕ′(t)

)2
dt

 dϕ

=
1√
2πσ

∫
Diff1(S1)

exp

2α2

σ2

1∫
0

(
ϕ′(t)

)2
dt

µσ(dϕ) , (2.12)

and then divided it by the regularized volume of the group SL(2,R)

Vα(σ) =

∫
SL(2,R)

exp

−2
[
π2 − α2

]
σ2

1∫
0

(
ϕ′(t)

)2
dt

 dν . (2.13)

Note that the functional measure in the equation (2.12) and the Haar measure dν on the

group SL(2,R) in the equation (2.13) are regularized in the same manner.

For the Schwarzian partition function, we take the limit

Z(σ) = lim
α→π−0

Zα(σ)

Vα(σ)
. (2.14)

In the next section, the quasi-invariance of the measure (1.7) is used to evaluate the

functional integrals assigning the correlation functions in the Schwarzian theory.

– 6 –
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3 Correlation functions

3.1 Mean value of ϕ′

First we recall the main steps of the evaluation of the partition function in the Schwarzian

theory [28].

If we take the function F in the equation (2.11) to be

F (f(ϕ)) = F1(f(ϕ)) = exp

{
4α

σ2
tan

α

2
ϕ′(0)

}
, (3.1)

and note that

ϕ′(0) =
1

f ′(0)
u′(0) =

sinα

α
u′(0) ,

for u(t) = f(ϕ(t)), then

F1(u) = exp

{
8 sin2 α

2

σ2
u′(0)

}
. (3.2)

Now the regularized partition function has the form

Zα(σ) =
α

sinα

1√
2πσ

∫
Diff1(S1)

exp

{
8 sin2 α

2

σ2
ϕ′(0)

}
µσ(dϕ) . (3.3)

Under the substitution (2.4) it turns into

Zα(σ) =
α

sinα

1√
2πσ

∫
Diff1(S1)

exp


8 sin2 α

2

σ2

1
1∫
0

eξ(τ)dτ

 wσ(dξ) . (3.4)

To evaluate the functional integral explicitly we use the equation (2.1). Instead of β,

we should substitute a solution of the equation

2β2

σ2(β + 1)
= −

8 sin2 α
2

σ2
. (3.5)

We take the following one:

(β + 1) = eiα . (3.6)

As the result, we obtain

Zα(σ) =
α

sinα

1√
2πσ

exp

{
2α2

σ2

}
, (3.7)

with the asymptotic form at α→ π

ZAsα (σ) =
π

π − α
1√
2πσ

exp

{
2π2

σ2

}
. (3.8)

– 7 –
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The asymptotic form of the α−regularized volume of the group SL(2,R) (see

appendix D) looks like

V As
α;SL(2,R)(σ) =

σ2

2 [π − α]
. (3.9)

According to the equation (2.14), the Schwarzian partition function has the form

Z(σ) =

√
2π

σ3
exp

{
2π2

σ2

}
. (3.10)

Consider now the α−regularized mean value of ϕ′

Φα =
1√
2πσ

∫
Diff1(S1)

ϕ′(0) exp

2α2

σ2

1∫
0

(
ϕ′(τ)

)2
dτ

µσ(dϕ) .

Note that it is ϕ′, but not ϕ, that is the dynamical variable in the theory given by the

action (1.3).

After the substitution (2.4), it is written as

Φα =
1√
2πσ

∫
Diff1(S1)

1
1∫
0

eξ(τ)dτ

exp


8 sin2 α

2

σ2

1
1∫
0

eξ(τ)dτ

 wσ(dξ) . (3.11)

Having in mind the equations (2.1), (3.5), and (3.6), we get

Φα =
4√

2πσ3

ln(β + 1)

(β + 1)
exp

{
−2 ln2(β + 1)

σ2

}
=

α

sinα

1√
2πσ

exp

{
2α2

σ2

}
. (3.12)

Asymptotically, it looks like

ΦAs =
π

π − α
1√
2πσ

exp

{
2π2

σ2

}
. (3.13)

The asymptotic form of the Φα on the group SL(2,R) (see appendix D) is

ΦAs
SL(2,R) =

σ2

2 [π − α]
. (3.14)

Now the normalized mean value of ϕ′ has the form

Φ = lim
α→π−0

ΦAs

ΦAs
SL(2,R)

=

√
2π

σ3
exp

{
2π2

σ2

}
. (3.15)

– 8 –
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3.2 Two-point correlation function

Define the α−regularized two-point correlation function as

Gα2 (0, t) =
1√
2πσ

∫
Diff1(S1)

ϕ′(t)ϕ′(0) exp

2α2

σ2

1∫
0

(
ϕ′(τ)

)2
dτ

µσ(dϕ)

=

∫
Diff1([0, 1])

ϕ′(t)ϕ′(0) δ

(
ϕ′(1)

ϕ′(0)
− 1

)
exp

2α2

σ2

1∫
0

(
ϕ′(τ)

)2
dτ

µσ(dϕ) . (3.16)

By the special choice of the function F in (2.11), we identify the integrands in (3.16)

and in the right-hand side of the equation (2.11).

