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1 Introduction

At present time event generators [1–4] have developed into indispensable tools for under-

standing collider phenomenology. At the same time, the high energy available at the LHC

has significantly opened up the perturbative phase space available for radiation. This in-

creases the demand of resummation, performed either analytically or, as in the case of

parton showers, numerically e.g. via the Sudakov veto algorithm [5, 6].

From a QCD perspective, the high number of colored partons due to the large per-

turbative phase space, as well as due to the fact that the initial state partons carry color,

calls for a better understanding of subleading Nc effects.

This is also in demand to ease the cancellation of infrared singularities in the matching

and merging of parton showers with NLO calculations [7–9], which often fully include
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subleading Nc effects. It should also be stressed that we expect such corrections to account

for subleading Nc, leading-logarithmic problems which can arise in dipole-type parton

shower algorithms due to an ambiguous definition of an emitter’s color charge [10].

To achieve greater accuracy and better understanding of parton shower uncertainties, it

is therefore time to include a better description of subleading color contributions in parton

showers, similar to how parton showers recently have been improved by matrix element

merging at leading order [11–16], and matching at next-to-leading order [7, 17–21].

The first steps in this direction has already been performed by some of the authors

in the case of an e+e−-collider [22]. Others have pursued another road, keeping only

a subset of the color suppressed terms [23, 24], and detailed studies have been carried

out towards systematically expanding virtual and real effects in shower-type evolution

algorithms [25, 26].

In the present paper we extend the color matrix element corrections, first implemented

in [22], by including initial state hadrons as well as g → qq-splittings, subsequent leading

color showering and hadronization. This is done within the Herwig 7.1 [27] implementation

of the dipole shower algorithm [28], giving us a full-fledged general purpose event generator

which can be used for studying color matrix element corrections to any process occurring

at the LHC and other colliders, in practice up to a limited number of colored partons,

restricted by the fast growing complexity in color space, however still reaching down to

relatively soft emissions.

Our method is based on dipole factorization [29, 30], which we outline in section 2.

The complication brought about by the color matrix element corrections is discussed in

section 3, and implementation details, involving evolution of the color structure treatment,

the weighted Sudakov algorithm and the density operator, are discussed in section 4, 5

and 6 respectively. Results for various processes, including initial and final state radia-

tion, standard QCD observables, heavy quark production and Z plus jets are discussed in

section 7, and concluding remarks are made in section 8.

2 Essence of dipole factorization and dipole shower evolution

This paper is based on dipole factorization, stating that whenever the next gluon to be

emitted from an n-parton configuration becomes either soft or collinear to one of the

existing partons, the squared amplitude for the n+1-parton case can be approximated with

|Mn+1(. . . , pi, . . . , pj , . . . , pk, . . .)|2 ≈∑
k 6=i,j

1

2pi · pj
〈Mn(. . . , pĩj , . . . , pk̃, . . .)|Vij,k(pi, pj , pk)|Mn(. . . , pĩj , . . . , pk̃, . . .)〉 , (2.1)

in terms of the old amplitude |Mn〉. In the above, an emitter ĩj → i, j whereas a spectator

k → k̃ absorbs the longitudinal recoil, such that all partons, before and after emission, stay
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on-shell. For final state radiation we use the standard Sudakov decomposition,

pi = zpĩj +
p2
⊥

zsijk
pk̃ + k⊥ (2.2)

pj = (1− z)pĩj +
p2
⊥

(1− z)sijk
pk̃ − k⊥ (2.3)

pk =

(
1− p2

⊥
z(1− z)sijk

)
pk̃ , (2.4)

with p2
ĩj

= p2
k̃

= 0, a spacelike transverse momentum k⊥ with k2
⊥ = −p2

⊥ and k⊥ · pĩj =

k⊥ · pk̃ = 0. The cases of initial state emitter or spectator are discussed in [28].

Note that the sum in eq. (2.1) only runs over ĩj 6= k̃. This is possible since the collinear

singularity corresponding to the square of the diagram where parton ĩj is the emitter, has

been rewritten as a sum of interferences between that diagram and every other diagram

using color conservation

T2
ĩj

= −
∑
k 6=ĩj

Tĩj ·Tk . (2.5)

The splitting kernels are given in terms of the standard dipole splitting kernels as

Vij,k(pi, pj , pk) = −8παsVij,k(pi, pj , pk)
Tĩj ·Tk

T2
ĩj

, (2.6)

where Tĩj ·Tk describes the color space effect of exchanging a gluon between parton ĩj and

parton k̃, and thus contains an implicit sum over gluon indices. In the massless case, the

final-final dipole splitting kernels are given by

Vqg,k(pi, pj , pk) = CF

(
2(1− z)

(1− z)2 + p2
⊥/sijk

− (1 + z)

)
Vgg,k(pi, pj , pk) = 2CA

(
1− z

(1− z)2 + p2
⊥/sijk

+
z

z2 + p2
⊥/sijk

− 2 + z(1− z)

)
. (2.7)

Note, however, that dipole factorization is valid also for massive particles in the quasi-

collinear limit, and our implementation is general, using the massive dipole splitting kernels

and kinematics available in Herwig, as detailed in [31]. For the dipole configurations

involving initial state partons, we use the corresponding expressions as given in [30, 32].

In eq. (2.7) the factors of CF = TR(N2
c − 1)/Nc and CA = 2TRNc, where TR is defined by

tr(tatb) = TRδ
ab, explains the inclusion of T2

ĩj
in eq. (2.6); in order to use the standard

definition of eq. (2.7), T2
ĩj

is introduced in the denominator of eq. (2.6).

In the large Nc limit the color correlator becomes

−
Tĩj ·Tk

T2
ĩj

→ 1

1 + δĩj
δ(ĩj, k color connected) , (2.8)

where δĩj ≡ 1 if ĩj is a gluon, and zero otherwise. In this way, the factor CF for gluon

emission off a quark is reproduced in the large Nc limit by coherent emission from the

quark and its color-connected partner, and the factor CA is reproduced for gluon splitting
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by the sum of the coherent emissions from the gluon and its two color-connected partners,

hence the factor 1/2 for gluons in eq. (2.8).

