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1 Introduction

The study of gauge theories in dimensions larger than four has over the years brought to

light a variety of unexpected and interesting dualities. In order to explore the latter in

a systematic fashion, the connection to string theory (or M- and F-theory as its higher-

dimensional avatars) has proven to be a powerful tool. Besides (in many cases) providing

a physical explanation for many a priori surprising dualities, the connection also allows

to analyze aspects (e.g. the non-perturbative regime) that would be inaccessible by more

traditional, purely field theoretic methods alone. An example is the zoo of six-dimensional

superconformal theories which are engineered using string theory and which do not have

a Lagrangian description [1–4]. It was also observed that various properties and dual-

ities of lower-dimensional theories follow from compactification of these six-dimensional

theories [5].
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A class of theories [6–9] that has recently attracted attention concerns the theories

that are engineered from F-theory compactifications [10–16] on a two-parameter family of

toric, non-compact Calabi-Yau threefolds XN,M . These manifolds have a double elliptic

fibration structure, where the two fibrations have singularities of type IN−1 and IM−1

(with N,M ∈ N), respectively, and can be realised as the ZN × ZM orbifold of X1,1

(see [9, 17]). What makes the theories constructed in this fashion interesting is that they

are in fact Little String Theories (LSTs) [18–24]: at a low-energy scale, they correspond to

conventional gauge theories with a specific gauge group. However, these theories contain an

effective scale beyond which they can no longer be described as simple point-particle field

theories, but require the inclusion of noncritical string degrees of freedom (see also [25, 26]).

They retain (part of) their fundamental string theoretic origin, although all gravitational

degrees of freedom are decoupled. The supersymmetric partition function ZN,M of these

theories is captured by the (refined) topological string partition function of the Calabi-

Yau manifold XN,M , which (given the toric nature of the latter) can be computed in an

efficient manner [6–9] with the help of the refined topological vertex formalism [27–29].

Indeed, in [30], a generic building block was constructed which allows to compute different

expansions of ZN,M in terms of certain Kähler parameters for generic (N,M).

In the recent papers [31] and [32], two intriguing observations have been made which

imply that a low-energy theory constructed from a given XN,M permits a large number

of dual descriptions. First of all, in [31], the extended Kähler moduli space of XN,M was

analysed: the Kähler moduli space of XN,M has the shape of a cone, whose codimension-one

faces (referred to as walls in the following) include loci where one of the Kähler parameters

vanishes. Crossing such a wall corresponds to a so-called flop transition [33, 34]: it leads

to a neighbouring cone that describes again a Calabi-Yau manifold and lies in the extended

Kähler moduli space [35, 36] of XN,M . By using a particular series of flop transitions, it

was conjectured in [31] that

XN,M ∼ XN ′,M ′ if
NM = N ′M ′ , and

gcd(N,M) = gcd(N ′,M ′) ,
(1.1)

i.e. under the given conditions, the Kähler cones of the Calabi-Yau manifolds XN,M and

XN ′,M ′ are part of a common extended moduli space. The relation (1.1) was explicitly

shown for a large class of examples and passed highly non-trivial consistency checks for

generic (N,M). Moreover, it is expected that the partition functions ZN,M and ZN ′,M ′
agree upon taking into account the duality map implicit in (1.1). This fact was explicitly

checked for gcd(N,M) = 1 in [30].

Secondly, in [32] the question was analysed what type of (low-energy) gauge theories

can be engineered from a given Calabi-Yau manifold XN,M . By studying different series

expansions of ZN,M (in terms of different sets of the Kähler parameters of XN,M ) it was

found that the Kähler cone of XN,M contains three different regions that engineer five-

dimensional quiver gauge theories with gauge groups

Ghor = [U(M)]N , Gvert = [U(N)]M , Gdiag =
[
U
(
MN
k

)]k
, (1.2)
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respectively, where k = gcd(N,M). It is expected that the UV completions of (at least

some of) these gauge theories are LSTs. The relation among the three low-energy theories

with gauge groups (1.2) was dubbed triality in [32], reflecting the fact that all three are

engineered by the same Calabi-Yau threefold. It is important to realise that the mapping of

the various gauge theory parameters is highly non-trivial among the members of the triality:

indeed, the coupling constants, mass parameters and other Coulomb branch parameters

are mixed in a highly non-trivial fashion when going from one theory to another.

Combining the triality discussed in [32] with the observations of [31] that the Calabi-

Yau manifold XN,M itself can be dualised to other manifolds in the sense of eq. (1.1)

suggests an even more elaborate picture at the level of the low-energy theories: indeed it

implies that a (circular) quiver gauge theory with N gauge nodes of type U(M) (that is

engineered by XN,M for arbitrary (N,M)) is dual to a whole web of other quiver gauge

theories that have N ′ gauge nodes of type U(M ′) such that NM = N ′M ′ and gcd(N,M) =

gcd(N ′,M ′). In this paper, we elaborate on this idea and perform a first step towards

extending the web of dualities even further to include yet new regions in the extended

moduli space of the Calabi-Yau threefolds XN,M . Indeed, the latter also contains cones

that do not represent manifolds of the type XN ′,M ′ for some N ′,M ′ ∈ N, i.e. that do

not fall into the class of doubly elliptically fibered threefolds introduced above. Among

these, we focus on a class of manifolds that can be represented by so-called twisted toric

web diagrams (see section 3 for a detailed definition) and show (by using some elucidating

examples) that they can also engineer low-energy gauge theories. The details of analysing

the structure of the underlying gauge group (as well as their affine extension, possibly by

non-perturbative effects) by geometric means is relegated to a separate publication [37].

This paper is organised as follows: in section 2, we review in more detail the structure

of the extended moduli space of XN,M as well as the triality relation proposed in [32].

We then combine these two results to argue for a large web of dualities for the theories

constructed from the Calabi-Yau manifolds of type XN,M . As a non-trivial example, we

present the configuration (N,M) = (6, 5). In section 3, we propose to extend the web

of dualities to include theories engineered by other regions in the extended moduli space

of XN,M . We focus on a particular class of manifolds, which are described by so-called

shifted we diagrams and discuss explicitly the cases (N,M) = (6, 1) and (4, 1). This work

is accompanied by 3 appendices: they contain technical details on the geometric realisation

of the gauge algebra from the perspective of the web diagram in the case (N,M) = (2, 2),

as well as definition of the Nekrasov subfunctions and further details on a particular class

of duality transformations, respectively.

2 Symmetry transformations of XN,M and dual little string theories

In this section, we discuss various degenerations of XN,M and the corresponding walls in

the extended Kähler moduli space. We also discuss the gauge theories which appear in

various cones of the latter.
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Figure 1. Web Diagram of the toric Calabi-Yau manifold XN,M . The vertical and horizontal lines

are glued together as indicated by the labels of the outermost legs.

2.1 (Extended) Kähler moduli space of XN,M

The main subject of study of this paper is relations among certain N = (1, 0) LSTs (i.e.

with 8 supercharges), focusing in particular on their low-energy descriptions in terms of

quiver gauge theories [38]. These theories are defined by F-theory compactified on a class

of toric, non-compact Calabi-Yau manifolds XN,M , whose associated web diagram is shown

in figure 1. Each line Σi of this diagram represents a holomorphic curve in XN,M , whose

area is given by ∫
Σi

ω , (2.1)

where ω is the Kähler form of XN,M .1 There are a total NM horizontal {h}, NM vertical

{v} and NM diagonal {m} curves, respectively. However, the corresponding 3NM areas

are not all independent of one another. Indeed, as discussed in [7, 8], consistency conditions

of the web diagram enforce linear relations among the latter, leaving (NM+2) independent

parameters which parametrise the Kähler moduli space of XN,M . More precisely, denoting

the two-dimensional complex submanifolds of XN,M as Pa, the Kähler cone of XN,M is

1In the following, unless otherwise indicated, by abuse of notation, we use the same symbol for the

holomorphic curves and their areas.
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∫
Σ ω = 0

Kähler cone associated with the

Calabi-Yau manifold after flop

transition of the line Σ

Kähler cone of XN,M

Figure 2. Kähler cones of two Calabi-Yau manifolds connected through a flop transition of the

curve Σ.The corresponding wall, along which the cones are glued together, is characterised by∫
Σ
ω = 0 and is shown in green.

given by∫
XN,M

ω ∧ ω ∧ ω ≥ 0 , and

∫
Pa

ω ∧ ω ≥ 0 , and

∫
Σi

ω ≥ 0 . (2.2)

The walls of the cone correspond to the regions in which any of these inequalities turns

into an actual equality. In particular, they include the regions in which one or more of the

areas {h,v,m} vanish, such that the web diagram in figure 1 degenerates.

The cone described by (2.2), however, can be embedded in a larger, so-called extended

moduli space [35]. As explained above, while the shrinking of a rational curve of XN,M

with normal bundle O(−1) ⊕ O(−1) results in a singular geometry, the latter can again

be resolved. This leads to a geometry which lies outside of the original Kähler cone (2.2)

since, from the point of view of the latter, the curve that resolves the degeneracies has

negative area. This process is called a flop transition and connects the Kähler cones of two

Calabi-Yau manifolds with the same Hodge numbers (but possibly different intersection

numbers) [33, 34, 36], as shown in figure 2. In this way, we can characterise the extended

Kähler moduli space as the collection of Kähler cones of Calabi-Yau threefolds that are

connected through (sequences of) flop transitions.

