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potential is generated by suitable string loop corrections in combination with higher deriva-
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that the Kähler cone conditions set strong constraints on the allowed inflaton field range.
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1 Introduction

Cosmic inflation is an early period of accelerated expansion of our universe which can

provide a solution to the flatness and horizon problems of standard Big Bang cosmology.

Moreover, quantum fluctuations during inflation can source primordial perturbations that

caused the formation of large scale structures and the temperatures anisotropies observed

in the cosmic microwave background.
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From a microscopic point of view, inflation is expected to be driven by the dynamics

of a scalar field undergoing a slow-roll motion along a very shallow potential that mim-

ics a positive cosmological constant. An important feature of inflationary models is the

distance travelled by the inflaton in field space during inflation since it is proportional to

the amount of primordial gravitational waves which get produced [1]. From an effective

field theory point of view, in small field models with a sub-Planckian inflaton excursion,

dimension six operators can easily spoil the flatness of the inflationary potential. On the

other hand, quantum corrections to large field models with a trans-Planckian field range

lead to an infinite series of unsuppressed higher-dimensional operators which seem to bring

the effective field theory approach out of control.

These dangerous operators can be argued to be absent or very suppressed only in the

presence of a symmetry whose origin can only be postulated from an effective field theory

perspective but can instead be derived from an underlying UV complete theory. For this

reason inflationary model building in string theory has received a lot of attention [2–5].

Besides the presence of additional symmetries, string compactifications naturally provide

many 4D scalars which can play the rôle of the inflaton. Promising inflaton candidates

are type IIB Kähler moduli which parametrise the size of the extra dimensions and enjoy

non-compact rescaling symmetries inherited from the underlying no-scale structure [6].

Identifying a natural inflaton candidate with an appropriate symmetry that protects

the flatness of its potential against quantum corrections is however not sufficient to trust

inflationary model building in string compactifications. In fact, three additional require-

ments to have a successful string inflationary model are (i) full moduli stabilisation, (ii)

a global embedding into consistent Calabi-Yau orientifolds with D-branes and fluxes and

(iii) the realisation of a chiral visible sector.

The first condition is crucial to determine all the energy scales in the model and to

check the stability of the inflationary dynamics by controlling the behaviour of the scalar

directions orthogonal to the inflaton one. The second condition is instead fundamental

to guarantee the consistency of the inflation model from the microscopic point of view

by checking the cancellation of all D-brane tadpoles and Freed-Witten anomalies and the

actual generation of all the effects needed to stabilise the moduli and to develop the infla-

tionary potential. Finally the requirement of having a model which can give rise to inflation

and reproduce at the same time a chiral visible sector is crucial for two main reasons: to

ensure the absence of any dangerous interplay between chirality and moduli stabilisation

which can forbid the generation of D-terms or non-perturbative effects needed to fix the

moduli [7], and to determine the post-inflationary evolution of our universe starting from

the reheating process where the inflaton energy density gets converted into the production

of visible sector degrees of freedom [8–12]. Other important post-inflationary issues which

can affect the predictions of important inflationary observables like the number of efoldings

Ne, the scalar spectral index ns and the tensor-to-scalar ratio r are periods of matter dom-

ination due to light moduli [13–15], the production of axionic dark radiation from moduli

decays [16–19], non-thermal dark matter [20–24], moduli-induced baryogenesis [25, 26] and

the interplay between the inflationary and the supersymmetry breaking scale [27–31].
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A comprehensive global chiral model which satisfies all these conditions for models

where the inflaton is a local blow-up mode [32] has been recently constructed in [33]. The

chiral visible sector lives on D3-branes at an orientifolded singularity and full closed string

moduli stabilisation in a dS vacuum is achieved by following the LVS procedure [34, 35].

The main limitation of this model is the emergence of an η-problem associated with the

presence of large gs corrections to the effective action which tend to spoil the flatness of

the inflationary potential if their flux-dependent coefficients are not tuned small.

In this regard, fibre inflation models [36] look more promising. In these constructions,

the inflaton is a fibration modulus which remains exactly massless when only the leading

order no-scale breaking effects are included. The inflationary potential is then generated

only at subleading order by a combination of string loop corrections [37–40] and higher

derivative terms [41, 42]. This hierarchy of scales is guaranteed by the extended no-scale

cancellation and provides a natural solution to the η-problem [43]. This solution can also

be understood from the point of view of an effective non-compact rescaling symmetry for

the Kähler moduli [6].

Different versions of fibre inflation models have been constructed so far depending on

the microscopic nature of the effects which drive the inflationary dynamics: Kaluza-Klein

and winding string loops [36], Kaluza-Klein loops and O(α′3) F 4 terms [44], and winding gs
loops combined with higher derivative terms [45]. In all cases the inflationary potential is

plateau-like and takes a simple form with a constant term and negative exponentials. Ad-

ditional positive exponentials show up with coefficients which are naturally very small and

give rise to a rising behaviour at large field values. Ref. [46] provided a generalised descrip-

tion of fibre inflation models showing how they can reproduce the correct spectral index

observed by Planck [47, 48] while the predicted value of the tensor-to-scalar ratio is in the

range 0.001 . r . 0.01. Such a large value of r is compatible with the fact that these are

large field models where the inflaton range is around 5 Planck units. An effective supergrav-

ity description of fibre inflation models as α-attractors has also been recently given in [49].

Despite all these successes, fibre inflation models are still lacking a complete global

embedding into chiral string compactifications. However a first step forward has already

been made in [50] where these inflationary models have been successfully embedded in

consistent type IIB orientifolds with moduli stabilisation but without a chiral visible sector.

In order to have a viable inflationary and moduli stabilisation mechanism, the internal

Calabi-Yau manifold has to have at least h1,1 = 3 Kähler moduli and its volume form has

to feature a K3 or T 4 fibration over a P
1 base and a rigid shrinkable blow-up mode [35, 51].

Starting from concrete Calabi-Yau threefolds with these topological properties, ref. [50]

provided several different examples with an explicit choice of orientifold involution and

D3/D7 brane setups which are globally consistent and can generate corrections to the 4D

effective action that can fix all closed string moduli inside the Kähler cone and reproduce

the form of the inflationary potential of fibre inflation models. However the case with

h1,1 = 3 is too simple to allow for non-trivial D7 worldvolume fluxes which give rise to

chiral matter. In fact, non-zero gauge fluxes induce moduli dependent Fayet-Iliopoulos

terms which, in combination with soft term contributions for U(1)-charged matter fields,

would lift the leading order flat direction, making the inflaton too heavy to drive inflation.