We remark that the leading Nc version of the above describes how to get a leading Nc

correct emission pattern. It does not address the issue of assigning a leading Nc color flow

from which subsequent emission can be performed. The default strategy is to use a color

flow where the radiated gluon is inserted between the emitter and the spectator. However,

with a gluon splitting kernel which is symmetric in z ↔ 1− z, the question of which gluon

is the radiator and which is radiated arises. In the limit where z is small, it is rather the

parton with momentum fraction z which is soft and thus should be seen as radiated and

therefore be inserted between the emitter (with the large momentum fraction 1 − z) and

the spectator. For this reason, to mimic the swap of color, we swap momenta of the emitter

and the emitted parton with probability 1− z, such that the soft gluon always tends to be

inserted between the harder parton and the spectator in the color structure, guaranteeing

that we get the correct soft limit. We remark, however that the probability 1 − z is a

choice, and that and any function, having the same limits when z → 1 and z → 0, would

have been a valid choice. Alternatively, the splitting kernels could have been redefined to

only contain the 1− z singularity (see [33, 34] for comparison).

As we want to describe LHC collisions, the color matrix element corrections have to

be applied also to initial state hadrons, meaning that we have to deal with initial-initial

emissions as well as initial-final and final-initial emissions. The initial state emission cases

are treated in a standard backward evolution scheme, meaning that if the emitter is an

initial state parton, the backward evolution is done by folding in the parton distribution

functions (PDFs), using appropriate splitting kernels, and colors are updated as if the

resulting (low energy) parton was emitted. To be more precise, denoting the emitter

participating in the hard process by i, the radiated parton with j, and the (initial) parton

going into the PDF by ĩj, the used splitting kernel is Pĩj→ij , and the emission probability

is evolved using PDF ratios [35], as described in section 6.5 in [2]. The color structure of

the full color shower, on the other hand, is, as discussed in section 6, treated as if i→ ĩj, j.

In the shower algorithm presented here, we also extend our analysis from [22] by

including g → qq splitting. The description of how this splitting fits into the dipole

formalism is given in section 6.

3 Color matrix element corrections

We like to stress that this paper deals with color matrix element corrections to parton

showers. We thus correct each emission with the full color correlations, keeping all soft

and collinear contributions to the emission, i.e., we use the right “antenna pattern”. In

this sense, we do more than the standard leading Nc showers — where only the leading

Nc-terms, and the color suppressed term in CF = TR(N2
c −1)/Nc, are kept — but less than

a full matrix element correction.

We thus start from some color amplitude, |Mn〉, for n colored partons, decomposed in

any arbitrary color basis, with basis vectors |αn〉

|Mn〉 =

dn∑
α=1

cn,α|αn〉 ↔ Mn = (cn,1, . . . , cn,dn)T . (3.1)
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Squaring the amplitude in order to calculate a cross section gives

|Mn|2 =M†nSnMn = Tr
(
Sn ×MnM†n

)
(3.2)

with Sn being the scalar product matrix, (Sn)αβ = 〈αn|βn〉, for color basis vectors |αn〉
and |βn〉. Upon emission from the ĩj, k̃-pair, the relevant color factor changes to

〈Mn|Tĩj ·Tk̃|Mn〉 = Tr
(
Sn+1 × Tk̃,nMnM†nT †ĩj,n

)
(3.3)

in terms of matrix representations, Tĩj , Tk̃ ∈ Cdn+1,dn , of Tĩj ,Tk̃.

While this improves the radiation pattern to fixed order, we should remark that it

is not the full story of color suppressed terms in the context of parton showers. To fully

include all subleading Nc terms in the soft and collinear limits, virtual color rearranging

terms associated with the same singularity structure should also be kept. To accomplish

this, a full resummation of virtual exchanges is needed. Unfortunately, within the current

event generator structure these contributions cannot be included, and we postpone their

inclusion for future work. Instead we present a fully functional subleading Nc dipole shower,

building on the algorithm presented in [22], but including g → qq splitting, hadronization,

full mass dependence and initial state hadrons, meaning final-final, initial-final, final-initial

and initial-initial dipoles.

The rewriting of the collinear singularities in terms of dipole splitting kernels eqs. (2.6)–

(2.7), using color conservation, eq. (2.5), means that the color flow will be replaced by

every other color flow, except the flow associated with the color structure of the collinear

singularity. In order to be able to continue the full Nc matrix element corrected parton

shower with a leading Nc parton shower (as well as with subsequent hadronization), we

do, however, keep the color structure associated with emission from the emitter, as in

the standard event record, and we use that for the subsequent leading Nc shower and

hadronization. Not having one color structure to start from when it comes to hadronization

would imply considering a new approach to a hadronization model, which is much beyond

the scope of the current paper. On the other hand, it is still interesting to add hadronization

in a standard way to enable comparison to data.

4 Color structure treatment

So far, the treatment of color structure in this paper has been completely basis independent.

Any complete spanning set of relevant color structures, such as trace bases [22, 36–44],

multiplet bases [45–51], or color flow bases [52–54] would do, as long as the matrices Tĩj,n
for gluon emission, the matrices tĩj,n describing gluon splitting and the scalar product

matrices Sn could be calculated. This basis freedom is maintained within the Matchbox

module of Herwig, which can be used to interface to any implementation of color structure,

such as CVolver [25] or ColorFull [44].

For our simulations we use trace bases and the ColorFull implementation [44]. In the

trace bases, the color structure is expressed in terms of open and closed quark-lines, of
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the form

(4.1)

for all possible quark and gluon permutations and all possible number of traces [42, 44].

These bases have several advantages. The color structure can trivially be translated into

the leading Nc color flow, which is needed for subsequent leading Nc emission and standard

hadronization. The processes of gluon emission, gluon splitting, and gluon exchange can all

be very easily described, giving respectively at most two, two and four new basis vectors [39,

41, 42]. For example, considering gluon emission off an open quark-line we have the two

trace basis vectors

g1 g2 g3g4

=

g1 g2 g3g4

−
g1 g2 g3g4

, (4.2)

where we have also illustrated the different color flows in the Nc →∞ limit.1 If we instead

consider gluon splitting, we have

g1 q1 g3q2

= TR


g1 q1 g3q2

− 1

Nc

g1 q1 g3q1

 .

(4.3)

One of the disadvantages of trace basis lies in their overcompleteness, meaning that hence

— strictly speaking — they are actually not bases, but rather spanning sets.

For a small set of partons, up to approximately five qq-pairs and gluons, the overcom-

pleteness is fairly moderate, but for more partons it becomes significant [49, 51]. The num-

ber of basis vectors scales as a factorial in the trace basis case, with roughly (Ng +Nqq)!/e

basis vectors [49], whereas the number of basis vectors for finite Nc scale only as an expo-

nential. On the other hand, basis vectors which are not needed for a given process can often

easily be identified and crossed out for trace bases, in particular, at tree-level, the number

of required basis vectors scales approximately as (Ng +Nqq−1)!. For example, in eq. (4.1),

only color structures where all gluons are attached to the open quark-lines contribute.