Represent the function F in the form

F (ϕ) = F4(ϕ)F3(ϕ)F2(ϕ)F1(ϕ) ,

where

F1(f ◦ ϕ) = exp

{
4α

σ2
tan

α

2
ϕ′(0)

}
, F2(f ◦ ϕ) = δ

(
ϕ′(1)− ϕ′(0)

)
,

F3(f ◦ ϕ) =
(
ϕ′(0)

)2
, F4(f ◦ ϕ) = ϕ′(t) .

To use the equation (2.11), it is necessary to find Fi(ϕ). F1(ϕ) was found above to be

F1(ϕ) = exp

{
8 sin2 α

2

σ2
ϕ′(0)

}
. (3.17)

To find F2(ϕ) and F3(ϕ), note that for χ(t) = f(ϕ(t)),

χ′(0) =
α

sinα
ϕ′(0) , χ′(1) =

α

sinα
ϕ′(1) ,

so

F2(ϕ) =
α

sinα
δ
(
ϕ′(1)− ϕ′(0)

)
, (3.18)

and

F3(ϕ) =
sin2 α

α2

(
ϕ′(0)

)2
. (3.19)

F4(ϕ) looks more complicated:

F4 (χ(t)) = F4 (f(ϕ(t))) = ϕ′(t) =
1

f ′ (f−1 (χ(t)))
χ′(t) =

(
f−1

)′
(χ(t)) χ′(t) .

For the function y = fα(x) given by the equation (2.9),

x = f−1
α (y) =

1

α
arctan

[
tan

α

2
(2y − 1)

]
+

1

2
.

And finally,

F4(ϕ) =
2
α tan α

2

1 + tan2 α
2 (2ϕ(t)− 1)2 ϕ′(t) . (3.20)

– 9 –
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Thus for the correlation function, we have

Gα2 (0, t) =

∫
Diff1([0, 1])

2
α tan α

2

1 + tan2 α
2 (2ϕ(t)− 1)2

× ϕ′(t)ϕ′(0) δ

(
ϕ′(1)

ϕ′(0)
− 1

)
exp

{
8 sin2 α

2

σ2
ϕ′(0)

}
µσ(dϕ)

=

1∫
0

2
α tan α

2

1 + tan2 α
2 (2x− 1)2 dx

∫
Diff1([0, 1])

δ (x− ϕ(t))

× ϕ′(t)ϕ′(0) δ

(
ϕ′(1)

ϕ′(0)
− 1

)
exp

{
8 sin2 α

2

σ2
ϕ′(0)

}
µσ(dϕ) . (3.21)

The substitution (2.4) in the above equation gives the correlation function in terms of

the Wiener integral:

Gα2 (0, t) =

1∫
0

2
α tan α

2

1 + tan2 α
2 (2x− 1)2dx

∫
C0([0, 1])

δ

x 1∫
0

eξ(τ)dτ −
t∫

0

eξ(τ)dτ



× eξ(t)

1∫
0

eξ(τ)dτ

δ
(
eξ(1) − 1

)
exp


8 sin2 α

2

σ2

1
1∫
0

eξ(τ)dτ

 wσ(dξ) . (3.22)

Divide the interval [0, 1] into the two intervals [0, t] and [t, 1]. The substitution

ξ(τ) = η1

(τ
t

)
, τ ≤ t ; ξ(τ) = η1(1) + η2

(
τ − t
1− t

)
, τ > t (3.23)

transforms the Wiener integral over the measure wσ(dξ) into the two Wiener integrals over

the measures

wσ
√
t(dη1)wσ

√
1−t(dη2) .

To verify this statement, note that

t∫
0

(
ξ′(τ)

)2
dτ =

1

t

1∫
0

(
η′1(τ)

)2
dτ ,

1∫
t

(
ξ′(τ)

)2
dτ =

1

1− t

1∫
0

(
η′2(τ)

)2
dτ .

To return to the integrals over the group of diffeomorphisms, consider the functions

ψ1(t) =

t∫
0

eη1(τ)dτ

1∫
0

eη1(τ)dτ

, ψ2(t) =

t∫
0

eη2(τ)dτ

1∫
0

eη2(τ)dτ

. (3.24)
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The useful relations can be obtained directly from the above definitions

ϕ(t) =
tψ′2(0)

tψ′2(0) + (1− t)ψ′1(1)
, ϕ′(t) =

ψ′1(1)ψ′2(0)

tψ′2(0) + (1− t)ψ′1(1)
,

ϕ′(0) =
ψ′1(0)ψ′2(0)

tψ′2(0) + (1− t)ψ′1(1)
, ϕ′(1) =

ψ′1(1)ψ′2(1)

tψ′2(0) + (1− t)ψ′1(1)
.