2.2 Web of dual Calabi-Yau manifolds and associated LSTs

Recent studies [8, 30, 32] of the extended Kähler moduli space of the toric Calabi-Yau

threefolds XN,M have suggested the existence of a large number of new dualities of the type

XN,M ∼ XN ′,M ′ , for
NM = N ′M ′ and

gcd(N,M) = k = gcd(N ′,M ′) .
(2.3)
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intermediate Kähler cone(s) that are passed

through in the series of flop- and symmetry trans-

formations connecting XN,M and XN ′,M ′

Kähler cone of XN,M

Kähler cone of XN ′,M ′

walls of Kähler cones

•

•
•

•

∫
m
ω →∞

•

∫
h
ω →∞

•

∫
v
ω →∞

•

•
•

•

∫
m′ ω

′ →∞

•

∫
h′ ω

′ →∞

•

∫
v′ ω

′ →∞

Figure 3. Weak coupling regions in the extended moduli space of XN,M .

The relation ∼ means that the two Calabi-Yau threefolds are related by a certain com-

bination of flop transitions (and other symmetry transformations). This process is shown

schematically in figure 3: starting at a point in the Kähler cone of XN,M , one can reach the

Kähler cone of XN ′,M ′ . The Kähler form of XN ′,M ′ is denoted ω′ and the corresponding

web configuration consists of M ′N ′ many line segments (h′,v′,m′). The explicit dual-

ity map relating (h,v,m) to (h′,v′,m′) was proposed in [31], where it was argued (and

proven explicitly in [30] for k = 1) that the topological string partition function of XN,M

is invariant under the duality transformation, i.e.

ZN,M (h,v,m, ε1,2) = ZN ′,M ′(h′,v′,m′, ε1,2) . (2.4)

Furthermore, in [32], we argued that within the Kähler cone of XN,M (for given N,M ∈ N)

there exist three regions that represent the weak-coupling regime of three (in general dif-

ferent) quiver gauge theories with gauge groups

Ghor = [U(M)]N , Gvert = [U(N)]M , Gdiag = [U(MN/k)]k . (2.5)
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These regions are schematically shown in figure 3 and afford three different series expan-

sions of the topological string partition function of XN,M [32]2

ZN,M (h,v,m, ε1,2) = Zp(v,m)
∑
~k

e−
~k·h Z~k(v,m) = Z

(N,M)
hor

= Zp(h,m)
∑
~k

e−
~k·v Z~k(h,m) = Z

(N,M)
vert

= Zp(h,v)
∑
~k

e−
~k·m Z~k(h,v) = Z

(N,M)
diag , (2.6)

which can be interpreted as the instanton partition functions of the three gauge theo-

ries (2.5).3 As shown in figure 3, since XN ′,M ′ has a similar web diagram as the one

shown in figure 1, the Kähler cone of XN ′,M ′ also contains three regions which allow series

expansions of the partition function of the following form

ZN,M (h,v,m, ε1,2) = Zp(v
′,m′)

∑
~k

e−
~k·h′ Z~k(v

′,m′) = Z
(N ′,M ′)
hor

= Zp(h
′,m′)

∑
~k

e−
~k·v′ Z~k(h

′,m′) = Z
(N ′,M ′)
vert

= Zp(h
′,v′)

∑
~k

e−
~k·m′ Z~k(h

′, v′) = Z
(N ′,M ′)
diag , (2.7)

where the invariance (2.4) was used. The series expansions Z
(N ′,M ′)
hor , Z

(N ′,M ′)
vert and Z

(N ′,M ′)
diag

can be interpreted as the partition functions of quiver gauge theories with gauge groups

G′hor = [U(M ′)]N
′
, and G′vert = [U(N ′)]M

′
, and G′diag = [U(M ′N ′/k)]k , (2.8)

respectively. As their partition functions are equal, these three gauge theories are not only

dual to one another, but are also dual to the theories with the gauge groups (2.5).4 From

the perspective of the gauge theories, depending on the line segments of the web diagram

that undergo flop transitions, there are two possibilities for the nature of these dualities:

• If none of the line segments that are associated with the coupling constants of the

theory are flopped (i.e. h for the horizontal, v for the vertical and m for the diagonal

theories), the duality map corresponds to a finite shift of the coupling constants and

a symmetry transformation of the Coulomb branch moduli. This can be interpreted

as a finite reparametrisation of the Coulomb branch: both the theory before and after

2Zp being the perturbative contribution depending on the parameters other than the gauge couplings.
3For an explicit and efficient manner to compute the series expansions in eq. (2.6) by means of a universal

building block, we refer the reader to [30]. This construction is also briefly reviewed section 3.2.2. The

explicit choice of (independent) Kähler parameters underlying the three series expansions in eq. (2.6) is

discussed in detail in section 2.3 below.
4Note that, even though Gdiag = G′diag, the coupling constants, Coulomb branch parameters and hy-

permultiplet masses may in general be different for the two theories because of the non-trivial duality map

(h,v,m)→ (h′,v′,m′). In particular, the coupling constants may be shifted by functions of the remaining

parameters of the theory.
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the combined symmetry and flop-transformation are in the weak coupling regime and

their perturbative descriptions can directly be compared.

• If line segments associated with the coupling constants undergo flop transitions, the

duality requires to pass through a region in which the instanton counting parameter

becomes of order 1, i.e. a regime in which the gauge coupling constants blow up.

In this case, the duality cannot be understood from the perspective of the weakly

coupled gauge theories alone: indeed, in the corresponding Kähler cone in figure 3,

even before hitting the actual wall that signals the flop transition, the theory enters

into a strong coupling phase, in which the description in terms of a (quiver) gauge

theory breaks down and needs to be replaced (in general) by an LST.

We discuss an explicit example (namely the duality between theories engineerd by X6,5

and X10,3) in section 2.4.

2.3 Independent Kähler parameters and gauge group structure

In writing the series expansions (2.6) and (2.7), we have not yet addressed an important

technical aspect, namely the choice of independent Kähler parameters, which is closely

related to the gauge groups (2.5) and (2.8), respectively [32]. As alluded to briefly above,

not all of the 3NM areas of the curves in the web diagram of XN,M are independent.

Instead, there are consistency conditions among the former, which ultimately leave NM+2

independent Kähler parameters. These can be chosen in various different manners, but

in [32] three different proposals for a choice were made, each of which suitable for one of

the weak coupling regions in the Kähler cone of XN,M . Indeed, considering the low-energy

theory with gauge group

G = [U(A)]B , with (A,B) =


(M,N) . . . horizontal theory,

(N,M) . . . vertical theory,

(MN
k , k) . . . diagonal theory,

(2.9)

such that AB = NM and gcd(A,B) = k = gcd(N,M), the NM + 2 independent parame-

ters are organised as follows:

• B parameters related to the coupling constants g1,...,B of the B different U(A) gauge

factors

• B sets of A−1 parameters representing the roots of B copies of the Lie algebra aA−1

• a single parameter that is related to an affine root thereby extending each of the B

copies of aA−1 to affine algebras

• a single parameter which is related to the mass scale in the hypermultiplet sector

These are indeed a total of B + B(A − 1) + 1 + 1 = NM + 2 parameters, which have

been conjectured in [7, 32] to be independent of one another5 and thus represent a viable

parametrisation of the Kähler cone of XN,M .

5This has explicitly been verified for a large number of examples.
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h

h′

v

v′
m′

m

â

b̂

ĉ

Figure 4. Three classes of curves within a given hexagon Si whose areas are identified with roots

in the gauge theory perspective.

The curves whose areas make up the roots of the gauge algebras aA−1, can be identified

directly in the web diagram in figure 1. Indeed, focusing on a particular hexagon in the

latter, as shown in figure 4, we can identify the roots â associated with the gauge theory

stemming from the horizontal expansion, b̂ associated with the gauge theory stemming

from the vertical expansion and ĉ associated with the gauge theory stemming from the

diagonal expansion. The distinction between the finite (positive simple) roots and the

affine root of each âA−1 is a choice that fixes an automorphism of âA−1. The definition of

the remaining parameters mentioned above (particularly the one related to the mass scale

of the hypermultiplet sector of the gauge theory) is somewhat more involved and is related

to the fact that the web diagram is defined on a torus (i.e. the fact that all external legs

in figure 1 are glued together). Since these precise definitions are not important for the

current work, we refer the reader to [32] for more information and explicit examples.