The overcompleteness, and the fact that the scalar product matrices are dense, i.e.,

the scalar product between most pairs of basis vectors does not vanish, is the Achilles’ heel

of the trace bases. Instead of vanishing for two different basis vectors, the scalar product is

suppressed by one or more powers of 1/Nc. Thus, when Nc →∞, the bases are orthogonal,

1The relative sign on the right hand side is a matter of convention, and must be matched with the sign

of the kinematics structure. Here we apply ColorFull’s convention of introducing a minus sign when the

emitted gluon is inserted before the emitter on the quark-line.
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and the color structure can be replaced by color flows, as in eq. (4.2) and eq. (4.3). Since we

keep the full color structure, it is the calculation of scalar products that limits the number

of subleading Nc emissions that we can keep. At about Ng +Nqq = 6, the color structure

calculations start to take up significant time, and going beyond Ng +Nqq = 7 is very time

consuming within our current setup.

This unfavorable scaling behavior could be circumvented by using orthogonal multiplet

bases [49, 51], in which case the calculation of the radiation matrices Tĩj,n would be more

time consuming, however not to the same degree [50]. Alternatively color structure could

be sampled over. This is a road which we have attempted to pursue. Within our current

framework, using the weighted Sudakov veto algorithm from [55] (modified as described

in section 5), it is, however, impractical to go beyond 3 subleading Nc emissions at LEP,

or two subleading Nc emissions at LHC, due to the very poor statistical convergence from

large weight fluctuations. Therefore, within our current implementation, sampling has

proven disadvantageous.

5 The weighted Sudakov algorithm

The shower described in this paper treats up to Nmax emissions with the full color corre-

lations. This corrects the emissions to appear first in the p⊥-ordered evolution, down to

smaller scales, and then the leading color shower handles the subsequent lower p⊥ emissions.

The radiation pattern we aim at describing in the full color shower is

dPij,k(p
2
⊥, z; pĩj , pk̃) =

αs
2π

dp2
⊥

p2
⊥

dzJ (p2
⊥, z; pĩj , pk̃)Vij,k(p

2
⊥, z; pĩj , pk̃)

×−1

T2
ĩj

〈Mn|Tĩj ·Tk̃|Mn〉
|Mn|2

, (5.1)

where the factor after the multiplication sign is the color matrix element correction, which

we will denote by ωn
ĩj k̃

. For the cases when the color matrix element correction is negative,

the weighted Sudakov veto algorithm from [55] is used, with one modification: in the com-

petition version of the algorithm from [55], the weight for an emission gets a contribution

from each veto and accept step, for all trial emissions of all competing pairs. The algorithm

will, however, produce the same distribution if the total weight only receives contributions

from the accept step of the winning emission and veto steps at scales larger than the win-

ning scale. Discarding all weight contributions below some scale (in this case the scale of

the winning emission) makes the algorithm generate another distribution below that scale,

but the radiation pattern of the losing trial emissions below the winning scale cannot affect

the final distribution, since these emissions are discarded anyway. We therefore choose to

discard the weights below the winning scale. This modification significantly improves the

convergence. The proof that this modified algorithm generates the same distribution as

the algorithm of [55] can be found in appendix A.

Two choices in the algorithm from [55] are: the acceptance probability (denoted ε

in [55]) and the overestimate proposal distribution (denoted R). These free choices were
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used to improve the convergence of the algorithm, the details of the choices can be found

in appendix B.

In total, to reproduce the radiation pattern in eq. (5.1), the shower steps given below

are repeated until Nmax emissions have been corrected or no emission is found above the

cut-off scale µ.

1. The starting scale Q⊥ is given by the hard scale. For the first emission, this is taken

to be the Z mass for LEP and the average transverse momentum of hard jets in

the final state for LHC. For subsequent emissions, Q⊥ is given by the scale of the

previous emission.

2. All processes for all pairs of partons compete with each other and a winning hardest

scale is chosen. For each dipole, ĩj, k̃, candidate emissions, ĩj, k̃ → i, j, k at scales

p⊥,ĩj,k, are chosen according to the Sudakov form factor

− ln ∆ij,k(p
2
⊥,ij,k|Q2

⊥) =
αs
2π

∫ Q2
⊥

p2⊥,ij,k

dq2
⊥

q2
⊥

∫ z+(q2⊥)

z−(q2⊥)
dz Pij,k(q2

⊥, z; pĩj , pk̃) , (5.2)

where Pij,k, in accordance with eq. (5.1), is

Pij,k(p2
⊥, z; pĩj , pk̃) = J (p2

⊥, z; pĩj , pk̃)Vij,k(p
2
⊥, z; pĩj , pk̃)×

−1

T2
ĩj

〈Mn|Tĩj ·Tk|Mn〉
|Mn|2

(5.3)

and z±(p2
⊥) follow from the phase space boundaries at fixed transverse momentum. If

the color matrix element correction is positive, the standard Sudakov veto algorithm

is used (resulting in that the trial emission always contributes a factor 1 to the event

weight) and if it is negative, the modified weighted veto algorithm is used (where the

weight is, in general, multiplied by the weight in eq. (B.4)). The winning emission

defines the details of the kinematics and the recoil is absorbed by the spectator k̃ of

the winning dipole, such that all partons are on-shell after the emission.

3. If no scale above the cut-off µ was found, the shower terminates.

4. If this is the emission Nmax, the leading Nc shower will continue showering the event,

otherwise the density operator is updated as will be described in section 6.

If Nmax emissions have been corrected, the leading Nc shower continues with the color

structure given by the large Nc flow associated with emissions from the selected emitters,

as discussed in section 3. The leading Nc shower then continues until reaching the cut-

off scale µ. Finally, the event may, or may not, be hadronized. If the hadronization is

performed it starts from the leading Nc color flow.

6 Evolution of the density operator

The parton shower starts from the hard matrix element |Mn〉. However, after emission,

the resulting “dipole” color structure from eq. (3.3) cannot, within our framework, be cast

– 8 –
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into the form of some new amplitude |Mn+1〉. Instead we see from eq. (3.3) that the

relevant n + 1-parton quantity, corresponding to Mn ≡ MnM†n for emission from ĩj, k̃

is ∼ Tk̃,nMnM†nT †ĩj,n. For gluon emission (final or initial), keeping all contributions to

the emission probability, and using the dipole factorization eq. (2.1) with the splitting

kernels eq. (2.6), we see that if we define

Mn+1 = −
∑
i 6=j

∑
k 6=i,j

4παs
pi · pj

Vij,k(pi, pj , pk)

T2
ĩj

Tk̃,nMnT
†
ĩj,n

, (6.1)

the matrix element square for n+ 1 particles can be written analogously to eq. (3.2) as

|Mn+1|2 = Tr (Sn+1 ×Mn+1) . (6.2)

Thus, when a phase space point has been selected for gluon emission, Mn could be updated

according to eq. (6.1). Note, however, that the overall normalization of Mn+1 is irrelevant,

since when used in the n+ 2-version of eq. (5.3) to calculate the emission of n+ 2 partons,

Mn+1 enters in both the numerator and denominator. Thus we could ignore any constant

factor. In fact, for technical reasons, we only keep the eikonal parts, ∼ pi ·pk/(pi ·pj pk ·pj),
of eq. (6.1). Clearly the dropped hard collinear pieces should not alter the subsequent

emission of soft wide-angle radiation.