Therefore, the two-point correlation function has the form of the double functional

integral

Gα2 (0, t) =
1

t (1− t)

1∫
0

2
α tan α

2

1 + tan2 α
2 (2x− 1)2 dx

∫
Diff1([0, 1])

∫
Diff1([0, 1])

(
ψ′1(1)

)2 (
ψ′2(1)

)2
× δ

(
ψ′2(0)− (1− t)

t

x

1− x
ψ′1(1)

)
δ

(
ψ′1(0)− t

1− t
1− x
x

ψ′2(1)

)
× exp

{
8 sin2 α

2

σ2

(1− x)

(1− t)
ψ′2(1)

}
µσ
√
t(dψ1)µσ

√
1−t(dψ2) . (3.25)

Define the function Eσ(u, v) by the equation

Eσ(u, v) =

∫
Diff1([0,1])

δ
(
ϕ′(0)− u

)
δ
(
ϕ′(1)− v

)
µσ(dϕ) . (3.26)

We can rewrite the equation (3.25) as

Gα2 (0, t) =
1

t (1− t)

1∫
0

2
α tan α

2

1 + tan2 α
2 (2x− 1)2dx

+∞∫
0

+∞∫
0

v2
1 v

2
2 exp

{
8 sin2 α

2

σ2

(1− x)

(1− t)
v2

}

× Eσ√t

(
t

1− t
1− x
x

v2, v1

)
Eσ√1−t

(
1− t
t

x

1− x
v1, v2

)
dv1 dv2 . (3.27)

In terms of variables

V1 =
x

t
v1 , V2 =

1− x
1− t

v2 ,

the correlation function looks like

Gα2 (0, t) = t2(1− t)2

1∫
0

1

x3(1− x)3

2
α tan α

2

1 + tan2 α
2 (2x− 1)2 dx

+∞∫
0

+∞∫
0

V 2
1 V

2
2 (3.28)

× exp

{
8 sin2 α

2

σ2
V2

}
Eσ√t

(
t

x
V2,

t

x
V1

)
Eσ√1−t

(
1− t
1− x

V1,
1− t
1− x

V2

)
dV1 dV2 .
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In appendix C, we study the properties of the function E and, in particular, obtain the

equations

Eσ (u, v) = Eσ
(√
uv,
√
uv
)

exp

{
− 2

σ2

(√
u−
√
v
)2}

, (3.29)

Eσ (u, u) =
2
√

2

uπ
3
2σ3

exp

{
2π2 − 4u

σ2

}

×
+∞∫
0

exp

{
− 2

σ2

(
2u cosh τ + τ2

)}
sin

(
4πτ

σ2

)
sinh(τ) dτ . (3.30)

Now, using the equations (3.29), (3.30) and the substitution z = (2x−1) tan α
2 , we get

the following representation for the correlation function in terms of the ordinary integrals:

Gα2 (0, t) =
83

π3σ6

1√
t(1−t)

exp

{
2π2

σ2 t(1−t)

} +∞∫
0

+∞∫
0

H(α; τ,θ) (3.31)

× exp

{
− 2

σ2

[
τ2

t
+

θ2

(1−t)

]}
sin

(
4πτ

σ2 t

)
sin

(
4πθ

σ2 (1−t)

)
sinh(τ)sinh(θ)dτ dθ ,

where

H(α; τ, θ) =
1

α

+ tan α
2∫

− tan α
2

1[
1− z2 cot2 α

2

]2 dz

1 + z2

×
+∞∫
0

+∞∫
0

dV1 dV2 V1 V2 exp

{
− 8

σ2

1(
1− z2 cot2 α

2

) ((1 + z2)V2 cos2 α

2
+ V1

)}

× exp

{
− 8

σ2

(
cosh(τ)

1 + z cot α2
+

cosh(θ)

1− z cot α2

)√
V1V2

}
. (3.32)

Note that the integrals in (3.32) are convergent because of the decreasing exponent in the

integrand.

The generalized polar substitution

V1 = ρ sin2 ω , V2 = ρ cos2 ω ,

and the substitution y = tanω reduce the equation (3.32) to the table integrals (see,

e.g., [37] n. 2.2.9.11 ) with the result

H(α; τ, θ) = 12

(
σ2

8

)4
1

(cosh(τ) + cosh(θ))4 (3.33)

×
{
− log sinα+ log(cosh τ + cosh θ)− 3

2
log 2 + log σ − 11

3
+O(π − α)

}
.
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0.0 0.2 0.4 0.6 0.8 1.0
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5
G2(0, t)

Figure 1. The form of the correlation function G2 (0, t) for σ = 2π.

The asymptotics of the two-point correlation function at α→ π has the form

GAs2 (0, t) =
3σ2

2π3

(− log sinα)√
t(1− t)

exp

{
2π2

σ2 t(1− t)

} +∞∫
0

+∞∫
0

exp

{
− 2

σ2

[
τ2

t
+

θ2

(1− t)

]}

× sin

(
4πτ

σ2t

)
sin

(
4πθ

σ2(1− t)

)
sinh(τ) sinh(θ)

(cosh(τ) + cosh(θ))4dτ dθ . (3.34)

Define the normalized two-point correlation function G2(0, t) as the limit

G2 (0, t) = lim
α→π−0

Gα2 (0, t)

Gα2; SL(2,R)

(
0, 1

2

) . (3.35)

Here, the correlation function on the group SL(2,R) at the symmetrical points is chosen

as the normalizing factor. It is evaluated in appendix D with the result

GAs2; SL(2,R)

(
0,

1

2

)
= −π log(π − α) .