– 3 –
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In this paper we shall extend the results of [50] by considering more complicated Calabi-

Yau threefolds with h1,1 = 4 in order to build global fibre inflation models with a chiral

visible sector. After analysing the topological conditions on the underlying compactification

manifold to allow a successful chiral global embedding of fibre inflation models, we find that

the simplest examples involve Calabi-Yau threefolds with 3 K3 divisors and a toroidal-like

volume with a diagonal del Pezzo divisor suitable to support non-perturbative effects to

freeze the moduli. The internal volume is therefore controlled by 3 Kähler moduli and can

equivalently be seen as different K3 fibrations over 3 different P
1 bases. After searching

through the Kreuzer-Skarke list of Calabi-Yau manifolds embedded in toric varieties [52],

we find several concrete examples which admit these topological features.

We then focus on one of them and describe several possible choices of orientifold

involution, D-brane setup and gauge fluxes which satisfy global consistency conditions and

generate perturbative gs and α′ corrections to the 4D Kähler potential and non-perturbative

effects in the superpotential that are suitable to both stabilise the moduli and reproduce

the typical potential of fibre inflation models. In particular, non-zero gauge fluxes induce

chiral matter on D7-branes wrapped around smooth combinations of the four-cycles which

control the overall volume.1 Moreover, a moduli-dependent Fayet-Iliopoulos term lifts one

of the Kähler moduli, so that after D-term stabilisation the effective number of Kähler

moduli is reduced to 3 and the internal volume simplifies to the standard expression of

fibre inflation models used in the examples of [50].

After computing all relevant loop and higher derivative effects in full detail, we analyse

the resulting inflationary dynamics finding an interesting result: the Kähler cone bounds

set severe constraints on the allowed inflaton field range when they are combined with other

phenomenological requirements, like the generation of the correct amplitude of the power

spectrum by the inflaton quantum fluctuations, and consistency conditions like the stability

of the inflaton evolution against possible orthogonal runaway directions, the fact that

the gravitino mass remains always smaller than any Kaluza-Klein scale in the model and

finally that dangerous higher derivative effects do not spoil the flatness of the inflationary

potential before achieving enough efoldings of inflation.2 Because of this tension, we also

perform a full multi-field numerical analysis of the inflationary evolution showing how an

early period of accelerated expansion occurs generically. On the other hand, the inflaton

quantum fluctuations can generate the right amplitude of the density perturbations only

if the microscopic parameters take appropriate values.

We believe that our results make fibre inflation models more robust since they repre-

sent the first concrete models which are globally consistent and chiral. Nonetheless several

issues still need to be investigated further. The most important ones are the inclusion of an

explicit uplifting mechanism to realise a dS vacuum, a thorough derivation of the pertur-

bative corrections to the 4D effective action and a better determination of the Calabi-Yau

Kähler cone, going beyond its approximated expression inherited from the toric ambient

space. We leave the study of these issues for the future.

1We do not consider K3 fibred cases where the visible sector lives on D3 branes at singularities since

they would lead to dark radiation overproduction [53].
2These last two consistency conditions are qualitatively similar since the superspace derivative expansion

is under control if m3/2 ≪ MKK [54].
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This paper is organised as follows. In section 2, after presenting a basic review of

fibre inflation models, we summarise the minimal requirements that are needed for the

construction of a fully consistent global embedding with a chiral visible sector. In section 3

we provide a concrete Calabi-Yau example, describing the orientifold involution, the D-

brane setup, the choice of gauge fluxes and the resulting chiral spectrum, Fayet-Iliopoulos

term and inflationary potential generated by gs and α′ effects. The inflationary evolution

is analysed in full detail in section 4 by focusing first on the single-field approximation and

by studying then the multi-field dynamics. In section 5 we draw our conclusions and we

discuss a few open issues. Appendix A contains additional explicit chiral global examples.

2 Chiral global inflationary models

Let us begin by briefly reviewing the setup of fibre inflation and proceed afterward by dis-

playing the minimal requirements for a successful chiral global embedding of fibre inflation

models.

2.1 Fibre inflation in a nutshell

Fibre inflation models are based on a class of type IIB orientifold flux compactifications

with D3/D7-branes and O3/O7-planes where the Calabi-Yau (CY) threefold takes a so-

called ‘weak Swiss-cheese’ form:

V = f3/2(τj)−
Nsmall
∑

i=1

λiτ
3/2
i with j = 1, . . . , Nlarge , (2.1)

where h1,1 = Nlarge + Nsmall and f3/2 is a homogeneous function of degree 3/2. In these

models, the stabilisation of the Kähler moduli is performed in two steps. Firstly, the total

volume V as well as the volumes of theNsmall rigid blow-up divisors τi are fixed following the

LVS procedure [34, 35] where the leading order α′3 corrections to the Kähler potential [55–

57] are balanced against non-perturbative contributions to the superpotential [58]. This

leaves Nflat = Nlarge− 1 = h1,1−Nsmall− 1 flat directions which are natural inflaton candi-

dates. These directions can receive a potential at subleading order by gs corrections due to

the exchange of Kaluza-Klein (KK) and winding modes [37–40, 43] as well as by (α′)3 F 4-

terms [41, 42]. In the simplest fibre inflation models h1,1 = 3 and Nsmall = 1, so that Nflat =

1. This leading order flat direction corresponds to a Kähler modulus τf which parametrises

the volume of a K3 surface and the total scalar potential schematically looks like [36, 44–46]:

V = VLVS(V , τs) + VdS(V) + Vinf(V , τs, τf ) , (2.2)

where Vinf(V , τs, τf ) = V KK
gs + V W

gs + VF 4 ≪ VLVS(V , τi) is the inflationary potential. VLVS is

the leading order LVS potential which fixes V and τs, VdS is an uplifting contribution to get

a dS vacuum which can originate from anti D3-branes [58–65], hidden sector T-branes [66]

or non-perturbative effects at singularities [67], while V KK
gs , V W

gs and VF 4 are respectively

KK and winding string loops and F 4 terms.

In fibre inflation models, the underlying CY threefold is a K3 fibration over a P
1 base

which has two decompactification limits, corresponding to either the K3 fibre or the base

– 5 –
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growing large. Thus, kinematically it is expected that the fibre volume can traverse several

Planck units. These LVS inflationary models present a variety of distinct features that

make them very promising candidates to realise large field inflation and to discuss explicit

global embeddings:

1. The de Sitter uplift is independent of the inflaton. This is contrary to a hypothetical

KKLT embedding [58], where the uplift would be inflaton-dependent and, thus, large

field inflation would typically destroy the KKLT minimum.