2.4 Example: (N,M) = (6, 5)

To illustrate the fact that the combination of eq. (2.3) with the triality in the sense of

eq. (2.6) leads to a large web of dual theories, we discuss in more detail a non-trivial exam-

ple, namely (N,M) = (6, 5) (with k = gcd(6, 5) = 1). The corresponding web diagram is

shown in figure 5. According to [7, 8], the horizontal and vertical expansions can be associ-

ated with gauge theories of gauge group [U(5)]6 and [U(6)]5, respectively, while according

to [32], the diagonal expansion gives rise to a gauge theory with gauge group U(30). To

obtain the latter theory, in particular, to make the structure of U(30) manifest, we need

to expand Z6,5 in terms of a specific set of variables, a procedure which was proposed in

full generality in [32]. Concretely, in the present case, these variables are depicted in red

in figure 5 and consist of (M,V, â1,...,30), where M and V are given explicitly as

M = h6 + v1 + h25 + v26 + h20 + v21 + h15 + v16 + h10 + v11 + h5 ,

V = m30 + (6− 1)(h29 + h30) + (6− 2)(v5 + h4 + v25 + h19)

+ (6− 3)(v10 + h9 + v20 + h14) + (6− 4)(v15 + h14 + v15 + h9)

+ (6− 5)(v20 + h19 + v10 + h4) . (2.10)
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Figure 5. Parametrisation of the (6, 5) web diagram: out of the 90 curves (hi, vi,mi) (for

i = 1, . . . , 30) only 32 parameters are independent. The red curves constitute a maximal set of

independent parameters which makes a U(30) symmetry visible.
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Here, the last relation follows from the general duality map relating X6,5 ∼ X30,1 that was

conjectured previously in [31]. In this basis, we have6

mi = V + pi(M, â1,...,30) , ∀ i = 1, . . . , 30 , (2.11)

where pi are multi-linear functions in the 31 variables (M, â1,...,30), while h1,...,30 and v1,...,30

are independent of V . Thus, formulated in a different manner, the diagonal expansion writ-

ten schematically in (2.6), can be understood as a power series expansion in QV = e−V .

Furthermore, the âi play the role of the roots of â29, i.e. the affine extension of the Lie alge-

bra associated with the gauge group U(30) that is associated with the diagonal expansion:

indeed, in the weak coupling limit V → ∞, the diagonal lines in figure 5 are cut (as the

area of the corresponding curves in the toric Calabi-Yau threefold becomes infinite) and

the remaining diagram can be presented as a single strip of length 30.

As discussed in [31], the (6, 5) web diagram in figure 5 can be dualised to other webs of

the type (N ′,M ′) with NM = N ′M ′ and gcd(N,M) = gcd(N ′,M ′). In the case at hand,

one such configuration is (N ′,M ′) = (10, 3), whose web-diagram is drawn in figure 6. An

explicit form for the duality map relating (h,v,m) to (h′,v′,m′) has been conjectured

in [31], which allows us to recover the same set of parameters (M,V, â1,...,30) (drawn in red)

also in figure 6. In terms of (h′,v′,m′), we have explicit relations

M = h′10 + v′1 + h′21 + v′22 + h′12 + v′13 + h′3 + v′4 + h′24 + v′25 + h′15 + v′16 + h′6 + v′7

+ h′27 + v′28 + h′18 + v′19 + h′9 ,

V = m′30 + (10− 1)(h′29 + h′30) + (10− 2)(v′9 + h′8 + v′21 + h′11)

+ (10− 3)(v′18 + h′17 + v′12 + h′2) + (10− 4)(v′27 + h′26 + v′3 + h′23)

+ (10− 5)(v′6 + h′5 + v′24 + h′14) + (10− 6)(v′15 + h′14 + v′15 + h′5)

+ (10− 7)(v′24 + h′23 + v′6 + h′26) + (10− 8)(v′3 + h′2 + v′27 + h′17)

+ (10− 9)(v′12 + h′11 + v′18 + h′8) . (2.12)

Note that, analogous to (2.11), we also have in the dual web diagram

m′i = V + p′i(M, â1,...,30) , ∀ i = 1, . . . , 30 , (2.13)

for some multi-linear functions p′i, while h′1,...,30 and v′1,...,30 are independent of V . Therefore,

the diagonal expansions (in the sense of (2.6)) of Z6,5 and Z10,3 both give rise to gauge

theories with gauge group U(30), as implied by [31] and as explained above.

In figure 6, however, we have also shown (in blue) a different set of maximally inde-

pendent Kähler parameters (D, ρ, c1,2,3, b̂1,...,27). In terms of these variables, we have

v′i =


c1 + p

(1)
i (D, ρ, b̂1,...,27) if 1 ≤ i ≤ 10

c2 + p
(2)
i (D, ρ, b̂1,...,27) if 11 ≤ i ≤ 20

c3 + p
(3)
i (D, ρ, b̂1,...,27) if 21 ≤ i ≤ 30

(2.14)

6We stress that all 90 parameters (hi, vi,mi) can be expressed as linear combinations of the 32 elements

(M,V, â1,...,30). However, we refrain to write down these relations explicitly, since they will not be needed

for the following discussions.
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â
2
4

â
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â
2
7

â
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â
2
6

â
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â
i

b̂ 1

b̂ 2

b̂ 3

b̂ 4

b̂ 5

b̂ 6

b̂ 7

b̂ 8

b̂ 9

b̂ 1
0

b̂ 1
1

b̂ 1
2

b̂ 1
3

b̂ 1
4

b̂ 1
5

b̂ 1
6

b̂ 1
7

b̂ 1
8

b̂ 1
9

b̂ 2
0

b̂ 2
1

b̂ 2
2

b̂ 2
3

b̂ 2
4

b̂ 2
5

b̂ 2
6

b̂ 2
7

c 2

c 3

c 1

D

Figure 6. Two different maximal sets of independent Kähler parameters in the (10, 3) web diagram.

After a series of suitable flop- and symmetry transformations, the red parametrisation agrees with

the maximal set of independent parameters (M,V, â1,...,30) used in the (6, 5) web diagram in figure 5.

– 12 –



J
H
E
P
1
1
(
2
0
1
8
)
0
1
6

for some polynomials p
(1,2,3)
i , while h′1,...,30 and v′1,...,30 are independent of c1,2,3. Thus, in

the limit ci → ∞ for i = 1, . . . , 3, the vertical lines in figure 6 are cut and the diagram

decomposes into three strips of length 10 (similarly to the examples in the previous section).

We can interpret this as the weak coupling limit of a gauge theory with gauge group

[U(10)]3. This indicates that, upon expanding Z6,5 as a power series in e−c1 , e−c2 and e−c3

(which is equivalent to the expansion in terms of e−v
′
i for i = 1, . . . , 10) the latter can be

interpreted as an instanton expansion of a gauge theory with gauge group [U(10)]3 (which

via SL(2,Z) transforms is in turn dual to a theory with gauge group [U(3)]10). It is worth

noticing that, in this manner, the b̂1,...,27 play the role of roots of Lie algebras associated

with this group.

Exploiting further dualities of X6,5 we can in the same fashion engineer a large set of

dual quiver gauge theories whose gauge groups include

U(30) , [U(15)]2 , [U(10)]3 , [U(6)]5 , [U(5)]6 , [U(3)]10 , [U(2)]15 , [U(1)]30 ,

(2.15)

all of which are compatible with the condition in eq. (2.3).

3 Intermediate Kähler cones and other dual theories

As schematically indicated in figure 3, the duality transformation that relates XN,M and

XN ′,M ′ does in general not relate regions in directly adjacent cones of the extended Kähler

moduli space. Instead, the series of flop transitions and other symmetry transformations

discussed in [31] (and reviewed in appendix C), generically passes through several other

regions (labelled ‘intermediate Kähler cones’ in figure 3). An interesting question is whether

any of these cones also contains regions which engineer a (weak coupling) description of

a gauge theory of some type and/or a Little String Theory. While we are not able to

give an answer for a generic Kähler cone in the extended moduli space of XN,M , in this

section, we discuss a particular type among the former, namely, those cones where the toric

web takes a similar form as in figure 1, except that the external legs are identified after a

cyclic rotation with a shift δ ∈ [0, N − 1], as shown in figure 7.7 Indeed, as explained in

appendix C, starting from the web-diagram of XN,M as shown in figure 1, there exists a

duality transformation F (introduced in eq. (C.1)) to a shifted web of the type shown in

figure 7 with δ = M−N mod N . This duality transformation is based on a series of flop and

symmetry transformations first discussed in [31], which for M = 1 was also reviewed in [30].

The transformation described in appendix C involves no flop transformations on the

vertical lines. Since, for example, in the vertical gauge theory, the latter are related to

the gauge coupling constants, this transformation therefore relates two points in the weak

coupling regime of this theory. In other words, even after the transformation, Z
(N,M)
vert

in (2.6) is still a valid series expansion that can be identified with an instanton series of

a (weakly coupled) gauge theory. This strongly suggests that even a Calabi-Yau manifold

with a shifted web diagram engineers at least one weakly coupled gauge theory, if it can

7In the following we refer to web diagrams of this type as shifted with shift parameter δ.
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Figure 7. Toric web diagram with a shifted identification of the external legs for δ ∈ [0, N − 1].

be related to an unshifted web diagram with a transformation of the type described in

appendix C. Below we will analyse possible weak coupling theories engineered from such

webs in more detail by focusing on the examples (N,M) = (6, 1) and (N,M) = (4, 1).

To analyse the latter, we will have to introduce as a further notion a purely geometric

realisation of the gauge algebra, that can directly be read off from the web diagram.

3.1 Example: (N,M) = (6, 1)

Our first example is the diagram X6,1 which is schematically drawn in figure 8, along

with a parametrisation of the Kähler parameters that is compatible with all consistency

conditions. We can arrange the latter in the following form:

âi = hi+1 + v , b̂i = hi +m, ∀i ∈ {1, 2, 3, 4, 5} ,

L =
5∑
i=1

âi + h1 + v , ρ =
5∑
i=1

b̂i + h6 +m, τ = m+ v , D = E/6 = m, (3.1)

which is more adapted to the description of three different gauge theories engineered by

XN,M . Indeed, as explained in [32] we can engineer the following theories

• horizontal theory of X
(δ=0)
6,1

The horizontal expansion of Z6,1 can be interpreted as the instanton partition function

of a gauge theory with gauge group [U(1)]6. This theory is parametrised in the

following fashion:
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Figure 8. Toric web diagram of X6,1 (with shift parameter δ = 0) with a consistent labelling of

the areas of all curves.