Thus we have

G2 (0, t) =
3σ2

2π4

1√
t(1− t)

exp

{
2π2

σ2t(1− t)

} +∞∫
0

+∞∫
0

exp

{
− 2

σ2

[
τ2

t
+

θ2

(1− t)

]}

× sin

(
4π τ

σ2 t

)
sin

(
4π θ

σ2 (1− t)

)
sinh(τ) sinh(θ)

(cosh(τ) + cosh(θ))4 dτ dθ . (3.36)

From the above equation, it follows that the correlation function is singular at t→ 0,

and t→ 1. Its form is presented at figure 1.

At large T = σt (T � 1), (3.36) is reduced to

G2 (0, T ) ≈ J (T (σ − T ))−
3
2 , J =

4σ

π2

+∞∫
1

+∞∫
1

1

(x+ y)2

dx√
x2 − 1

dy√
y2 − 1

, (3.37)

demonstrating the T−
3
2 behaviour known from [23, 25], although with the different factor.

Note that the functional integrals with any function of ϕ(t) and ϕ′(t) , ϕ′(0)) in the

integrand of (3.16) can be calculated in exactly the same way.
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3.3 N-point correlation functions

The method described in detail in the above subsection can be used to evaluate the N-point

correlation function given by the functional integral

GαN (0, t1, . . . tN−1) (3.38)

=

∫
Diff1([0, 1])

ϕ′(0)ϕ′(t1) . . . ϕ′(tN−1) δ

(
ϕ′(1)

ϕ′(0)
− 1

)
exp

2α2

σ2

1∫
0

(
ϕ′(τ)

)2
dτ

µσ(dϕ) .

Let

t0 = 0 < t1 < . . . < tN−1 < tN = 1; x0 = 0, xN = 1 ,

and denote

∆tn = tn − tn−1 , ∆xn = xn − xn−1 ; χα(xn) =
2
α tan α

2

1 + tan2 α
2 (2xn − 1)2 , n = 1, . . . N .

Then the N-point correlation function is written as

GαN (0, t1, . . . tN−1) = (∆t1 · · ·∆tN )2

×
1∫

0

χα(xN−1)dxN−1

xN−1∫
0

χα(xN−2)dxN−2 · · ·
x2∫

0

χα(x1)dx1
1

(∆x1 · · ·∆xN )3

×
+∞∫
0

V 2
1 dV1 · · ·

+∞∫
0

V 2
N dVN exp

{
8 sin2 α

2

σ2
VN

}
Eσ√∆t1

(
∆t1
∆x1

VN ,
∆t1
∆x1

V1

)

× Eσ√∆t2

(
∆t2
∆x2

V1,
∆t2
∆x2

V2

)
· · · Eσ√∆tN

(
∆tN
∆xN

VN−1,
∆tN
∆xN

VN

)
. (3.39)

Now we can perform functional integration in the functions E , and obtain

GαN (0, t1, . . . tN−1) =

(
2

π

) 3
2
N σN√

∆t1 ···∆tN
exp

{
2π2

σ2

[
1

∆t1
+···+ 1

∆tN

]}

×
1∫

0

χα(xN−1)dxN−1

xN−1∫
0

χα(xN−2)dxN−2 ···
x2∫

0

χα(x1)dx1
1

(∆x1 ···∆xN )2

×
+∞∫
0

dU1 ···
+∞∫
0

dUN

+∞∫
0

dτ1 ···
+∞∫
0

dτN U1 ···UN exp
{

8sin2 α

2
UN

}
×exp

{
− 2

∆x1
(UN+U1)− 2

∆x2
(U1+U2)−. . .− 2

∆xN
(UN−1+UN )

}
×exp

{
− 4

∆x1

√
UNU1 coshτ1−

4

∆x2

√
U1U2 coshτ2−. . .−

4

∆xN

√
UN−1UN coshτN

}
×exp

{
− 2τ2

1

σ2∆t1

}
sin

(
4πτ1

σ2∆t1

)
sinhτ1 ···exp

{
−

2τ2
N

σ2∆tN

}
sin

(
4πτN
σ2∆tN

)
sinhτN . (3.40)
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The analysis of the dependence of the function GαN on the regularization parameter

α as well as the study of possible relations between different correlation functions will be

given in another paper. Here, we only note that GN (0, t1, . . . tN−1) is singular if there is a

pair of coinciding arguments, that is, when some ∆tn = 0, similarly to the equation (3.36).

4 Concluding remarks

Now the Schwarzian theory has a growing number of physical applications. (Besides the

references cited in the introduction, see also the recent papers [38, 39].) Therefore, it

is important for the physicists working in this field to have a regular method of doing

calculations.

In this paper, we propose a universal method of the explicit evaluating functional

integrals over the quasi-invariant measures on the infinite-dimensional groups, and evaluate

the functional integrals assigning correlation functions in the Schwarzian theory. The great

merit of the method is that it reduces the problem of the evaluation of various functional

integrals to the evaluation of the functional integral (3.26) only. All other functional

integrals in this theory are represented as ordinary integrals with the functions Eσ(u, v) in

the integrands.

In contrast to the papers [23–26], we integrate over the arbitrary diffeomorphisms and

keep the SL(2,R) invariance (at α → π) at any step of the calculations. Then we divide

(normalize) the result of the functional integration by the corresponding integral over the

SL(2,R) group. Thus we factor the infinite input of the SL(2,R) subgroup out.