2. The back-reaction of heavy moduli is incorporated and under control, in particular,

due to the fact that moduli stabilisation is done in two steps and the leading order

potential is independent of the inflaton because of the extended no-scale cancella-

tion [43]. This is in contrast with the majority of large field models of inflation [68].

3. The possibility to achieve tensor-to-scalar ratios between r ∼ 0.01 and r ∼ 0.001

which can be tested by future CMB observations [69, 70].

An explicit realisation of fibre inflation not only places several constraints on the underlying

CY geometry, but also on the setup of D-branes and O-planes. In the following section we

list the sufficient requirements to build a viable global model which also allows for a chiral

visible sector.

2.2 Requirements for chiral global embedding

The simplest global embedding of fibre inflation models requires at least three Kähler

moduli [50]. However, in order to incorporate also a chiral visible sector we need at least

h1,1 = 4 Kähler moduli. Here we will focus on obtaining chiral matter on D7-branes

wrapped around a suitable divisor with world-volume gauge fluxes turned on. In this case

D7 gauge fluxes induce a D-term potential for the Kähler moduli that fixes a particular

combination thereof. Thus, D-term fixing and the leading order LVS stabilisation mecha-

nism leave just a single flat direction, in our case a K3 fibre, which will play the rôle of the

inflaton. In order to obtain a viable chiral global model we require the following ingredients

and consistency conditions:

1. A Calabi-Yau with h1,1 = 4 featuring three large cycles and a shrinkable rigid divisor,

so that the internal volume takes the form (2.1) with Nsmall = 1. In the explicit

example described in section 3 the volume simplifies further to:

V = ca
√
τ1 τ2 τ3 − cb τ

3/2
s , (2.3)

with ca > 0 and cb > 0. Each of the 3 moduli τ1, τ2 and τ3 controls the volume

of a K3 surface while τs parametrises the size of a ‘diagonal’ del Pezzo divisor [51].

D-term stabilisation will fix τ3 ∝ τ2 while the standard LVS procedure will freeze

the overall volume V ≃ ca
√
τ1 τ2 τ3 and the blow-up mode τs. The leading order flat

direction can be parametrised by τ1 which will drive inflation.

– 6 –
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2. An orientifold involution and a D3/D7-brane setup with gauge fluxes on the visible

D7-brane stacks such that tadpole cancellation is satisfied with enough room for bulk

three-form fluxes to be turned on for complex structure and dilaton stabilisation.

The D-brane and O-plane setup must also allow for the generation of KK- and/or

winding string loop corrections which have the correct form to generate a suitable

inflationary potential.

3. A choice of world-volume fluxes which cancels all Freed-Witten anomalies [71, 72]

but leads, at the same time, to just a single moduli-dependent Fayet-Iliopoulos (FI)

term [73, 74] in order to leave a leading order inflationary flat direction by lifting just

one of the two flat directions leftover by the LVS stabilisation mechanism.

4. There should be no chiral intersection between the visible sector and the del Pezzo di-

visor supporting non-perturbative effects required for LVS moduli fixing as otherwise

the prefactor of the non-perturbative superpotential would be vanishing [7]. The ab-

sence of these dangerous chiral intersections should be guaranteed by an appropriate

choice of gauge fluxes.

5. Moduli stabilisation and inflation have to take place inside the CY Kähler cone and

the effective field theory should be well under control with 〈V〉 ≫ 1 and gs ≪ 1.

6. In order to trust inflationary model building within an effective field theory, the fol-

lowing hierarchy of scales should be satisfied from horizon exit to the end of inflation:

minf < H < m3/2 < M
(i)
KK < Ms < Mp , (2.4)

where minf is the inflaton mass, H is the Hubble constant, m3/2 is the gravitino mass

which sets the mass scale of all the heavy moduli during inflation, M
(i)
KK denote various

KK scales associated with bulk modes and open string excitations on D7-branes

wrapped around four-cycles, Ms is the string scale and Mp is the reduced Planck mass

Mp = 2.4 · 1018GeV. Notice that, apart from Mp, all these energy scales are moduli

dependent and so evolve during inflation. After stabilising V and τs à la LVS and

fixing one large modulus in terms of another large direction via setting the FI-term

to zero, we find that the ‘reduced’ moduli space of the inflationary direction is in fact

a compact interval. Therefore the field space available for inflation is kinematically

finite (albeit in general trans-Planckian), a feature of the model which has so far been

overlooked. We will state the precise phenomenological and consistency conditions

for successful inflation in section 4.

3 A chiral global example

In this section, we shall present all the topological and model-building details of the global

embedding of fibre inflation models into explicit chiral CY orientifolds with h1,1 = 4.

– 7 –
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3.1 Toric data

Let us consider the following toric data for a CY threefold whose volume takes the form

V = ca
√
τ1 τ2 τ3 − cb τ

3/2
s discussed above:

x1 x2 x3 x4 x5 x6 x7 x8

4 0 0 0 1 1 0 0 2

4 0 0 1 0 0 1 0 2

4 0 1 0 0 0 0 1 2

8 1 0 0 1 0 1 1 4

dP7 NdP11 NdP11 K3 NdP11 K3 K3 SD

The Hodge numbers are (h2,1, h1,1) = (98, 4), the Euler number is χ = −188, while the

Stanley-Reisner ideal is:

SR1 = {x1x4, x1x6, x1x7, x2x7, x3x6, x4x5x8, x2x3x5x8} .

This corresponds to the polytope ID #1206 in the CY database of ref. [75]. A detailed

divisor analysis using cohomCalg [76, 77] shows that the divisor D1 is a del Pezzo dP7

while each of the divisors {D4, D6, D7} is a K3 surface. Moreover, each of the divisors

{D2, D3, D5} is a ‘rigid but not del Pezzo’ surface with h1,1 = 12 which we denote as

NdP11 while D8 is a ‘special deformation’ divisors with Hodge diamond:

SD ≡

1

0 0

23 160 23

0 0

1

The intersection form in the basis of smooth divisors {D1, D4, D6, D7} can be written as:

I3 = 2D4D6D7 + 2D3
1 . (3.1)

Writing the Kähler form in the above basis of divisors as J = t1D1 + t4D4 + t6D6 + t7D7

and using the intersection polynomial (3.1), the CY overall volume becomes:

V = 2 t4 t6 t7 +
t31
3
. (3.2)

The Kähler cone conditions can be derived from the following generators of the Kähler

cone:

K1 = −D1 +D4 +D6 +D7 , K2 = D7 , K3 = D4 , K4 = D6 . (3.3)

Expanding the Kähler form as J =
∑4

i=1 riKi, the Kähler cone is defined via the following

conditions on the two-cycle moduli:

r1 = − t1 > 0 , r2 = t1 + t7 > 0 , r3 = t1 + t4 > 0 , r4 = t1 + t6 > 0 . (3.4)

– 8 –
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Notice that this expression of the CY Kähler cone is only approximate since it is inherited

from the Kähler cone of the ambient toric variety.3 However this procedure can either

overcount some curves of the CY threefold, for example if they do not intersect with the

CY hypersurface, or miss some of them, if they cannot be obtained as the intersection

between two divisors of the ambient space and the CY hypersurface. Hence the actual

CY Kähler cone can turn out to be either larger or smaller. This analysis would require

a deeper investigation which is however beyond the scope of this paper.4 Here we just

mention that this analysis has been performed in detail in [78] where the CY Kähler cone

turned out to be larger than the approximated version.

The four-cycle moduli, which can be computed as τi = ∂tiV , look like:

τ1 = t21 , τ4 = 2 t6 t7 , τ6 = 2 t4 t7 , τ7 = 2 t4 t6 , (3.5)

and so, using the Kähler cone conditions (3.4), the overall volume reduces to:

V = t4τ4 −
1

3
τ
3/2
1 = t6τ6 −

1

3
τ
3/2
1 = t7τ7 −

1

3
τ
3/2
1 =

1√
2

√
τ4 τ6 τ7 −

1

3
τ
3/2
1 , (3.6)

which shows clearly that the CY threefold X features three K3 fibrations over different P1

bases. The second Chern class of X is given by:

c2(X) = D4D5 + 4D2
5 + 12D5D6 + 12D5D7 + 12D6D7 , (3.7)

which results in the following values of the topological quantities Πi =
∫

X c2 ∧ D̂i:

Π1 = 8 , Π2 = Π3 = 16 , Π4 = 24 , Π5 = 16 , Π6 = Π7 = 24 , Π8 = 128 . (3.8)

The intersection curves between two coordinate divisors are given in table 1 while their

volumes are listed in table 2.

3.2 Orientifold involution

We focus on orientifold involutions of the form σ : xi → −xi with i = 1, . . . , 8 which

feature an O7-plane on Di and O3-planes at the fixed points listed in table 3. The effective

non-trivial fixed point set in table 3 has been obtained after taking care of the SR ideal

symmetry. Moreover, the total number of O3-planes NO3 is obtained from the triple

intersections restricted to the CY hypersurface, while the effective Euler number χeff has

been computed as:5

χeff = χ(X) + 2

∫

X
[O7] ∧ [O7] ∧ [O7] . (3.9)

In what follows we shall focus on the orientifold involution σ : x8 → −x8 which features

just a single O7-plane located in D8 and no O3-plane .

3If the same CY threefold can be realised as a hypersurface embedded in different ambient spaces, the

CY Kähler cone is approximated as the intersection of the Kähler cones of the different toric varieties [75].
4We however expect that the CY Kähler cone cannot get smaller. In fact, if this were the case, there

should exist an extra constraint from requiring the positivity of a curve of the CY which is trivial in the

ambient space. But this does not seem to be possible since each CY divisor is inherited from a single toric

divisor (i.e. we do not have a toric divisor which splits into two CY divisors, and so where h1,1 of the CY is

larger than h1,1 of the ambient space). In fact, if this trivial curve existed, it should have a dual divisors,

and so h1,1 of the CY should be larger than h1,1 of the ambient case, which is however not the case.
5The effective Euler number controls the strength of N = 1 O(α′3) corrections due to O7-planes [56].
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D1 D2 D3 D4 D5 D6 D7 D8

D1 C3 T
2

T
2 ∅ T

2 ∅ ∅ C3
D2 T

2
P
1 ⊔ P

1
P
1 ⊔ P

1
T
2

P
1 ⊔ P

1
T
2 ∅ C3

D3 T
2

P
1 ⊔ P

1
P
1 ⊔ P

1
T
2

P
1 ⊔ P

1 ∅ T
2 C3

D4 ∅ T
2

T
2 ∅ ∅ T

2
T
2 C9

D5 T
2

P
1 ⊔ P

1
P
1 ⊔ P

1 ∅ P
1 ⊔ P

1
T
2

T
2 C3

D6 ∅ T
2 ∅ T

2
T
2 ∅ T

2 C9
D7 ∅ ∅ T

2
T
2

T
2

T
2 ∅ C9

D8 C3 C3 C3 C9 C3 C9 C9 C81

Table 1. Intersection curves of two coordinate divisors. Here Cg denotes a curve with Hodge

numbers h0,0 = 1 and h1,0 = g.

D1 D2 D3 D4 D5 D6 D7 D8

D1 2 t1 −2 t1 −2 t1 0 −2 t1 0 0 −4 t1

D2 −2 t1 2 t1 2(t1 + t4) 2 t6 2(t1 + t6) 2 t4 0 4(t1 + t4 + t6)

D3 −2 t1 2(t1 + t4) 2 t1 2 t7 2(t1 + t7) 0 2 t4 4(t1 + t4 + t7)

D4 0 2 t6 2 t7 0 0 2 t7 2 t6 4(t6 + t7)

D5 −2 t1 2(t1 + t6) 4(t1 + t7) 0 2 t1 2 t7 2 t6 4(t1 + t6 + t7)

D6 0 2 t4 0 2 t7 2 t7 0 2 t4 4(t4 + t7)

D7 0 0 2 t4 2 t6 2 t6 2 t4 0 4(t4 + t6)

D8 −4 t1 4(t1+t4+t6) 4(t1+t4+t7) 4(t6+t7) 4(t1+t6+t7) 4(t4+t7) 4(t4+t6) 8(t1+2(t4+t6+t7))

Table 2. Volumes of intersection curves between two coordinate divisors.

σ O7 O3 NO3 χ(O7) χeff

x1 → −x1 D1 {D2D3D4, D2D4D6, D2D5D6, 14 10 -184

D3D4D7, D3D5D7,

D4D6D7, D5D6D7}
x2 → −x2 D2 ⊔D7 D1D3D5 2 38 -192

x2 → −x3 D3 ⊔D6 D1D2D5 2 38 -192

x4 → −x4 D4 ⊔D5 D1D2D3 2 38 -192

x5 → −x5 D4 ⊔D5 D1D2D3 2 38 -192

x6 → −x6 D3 ⊔D6 D1D2D5 2 38 -192

x7 → −x7 D2 ⊔D7 D1D3D5 2 38 -192

x8 → −x8 D8 ∅ 0 208 -28

Table 3. Fixed point set for the involutions which are reflections of the eight coordinates xi with

i = 1, . . . , 8.