For the case of g → qq, there is no interference between various possible emitters, and

the amplitude is symmetric in all final state gluons, meaning that Mn can be updated using

only one term

Mn+1 = tĩj,nMnt
†
ĩj,n

, (6.3)

where tĩj,n represents the color space map corresponding to tgqq, i.e., the matrix where

element αβ is the transition from basis vector β in the initial (smaller) basis, to basis

vector α in the final (larger) basis, where the difference between the color structures is

that the gluon ĩj has been contracted and replaced by the qq-pair i, j, giving one or two

new basis vectors. The possible recoil partners used to set up the gluon splitting into

quarks are picked using eq. (5.1) with the g → qq splitting kernel, but with color matrix

element corrections as for gluon emission. While this choice is ad-hoc in this case, it has

the advantage of nicely fitting into the dipole picture. In the collinear limit, where the

splitting becomes relevant, we can use color conservation eq. (2.5), to observe that the sum

over the kernels using different spectators is indeed collapsing to the expected collinear

splitting function.

Note that the same update of Mn+1, eq. (6.3), and the same recoil strategy, is applied

irrespectively of if the splitting gluon is final or initial. The only difference is thus, as for

the gluon emission case, the standard convolution with the PDFs for initial parton splitting

rates. If we have an initial state quark (antiquark) which evolves backwards into a gluon

going into the parton distribution function and an antiquark (quark) which is radiated, the

shower has no interference with other diagrams, and the density matrix can be updated

according to

Mn+1 = Tĩj,nMnT
†
ĩj,n

, (6.4)
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without an irrelevant, overall factor. In the standard dipole large Nc shower, the momen-

tum recoil is absorbed by the color-connected partner, implying that the emission can be

accounted for within the dipole shower formalism.

A comment on the update of the density matrix is in order here. In this paper we keep

the full color structure, of all possible emitter-spectator pairs which could have contributed

to an emission. An alternative strategy is to pairwise sample over emitters and spectators,

corresponding to keeping only one term in the double sum in eq. (6.1). While this samples

from all color structures, we like to remark that it actually corresponds to a slightly different

approximation. In our current implementation, after defining the kinematics of the new

emission from the winning pair, all pairs contribute to the color structure of the next

emission, and the weight of their color structure, is given by eq. (6.1), implicitly multiplying

the same Sudakov factor, the Sudakov factor of the winning pair. In a sampling procedure,

the terms in the eq. (6.1) would end up in different events, and each term would be

associated with the Sudakov factor of the pair emitting in that winning phase space point.

The difference in a sufficiently large Monte Carlo sample, thus lies within the Sudakov

factor, coming with different scales for different pairs. We note however, that the two

approaches should agree in the soft limit, and we have also checked that the numerical

difference is small.

7 Results

7.1 Outline of the simulation

In this section we outline the simulation, and consider various shower distributions with

the aim of understanding and validating the shower evolution.

We use the Herwig 7.1 dipole shower, with settings according to the 7.1.3 release [27],

with the modified weighted Sudakov veto algorithm outlined in section 5, and with color

matrix element corrections as described in section 3, starting from lowest order 2 → 2

processes. The LHC generation p⊥-cut is by default put to 30 GeV, and the default jet

analysis veto is p⊥ = 50 GeV. The energy is 13 TeV for LHC and 91.2 GeV for LEP unless

stated otherwise. If jet clustering is required, our default choice is the anti-kT algorithm,

as provided by the fastjet package [56], with R = 0.4 at LHC. At LEP, no generation cuts

are applied, and both at LEP and LHC we use the original Rivet [57] analysis published

along with the data in comparison to data.

To ensure statistical convergence, we start with investigating the weight distribution.

In figure 1 we show the weight distribution for up to five/three subleading Nc emissions at

LEP/LHC respectively corresponding to up to six/seven qq-pairs plus gluons in the color

bases. We note that although the weight distributions get broader with the number of

emissions, it stays sufficiently narrow to ensure convergence for the considered number of

subleading emissions. The number of colored partons, which we can practically include,

is therefore limited by the evaluation of scalar products in color space, as described in

section 4. (We will find, however, that we are able to keep sufficiently many full color

emissions for standard hard observables to converge.)
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Figure 1. Weight distribution for e+e− (left) and pp collisions (right) depending on the number

of Nc = 3 emissions allowed. All generated events are used in these plots, i.e., no further analysis

cut is applied.
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Figure 2. Rapidity distribution of the first and second jet as zero, one, two and three Nc = 3

emissions are kept.

Somewhat against intuition, we see a broader weight distribution for LEP events than

for LHC events, despite the fact that we tend to have more colored partons at the LHC.

This can be attributed to the fact that the corrections often tend to be negative at LEP

(starting from e+e− → qq), due to the negative contribution from coherent emission from

the qq-pair. In line with this, we also note that if we separately study qq → qq, qg → qg

and gg → gg, we find the largest weight variations for qq → qq, another case where we can

expect large negative corrections from qq-pairs.

We next turn to the convergence of standard observables with respect to the number of

subleading Nc corrected emissions. As an example, we consider the rapidities of the hardest

LHC jets in figure 2. As can be seen, the curves converge as more subleading emissions are

added, and in this respect we see the same pattern for all standard hard LHC observables;

they all converge when up to three subleading emissions are added, i.e., starting with a
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Figure 3. Transverse momentum distribution in the dipole frame of the last Nc = 3 emission

(orange) and the first non-corrected emission (blue). For LEP the second-to-last Nc = 3 emission

is also shown (green). For LHC we use a 50 GeV (middle) and a 1 TeV (right) cut on the hardest

parton. The shower cut-off at LEP is 0.45 GeV, and events which reach this scale are shown in the

0-bin above.

2→ 2 topology and adding three subleading emissions (followed by leading Nc showering)

gives results very similar to adding just two subleading Nc emissions (followed by leading

Nc showering). LEP observables show a similar convergence pattern. Only when explicitly

considering very many jets, does the convergence fail. This strongly suggests that for

standard hard observables, subleading Nc corrections can be well approximated by color

correcting the first few emissions.