In some sense, the method of [23–26] looks like calculations in a gauge theory using

the transverse gauge, whereas our approach is more similar to calculations in an arbitrary

gauge with a gauge fixing term in the action.

In spite of their difference, the both approaches lead to qualitatively the same results

for the two point correlation function. Namely, the form of the function given above at

figure 1 is similar to that given in [25] at figure 6. The both results also have the same

T−
3
2 behaviour at T � 1. Thus we confirm the corresponding physical conclusions of the

earlier papers [23–26].

A A quasi-invariant measure on the group of diffeomorphisms

In this appendix, we define the measure on the group of diffeomorphisms and give a

schematic proof of its quasi-invariance.

Let Diff1
+([0, 1]) be the group of all continuously differentiable transformations of the

interval [0, 1] preserving the ends, and Diff3
+([0, 1]) be the subgroup of the group Diff1

+([0, 1])

consisting of all diffeomorphisms of the smoothness C3.

Denote the space of all continuous functions on the interval [0, 1] with zero value at

the left end of the interval by C0([0, 1]).

Consider the map

A : Diff1
+([0, 1])→ C0([0, 1]) ,
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where

ξ(t) = (A(ϕ)) (t) = log(ϕ′(t))− log(ϕ′(0)) , ∀t ∈ [0, 1] . (A.1)

The map A identifies the spaces Diff1
+([0, 1]) and C0([0, 1]). In this case,

A−1(ξ)(t) =

t∫
0

eξ(τ)dτ

1∫
0

eξ(τ)dτ

. (A.2)

Let wσ be the Wiener measure with the dispersion σ on C0([0, 1]).

Now define the measure µσ on Diff1
+([0, 1]) by the equation µσ(X) = wσ(A(X)) for

any measurable subset X of the space Diff1
+([0, 1]).

For every f ∈ Diff3
+([0, 1]) and an arbitrary ϕ ∈ Diff1

+([0, 1]) define

Lf (ϕ) = f ◦ ϕ .

A detailed proof of the quasi-invariance of the measure µσ is given in [36]). Here, we

present a scheme of the proof.

Consider

η = ALfA
−1(ξ) .

It is written in the form

η(t) = ξ(t) + h


t∫

0

eξ(τ)dτ

1∫
0

eξ(τ)dτ

 , (A.3)

where h = A(f), that is,

h(t) = log
(
f ′(t)

)
− log

(
f ′(0)

)
.

Note that, if ϕ ∈ Diff3
+([0, 1]), then h ∈ C2

0 ([0, 1]).

The Jacobian of the map (A.3) at the point ξ found in the [36]) does not depend on ξ

and is equal to 1
f ′(1) .

For continuously differentiable function η, we obtain

1∫
0

(
η′(t)

)2
dt =

1∫
0

(
ξ′(t)

)2
dt+W + V ,

where

W = 2

1∫
0

ξ′(t)h′


t∫

0

eξ(τ)dτ

1∫
0

eξ(τ)dτ

 eξ(t)

1∫
0

eξ(τ)dτ

dt ,

V =

1∫
0

h′


t∫
0

eξ(τ)dτ

1∫
0

eξ(τ)dτ




2

e2ξ(t)(
1∫
0

eξ(τ)dτ

)2 dt .
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Let P be a continuous bounded functional on C0([0, 1]). Then∫
C0([0, 1])

P (η)wσ(dη) =
1

f ′(1)

∫
C0([0, 1])

P
(
ALfA

−1(ξ)
)

exp

{
− 1

2σ2
(W + V )

}
wσ(dξ) .

Note that if ξ were continuously differentiable, then by the integration by parts we

would get

1

2
W = h′(1)

eξ(1)

1∫
0

eξ(τ)dτ

− h′(0)
1

1∫
0

eξ(τ)dτ

−
1∫

0

h′′


t∫

0

eξ(τ)dτ

1∫
0

eξ(τ)dτ

 e2ξ(t)(
1∫
0

eξ(τ)dτ

)2 dt .

However, the Wiener process ξ(t) is nonsmooth, and there appear the additional terms [40]

that can be evaluated in the discrete version of the theory by the correct passage to the

continuous limit (see [36]).

As the result, we have∫
C0([0, 1])

P (η)wσ(dη)

=
1√

f ′(1)f ′(1)

∫
C0([0, 1])

P
(
ALfA

−1ξ
)

exp

−
1

2σ2

h′(1)
eξ(1)

1∫
0

eξ(τ)dτ

− h′(0)
1

1∫
0

eξ(τ)dτ




× exp


1

σ2

1∫
0

Sf


t∫

0

eξ(τ)dτ

1∫
0

eξ(τ)dτ

 e2ξ(t)(
1∫
0

eξ(τ)dτ

)2 dt

 wσ(dξ) . (A.4)

Note that

Sf (t) =

(
f ′′(t)

f ′(t)

)′
− 1

2

(
f ′′(t)

f ′(t)

)2

= h′′(t)− 1

2
(h(t))2 .