– 10 –



J
H
E
P
1
1
(
2
0
1
7
)
2
0
7

3.3 Brane setup

If the D7-tadpole cancellation condition is satisfied by placing four D7-branes on top of

the O7-plane, the string loop corrections to the scalar potential can involve only KK ef-

fects between this D7-stack and O3-planes or D3-branes since winding contributions are

absent due to the absence of any intersection between D7-branes and/or O7-planes. Thus

loop effects are too simple to generate a viable inflationary plateau. They might even be

completely absent in our case since there are no O3-planes and the D3-tadpole cancellation

condition could be satisfied without the need to include D3-branes (i.e. just switching on

appropriate background three-form fluxes). We shall therefore focus on a slightly more

complicate D7-brane setup which gives rise to winding loop effects. This can be achieved

by placing D7-branes not entirely on top of the O7-plane as follows:

8[O7] ≡ 8([D8]) = 16 ([D2] + [D4] + [D6]) . (3.10)

This brane setup involves three stacks of D7-branes wrapped around the divisors D2, D4

and D6. Moreover, the condition for D3-tadpole cancellation becomes:

ND3 +
Nflux

2
+Ngauge =

NO3

4
+

χ(O7)

12
+
∑

a

Na (χ(Da) + χ(D′
a))

48
= 38 ,

showing that there is space for turning on both gauge and background three-form fluxes for

complex structure and dilaton stabilisation.6 As shown in [79], three-form fluxes stabilise

also D7 position moduli and open string moduli living at the intersection between two

different stacks of D7-branes since they generate soft supersymmetry breaking mass terms

for each of these scalars. On the other hand, there are no Wilson line moduli in our model

since h1,0(D2) = h1,0(D4) = h1,0(D6) = 0.

Let us point out that other orientifold involutions which could allow for D7-branes

not entirely on top of the O7-plane are x4 → −x4, x6 → −x6 or x7 → −x7. In each of

these cases, the O7-plane is located on a K3 surface. However, given that D4 = D1 +D5,

D6 = D1 +D3 and D7 = D1 +D2, from table 1 and 2 we see that the resulting D7-brane

stacks are either non-intersecting (and so no winding corrections are generated) or the

volumes of the intersection curves depend just on the ‘small’ dP7 divisor (and so winding

loops are inflaton-independent). This is the reason why we chose the involution x8 → −x8
where the O7-plane is located on the ‘special deformation’ divisor D8 which gives more

freedom for D7-brane model building.

3.4 Gauge fluxes

In order to obtain a chiral visible sector on the D7-brane stacks wrapping D2, D4 and D6

we need to turn on worldvolume gauge fluxes of the form:

Fi =
h1,1
∑

j=1

fijD̂j −
1

2
c1(Di)− ι∗Di

B with fij ∈ Z and i = 2, 4, 6 , (3.11)

where the half-integer contribution is due to Freed-Witten anomaly cancellation [71, 72].

6We focus on flux vacua where the dilaton is fixed in a regime where our perturbative type IIB analysis

is under control.
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However we want to generate just one moduli-dependent Fayet-Iliopoulos term in order

to fix only one Kähler modulus via D-term stabilisation. In fact, if the number of FI-

terms is larger than one, there is no light Kähler modulus which can play the rôle of the

inflaton. Moreover we wrap a D3-brane instanton on the rigid divisor D1 in order to

generate a non-perturbative contribution to the superpotential which is crucial for LVS

moduli stabilisation. In order to cancel the Freed-Witten anomaly, the D3-instanton has

to support a half-integer flux, and so the general expression of the total gauge flux on D1

becomes (with c1(D1) = −D̂1):

F1 =
h1,1
∑

j=1

f1jD̂j +
1

2
D̂1 − ι∗Di

B with f1j ∈ Z . (3.12)

However a non-vanishing F1 would not be gauge invariant, and so would prevent a non-

perturbative contribution to the superpotential. We need therefore to check if it is possible

to perform an appropriate choice of B-field which can simultaneously set F4 = F6 = 0 (we

choose to have a non-vanishing gauge flux only on D2 to have just one moduli-dependent

FI-term) and F1 = 0. Recalling that both D4 and D6 are K3 surfaces which are spin

divisors with c1(D4) = c1(D6) = 0 (since the K3 is a CY two-fold), if we set:

B =
1

2
D̂1 , (3.13)

the condition F1 = F4 = F6 = 0 reduces to the requirement that the following forms are

integer:

ι∗D4

(

1

2
D̂1

)

and ι∗D6

(

1

2
D̂1

)

, (3.14)

since in this case the integer flux quanta fij can always be adjusted to yield vanishing

gauge fluxes. Taking an arbitrary integer form A ∈ H2(Z, X) which can be expanded as

A = ajD̂j with aj ∈ Z, the pullbacks in (3.14) give rise to integer forms if:

b4 ≡
∫

X

(

1

2
D̂1

)

∧ D̂4 ∧A ∈ Z

b6 ≡
∫

X

(

1

2
D̂1

)

∧ D̂6 ∧A ∈ Z

Using the intersection polynomial (3.1) we find b4 = b6 = 0, showing how the choice of B-

field in (3.13) can indeed allow for F1 = F4 = F6 = 0. The only non-zero gauge flux is F2

whose half-integer contribution can be cancelled by adding an additional term to the B-field

of the form 1
2D̂2. Given that all the intersection numbers are even, this new term in B does

not modify our previous results on the pullbacks of the B-field onD1, D4 andD6. Moreover

the pullback of the B-field on D2 will also generate an integer flux contribution. We shall

therefore consider a non-vanishing gauge flux on the worldvolume of D2 of the form:

F2 =
h1,1
∑

j=1

f2jD̂j with f2j ∈ Z . (3.15)
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3.5 FI-term and chirality

Given that the divisor D2 is transversely invariant under the orientifold involution and it

is wrapped by eight D7-branes, it supports an Sp(16) gauge group which is broken down

to U(8) = SU(8) × U(1) by a non-zero flux F2 along the diagonal U(1). This non-trivial

gauge flux F2 induces also a U(1)-charge qi2 for the i-th Kähler modulus of the form:

qi2 =

∫

X
D̂i ∧ D̂2 ∧ F2 . (3.16)