The convergence can also be underpinned by studying the evolution scale at which the

Nc = 3 parton shower terminates, and further evolution only is given by the leading Nc

shower. This is investigated in figure 3 where the transverse momentum, as measured in the

frame of the emitting dipole, is shown in orange for the last full color corrected emission,

i.e., while keeping up to three subleading emissions at the LHC and up to five subleading

emissions at LEP. For comparison we also show the distribution of the first emission not

to be corrected.

We find that the typical scale of the last color corrected emission is about 1 GeV at

LEP and about 5–10 GeV at LHC, using a 50 GeV cut. Increasing the cut to 1 TeV gives

a much harder last subleading Nc corrected emission, as expected.

The convergence of observables is also in line with results from a very recent paper on

subleading Nc corrections at LEP [58], where the authors claim to observe good convergence

while keeping subleading corrections down to a variable cut-off at around 3 GeV.

In [58] a Monte Carlo sampling over color is advocated, and the point is made that

this avoids the factorial scaling in color space. In view of figure 3, we note, however,

that we typically go further down in p⊥ despite keeping the full color structure, although

clearly there is no scale down to which we guarantee that we always keep the Nc = 3 color

structure. In fact, even if we limit ourselves to four subleading Nc emissions, for which the

time penalty due to color structure treatment is negligible, we also tend to go well below

3 GeV. Therefore, in the case of hard observables at LEP, color structure sampling seems

to be of no benefit for the convergence of observables.

We have also performed a number of standard shower variation checks, including

shower scale variation and infrared cutoff variation. While varying the shower scale, we

find effects very similar to the leading Nc case. Increasing the infrared cutoff from 1 to

– 12 –



J
H
E
P
1
1
(
2
0
1
8
)
0
0
9

Leading Nc
1 Nc = 3 emission
3 Nc = 3 emissions
5 Nc = 3 emissions

10−5

10−4

10−3

10−2

10−1

Jets

2 3 4 5 6 7 8
0.9

0.95

1.0

1.05

Jets

R
at
io

Leading Nc
1 Nc = 3 emission
3 Nc = 3 emissions
5 Nc = 3 emissions

10−5

10−4

10−3

10−2

10−1

1

10 1

1− Thrust

1/
σ
d
σ
/
d
(1

−
T
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.9

0.95

1.0

1.05

1− T

R
at
io

Leading Nc
1 Nc = 3 emission
3 Nc = 3 emissions
5 Nc = 3 emissions

10−5

10−4

10−3

10−2

10−1

1

10 1

Aplanarity

1/
σ
d
σ
/
d
A

0 0.05 0.1 0.15 0.2
0.9

0.95

1.0

1.05

A

R
at
io

Figure 4. Parton level plots for fraction of LEP-events containing n jets with E > 5 GeV (left),

thrust (middle) and aplanarity (right), the jets have been clustered with the anti-k⊥-type generalized

e+e− clustering algorithm with R = 0.7. For hadronized events the effect on thrust vanishes,

whereas the effects on number of jets and aplanarity are somewhat reduced. Note that the case of

one full Nc emission should agree with the leading Nc shower, as is seen.

2 GeV likewise results in differences well comparable to the leading Nc shower, and so does

adding multiple interactions.

Finally, we have checked what happens if the shower is turned off completely after one

to three subleading emissions. Here, we find large differences for the LHC, even if we keep

up to three subleading Nc corrected emissions. We therefore conclude that it is essential

to keep showering beyond three color corrected emissions, but it is — for standard hard

QCD observables, or likely any observable which is mostly sensitive to the hardest jets —

not important to keep color correcting the subsequent, softer and softer, emissions. For

observables depending on soft physics, the situation may be different, as indicated below.

7.2 LEP — final state radiation

7.2.1 Parton level analyses

We first recapitulate the exercise from [22] and run an e+e− simulation at
√
s = 91.2 GeV,

without hadronization, but this time including subsequent leading Nc showering beyond

the (up to) five subleading Nc emissions, as well as g → qq splittings.2 Again we find

that the corrections to most LEP observables are small. As examples of observables which

show some effect, we show the fraction of events containing n jets with E > 5 GeV, the

thrust distribution, and the aplanarity in figure 4, in all cases showing corrections below

10%. On the other hand, effects can be significant in tailored situations. For example,

considering the average transverse momentum with respect to a thrust axis defined by the

three hardest partons, we find corrections above 10%. We caution, however, that without

modification this is not an observable.

2The shower has also changed in several other respects compared to [22], the momentum fraction inte-

gration boundaries have changed, the leading Nc assignment has been updated as described in section 2

(having a large effect on predictions, similar to in [34]), the running of αs is different, and we use the

Sudakov veto algorithm from section 5. For all these reasons, a direct comparison is not possible.
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Figure 5. Out-of-plane p⊥ w.r.t. the thrust and thrust major axes (left), light hemisphere mass

(middle) and fraction of events containing Nch charged particles, using to data and Rivet analyses

from [59, 60].

7.2.2 Hadron level

We have studied hadronized LEP events for a large class of observables from [59, 60]. For

planarity, sphericity, oblateness, and in- and out-of-plane p⊥ w.r.t. sphericity axis, we find

small differences of a few percent or less, whereas C-parameter shows some effects of 5–10%

in the low C-parameter region. As examples, in figure 5, we show the total out-of-plane p⊥
(w.r.t. the plane defined by the thrust and thrust major axes) and the light hemisphere

mass in comparison to data from [59].

In general the deviation of simulated results compared to data from [59–61] is clearly

dominated by other factors, and the overall description of data does not change visibly.

Turning, on the other hand, to observables sensitive to soft physics, we find larger dif-

ferences. As an example we show the charged multiplicity distribution in figure 5 (right),

compared to data from [60], but we likewise see large effects for Durham jet resolution vari-

ables in the soft region, on the color singlet cluster masses for the Herwig hadronization

model [2] and on individual hadron multiplicities.

While it is tempting to interpret the charged particle multiplicity plot in figure 5, as

improved data description, we remark that the hadronization model in use, is the stan-

dard Herwig cluster hadronization model [2], with a leading Nc color flow, as described in

section 3. We therefore caution that the differences should only be seen as an indication

of effects on soft physics, from the altered particle kinematics entering the hadronization.

While this can be interpreted as a need to retune the full color parton shower, retuning

shower parameters is beyond the scope of the present paper.