– coupling constants: the parameters b̂1,2,3,4,5 and ρ −
∑5

i=1 b̂i are related to the

coupling constants

– roots: there is no finite Lie algebra associated with U(1), however, the parameter

τ can be interpreted as the affine root for 6 copies of the Heisenberg algebra â0

– mass scale: the hypermultiplet mass scale of the theory is set by the parameter E

• vertical theory of X
(δ=0)
6,1

The vertical expansion of Z6,1 can be interpreted as the instanton partition function of

a gauge theory with gauge group U(6), which is parametrised in the following fashion:

– coupling constant: the parameter v is related to the coupling constant

– roots: the parameters b̂1,2,3,4,5 play the role of the simple positive roots of a5,

which is extended to â5 by ρ

– mass scale: the hypermultiplet mass scale of the theory is set by the parameter D

• diagonal theory of X
(δ=0)
6,1

The diagonal expansion of Z6,1 can be interpreted as the instanton partition function

of a gauge theory with gauge group U(6), which is parametrised in the following

fashion:

– coupling constant: the parameter m is related to the coupling constant
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Figure 9. Toric web diagram of X6,1 (with shift parameter δ = 0) with a consistent labelling of

the areas of all curves.

– roots: the parameters â1,2,3,4,5 play the role of the simple positive roots of a5,

which is extended to â5 by L

– mass scale: the hypermultiplet mass scale of the theory is set by the parameter v

After performing the transformation F in (C.1) of appendix C (which consists of

a series of flop transformations on the horizontal curves with areas h1,...,6) along with

other symmetry transformations), the web diagram can be brought into the form shown

in figure 9. This diagram is of the form of X
(δ=5)
6,1 = F(X

(δ=0)
6,1 ) (i.e. a diagram with

(N,M) = (6, 1), however, with shift parameter δ = 5 ∼ −1). It can also be presented

in the form of X
(δ=1)
3,2 as shown in figure 10, i.e. a web with (N,M) = (3, 2) and shift

parameter δ = 1. To arrive at this presentation only SL(2,Z) transformations were used,

but in particular no flop transformations. The Kähler parameters of the new web diagram

in figure 9 (and equivalently figure 10) can be expressed in terms of the original Kähler

parameters {h1,...,6, v,m}. Explicitly, we have for the areas of all curves

v′1 = −h6 , v′2 = −h4 , v′3 = −h2 ,

v′4 = −h5 , v′5 = −h3 , v′6 = −h1 ,

h′1 = m+ h1 + h6 , h′2 = m+ h4 + h5 , h′3 = m+ h2 + h3 ,

h′4 = m+ h5 + h6 , h′5 = m+ h3 + h4 , h′6 = m+ h1 + h2 ,

m′1 = v + h5 + h6 , m′2 = v + h3 + h4 , m′3 = v + h1 + h2 ,

m′4 = v + h4 + h5 , m′5 = v + h2 + h3 , m′6 = v + h1 + h6 .
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â′3
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ĉ′4

Figure 10. Toric web diagram of X
(1)
3,2 with shift δ = 1, and a labelling of the Kähler parameters.

With these parameters we can furthermore define

b̂′1 =h′1+v′1 = b̂1 , b̂′2 =h′6+v′6 = b̂2 , b̂′3 =h′3+v′3 = b̂3 ,

b̂′4 =h′5+v′5 = b̂4 , b̂′5 =h′2+v′2 = b̂5 , (3.2)

â′1 =m′3+v′6 = â1 , â′2 =m′5+v′3 = â2 , â′3 =m′2+v′5 = â3 ,

â′4 =m′4+v′2 = â4 , â′5 =m′1+v′4 = â5 , (3.3)

ĉ′1 =h′1+m′1 , ĉ′2 =h′2+m′2 , ĉ′3 =h′4+m′4 , ĉ′4 =h′5+m′5 ,

L′=m′1+h′1+m′2+h′2+m′3+h′3 , M ′=

6∑
i=1

v′i , v′= v′1+v′6+m′6 , (3.4)

E′=m′4+m′5+m′6 , D′=
6∑
i=1

m′i , τ ′=
6∑
i=1

(v′i+m
′
i) (3.5)

which is more appropriate for their interpretation in terms of gauge theories: indeed, in

the same way as above, there are three regions in the Kähler cone of X
(δ=1)
3,2 which suggest

an interpretation as weak coupling regions of three gauge theories:

• horizontal theory of X
(δ=5)
6,1

In the limit L′ →∞, the diagram X
(δ=5)
6,1 decomposes into a single strip of length 6,

which suggests an interpretation as the weak coupling limit of a gauge theory with

gauge group U(6). In analogy to the theories with δ = 0 we call this theory the

horizontal theory, which is parametrised as follows

– coupling constant: the parameter L′ is related to the coupling constant
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– roots: the parameters â′1,...,5 play the role of the simple positive roots of a5,

which is extended to â5 by τ ′

– mass scale: the hypermultiplet mass scale of the theory is set by the parameterD′.

• vertical theory of X
(δ=5)
6,1

In the limit â′1 → ∞ and 3τ ′ − â′1 → ∞, the diagram X
(δ=1)
3,2 decomposes into two

strips, each of length 3, which suggests an interpretation as the weak coupling limit

of a gauge theory with gauge group U(3) × U(3). In analogy to the theories with

δ = 0 we call this theory the vertical theory, which is parametrised as follows

– coupling constants: the parameters â′1 and 3τ ′ − â′1 are related to the coupling

constants

– roots: the parameters ĉ′1,...,4 play the role of the simple positive roots of two

copies of a2, which are extended to â2 by L′

– mass scale: the hypermultiplet mass scale of the theory is set by the parameterE′

• diagonal theory of X
(δ=5)
6,1

In the limit v′ →∞, the diagram X
(δ=1)
3,2 decomposes into a single strip of length 6,

which suggests an interpretation as the weak coupling limit of a gauge theory with

gauge group U(6). In analogy to the theories with δ = 0 we call this theory the

– coupling constant: the parameter v′ is related to the coupling constant

– roots: the parameters b̂1,...,5 play the role of the simple positive roots of a5,

which is extended to â5 by ρ

– mass scale: the hypermultiplet mass scale of the theory is set by the parameterM ′

In all three cases, in the limit when the designated coupling constants vanish, the web

diagram decomposes into several strips that engineer the perturbative limit of the corre-

sponding gauge theory. This argument is a direct generalisation of [32] in the case of the

‘unshifted’ XN,M .

We also remark that the duality transformation F , which relates X
(δ=5)
6,1 = F(X

(δ=0)
6,1 ),

acts as a flop transformation on the parameters h1,...,6. Therefore, from the perspective

of the horizontal gauge theory of X
(δ=0)
6,1 , this transformation goes through a strong cou-

pling regime and is not realised purely perturbatively. As a consequence, X
(δ=5)
6,1 does

not engineer a theory with gauge group U(1)6, but rather with its ‘strong coupling dual’,

which we called the vertical theory of X
(δ=5)
6,1 and which we conjecture to have gauge group

U(3)×U(3) in the perturbative limit of vanishing coupling constant.8 From the perspective

of the remaining two gauge theories, the duality transformation acts purely in the weak

coupling regime and therefore X
(δ=5)
6,1 also still engineers two theories with gauge groups

U(6) (which we termed the horizontal and diagonal one).

8The precise aspects of the perturbative expansion and specifically the strong coupling regime of this

theory might in fact be more delicate, as showcased in a different example in the following section.
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Performing a further transformation F on X
(δ=5)
6,1 , we obtain yet another shifted web

X
(δ=4)
(6,1) = F(X

(δ=5)
(6,1) ) whose Kähler cone allows again for three separate regions that engineer

three different gauge theories. Continuing in this fashion and taking into account that the

action of F on X6,1 is of order 6 (i.e. X
(δ)
6,1 = F6(Xδ

6,1)), we find a whole orbit of dual

Calabi-Yau, each of which engineering three different gauge theories. The gauge groups of

the latter are summarised in the following table

Calabi-Yau Ghor Gvert Gdiag

X
(δ=0)
6,1 [U(1)]6 U(6) U(6)

X
(δ=5)
6,1 = F(X

(δ=0)
6,1 ) U(6) [U(3)]2 U(6)

X
(δ=4)
6,1 = F2(X

(δ=0)
6,1 ) [U(3)]2 [U(2)]3 U(6)

X
(δ=3)
6,1 = F3(X

(δ=0)
6,1 ) [U(2)]3 [U(3)]2 U(6)

X
(δ=2)
6,1 = F4(X

(δ=0)
6,1 ) [U(3)]2 U(6) U(6)

X
(δ=1)
6,1 = F5(X

(δ=0)
6,1 ) U(6) [U(1)]6 U(6)

Notice that all gauge groups obtained in this fashion are of the form

[U(N ′)]M
′

with
N ′M ′ = 6 and

gcd(N ′,M ′) = 1 ,
(3.6)

and thus all have the same rank. Moreover, all theories obtained in this way have gauge

groups that can also be engineered from unshifted web diagrams that are related to X6,1.