Thus F2 6= 0 yields (using D2 = D7 −D1):

q12 = −2f21 q42 = 2f26 q62 = 2f24 q72 = 0 , (3.17)

together with a flux-dependent correction to the gauge kinetic function which looks like:

Re(f2) = α−1
2 =

4π

g22
= τ2 − h(F2)Re(S) , (3.18)

where:

h(F2) =
1

2

∫

X
D̂2 ∧ F2 ∧ F2 =

1

2
(f21q12 + f24q42 + f26q62) . (3.19)

Moreover a non-vanishing gauge flux F2 induces a moduli-dependent FI-term of the form:

ξ =
1

4πV

∫

X
D̂2 ∧ J ∧ F2 =

1

4πV

h1,1
∑

j=1

qj2 tj =
1

4πV (q12 t1 + q42 t4 + q62 t6) . (3.20)

For vanishing open string VEVs (induced for example by non-tachyonic scalar masses), a

leading-order supersymmetric stabilisation requires ξ = 0 which implies:

t4 = −q12
q42

t1 −
q62
q42

t6 . (3.21)

This U(1) factor becomes massive via the Stückelberg mechanism and develops an O(Ms)

mass by eating up a linear combination of an open and a closed string axion which is mostly

given by the open string mode.

Besides breaking the worldvolume gauge group and inducing moduli-dependent FI-

terms, non-trivial gauge fluxes on D7-branes generate also 4D chiral modes. In fact, open

strings stretching between the D7-branes on D2 and the O7-planes or the image branes

give rise to the following zero-modes in the symmetric and antisymmetric representations

of U(8):

I
(S)
2 = −1

2

∫

X
D̂2 ∧ [O7] ∧ F2 −

∫

X
D̂2 ∧ D̂2 ∧ F2 = 2q12 − q42 − q62 , (3.22)

I
(A)
2 =

1

2

∫

X
D̂2 ∧ [O7] ∧ F2 −

∫

X
D̂2 ∧ D̂2 ∧ F2 = q42 + q62 . (3.23)

Due to the absence of worldvolume fluxes on the D7-branes wrapped around D4 and D6,

both of these two D7-stacks support an Sp(16) gauge group (since both D4 and D6 are

transversely invariant) which are both unbroken. Thus open strings stretched between the
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D7-branes on D2 and D4 or D6 (or their image branes) give rise to 4D chiral zero-modes

in the bi-fundamental representation (8,16) of U(8) and Sp(16) whose number is:

I24 =

∫

X
D̂2 ∧ D̂4 ∧ F2 = q42 , I26 =

∫

X
D̂2 ∧ D̂6 ∧ F2 = q62 . (3.24)

We need finally to check that there are no chiral intersections between the D7s on D2 and

the instanton on D1 to make sure that the prefactor of the non-perturbative contribution

to the superpotential is indeed non-zero. This is ensured if:

I21 =

∫

X
D̂2 ∧ D̂1 ∧ F2 = q12 = −2f21 = 0 . (3.25)

This condition can be easily satisfied by choosing f21 = 0. In turn, this choice simplifies

the D-term constraint (3.21) to:

t4 = −q62
q42

t6 ≡ α t6 . (3.26)

3.6 Inflationary potential

Using the D-term fixing relation (3.26), the Kähler cone conditions (3.4) simplify to t7 >

−t1 > 0 together with t6 > −t1 > 0 if α ≥ 1 or αt6 > −t1 > 0 if α ≤ 1. Moreover the CY

volume (3.2) reduces to:

V = 2αt7t
2
6 +

t31
3

= t7τ7 −
1

3
τ
3/2
1 =

1√
2α

√
τ7 τ6 −

1

3
τ
3/2
1 . (3.27)

Given that this form is linear in t7, the effective CY volume after D-term stabilisation

looks like a single K3 fibre τ7 over a P
1 base t7 and reduces to the typical form used in

fibre inflation models. The blow-up mode τ1 and the overall volume V are stabilised in the

LVS fashion by means of a non-perturbative correction to W generated by an Euclidean

D3-brane instanton wrapping D1. This leaves the fibre modulus τ7 as a flat direction which

receives a potential at subleading order.

Let us now focus on the inflationary potential. The winding loop corrections can be

written as (with κ = gs/(8π) for e
Kcs = 1):

V W
gs = −2κ

W 2
0

V3

∑

i

CW
i

t∩i
, (3.28)

where t∩i are the volumes of the two-cycles where D7-branes/O7-planes intersect. Notice

that if two coordinate divisors Di and Dj are wrapped by D7-branes and/or O7-planes,

the scalar potential receives t∩-dependent winding loop corrections only if their intersection

curve contains non-contractible 1-cycles, i.e. if h1,0(Di ∩Dj) 6= 0. In our case, we have an

O7-plane located on D8 and three stacks of D7-branes wrapping D2, D4 and D6. Using

table 1 and 2, we see all D7s intersect with each other and with the O7 and that winding

corrections can arise from any of these intersections. Thus we end up with:

V W
gs = −κ

W 2
0

V3

[

1√
τ7

(

CW − C̃W(τ7)
)

− τ7
V

(

|CW
3 | − ĈW(τ7)

)

]

, (3.29)
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where (setting t4 = αt6, C
W
3 = −|CW

3 | < 0 and CW
4 = −|CW

4 | < 0):

CW =
√
2α

(

CW
1 +

CW
2

α

)

C̃W(τ7) =
|CW

4 |
(α+ 1)

√

α

2



1−
√
2α

(α+ 1)

√

〈τ1〉
τ7





−1

, (3.30)

and:

ĈW(τ7) =
CW
5

2

(

1 +
1√
2α

τ
3/2
7

V

)−1

+
CW
6

2

(

1 +

√

α

2

τ
3/2
7

V

)−1

. (3.31)

Due to the absence of O3-planes (we also assume that the D3-tadpoles are cancelled without

including any spacetime-filling D3-branes) and the fact that all D7s intersect with each

other and with the O7-plane, there are no 1-loop corrections due to the exchange of closed

strings carrying KK momentum.7

On the other hand, higher derivative α′3 F 4 corrections to the scalar potential can be

written as [41]:8

VF 4 = −κ2
λW 4

0

g
3/2
s V4

h1,1
∑

i=1

Πi ti , (3.32)

where λ is an unknown combinatorial factor which is expected to be of order 10−3 [41, 42]

and the topological quantities Πi are given in (3.8). After imposing the D-term condi-

tion (3.26), the F 4 contributions can be rewritten as (ignoring the t1-dependent term):

VF 4 = −24κ2
λW 4

0

g
3/2
s V3

[

(α+ 1)√
2α

√
τ7
V +

1

τ7

]

. (3.33)

Therefore the total inflationary potential becomes:

V = V W
gs + VF 4 = κ

W 2
0

V3

(

A1

τ7
− A2√

τ7
+

B1
√
τ7

V +
B2 τ7
V

)

, (3.34)

where (with λ = −|λ| < 0):

A1 =
3

π

|λ|W 2
0√

gs
A2 = CW − C̃W(τ7) B1 =

(α+ 1)√
2α

A1 B2 = |CW
3 | − ĈW(τ7) .