7.3 LHC — coherent initial and final state radiation

7.3.1 Parton level analyses

We now turn to the LHC and start with reconsidering figure 2. Considering the leading two

jets, with our standard p⊥ > 50 GeV analysis cut, we see that they tend to have slightly

different rapidity distributions, with the second jet being more central. For most other

standard observables we find small differences, of a few percent or less. Nevertheless it is

illustrative to separately consider scattering involving different partons. Doing so we find

that for qq → qq and gg → gg, the subleading Nc corrections are small for all studied
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Figure 6. Rapidity distribution of the hardest and second hardest jet while considering only

qg → qg scattering.

observables, whereas for qg → qg, they can be more sizable. In figure 6 we therefore

revisit the rapidity distributions of the two leading jets, and find corrections going in

opposite directions for the two jets. Since qg-induced scattering contributes with a large

fraction of the cross section for the applied cuts, and since LHC data contains qg → qg and

gq → gq (along with all other processes), it can be concluded that significant cancellation

of subleading Nc corrections is present at LHC.

Using the cuts of [62],

400 GeV < M12 < 600 GeV ,

3.8 < |y1 + y2| < 5.2 , (7.1)

1.5 < |y2 − y1| < 3.5 ,

where y1 and y2 are the rapidities of the hardest and second hardest jet and M12 is the

invariant mass of the two hardest jets, events dominated by the hard process qg → qg

can be statistically enhanced. These cuts select events with one of the two hardest jets

being forward (in either direction) and one central. With these cuts we find differences of

5− 10% for the rapidity distributions of the hardest three jets, as illustrated in figure 7 for

the hardest jet. From figure 7, we see that in the Nc = 3 shower, the hardest jet tends to

be central less often as compared to the leading Nc shower. The rapidity distribution of

the second hardest jet shows that it is forward less often. There are also 5−10% differences

in ∆φij = φi − φj , ∆ηij = ηi − ηj and ∆Rij =
√

∆φ2
ij + ∆η2

ij , for i = 1, 2 , j = 3. As an

example ∆φ13 is also shown in figure 7. In general, with these cuts subleading Nc effects

show sizable corrections for many standard QCD observables.

7.3.2 Hadron level analyses

We now turn our attention to hadronized events and to comparisons with LHC data. We

have compared the subleading Nc corrected parton shower to experimental data for a wide

range of QCD observables, using data from [63–69]. First, in figure 8, we consider the event
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Figure 7. Rapidity distribution of the hardest jet (left), second hardest jet (middle) and separation

in φ of the hardest and third hardest jets (right). Our standard analysis cut of p⊥ > 50 GeV is used.
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Figure 8. Distribution of loge(1 − TC) (left) and Tm,c (right) for
√
s = 7 GeV. Data and Rivet

analysis are taken from [63].

shape central transverse thrust, defined as [70]

TC = maxn̂T

∑
i |p⊥,i · n̂T |∑

i p⊥,i
, (7.2)

where p⊥,i is the transverse momentum of the central jet i, having pseudorapidity η < 1.3,

and n̂T is the direction perpendicular to the beam axis, which maximizes the sum. We also

consider central thrust minor, defined again in terms of central jets with η < 1.3,

Tm,C =

∑
i |p⊥,i × n̂T |∑

i p⊥,i
, (7.3)

and compare to data from [63]. As can be seen we find relatively small corrections, at the

5% level or below.

A comparison to the jet shapes and jet masses for high p⊥ jets, from [64], shows yet

smaller subleading Nc corrections, typically below a few percent.

We have also compared data to the so-called color coherence effects from [67]. In

figure 9 we show the distribution of the β-angle, defined in terms of the pseudorapidities
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Figure 9. The angle β, defined as in eq. (7.4) using (left) an underlying 2 → 2 hard process and

(right) an underlying 2→ 3 hard process. Data and Rivet analysis are taken from [67].
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Figure 10. Fraction of events having no additional jet with p⊥ above Q0 within a rapidity interval

|y| < 0.8 (left) and fraction of events where the scalar sum of transverse momenta within |y| < 0.8

does not exceed Qsum (right) for tt events at
√
s = 7 TeV. Data and Rivet analysis are taken

from [65].

η2 and η3 and the azimuthal angles φ2 and φ3, as

tanβ =
|φ3 − φ2|

sign(η2)(η3 − η2)
. (7.4)

Experimental data is first compared to shower predictions using a 2 → 2 hard matrix ele-

ment, and then using a 2→ 3. We clearly see that the use of a 2→ 3 hard matrix element

significantly improves the description of data, whereas adding subleading Nc showering

to the 2 → 2 process changes the distribution compared to the leading Nc shower very

marginally. This casts doubt upon the description of this observable as probing color co-

herence, and rather illustrates its dependence on the hard matrix element (or alternatively

on other details of the shower algorithm).
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We have also investigated the effects from subleading color contributions on top-pair

production, and compared to data from [65, 66]. Here we find that the jet shapes from [66]

are essentially unaltered, whereas the measurement of the additional jet activity in tt

events [65] show intriguing effects, displayed in figure 10. In particular we note that the

data description improves in the region of a modest ratio between Q0/Qsum and the hard

scale. For gap observables, like in figure 10, with a large scale hierarchy, we remark that

we can expect effects from resummation of virtual gluons, which we do not include in this

paper. These subleading Nc corrections may be sizable [26, 71–73].

As a clean test of initial state radiation, we have also compared the Nc = 3 shower

to event shapes in leptonic Z decay events, [69]. Here, as expected, having fewer colored

particles in the hard process, we find very small corrections, at the percent level or below.

8 Conclusion and outlook

In this paper we have investigated the effect of keeping the full color structure in parton

shower emissions in realistic simulations of LHC and LEP events. This is pursued within

the dipole shower of the Herwig 7.1 framework [27] as color matrix element corrections.

The Nc = 3 color shower corrects the first few (five for LEP and three for LHC)

emissions using the full Nc = 3 emission pattern. All hard observables we have studied,

with the exception of observables explicitly considering very many jets, have converged with

respect to keeping additional subleading Nc color corrected emissions. The convergence can

also be underpinned by noting that the last emission to be corrected, corresponds to a low

evolution scale, in comparison to the studied observables, see figure 3. In particular for

LEP, we typically go down to evolution scales around one GeV.

Our results show that, for most QCD variables at the LHC, the subleading Nc effects

are, similarly to at LEP, of the order of a few percent. At the LHC we can, however, see

larger effects, 10− 20%, for the tails of the rapidity distribution of the second hardest jet,

figure 2, as well as for more tailored situations, cf. figure 7.

In a gedanken experiment, where quarks and gluons are collided, larger differences can

be found, indicating that cancellation of subleading Nc effects are present at the LHC.

To capture this situation, we consider LHC events while requiring that of the two most

energetic jets, one is central and one is forward. In this case we find differences of 5− 10%

also for standard QCD observables. These differences are not only in the tails of the

distributions, but over the whole range of several observables.