The map A−1 gives the equation (2.8)∫
Diff1([0,1])

F (ϕ)µσ(dϕ) =
1√

f ′(0)f ′(1)

∫
Diff1([0,1])

F (f ◦ ϕ)

× exp

 1

σ2

[
f ′′(0)

f ′(0)
ϕ′(0)− f ′(1)

f ′(1)
ϕ′(1)

]
+

1

σ2

1∫
0

Sf (ϕ(t))
(
ϕ′(t)

)2
dt

 µσ(dϕ) .

Thus, the measure µσ on Diff1
+([0, 1]) is quasi-invariant with respect to the subgroup

Diff3
+([0, 1]) :

µσ(Lf (X)) =

∫
X

Rµf (ϕ)µσ(dϕ) , (A.5)
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where the Radon - Nikodim derivative has the form (2.7)

Rµf (ϕ)≡ dµ
f
σ

dµσ
(ϕ) =

1√
f ′(0)f ′(1)

×exp

 1

σ2

[
f ′′(0)

f ′(0)
ϕ′(0)− f

′′(1)

f ′(1)
ϕ′(1)

]
+

1

σ2

1∫
0

Sf (ϕ(t))
(
ϕ′(t)

)2
dt

 .
B Proof of the basic formula

To evaluate the basic Wiener integral (2.2) we use the quasi-invariance of the Wiener

measure under the action of the operator Kf ≡ ALf A−1 :

(Kf ξ) (t) = ξ(t) + log

f
′


t∫

0

eξ(τ)dτ

1∫
0

eξ(τ)dτ


− log

{
f ′(0)

}
.

The Radon-Nikodim derivative is

dwfσ
dwσ

(ξ) =
1√

f ′(0)f ′(1)
exp


1

σ2

[
f ′′(0)

f ′(0)
− f ′′(1)

f ′(1)
eξ(1)

]
1

1∫
0

eξ(τ)dτ


× exp


1

σ2

1∫
0

Sf


t∫

0

eξ(τ)dτ

1∫
0

eξ(τ)dτ

 e2ξ(t)(
1∫
0

eξ(τ)dτ

)2 dt

 ,

where wfσ(X) = wσ(KfX).

Now consider the special transformation

f = gβ(t) =
(β + 1)t

βt+ 1

with

g′β(t) =
β + 1

(βt+ 1)2
, g′′β(t) = −2(β + 1)β

(βt+ 1)3
, Sgβ (t) = 0 .

In this case, the Radon-Nikodim derivative has the form

dw
gβ
σ

dwσ
(ξ) = exp


−2β

σ2

[
1− eξ(1)

β + 1

]
1

1∫
0

eξ(τ)dτ

 , (B.1)
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and

∫
C0([0,1])

δ (ξ(1)−x) w
gβ
σ (dξ) =

∫
C0([0,1])

δ (ξ(1)−x) exp


−2β

σ2

[
1− e

ξ(1)

β+1

]
1

1∫
0

eξ(τ)dτ

wσ(dξ) .

At the same time,∫
C0([0, 1])

δ (ξ(1)− x) w
gβ
σ (dξ) =

∫
C0([0, 1])

δ (η(1) + 2 log(β + 1)− x)wσ(dη)

=
1√
2πσ

exp

{
− 1

2σ2
(x− 2 log(β + 1) )2

}
.

Here, we have used the equation∫
C0([0, 1])

δ (ξ(1)− x) wσ(dξ) =
1√
2πσ

exp

{
− 1

2σ2
x2

}
,

and the following relation:

η(1) =
(
Kgβξ

)
(1) = ξ(1) + log g′β(1)− log g′β(0) = ξ(1)− 2 log(β + 1) ,

or

ξ(1) = η(1) + 2 log(β + 1) .

Therefore, the basic formula

∫
C0([0, 1])

δ (ξ(1)− x) exp


−2β

σ2

[
1− eξ(1)

β + 1

]
1

1∫
0

eξ(τ)dτ

 wσ(dξ)

=
1√
2πσ

exp

{
− 1

2σ2
(x− 2 log(β + 1) )2

}
(B.2)

is proven.

C Properties of the function Eσ(u, v)

To study the properties of the function Eσ(u, v) given by the equation (3.26)

Eσ(u, v) =

∫
Diff1([0,1])

δ
(
ϕ′(0)− u

)
δ
(
ϕ′(1)− v

)
µσ(dϕ)

consider the functions ϕ, ψ ∈ Diff1([0, 1]) connected by the diffeomorphism gλ :

ϕ(t) = gλ(ψ(t)) , gλ(τ) =
(λ− 1)τ

λ− τ
, λ > 1 , gλ ∈ Diff3([0, 1]) . (C.1)

– 19 –



J
H
E
P
1
1
(
2
0
1
8
)
0
3
6

In this case, the equation (2.8) gives

Eσ(u, v) =

∫
Diff1([0,1])

δ
(
g′λ(0)ψ′(0)−u

)
δ
(
g′λ(1)ψ′(1)−v

)
(C.2)

×exp

{
1

σ2

[
g′′(0)

g′(0)
ψ′(0)− g

′′(1)

g′(1)
ψ′(1)

]}
µσ(dψ)

=

∫
Diff1([0,1])

δ

(
ψ′(0)− λ

λ−1
u

)
δ

(
ψ′(1)−λ−1

λ
v

)
exp

{
2

σ2

(
u

λ−1
− v
λ

)}
µσ(dψ) .