4 Inflationary dynamics

In this section we shall analyse the inflationary dynamics by studying first the single-field

approximation and then by focusing on the full multi-field evolution.

7Strictly speaking, there might be 1-loop corrections associated with the exchange of KK modes between

the Euclidean D3-instanton on D1 and the D7-branes which do not intersect D1. However, we expect such

corrections to be exponentially suppressed and, thus, not relevant for the analysis.
8This expression displays merely the leading order O(V−4) terms which are corrected at subleading order

in inverse volume by additional corrections as discussed in [45]. Furthermore, additional higher-derivative

corrections mediated by the auxiliary fields sitting in the supergravity multiplet might emerge at order

O(V−5) [45, 80].
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4.1 Single-field evolution

In order to realise single-field slow-roll inflation where the potential for the inflaton τ7 fea-

tures a plateau-type region [36, 45], the overall volume has to be approximately constant

during the whole inflationary dynamics. Therefore, in order to get enough efoldings before

reaching the dangerous limit where the base of the fibration t7 becomes smaller than the

string scale, we need to focus on the region in field space where the inflaton minimum

is of order 〈τ7〉 ≪ V2/3. For gs . O(0.1), |λ| ∼ O(10−3) and natural O(1) values of the

coefficients of the string loop effects, in the vicinity of the minimum the terms in (3.34) pro-

portional to B1 and B2 are therefore both negligible with respect to the terms proportional

to A1 and A2. Numerical estimates show that we need values of order 〈τ7〉 ∼ O(1) and

V ∼ O(104) which, in turn, imply W0 ∼ O(100) in order to match the observed amplitude

of the density perturbations.

The scalar potential (3.34) written in terms of the canonically normalised inflaton

shifted from its minimum φ = 〈φ〉+ φ̂, where τ7 = 〈τ7〉 ekφ̂ with k = 2/
√
3, becomes:

V = κ
A2W

2
0

V3
√

〈τ7〉

(

CdS + c e−kφ̂ − e−
kφ̂
2 +R1 e

kφ̂
2 +R2 e

kφ̂

)

, (4.1)

where:

c =
3

π
(

CW − C̃W(τ7)
)

|λ|W 2
0

√

gs〈τ7〉
∼ O(1) ,

while for 〈τ7〉 ∼ O(1) ≪ V2/3:

R1 =
(α+ 1)c√

2α

〈τ7〉3/2
V ≪ 1 and R2 =

(

|CW
3 | − ĈW(τ7)

)

(

CW − C̃W(τ7)
)

〈τ7〉3/2
V ≪ 1 .

Notice that in (4.1) we added a constant CdS = 1− c−R1 −R2 to obtain a Minkowski (or

slightly dS) vacuum. Given that no O3-planes are present in our model, the usual uplift

mechanism where an anti D3-brane is located in a resolved conifold region of the extra

dimensions would require additional effort to implement. We leave the explicit embedding

of the source of uplift to future research.

The two negative exponentials in (4.1) compete to give a minimum at 〈τ7〉 ∼ O(1)

while the two positive exponentials cause a steepening behaviour at large φ̂. Thus we need

to make sure that both R1 ≪ 1 and R2 ≪ 1 to prevent the two positive exponentials from

destroying the inflationary plateau before achieving enough efoldings of inflation.9 The

condition R1 ≪ 1 could be satisfied for c ≪ 1, for example for W0 ∼ O(1) and 〈τ7〉 ≫ 1, in

which case the minimum could be obtained by balancing the two terms in the coefficient A2.

However, as we shall see below, if 〈τ7〉 ≫ 1, the Kähler cone bounds restrict the allowed field

space so much that it becomes impossible to realise enough efoldings of inflation. Hence we

shall focus the region where R1 ≪ 1 and R2 ≪ 1 are satisfied by 〈τ7〉 ∼ O(1) ≪ V2/3 (and

9If this is the case, these steepening terms could then be responsible for an interesting power loss at

large angular scales [81, 82].
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possibly by allowing some tuning of the complex structure moduli-dependent coefficients

of the loop corrections or by considering |λ| ≪ 1).

Turning now to the explicit numerical examples, let us formulate the necessary condi-

tions that have to be satisfied in order to have a viable model:

1. Stringy effects can be neglected if each four-cycle in string frame has a volume larger

than the string scale: Vol
1/4
s ≫

√
α′. Given that string and Einstein frame volumes

are related as Vols = gsVolE = gsτEℓs with ℓs = 2π
√
α′, we end up with the condition:

ǫτi ≡
1

gs(2π)4 τi
≪ 1 ∀ i . (4.2)

2. The whole inflationary dynamics should take place inside the Kähler cone. This

implies in particular that:

2α〈τ1〉 < τ7 <
V

√

〈τ1〉
if α ≥ 1 ,

2

α
〈τ1〉 < τ7 <

V
√

〈τ1〉
if α ≤ 1 . (4.3)

Notice that these conditions guarantee the absence of any singularity in the inflation-

ary potential (4.1) which could originate from the shrinking of a two-cycle to zero

size. Rewriting these conditions in terms of the canonically normalised inflaton field,

we end up with:

√
3

2
ln

(

2α〈τ1〉
〈τ7〉

)

< φ̂ <

√
3

2
ln

(

V
〈τ7〉

√

〈τ1〉

)

if α ≥ 1 ,

√
3

2
ln

(

2〈τ1〉
α〈τ7〉

)

< φ̂ <

√
3

2
ln

(

V
〈τ7〉

√

〈τ1〉

)

if α ≤ 1 . (4.4)

In order to be able to describe within a consistent EFT, not just inflation but also the

post-inflationary evolution of our model, φ̂ should reach its minimum before hitting

the lower bounds in (4.4). Moreover the inflaton should drive enough efoldings of

inflation before hitting the upper bounds in (4.4).