While the details of these theories might still differ from the ones in (3.6), we leave an

in-depth analysis for future work [37]. In the following we shall discuss another example,

which potentially leads to theories with new gauge groups that are not engineered by

unshifted web diagrams.

3.2 Example: (N,M) = (4, 1)

3.2.1 Web diagram (4, 1) versus (2, 2)

As another example we consider the case (N,M) = (4, 1), whose web diagram is shown in

figure 11 (a). Performing the transformation F (see appendix C) twice, we obtain

F2(X
(δ=0)
4,1 ) = F2(X4,1) = X

(δ=2)
4,1 , (3.7)

whose web diagram is shown in figure 11 (b). Performing repeatedly the transformation

F (recalling that it has order 4 when acting on X4,1) we can construct an orbit of Calabi-

Yau manifolds X
(δ)
(4,1) for δ ∈ {0, 1, 2, 3}. Analysing again possible parametrisations of the

corresponding Kähler moduli space, along with suitable decoupling limits to search for

areas that engineer weak coupling regions of potential gauge theories, we are lead to the
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Figure 11. Toric web diagram for the configuration (N,M) = (4, 1) with shift δ.

following list of candidate gauge groups

Calabi-Yau Ghor Gvert Gdiag

X
(δ=0)
4,1 [U(1)]4 U(4) U(4)

X
(δ=3)
4,1 = F(X

(δ=0)
4,1 ) U(4) [U(2)]2 U(4)

X
(δ=2)
4,1 = F2(X

(δ=0)
4,1 ) [U(2)]2 U(4) U(4)

X
(δ=1)
4,1 = F3(X

(δ=0)
4,1 ) U(4) [U(1)]4 U(4)

The appearance of the group [U(2)]2 in this table is rather surprising since it is not

of the form U(N ′)M
′

with N ′M ′ = 4 and gcd(N ′,M ′) = gcd(4, 1) = 1. Thus, if really a

quiver gauge theory with this gauge group is engineered from (Calabi-Yau manifolds dual

to) X4,1, this indicates that the web of possible dual theories is yet even further enhanced.

In particular, it would indicate that the condition gcd(N,M) = gcd(N ′,M ′) could be

relaxed in (2.3) for the construction of dual gauge theories. However, in the following we

will find preliminary indications that X
(δ=2)
4,1 does not engineer a gauge theory that realises

the gauge group [U(2)]2 in a weak coupling regime (outside the limit of vanishing coupling

constant). Rather the appearance of this group seems to be linked to a strong coupling

effect in the 6-dimensional description, which may be linked to LSTs.

To discuss this aspect in more detail, in the following we consider X
(δ=2)
4,1 , whose web

diagram is shown in figure 11 (b). Upon cutting the diagram along the dashed red line and

re-gluing it along the lines labelled 3 and 4, respectively, the web diagram can be brought

into the form of X
(δ=1)
2,2 , whose web diagram is shown in figure 12 along with a labelling

of the Kähler parameters. In the following we will present a geometrical presentation of

the gauge algebra, by identifying the hexagons S1,2,3,4 in the web diagram figure 12 with

the co-roots of the gauge algebra engineered from the web. With this, we shall be able to

assign weights to all curves of the toric diagram and the corresponding Kähler parameters

they represent. This will allow us to analyse in which fashion the algebra a1⊕a1 is realised

in the gauge theory engineered from figure 12.
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Figure 12. Toric web diagram and parametrisation of X
(1)
2,2 .

3.2.2 Topological string partition function of XN,M

Our starting point for finding a geometric realisation of the gauge algebra is the expansion of

the partition function adapted to a particular gauge theory engineered by XN,M (associated

with an unshifted web diagram): as discussed in [30], the refined topological string partition

function for XN,M can be expanded in three different fashions. All three can compactly be

written in the following form

ZN,M =
∑
{α(i)
j }

 B∏
j=1

Q
∑A
i=1 |α

(i)
j |

gj

 B∏
i=1

W
α
(i)
1 ...α

(i)
A

α
(i+1)
1 ...α

(i+1)
A

(Q(m,n)
r,s , Q̃(m,n)

r,s ; q, t) , (3.8)

where (A,B) are as defined in (2.9). The summation α
(i)
j (with α

(B+1)
j = α

(1)
j for j =

1, . . . , A) in (3.8) is over integer partitions of |α(j)
i | ∈ N and Qgi = e−gi (for i = 1, . . . , B)

(where gi has been introduced in section 2.3). The W
α
(i)
1 ...α

(i)
A

α
(i+1)
1 ...α

(i+1)
A

are the fundamen-

tal building blocks introduced in [30], which depend on the U(1) deformation parame-

ters q = e2πiε1 and t = e−2πiε2 (which are related to the refinement of the topologi-

cal string [28, 39–41] as well as particular combinations Q
(m,n)
r,s and Q̃

(m,n)
r,s (with m,n =

1, . . . , B and r, s = 1, . . . , A) of the remaining Kähler parameters of XN,M . While the

precise definition of W
α
(i)
1 ...α

(i)
A

α
(i+1)
1 ...α

(i+1)
A

is not important in the following, we remark that the

topological string partition function can be written as the following quotient

ZN,M =
∑
{α(i)
j }

 B∏
j=1

Q
∑A
i=1 |α

(i)
j |

gj

 A∏
r,s=1

B∏
m,n=1
|m−n|=1

ϑ
α
(m)
r α

(n)
s

(Q
(m,n)
r,s ; ρ)

ϑ
α
(m)
r α

(n)
s

(Q̃
(m,n)
r,s ; ρ)

. (3.9)

Here ϑµν is a particular class of theta-functions (see eq. (B.2) for the definition and [6, 8]

for further information) that implicitly depend on ε1,2 and are labelled by two integer parti-

tions. Finally, the (modular) parameter ρ is related to the modular parameter of the base,

when viewing the Calabi-Yau threefold XN,M as a particular quotient of G ∼= ZN × ZM .
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As already explained above, the partition function of the gauge theory engineered from

XN,M is captured by ZN,M . To interpret the various (independent) Kähler parameters of

XN,M that appear in the expansions of ZN,M from a gauge theory perspective, we can

compare the combinations of ϑ-functions appearing in the numerator and denominator

in (3.9) with the Nekrasov subfunctions [41–43] that are reviewed in appendix B. In fact,

turning this interpretation around, we can associate a weight (with respect to the gauge

algebra) to the various Kähler parameters of the partition function, and thus also to the

curves in the Calabi-Yau manifold XN,M they are represented by. This allows us to give a

geometric realisation of the gauge algebra.9

3.2.3 Intersection numbers

As reviewed above [32], the area of certain (combinations of) curves in the webdiagram of

XN,M are identified with the roots of A copies of the Lie algebra âA−1 (in the notation

of (2.9)). The latter is the non-twisted affine extension of aA−1, which is the Lie algebra of

one of the U(B) factors in the gauge group G in (2.9). The correspondence between roots

and curves is established by matching the intersection product on the geometry side with

the scalar product on the Lie algebra side [16]. As we work in a three-dimensional complex

geometry, we are taking intersections of curves with compact surfaces Si.
10 Concretely, we

consider a single ‘strip’ of length A in the web diagram of XN,M ., as shown in figure 13 and

which (from the perspective of the partition function (3.8)) is captured by the building block

W
α
(i)
1 ...α

(i)
A

α
(i+1)
1 ...α

(i+1)
A

. In figure 13 we have indicated two families of compact surfaces Si=1,...,A and

S′j=1,...,A that corresponds to hexagons in the web diagram. The basic idea is to interpret

these surfaces S and S′ as representations of the co-roots of two copies of the affine algebras

âA−1 (see [16, 23]). Indeed, the matrix of intersection numbers of the red (green) curves

with the surfaces Si (S′j), reproduces (up to a sign) the Cartan matrix of âA−1.11 This

allows us to identify these curves with the set of positive simple roots of the affine Lie

algebra âA−1. In the following we keep the notation generic (thus treating the horizontal,

vertical and diagonal theory in parallel), by calling the roots associated with the red (green)

lines collectively {β̂0, β̂1, . . . , β̂A−1} ({β̂′0, β̂′1, . . . , β̂′A−1}). By convention, β̂0 (β̂′0) denotes

the root that extends the root system of aA−1 to that of the affine Lie algebra âA−1: the

choice of the curve corresponding to β̂0 is fixed up to cyclic permutations, which reflects

the rotational symmetry of the affine Dynkin diagram. Although the web diagram realises

the structure of an affine Lie algebra, in this work, we mostly focus on aspects pertaining

9In appendix A, we obtain the same result for the particular (N,M) = (2, 2) based on an observation

concerning the intersection numbers of various curves with (the canonical classes of) certain surfaces in the

web diagram. A more abstract and general discussion of the connection between the Calabi-Yau geometry

and the gauge algebra of the theories engineered by XN,M will be further discussed in the future [37].
10In appendix A, we observe in the case (N,M) = (2, 2) that the same relation also applies when replacing

the surfaces Si with their canonical classes KSi . This connection is easier to evaluate technically and will

therefore be used later on.
11A more detailed discussion of this geometric realisation of the gauge algebra shall be given in [37]. As

remarked before, in appendix A we argue for the case (N,M) = (2, 2) that the role of the co-roots can

equally be played by the canonical classes of the surfaces S1,...,A and S′1,...,A, which shall be important for

the explicit computations in section 3.2.5.
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· · ·
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(i+1)
2
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(i+1)
A

· · ·

· · ·

=

1

=

1

S1

S2

S3 SA

S′1

S′2 S′A−1

S′A

Figure 13. Strip with two sets of compact surfaces labeled by Si and S′
j . Red (Green) curves

correspond to roots with respect to Si (S′
j). The (integer partition) labels α

(i)
1,...,A and α

(i+1)
1,...,A

indicate how the strip is glued into the web diagram of the Calabi-Yau manifold.

to properties of the finite algebra aA−1. We shall relegate further discussions of the affine

structure to [37].