Turning to soft observables the situation is different. In many cases, including jet res-

olution variables at low scales, charged particle multiplicities (figure 5), individual hadron

multiplicities and the number of very soft jets at LEP, we find large effects, of several 10%.

While we cannot expect to make accurate predictions for any of these cases, due to sensi-

tivity to hadronization, multiple interaction and resummation effects, it should be stressed

that subleading Nc effects can be expected to play an important role for the final state of

the shower, entering the hadronization. An immediate extension of this work is therefore

retuning of the Nc = 3 shower. Indeed, an improved description to (most) observables

cannot be expected until retuning is performed.

– 18 –
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Another natural next step is to include virtual corrections. Virtual gluon exchanges

would allow rearrangement of the color structure without emission. This would be expected

to have an effect on gap fraction observables, such as in figure 10, and we therefore caution

that our conclusions regarding the magnitude of the subleading Nc corrections may not be

applicable in these cases.

More precisely, virtual gluon exchanges should be the mechanism underlying (pertur-

bative) color reconnection effects. In the longer perspective, it would be desirable to update

the standard hadronization model to encompass a subleading Nc shower.

For these reasons, we like to stress that this work should be considered as the start of

subleading Nc corrections at the LHC, not the end. Indeed much work remains to be done.

Note added. While this work has been finalized, a similar approach has been reported

in [58]. In [58] color matrix element corrections, as well as the weighted Sudakov algorithm

for final state evolution is used, but a sampling of color structure is advocated.
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A Proof of the modified weighted veto algorithm

In this appendix we will recapitulate the weighted Sudakov veto algorithm of [55], and

prove that our modified algorithm generates the same probability distribution for compet-

ing processes.

The algorithm of [55] generates splittings at the scale q with d additional splitting vari-

ables x from a splitting kernel P (q, x) (which can be negative), according to the distribution

dSP (µ, xµ|q, x|Q) = dqddx
[
∆P (µ|Q)δ(q − µ)δ(d)(x− xµ)

+P (q, x)∆P (q|Q)θ(Q− q)θ(q − µ)
]
, (A.1)

where Q is the starting scale, µ is the cutoff scale, xµ is a parameter point associated with

the cutoff, θ is the Heaviside step function, where we use the convention θ(0) = 1, and

∆P (q|Q) is the Sudakov form factor,

∆P (q|Q) = exp

(
−
∫ Q

q
dk

∫
ddzP (k, z)

)
. (A.2)
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We note that the distribution SP is normalized to unity, in the sense that∫ Q

µ

∫
dSP (µ, xµ|q′, x′|Q) = ∆P (µ|Q) + 1−∆P (µ|Q) = 1, (A.3)

where the integrations are over q′ and x′. As in [55] we use an integrable splitting kernel

R(q, x) for which the primitive function can be inverted. This function is required to be

positive everywhere, but actually does not need to be an overestimate of P (q, x). We also

define an acceptance probability ε(q, x), such that

0 < ε(q, x) ≤ 1. (A.4)

Now we add the modification to the algorithm, instead of a single weight that is updated

upon each trial emission, we keep track of the scale and weight of every veto and accept

step. The algorithm starts at a scale q0 = Q and a step counter i = 0. The algorithm is as

follows, for every competing splitting kernel:

1. i is incremented by one.

2. A trial splitting is generated, at the scale qi and with splitting variables x, from

SR(µ, xµ|qi, x|qi−1).

3. If qi = µ, the algorithm terminates without an emission, and returns the scales qi
and weights ωi for all i, that may have been acquired in the steps below.

4. The trial splitting is accepted with the probability ε(qi, x). If accepted, the weight

ωi =
1

ε(qi, x)

P (qi, x)

R(qi, x)
, (A.5)

is defined and the scales qi and weights ωi for all i, along with the splitting variables

x, are returned.

5. Otherwise, the weight

ωi =
1

1− ε(qi, x)

(
1− P (qi, x)

R(qi, x)

)
, (A.6)

is stored and the algorithm repeats, starting at step 1.

In the algorithm of [55] the weight associated with this trial splitting is

ω =

nsteps∏
i=1

ωi, (A.7)

where nsteps is the number of veto and accept steps. Our modification will use the weight

ω =

nsteps∏
i=1

ωiθ(qi − qw), (A.8)

where qw is the scale of the winning splitting, i.e. we ignore weights below the winning scale.
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Now we consider the competition algorithm. The standard proof of the competition

algorithm does not depend on how the probability distribution, SP , is generated, nor does

it depend on the sign of the splitting kernels, hence the standard competition proof applies

for the weighted Sudakov veto algorithm. To prove that the weight eq. (A.8) generates

the same distribution as the weight eq. (A.7) when using the competition algorithm, we

will consider the probability density for a specific scale q and splitting variables x, from

the splitting kernel Pα, competing with some other splitting kernels Pβ , β 6= α. For a

splitting kernel Pα, the probability density for the algorithm defined by steps 1 to 5 above,

starting at scale q0 and splitting variables x0, to traverse a sequence of scales and splitting

variables of length n, before emitting at the scale q with the splitting variables x (using

the short-hand notation εα,i = εα(qi, xi) is

dS
(n)
Rα,ε̄α

(µ, xµ; q, x|qn, xn| . . . |q0, x0)

=
[
∆Rα(µ|q0)δ(q − µ)δ(d)(x− xµ)

+ εα(q, x)Rα(q, x)∆Rα(q|q0)θ(qn − q)θ(q − µ)
]
dqddx (A.9)

×
n∏
i=1

Rα(qi, xi)(1− εα,i)θ(qi−1 − qi)θ(qi − µ)dqid
dxi,

where Rα is the “nice” splitting kernel corresponding to the splitting kernel Pα. The weight

associated with this is

ω
(n)
Pα,Rα,ε̄α

(µ; q, x|qn, xn| . . . |q0, x0) =

(
n∏
i=1

ωi

[
1

θ(qi − qw)

])
(A.10)

×
[

1

θ(q − qw)

]
1

εα(q,x)
Pα(q,x)
Rα(q,x) if q > µ

1 if q = µ,

where the upper element of the square brackets correspond to the weight from [55] and the

lower element corresponds to the modified weight, and ωi is a function of qi and xi as seen

from eq. (A.5) and eq. (A.6). The total probability density for the splitting variables q, x

from the splitting kernel Pα, competing with the kernels Pβ , is

∞∑
n=0

∫
q1,x1,...,qn,xn

dS
(n)
Rα,ε̄α

(µ, xµ; q, x|qn, xn| . . . |q0, x0)ω
(n)
Pα,Rα,ε̄α

(µ; q, x|qn, xn| . . . |q0, x0)