Therefore, we have

Eσ(u, v) = Eσ
(

λ

λ− 1
u,
λ− 1

λ
v

)
exp

{
2

σ2

(
u

λ− 1
− v

λ

)}
. (C.3)

In particular, for
1

λ
= 1−

√
u

v
,

the above equation has the symmetric form (3.29):

Eσ (u, v) = Eσ
(√
uv,
√
uv
)

exp

{
− 2

σ2

(√
u−
√
v
)2}

.

Now we perform the functional integration in Eσ(u, u) . First we write it in the form

of the integrals over the Wiener measure

Eσ(u, u) =

∫
Diff1([0,1])

δ
(
ϕ′(0)− u

)
δ
(
ϕ′(1)− u

)
µσ(dϕ)

=

∫
Diff1([0,1])

δ
(
ϕ′(0)− u

)
δ
(
ϕ′(1)− ϕ′(0)

)
µσ(dϕ)

=

∫
C0([0, 1])

δ

 1
1∫
0

eξ(τ)dτ

− u

 δ
(
u
[
eξ(1) − 1

])
wσ(dξ)

=
1

u

∫
C0([0, 1])

δ

 1
1∫
0

eξ(τ)dτ

− u

 δ (ξ(1)) wσ(dξ) . (C.4)

Taking the Fourier transform of the first δ−function in (C.4), we get

Eσ(u, u) =
1

2π u

+∞∫
−∞

eiρudρ

∫
C0([0, 1])

exp

−iρ
1

1∫
0

eξ(τ)dτ

 δ (ξ(1)) wσ(dξ) . (C.5)
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It is convenient to rewrite the above equation as

Eσ(u, u) =
1

uπ σ2

+∞∫
−∞

exp

{
iu

2r

σ2

}
dr

∫
C0([0, 1])

exp

−i
2r

σ2

1
1∫
0

eξ(τ)dτ

 δ (ξ(1)) wσ(dξ) .

(C.6)

To use the equation (2.1), note that a solution of the equation

β2

β + 1
= ir

has the form

β∗(r) + 1 =
(
i
r

2
+ 1
)

+

√(
i
r

2
+ 1
)2
− 1 .

Due to the identity

log
(
y +

√
y2 − 1

)
= arc cosh y ,

the equation (2.1) gives

∫
C0([0,1])

exp

−i
2r

σ2

1
1∫
0

eξ(τ)dτ

δ (ξ(1)) wσ(dξ) =
1√
2πσ

exp

{
− 2

σ2

(
arccosh

(
ir

2
+1

))2
}
.

Therefore, the function Eσ(u, u) is written as

Eσ(u, u) =
2

u (2π)
3
2 σ3

+∞∫
−∞

exp

{
iu

2r

σ2

}
exp

{
− 2

σ2

(
arc cosh

(
ir

2
+ 1

))2
}
dr . (C.7)

Having in mind the properties of the function arc cosh, we turn the integration contour

with the result

Eσ(u, u) =

√
2

u (2π)
3
2 σ3

exp

{
2π2

σ2

} +∞∫
4

exp

{
−2ux

σ2

}

× exp

{
− 2

σ2

(
arc cosh

(
x− 2

2

))2
}

sin

(
4π

σ2
arc cosh

(
x− 2

2

))
dx . (C.8)

After the substitution

τ = arc cosh

(
x− 2

2

)
, x = 2 + 2 cosh τ ,

the function Eσ(u, u) takes the form (3.30)

Eσ (u, u) =
2
√

2

uπ
3
2σ3

exp

{
2π2−4u

σ2

} +∞∫
0

exp

{
− 2

σ2

(
2u coshτ+τ2

)}
sin

(
4πτ

σ2

)
sinh(τ)dτ .

The forms of the functions Eσ(x, x) and Eσ(x, y) at σ = 1 are presented at figure 2

and at figure 3 respectively.
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Figure 2. The form of the symmetric function E1(x, x).

Figure 3. The form of the function Eσ(x, y).

D Integration in SL(2,R)

In this appendix, we evaluate the asymptotic form (at π − α → 0) of the regularized

integrals over the Haar measure dν on the group SL(2,R). These integrals are used to

normalize the corresponding functional integrals over the group Diff1 considered in this

paper. We are interesting in the asymptotic form of the following integrals:

V α
SL(2,R) =

∫
SL(2,R)

exp

−λ
1∫

0

ϕ̇2(t)dt

 dν , (D.1)

Φα
SL(2,R) =

∫
SL(2,R)

ϕ̇(0) exp

−λ
1∫

0

ϕ̇2(t)dt

 dν , (D.2)

Gα2;SL(2,R) =

∫
SL(2,R)

ϕ̇(t)ϕ̇(0) exp

−λ
1∫

0

ϕ̇2(t)dt

 dν . (D.3)

Here,

λ =
2
[
π2 − α2

]
σ2

.
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To perform the integration over the group SL(2,R) we choose the representation [41]

ϕz(t) = − i

2π
log

ei2πt + z

z̄ ei2πt + 1
, z = ρeiθ , ρ < 1 . (D.4)

In this case, the Haar measure is [41]