It is important to realise that for A < NM (such that B > 1) the two sets of roots

β̂i and β̂′i related to the red and green curves, respectively, are in general distinct and two

different (copies of the same) algebras. This can be seen from the intersection numbers12

Si ◦ β̂′j = 0 = S′i ◦ β̂j , ∀i, j ∈ {0, . . . , A− 1} , (3.10)

i.e. the weights of one set of roots with respect to the co-roots of another copy of âA−1

vanish. In the case A = NM (such that B = 1) where the whole web diagram in fact only

consists of the single strip shown in figure 13 (with the external legs α
(1)
1,...,A and α

(2)
1,...,A

being identified, possibly after some cyclic rotation), the sets Si and S′j of compact sur-

faces are identified with each other. Therefore, in this case we in fact only have a single

set of roots. Calculating the intersection numbers in this scenario is more intricate and is

discussed in [37].

Once the co-roots are identified in a geometric fashion, we can assign a (non-affine)

weight vector to any curve C in the web-diagram by calculating the intersections with

Si=1,...,A−1 and S′i=1,...,A−1. Specifically, we define

wC :=
(
[λ1, . . . , λA−1], [λ′1, . . . , λ

′
A−1]

)
=
(
[C ◦ S1, . . . , C ◦ SA−1], [C ◦ S′1, . . . , C ◦ S′A−1]

)
,

(3.11)

and interpret λi and λ′j as the Dynkin labels of the two copies of aA−1. In the case B = 1, the

two gauge algebras are identified such that we take the direct sum of the two weight vectors

wC = [λ1 + λ′1, . . . , λN−1 + λ′N−1] . (3.12)

12Here the symbol ◦ indicates that the intersection is calculated in the full 6-dimensional Calabi-Yau

manifold.
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Figure 14. Toric web diagram and parametrisation of X2,2.

3.2.4 The example of (N,M) = (2, 2) with δ = 0

Returning to the example of the configuration (N,M) = (2, 2), we first discuss the as-

signment of weights for X2,2 (i.e. with δ = 0), whose web diagram is show in figure 14.

In this figure, we have also indicated a labelling of the Kähler parameters as well as the

surfaces Si introduced in the previous subsection. The former have been chosen in such a

manner as to already satisfy the consistency conditions such that (h1,2, v1,2,m1,2) are a set

of independent parameters.

In appendix A we have shown that the web diagram figure 14 is related (through flop

transformations) to the geometry shown in figure 15 (a), corresponding to local geometries

of the type P1 × P1. The latter suggests a construction of the canonical classes KS1,2,3,4

of the four surfaces S1,2,3,4, which is invariant under (certain) flop transformations. We

furthermore observe, that a geometric realisation of the gauge algebras can be obtained,

where the KSi play the role of the co-roots and certain combinations of curves of the

diagram can be interpreted as the simple positive roots.

It is important to mention that the geometric realisation of the gauge algebra observed

in appendix A, is very natural from the point of view of assigning weights to the various

Kähler parameters appearing in the partition function (3.9). Indeed, depending on the

gauge theoretic interpretation, we expect the following weights for the individual Kähler

parameters

• The coupling constants should be neutral under the gauge group. If the coupling

constants transform non-trivially under the gauge group, the latter could not be

realised perturbatively

• The ϑ-functions in the numerator of (3.9) are the matter contribution, stemming

from the hypermultiplet. They should therefore carry the corresponding matter rep-

resentation

• The ϑ-functions in the denominator of (3.9) are the contribution from the (gauge)

vector multiplet contribution. They should therefore carry the fundamental repre-

sentation of the gauge group.
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Specifically for X2,2, the partition function takes the form

Z(δ=0)
2,2 =

∑
α
(1)
1 ,α

(1)
2 ,α

(2)
1 ,α

(2)
2

(Qv1Qm2)|α
(1)
1 |+|α

(1)
2 |(Qv2Qm1)|α

(2)
1 |+|α

(2)
2 |

×
ϑ
α
(1)
1 α

(2)
1

(Qm1)ϑ
α
(1)
1 α

(2)
2

(Qm2Q̂1)ϑ
α
(1)
2 α

(2)
1

(Qm1Q̂
−1
1 )ϑ

α
(1)
2 α

(2)
2

(Qm2)

ϑ
α
(1)
1 α

(1)
1

(1)ϑ
α
(1)
1 α

(1)
2

(Q̂−1
1 )ϑ

α
(1)
2 α

(1)
1

(Q̂1)ϑ
α
(1)
2 α

(1)
2

(1)

×
ϑ
α
(2)
1 α

(1)
1

(Qm2)ϑ
α
(2)
1 α

(1)
2

(Qm1Q̂2)ϑ
α
(2)
2 α

(1)
1

(Qm2Q̂
−1
2 )ϑ

α
(2)
2 α

(1)
2

(Qm1)

ϑ
α
(2)
1 α

(2)
1

(1)ϑ
α
(2)
1 α

(2)
2

(Q̂−1
2 )ϑ

α
(2)
2 α

(2)
1

(Q̂2)ϑ
α
(2)
2 α

(2)
2

(1)
, (3.13)

where we introduced the following notation

Q̂1 = Qm1 Qh2 , and Q̂2 = Qm2 Qh2 . (3.14)

Using the procedure outline in section 3.2.2, we can associate weights to the curves whose

Kähler parameters make up the arguments of the ϑ-functions and to those that are related

to the coupling constants (i.e. expansion parameters). The geometry X2,2, displayed in

figure 14, is known to engineer six-dimensional U(2)×U(2) quiver gauge theory with 2 bi-

fundamentals. We choose the surfaces S1 and S2 to correspond to the finite simple coroots

of the respective gauge factors and denote the weight of a curve C by

wC = ([C ·KS1 ], [C ·KS2 ]) = ([λ1], [λ′1]) , (3.15)

which, as explained above, in the current case are computed more efficiently as the inter-

section numbers of the curve C with KS1 and KS2 .13 Group theoretically, [λ1] and [λ′1] are

the Dynkin labels corresponding respectively to the first and to the second gauge factor.

Let us first look at the matter representation, i.e. the ϑ-functions in the numera-

tor of (3.13). The curves that appear in their arguments have areas m1,2, m1 − α̂1 and

m2 + α̂1. Using (3.15), their associated weights are in fact those of two bifundamental

representations:

m1 → ([1], [−1]) , m2 + α̂1 → ([1], [1])

m2 → ([−1], [1]) , m1 − α̂1 → ([−1], [−1]) (3.16)

These weights correspond to the anticipated product representation.

For the vector contribution in the denominator we have the following:

± α̂1 → ([±2], [0]) , ± α̂2 → ([0], [±2]) , 0→ ([0], [0]) (3.17)

These give the right product representation for two adjoint representations.

Concerning the coupling constants we obtain for the weight factors

v1 +m2 → ([0], [0]) , v2 +m1 → ([0], [0]) (3.18)

As expected they are uncharged under the gauge group.

13Indeed, we have observed in appendix A that the canonical classes KS1,2,3,4 give rise to a presentation

of the gauge algebra. Furthermore, the intersection C ·KSi is understood to be taken inside the compact

surface Si.
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3.2.5 The example of (N,M) = (2, 2) with δ = 1

After the example of X
(δ=0)
2,2 we are finally ready to consider X

(δ=1)
2,2 . The latter can be

analysed in a similar fashion as before: the web diagram is shown in figure 12 where we have

also introduced a parametrisation of the Kähler parameters by associating an area to each

of the curves of the web. As explained in detail in [31], the parameters {m(j)
i , vi

(j), h
(j)
i }

are not independent, but there are consistency conditions associated with each of the four

hexagons S1,2,3,4:

S1 : h
(1)
2 +m

(2)
1 = m

(2)
2 + h

(2)
2 , v

(1)
2 + h

(1)
2 = v

(2)
1 + h

(2)
2 ,

S2 : m
(2)
1 + h

(2)
1 = h

(1)
1 +m

(2)
2 , v

(1)
1 + h

(1)
1 = h

(2)
1 + v

(2)
2 ,

S3 : m
(1)
1 + h

(1)
1 = h

(2)
2 +m

(1)
2 , v

(1)
2 + h

(1)
1 = v

(2)
2 + h

(2)
2 ,

S4 : m
(1)
2 + h

(1)
2 = h

(2)
1 +m

(1)
1 , v

(2)
1 + h

(2)
1 = h

(1)
2 + v

(1)
1 . (3.19)

Furthermore, the canonical classes KS1,2,3,4 have been worked out in appendix A and have

been shown to give a presentation of the gauge algebra. Using the general formula derived

in [30], the partition function associated with this web diagram can be written in the form