×
∏
β 6=α

∫
q(β),x(β)

∞∑
nβ=0

∫
q
(β)
1 ,x

(β)
1 ,...,q

(β)
nβ
,x

(β)
nβ

dS
(nβ)
Rβ ,ε̄β

(µ, xµ; q(β), x(β)|q(β)
nβ
, x(β)

nβ
| . . . |q0, x0)

× ω(nβ)
Pβ ,Rβ ,ε̄β

(µ; q(β), x(β)|q(β)
nβ
, x(β)

nβ
| . . . |q0, x0)θ(q − q(β)), (A.11)

where the product is over every competing kernel and the θ-function is to enforce that the
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winning scale is q from the splitting kernel Pα. In the first line of eq. (A.11) we have

dS
(n)
Rα,ε̄α

(µ, xµ; q, x|qn, xn| . . . |q0, x0)ω
(n)
Pα,Rα,ε̄α

(µ; q, x|qn, xn| . . . |q0, x0)

=
[
∆Rα(µ|q0)δ(q − µ)δ(d)(x− xµ) + Pα(q, x)∆Rα(q|q0)θ(qn − q)θ(q − µ)

]
dqddx

×
n∏
i=1

(Rα(qi, xi)− Pα(qi, xi))θ(qi−1 − qi)θ(qi − µ)dqid
dxi. (A.12)

Using this and extracting all of the terms of eq. (A.11) that depend on the intermediate

scales, q1, . . . , qn, we have

∞∑
n=0

∫ q0

q
dq1

∫
ddx1

∫ q1

q
dq2

∫
ddx2 . . .

∫ qn−1

q
dqn

∫
ddxn

n∏
i=1

(Rα(qi, xi)− Pα(qi, xi))

=
∞∑
n=0

1

n!

[∫ q0

q
dk

∫
ddz(Rα(k, z)− Pα(k, z))

]n
= exp

(∫ q0

q
dk

∫
ddz(Rα(k, z)− Pα(k, z))

)
, (A.13)

where the first equality uses that the ordered integrals can be exchanged for unordered

integrals divided by 1/n!. Hence, ∆Rα is canceled in eq. (A.12) and replaced with ∆Pα .

The first line in eq. (A.11) is then exactly dSPα(µ, xµ|q, x|q0). If we consider one of the

factors in the product over β in eq. (A.11), noting that the integration, using the θ-function,

has the limits q(β) = µ and q(β) = q, we have∫ q(β)=q

q(β)=µ

∫
x(β)

∞∑
nβ=0

∫
q
(β)
1 ,x

(β)
1 ,...,q

(β)
nβ
,x

(β)
nβ

dS
(nβ)
Rβ ,ε̄β

(µ, xµ; q(β), x(β)|q(β)
nβ
, x(β)

nβ
| . . . |q0, x0)

× ω(nβ)
Pβ ,Rβ ,ε̄β

(µ; q(β), x(β)|q(β)
nβ
, x(β)

nβ
| . . . |q0, x0). (A.14)

If the weight eq. (A.7) is used, the argument in eq. (A.13) can be used to show

that eq. (A.14) is∫ q(β)=q

q(β)=µ

∫
x(β)

dSPβ (µ, xµ; q(β), x(β)|q0) = ∆Pβ (µ|q0) + ∆Pβ (q|q0)−∆Pβ (µ|q0)

= ∆Pβ (q|q0), (A.15)

where the first term comes from the first term in eq. (A.1) and the other two terms come

from the second term in eq. (A.1). If the modified weight, eq. (A.8), is used, the veto

algorithm no longer generates the splitting function Pβ for all scales. The modified weights

will generate emissions according to the splitting kernel

P ′β(q, x) =

{
εβ(q, x)Rβ(q, x) for q < qw,

Pβ(q, x) for q > qw,
(A.16)

where the behavior below qw can be seen from eq. (A.9). Above qw it generates Pβ as the

weights are identical. Hence, if using the modified weights, eq. (A.14) becomes

∆P ′β
(µ|q0) + ∆P ′β

(q|q0)−∆P ′β
(µ|q0) = ∆P ′β

(q|q0) = ∆Pβ (q|q0), (A.17)
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where the second equality uses eq. (A.16). We now see that eq. (A.15) and eq. (A.17) are

equal, so the modified weights give the correct Sudakov form factor and the distribution

in eq. (A.11) will be the same.

To conclude, the physical interpretation of the argument in this appendix, is that

emissions below the winning scale do not affect the physics above it. Hence, we are free to

use the weights in eq. (A.8), which offer a better convergence for the algorithm.

B Choices for the modified veto algorithm

This appendix contains the details for the choice of acceptance probability and overestimate

kernel for the modified weighted Sudakov veto algorithm. The arguments of the splitting

kernels, p2
⊥, z, pĩj and pk̃, have been suppressed for clarity in the following equations.

We use the modified version of the weighted sudakov veto algorithm from [55], as

described in section 5. The splitting kernel we aim at generating, Pij,k, is given in eq. (5.3).

Defining PNc→∞ij,k to be the leading color limit of Pij,k, assuming ĩj and k̃ are color connected

(cf. eq. (2.8)), and lettingRNc→∞ij,k be the standard overestimate used in Herwig, as obtained

from the ExSample [6] adapted grid proposal, we can write

Pij,k = sign(ωn
ĩj k̃

)|ωn
ĩj k̃
|(1 + δĩj)PNc→∞ij,k . (B.1)

Our choice for the overestimate kernel is Rij,k = |ωn
ĩj k̃
|(1 + δĩj)RNc→∞ij,k and our choice for

the acceptance probability is

ε =
|Pij,k|
Rij,k

=
PNc→∞ij,k

RNc→∞ij,k

, (B.2)

i.e. we use the same acceptance probability as for the leading Nc shower (if ĩj, k̃ were color

connected). The acceptance weight is then

sign(ωn
ĩj k̃

) =

{
1 for ωn

ĩj k̃
> 0

−1 for ωn
ĩj k̃

< 0
, (B.3)

and the veto weight is

RNc→∞ij,k − sign(ωn
ĩj k̃

)PNc→∞ij,k

RNc→∞ij,k − PNc→∞ij,k

=


1 for ωn

ĩj k̃
> 0

RNc→∞ij,k +PNc→∞ij,k

RNc→∞ij,k −PNc→∞ij,k

for ωn
ĩj k̃

< 0
. (B.4)

From eq. (B.3) and eq. (B.4) we see that trial emissions corresponding to positive ωn
ĩj k̃

never change the event weight.

Open Access. This article is distributed under the terms of the Creative Commons
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