ν(dz) =
2dz dz̄

(1− zz̄)2 =
4ρdρ dθ

(1− ρ2)2 . (D.5)

To evaluate the integral

I =

1∫
0

ϕ̇2
z(t)dt =

(
1− |z|2

)2 1∫
0

dt

(ei2πt + z)2 (e−i2πt + z̄)2 , (D.6)

note that, due to the periodicity, it does not depend on θ. Therefore, we can assume z to

be real z = ρ > 0, ρ < 1. After the substitution w = ρ exp{i2πt}, the integral I transforms

into the contour integral

I =
1

2πi

(
1− ρ2

)2 ∮
|w|=ρ<1

w dw

(w + ρ2)2 (w + 1)2

=
(
1− ρ2

)2
Res{w=−ρ2}

w

(w + ρ2)2 (w + 1)2
= −1 +

2

1− ρ2
= −1 +

2

1− zz̄
. (D.7)

And the regularized volume of the group (D.1) has the form

V α
SL(2,R) = eλ

∫
|z|<1

exp

{
−λ 2

(1−zz̄)

}
2dzdz̄

(1−zz̄)2 = eλ
1∫

0

exp

{
−λ 2

(1−ρ2)

}
8πρdρ

(1−ρ2)2 =
2π

λ
.

Thus, at α→ π − 0,

V As
SL(2,R) =

σ2

2(π − α)
. (D.8)

To find the second integral

Φα
SL(2,R) = eλ

∫
|z|<1

exp

{
−λ 2

(1− zz̄)

}
1

(1 + z)(1 + z̄)

2dz dz̄

(1− zz̄)
,

it is convenient to use the following representation of the complex variable z:

z = −1 + %eiϑ , (D.9)

and write (D.2) in the form

Φα
SL(2,R) = 2 eλ

+π
2∫

−π
2

dϑ

2 cosϑ∫
0

exp

{
− 2λ

% (2 cosϑ− %)

}
d%

%2 (2 cosϑ− %)
. (D.10)
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Note that in terms of % and ϑ, the integral in (D.1) looks like

V α
SL(2,R) = 2 eλ

+π
2∫

−π
2

dϑ

2 cosϑ∫
0

exp

{
− 2λ

% (2 cosϑ− %)

}
d%

% (2 cosϑ− %)2
. (D.11)

The substitution

%̃ = 2 cosϑ− %

transforms the integral (D.10) into the integral (D.11).

Thus we have

ΦAs
SL(2,R) =

σ2

2(π − α)
. (D.12)

Now we find the asymptotic form of the integral

Gα2; SL(2,R)

(
0,

1

2

)
= eλ

∫
|z|<1

exp

{
−λ 2

(1− zz̄)

}
2dz dz̄

(1 + z)(1 + z̄)(1− z)(1− z̄)

= eλ
2π∫
0

dθ

1∫
0

exp

{
−λ 2

(1− ρ2)

}
2dρ2

(1− ρ2)2 + 4ρ2 sin2 θ
. (D.13)

The method widely used to study the asymptotic behavior of Feynman diagrams (see,

e.g., [42] and refs. therein) is very helpful here. Namely, we consider the Mellin transform

of the integrand and rewrite (D.13) as follows:

Gα2;SL(2,R)

(
0,

1

2

)
= eλ

a0+i∞∫
a0−i∞

daΓ(a)Γ(1−a)

2π∫
0

dθ
(
sin2θ

)−a

×
1∫

0

exp

{
−λ 2

(1−ρ2)

}
2dρ2

4a(1−ρ2)2(1−a) ρ2a
, 0<a0< 1 . (D.14)

After the substitution x = (1 − ρ2)−1, the integrals over θ and over x are the table

integrals (see, e.g., [37] n. 2.5.3.2 and n. 2.3.6.7):

π
2∫

0

sin−2a θ dθ =
1

2

Γ
(

1
2 − a

)
Γ
(

1
2

)
Γ (1− a)

,

+∞∫
1

x−a(x− 1)−a e−2λx dx =
e−λ
√
πΓ(1− a)

2 sin
([

1
2 − a

]
π
) (2λ)−

1
2

+a
[
I− 1

2
+a(λ)− I 1

2
−a(λ)

]
.

Here, Iν(λ) is the modified Bessel function

Iν(λ) =

∞∑
k=0

λk+ν

k!2k+νΓ(k + ν + 1)
.
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Note that the first term in the series (k = 0) is the leading one at λ → 0. As the result,

the integral is reduced to

Gα2; SL(2,R)

(
0,

1

2

)
= π

a0+i∞∫
a0−i∞

da
Γ(a)Γ(1− a)

4aΓ
(

1
2 + a

) Γ
(

1
2 − a

)
sin
([

1
2 − a

]
π
) λ2a−1 . (D.15)

Then we close the integration contour in the right-hand half-plane and note that the

integral over the infinite half-circle equals to zero.

Now the leading asymptotics of the function Gα2; SL(2,R)

(
0, 1

2

)
is given by the residue

at the pole of the integrand inside the contour with the minimal value of a. For (D.15), it

is the pole at a = 1
2 and

GAs2; SL(2,R)

(
0,

1

2

)
= −π log(π − α) . (D.16)
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