Z(δ=1)
2,2 =

∑
α
(1)
1 ,α

(1)
2 ,α

(2)
1 ,α

(2)
2

(Q
m

(1)
1

Q
h
(1)
1

Q
h
(2)
2

Q̂1,1)|α
(1)
1 |(Q

m
(1)
2

Q
h
(2)
1

Q
h
(1)
2

Q̂2,1)|α
(1)
2 |

× (Q
m

(2)
1

Q
h
(1)
1

Q
h
(2)
1

Q̂1,2)|α
(2)
1 |(Q

m
(2)
2

Q
h
(2)
2

Q
h
(1)
2

Q̂2,2)|α
(2)
2 |Q

−
|α(1)1 |+|α(1)2 |+|α(2)1 |+|α(2)2 |

2
ρ

×
ϑ
α
(1)
1 α

(2)
1

(Q
h
(1)
1

Q̂1,2)ϑ
α
(1)
1 α

(2)
2

(Q
h
(1)
1

)ϑ
α
(1)
2 α

(2)
1

(Q
h
(1)
2

)ϑ
α
(1)
2 α

(2)
2

(Q
h
(1)
2

Q̂2,2)

ϑ
α
(1)
1 α

(1)
1

(1)ϑ
α
(1)
1 α

(1)
2

(Q̂2,1)ϑ
α
(1)
2 α

(1)
1

(Q̂1,1)ϑ
α
(1)
2 α

(1)
2

(1)

×
ϑ
α
(2)
1 α

(1)
1

(Q
h
(2)
1

)ϑ
α
(2)
1 α

(1)
2

(Q
h
(2)
1

Q̂2,1)ϑ
α
(2)
2 α

(1)
1

(Q
h
(2)
2

Q̂1,1)ϑ
α
(2)
2 α

(1)
2

(Q
h
(2)
2

)

ϑ
α
(1)
1 α

(1)
1

(1)ϑ
α
(1)
1 α

(1)
2

(Q̂2,2)ϑ
α
(1)
2 α

(1)
1

(Q̂1,2)ϑ
α
(1)
2 α

(1)
2

(1)
,

where we introduced the notation

Q̂1,1 = Q
v
(1)
1

Q
h
(1)
2

, Q̂2,1 = Q
v
(1)
2

Q
h
(1)
1

, Q̂1,2 = Q
v
(2)
1

Q
h
(2)
2

, Q̂2,2 = Q
v
(2)
2

Q
h
(2)
1

. (3.20)

We can analyse the weights of the coupling constants of this expression with respect to the

surfaces {S4, S3, S1, S2}, as given in appendix A. Specifically, we have

coup. curve C area C ·K4 C ·K3 C ·K1 C ·K2

g
(1)
1

2L1 + L3 + L4

−2E1 − 2E2 + E4
m

(1)
1 + h

(1)
1 + h

(2)
2 + v

(1)
1 + h

(1)
2 −1 −1 0 2

g
(1)
2

L1 + L2 + 2L3

−2E1 − 2E2 + E3
m

(1)
2 + h

(2)
1 + h

(1)
2 + v

(1)
2 + h

(1)
1 −1 −1 2 0

g
(2)
1

L1 + L2 + 2L3

−E1 − 2E2
m

(2)
1 + h

(1)
1 + h

(2)
1 + v

(2)
1 + h

(2)
2 2 0 −1 −1

g
(2)
2

2L1 + L3 + L4

−2E1 − E2
m

(2)
2 + h

(2)
2 + h

(1)
2 + v

(2)
2 + h

(2)
1 0 2 −1 −1
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Upon designating S4 and S1 (related to â
(1)
1 and â

(2)
1 in figure 12) as the co-roots of a

(non-affine) U(2) × U(2) group, we demand that the coupling constants carry no weights

under them, in order to have a perturbative realisation of the latter in the form of a gauge

group. However, in the present case, we see that it is not possible to realise the full group

U(2) × U(2) at the perturbative level. If at all possible, the latter can therefore only be

realised non-perturbatively, thus possibly pertaining to a LST. We leave further analysis

of the latter to future work [37].

4 Conclusions

In this work we have analysed (part of) the web of dualities of a class of gauge theories

engineered from toric Calabi-Yau manifolds XN,M , whose toric diagram is schematically

shown in figure 1. On the one hand side, it has been argued in [32] that there are three

regions in the Kähler cone of the Calabi-Yau manifolds XN,M that correspond to the

weak coupling regions of three (in general) different quiver gauge theories. The gauge

groups of the latter are given in (2.5). On the other hand, it has been argued in [31] (and

checked explicitly for a large class of cases at the level of the partition function in [30])

that XN,M ∼ XN ′,M ′ if NM = N ′M ′ and gcd(N,M) = gcd(N ′,M ′). Combining these two

facts implies the existence of a large number of dual quiver gauge theories in 6 dimensions

and below. For each of these theories, the instanton partition function can be computed

explicitly as a specific expansion of the topological string partition function ZN,M of the

Calabi-Yau manifold XN,M .

Furthermore, besides the dual manifolds XN ′,M ′ as mentioned above, the extended

Kähler moduli space of XN,M contains yet other regions which represent new types of

manifolds. Among these, there are some Calabi-Yau threefolds whose toric diagrams look

very similar to those of XN,M , except that (some of) their external legs are glued together

after a cyclic shift δ, as is schematically shown in figure 7. In this paper we have undertaken

a first step towards analysing whether also these manifolds X
(δ)
N,M engineer (weakly coupled)

supersymmetric gauge theories. Upon discussing in some detail the cases (N,M) = (6, 1)

and (N,M) = (4, 1), we have found evidence that this is indeed the case. However, as

showcased in the case of X
(δ=2)
4,1 = X

(δ=1)
2,2 , for some of these theories, part of the expected

gauge group might not be realised perturbatively, but rather only appears in the strong

coupling regime. The latter may be a Little String Theory.

To analyse the particular cases X
(δ)
N,M mentioned above in more detail, requires to

develop a geometric realisation of the gauge algebra, at the level of the web diagram.

In this paper, we have used an observation specific to the web diagrams of X
(δ=0)
2,2 and

X
(δ=1)
2,2 . In the upcoming work [37] we will further extend this discussion and apply it to

more general cases. Using these tools, a question which will be interesting to address in

the future is to obtain a complete picture of the web of dualities for all low-energy gauge

theories engineered by (manifolds dual to) XN,M . It will also be interesting to analyse

their strong coupling counterparts.

– 27 –



J
H
E
P
1
1
(
2
0
1
8
)
0
1
6

Acknowledgments

We would like to thank J. Heckman, G. Moore and C. Kozçaz for many useful discussions.
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A Intersection numbers for (N,M) = (2, 2)

Many algebraic properties of the six-dimensional quiver gauge theories (and their five-

dimensional limits [44, 45]) discussed in the main body of this paper can directly be read

off from the underlying web diagram. Indeed, as explained in section 3.2.2, for a given

toric diagram, geometrically the roots âi (with i = 1, . . . ,MN) of the (affine) algebra ĝ

that is realised in the six-dimensional quiver gauge theory can be identified with certain

curves of the geometry. Furthermore, the co-roots are given by compact surfaces Si that

are associated with the various hexagons appearing in the web (see [16]): the intersection

numbers Si ◦ âj reproduce (up to a sign) the Cartan matrix of the (affine) algebra ĝ.

In this appendix, we observe that for (N,M) = (2, 2) (with δ = 0 or δ = 1), the

co-roots can also be realised in terms of the canonical classes associated with the Si. We

remark that all intersections discussed in this appendix shall be intersections of curves

within a compact divisor. This simplifies the computation of the weights associated with

different curves in the toric web diagram (and thus the corresponding contributions in the

partition functions of the associated quiver gauge theories) and is exploited in section 3.2.5.

The starting point is the geometry shown in figure 15 (see [46] for a five-dimensional

limit), where we presented the cases δ = 0 and δ = 1 in parallel. The labelling of the curves

has been chosen in such a way as to reflect the local geometry of P1 × P1, glued together

along the exceptional cuves −E1,2 and E3,4, respectively. Notice that the difference in δ is

entirely related to the latter. To related the geometry figure 15 to the usual toric diagram

with (N,M) = (2, 2) as shown in figure 7, we first perform a flop transformation on the

curve −E1, to obtain the diagrams shown in figure 16. Next, we cut both diagrams along

the red line and re-glue them along the curve labelled −E2. After a flop transition of the

latter, we obtain the geometry shown in figure 17. Finally, after an SL(2,Z) transformation,

we can bring both geometries into the form of a (2, 2) web with shifts δ = 0 and δ = 1,

respectively, as shown in figure 18. Each of the two geometries contains four divisors

(hexagons in the toric web) S1,2,3,4 with canonical classes KS1,2,3,4 . The area of canonical

class of Si is given by Ai =
∫
KSi

ω, where ω is the Kähler form. The areas Ai are not all

independent of one another but satisfy

4∑
i=1

Ai =

4∑
i=1

∫
KSi

ω = 0 . (A.1)
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(b) δ = 1

Figure 15. Gluing two local geometries of the type P1 × P1 related to the web diagram (N,M) =

(2, 2) with δ = 0 (diagram (a)) and δ = 1 (diagram (b)).
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(b) δ = 1

Figure 16. Geometry figure 15 after a flop transition of the curve −E1 for δ = 0 (diagram (a))

and δ = 1 (diagram (b)).
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Figure 17. The geometry shown in figure 16 after a flop transition of the curve −E1 for δ = 0

(diagram (a)) and δ = 1 (diagram (b)). The curves S1,2,3,4 are explained in the text.
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b
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a
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a

b

1

2 2

1

E3
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L 3
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E 1
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Figure 18. Alternative presentation of the geometry in figure 17 in the form of a (twisted) (2, 2)

web with δ = 0 (diagram (a)) and δ = 1 (diagram (b)).

Furthermore, within every Si we can identify three different curves âi, b̂i and ĉi (for

i = 1, 2, 3, 4) as shown schematically in figure 4 for a generic hexagon of a toric web dia-

gram. From the perspective of the quiver gauge theories (or the Little String Theories)

engineered by the web diagram, these curves are related to the positive simple roots of

the (affine extensions of the) underlying gauge algebra: to be precise, the curves âi are

associated with the roots of ĝhor, the curves b̂i are associated with the roots of ĝvert and

the curves ĉi are associated with the roots of ĝdiag, corresponding to the horizontal, vertical

and diagonal gauge theories, respectively.

Concretely, the explicit expressions (for δ = 0 and δ = 1) for KSi as well as âi, b̂i and

ĉi can be summarised in the following table

δ = 0 δ = 1

KS1 = −(2L1 + 2L2 − E1 − E2 + E3 + E4) ,

KS2 = −(2L3 + 2L4 − E1 − E2 + E3 + E4) ,

KS3 = 2L1 + 2L4 − E1 − E2 + E3 + E4 ,

KS4 = 2L2 + 2L3 − E1 − E2 + E3 + E4 .

KS1 = −(2L1 + 2L2 − E1 − E2 + 2E3) ,

KS2 = −(2L3 + 2L4 − E1 − E2 + 2E4) ,

KS3 = L1 + L2 + L3 + L4 − 2E2 + E3 + E4 ,

KS4 = L1 + L2 + L3 + L4 − 2E1 + E3 + E4 .

â1 = L1 , â2 = L3 ,

â3 = L1 − E1 + E4 , â4 = L3 − E1 + E4 .

â1 = L1 , â2 = L3 ,

â3 = L3 − E1 + E4 , â4 = L4 − E1 + E4 .

b̂1 = L1 + L2 − E1 − E2 ,

b̂2 = L3 + L4 − E1 − E2 ,

b̂3 = L1 + L4 − 2E2 ,

b̂4 = L2 + L3 − 2E1 .

b̂1 = L1 + L2 − E1 − E2 ,

b̂2 = L3 + L4 − E1 − E2 ,

b̂3 = L1 + L4 − 2E1 ,

b̂4 = L2 + L3 − 2E2 .

ĉ1 = L2 , ĉ2 = L4 ,

ĉ3 = L4 − E2 + E4 , ĉ4 = L2 − E1 + E3 .

ĉ1 = L2 , ĉ2 = L4 ,

ĉ3 = L2 − E2 + E3 , ĉ4 = L4 − E1 + E4 .
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Notice here that the canonical classes KSi are chosen in such a manner that the areas

A(Si) are invariant under flop transformations of the curves E1,2. Using the intersection

numbers14

L1 · L1 = L2 · L2 = L3 · L3 = L4 · L4 ,

L1 · L2 = 1 , L3 · L4 = 1 , L1 · L3 = L1 · L4 = L2 · L3 = L2 · L4 ,

Ei · Ej = −δij , Li · Ej = 0 ∀i, j = 1, 2, 3, 4 , (A.2)

we can recover (up to an overall sign) the Cartan matrices of Lie algebras of the hori-

zontal, vertical and diagonal gauge theory, respectively. This can be summarised in the

following table

δ = 0 δ = 1

intersections Lie algebra intersections Lie algebra
â1

â2

â3

â4

 · (KS1 KS4 KS2 KS3)

=


−2 2 0 0

2 −2 0 0

0 0 −2 2

0 0 2 −2


â1 ⊕ â1


â1

â2

â3

â4

 · (KS1 KS4 KS2 KS3)

=


−2 1 0 1

1 −2 1 0

0 1 −2 1

1 0 1 −2


â3


b̂1
b̂2
b̂4
b̂3

 · (KS1 KS2 KS4 KS3)

=


−2 2 0 0

2 −2 0 0

0 0 −2 2

0 0 2 −2


â1 ⊕ â1


b̂1
b̂2
b̂4
b̂3

 · (KS1 KS2 KS4 KS3)

=


−2 2 0 0

2 −2 0 0

0 0 −2 2

0 0 2 −2


â1 ⊕ â1


ĉ1

ĉ3

ĉ2

ĉ4

 · (KS1 KS3 KS2 KS4)

=


−2 2 0 0

2 −2 0 0

0 0 −2 2

0 0 2 −2


â1 ⊕ â1


ĉ1

ĉ3

ĉ2

ĉ4

 · (KS1 KS3 KS2 KS4)

=


−2 1 0 1

1 −2 1 0

0 1 −2 1

1 0 1 −2


â3

14The intersections in eq. (A.2) are calculated in P1 × P1 blown up at two points.
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Notice that the same result can also be obtained from computing the intersection numbers

with the surfaces Si. However, using the canonical classes for the computation is in practice

easier and will be used for all computations in the main body of the paper.

B Nekrasov subfunctions

The Nekrasov subfunctions capture the contribution of the various multiplets to the in-

stanton partition function of the four-dimensional [41], five-dimensional [42] or the six-

dimensional gauge theories [47–49]. For a review of these see [43, 50]. The six-dimensional

instanton partition function we can identify the different contribution from the tensor or

matter multiplets. This correspondence relates the tensor branch parameters and hyper-

multiplet masses from the gauge theory side to linear combination of Kähler parameters

on the geometry side. The first contribution that will be of interest to us comes from the

vector multiplet

zvector(~a, ~α) =
N∏

i,j=1

ϑ−1
αiαj

(
eai−aj+

1
2
ε+ ; ρ

)
, with ε+ = ε1 + ε2 , (B.1)

where ~α = (α1, . . . , αN ) corresponds to a vector of integer partitions, ~a = (a1, . . . , aN ) are

the vacuum expectation values of the scalar field in the five-dimensional vector multiplet

and

ϑαaαb(x; ρ) =
∏

(i,j)∈αa

ϑ
(
x qαa,i−j+

1
2 tα

t
b,j−i+

1
2 ; ρ
) ∏

(i,j)∈αb

ϑ
(
x q−αb,i+j−

1
2 t−α

t
a,j+i−

1
2 ; ρ
)
,

ϑ(x; ρ) =
(
x

1
2 − x−

1
2

) ∞∏
k=1

(
1− x e2πik ρ

)(
1− x−1e2πikρ

)
. (B.2)

Another contribution that appears in our partition functions comes from bi-fundamental

matter

zbifund(~a, ~α,~b, ~β,m) =

N∏
i,j=1

ϑαiβj

(
eai−bj−m+ 1

2
ε+ ; ρ

)
. (B.3)

Here, ai and bj are the Coulomb branch parameters corresponding to the two gauge groups

the bi-fundamental matter is coupled to. The m corresponds to the mass parameter. The

adjoint matter contribution corresponds to a special case of (B.3)

zadj(~a, ~α,~a, ~α,m) =

N∏
i,j=1

ϑαiαj

(
eai−aj−m+ 1

2
ε+ ; ρ

)
. (B.4)

The interpretation of (B.1), (B.3) and (B.4) as specific gauge theory contributions is jus-

tified by the fact that when we take the five-dimensional limit (ρ → i∞), we recover the

well known respective contributions obtained from a localization calculation on the gauge

theory side.
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Figure 19. Toric web diagram with (N,M) = (6, 4) and shift δ.

C Duality transformations

In this appendix, we discuss a series of flop- and symmetry transformations which relate

the toric Calabi-Yau manifolds associated to the web-diagrams in figure 7 with different

values of δ. For concreteness, we shall denote this transformation F , which maps a shifted

Calabi-Yau manifold X
(δ)
N,M to a similar Calabi-Yau manifold that only differs in its shift

parameter

F : X
(δ)
N,M −→ X

(δ+s)
N,M , with s = M −N mod N . (C.1)

Rather than discussing the most general case (for which the corresponding web diagrams

are cumbersome to draw), we exemplify the transformation for (N,M) = (6, 4) (but generic

δ) and indicate how the results can be generalised.

Upon flopping all the diagonal lines in figure 7, the (shifted) (N,M) = (6, 4) web takes

the form given in figure 19 and after an SL(2,Z)-transformation as in figure 20.

In the latter presentation, we perform a flop transformation on all diagonal lines drawn

in red. This leads to a new web diagram in the extended Kähler moduli space of XN,M , as

shown in figure 21. Next, cutting the diagram along the red line and re-gluing the diagonal

lines labelled a, b, c and d we obtain an equivalent presentation as shown in figure 22.

Finally, performing a flop transformation on the diagonal lines shown in red, we obtain the

web diagram shown in figure 23. The latter corresponds to a web diagram in which the

shift has been changed to δ − s, where s = M −N mod N .
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Figure 20. (6, 4) web with shift δ after SL(2,Z) transformation.
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Figure 21. Web diagram after a flop transformation of the diagonal lines in figure 20.
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Figure 22. Cutting and re-gluing of the web diagram in figure 21.
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Figure 23. Toric web diagram with (N,M) = (6, 4) and shift δ − 2.
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