3. Horizon exit at φ̂ = φ̂∗ should yield the required number of efoldings:

Ne ≃ 57 +
1

4
ln (r∗ V∗)−

1

3
ln

(

Vend

Trh

)

, (4.5)

where the reheating temperature Trh can be estimated in terms of the inflaton mass

at the minimum mφ̂ as:

Trh ≃
(

90

π2g∗(Trh)

)1/4
√

Γφ̂Mp ≃ 0.1mφ̂

√

mφ̂

Mp
. (4.6)
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4. Horizon exit at φ̂ = φ̂∗ should reproduce the observed amplitude of the density

perturbations:
V 3
∗

V ′2∗
≃ 2.6 · 10−7 . (4.7)

5. The α′ expansion of the potential can be trusted only if:

ǫξ =
ξ

2g
3/2
s V

≪ 1 . (4.8)

6. The effective field theory is under control if throughout all the inflationary dynamics:

minf < H < m3/2 < M
(i)
KK < Ms < Mp ∀i = bulk, 2, 4, 6 , (4.9)

where minf is the inflaton mass, H ≃ V
3M2

p
is the Hubble scale, m3/2 = eK/2W0 =

√
κ W0

V Mp is the gravitino mass which sets the mass scale of all complex structure

moduli, the dilaton and the Kähler modulus T1 = τ1+i
∫

D1
C4 and M

(i)
KK =

√
π√

V τ
1/4
i

Mp

are the different KK scales in the model associated with bulk KK modes for τ
3/2
bulk = V

and KK replicas of open string modes living on D7-branes wrapped around D2, D4

and D6. The bulk KK scale should be below the string scale Ms =
g
1/4
s

√
π√

V Mp while

we do not need to impose V 1/4 < M
(i)
KK since no energy can be extracted from the

vacuum during an adiabatic inflationary expansion where H ≪ M
(i)
KK.

7. Besides the two ultra-light axions associated with the base and the fibre which develop

just negligible isocurvature fluctuations during inflation if they do not contribute

significantly to dark matter, only the volume mode has a mass below m3/2. In order

to trust our single field approximation, we need therefore to check that the mass

of the volume mode mV does not become smaller than the Hubble scale H. This

condition boils down to:

δ =
H

mV
≃

√

V∗
3Vα′

. 1 , (4.10)

where Vα′ is the leading O(α′3) contribution to the scalar potential and reads [55]:

Vα′ = κ
3ξW 2

0

4g
3/2
s V3

with ξ = −ζ(3)χ(X)

2(2π)3
. (4.11)

If δ ≃ 1, the inflationary energy density can either destabilise the volume direction

or cause a significant shift of the volume minimum. Hence the inflationary dynamics

can effectively become a multi-field evolution. However, as analysed in [36], the

motion might still remain mainly along the τ7 direction, and so the predictions for

the inflationary observables could be basically unaltered apart from the fact that the

number of allowed efoldings slightly increases. Notice also that in LVS models the CY

Euler number together with the string coupling fixes the minimum of the blow-up

mode τ1 as: 〈τ1〉 = (3ξ/2)2/3 g−1
s . This value is important to evaluate the Kähler

cone conditions in (4.4).
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Figure 1. Plot of the inflationary potential for the example set (4.12). The red vertical lines

correspond to the walls of the Kähler cone while the dashed vertical lines denote horizon exit and

the end of inflation where ǫ = 1.

We shall now focus on single-field slow-roll inflation where:

ǫ(φ̂) =
1

2

(

V ′

V

)2

≪ 1 and η(φ̂) =
V ′′

V
≪ 1 .

Notice that the condition η ≪ 1 guarantees that the inflaton is lighter than H during

inflation. In order to illustrate the main features of our inflationary model, we shall now

consider two different choices of the underlying parameters characterised by different values

of the coefficients ξ and λ which control the strength of the O(α′3) corrections to the

effective action at O(F 2) and O(F 4). According to [56], N = 1 O(α′3) corrections due

to O7-planes cause a shift of the CY Euler number χ(X) to χeff(X) defined in (3.9) and

given in table 3. From (4.11) this modification would give ξ = 0.067. Moreover the

coefficient λ of higher derivative O(α′3) effects has been estimated to be negative and of

order 10−3 [41, 42]. Hence the first set of parameters will be characterised by ξ = 0.067 and

λ = −0.001. However both of these corrections still lack a full supersymmetric analysis,

and so in the second case we shall focus on a situation where the CY Euler number is not

modified, and so ξ = 0.456, and the size of the coefficient λ is much smaller: |λ| . 10−6.

4.1.1 Case 1: ξ = 0.067 and |λ| = 0.001

Let us now provide an explicit numerical example set to demonstrate the features of our

inflationary model:

α = 1 , CW
1 = CW

2 = 15 , |CW
3 | = 0.013 , |CW

4 | = 18 , CW
5 = CW

6 = −5 ,

gs = 0.114 , V = 104 , 〈τ1〉 = 1.91 , W0 = 80 , |λ| = 0.001 , (4.12)

with χ(X) = χeff(X) = −28 in (4.11) which gives ξ = 0.067. Notice that the tuning of the

steepening term here is mild since the difference between the largest and the smallest wind-

ing coefficient is between one and two orders of magnitude. The form of the inflationary

potential is plotted in figure 1 and it is characterised by:
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• 〈τ7〉 = 4.002 leading to ǫ〈τ7〉 = 0.0014. Moreover 2〈τ1〉 ≃ 3.8, and so the distance of

the minimum from the lower bound of the Kähler cone is ∆τ7 ≃ 0.178 which is still

larger than the string scale since, using (4.2), we have that:

ǫ∆τ7 =
1

gs(2π)4∆τ7
≃ 0.03 . (4.13)

• The Kähler cone bounds (4.4) in terms of the canonically normalised inflaton become

φ̂min ≃ −0.04 < φ̂ < φ̂max ≃ 6.49. Inflation ends at φ̂ = φ̂end ≃ 0.96 where

ǫ(φ̂end) = 1 and Vend ≃
(

7 · 1015GeV
)4
. Horizon exit takes place at φ̂ = φ̂∗ ≃ 6.24

where r = 16ǫ = 0.009, ns = 1 + 2η∗ − 6ǫ∗ = 0.983, V∗ ≃
(

1 · 1016GeV
)4

and the

amplitude normalisation (4.7) is satisfied. Notice that such a largish value of the

scalar spectral index is in perfect agreement with Planck data in the presence of dark

radiation since, using ∆Neff = 0.39 as a prior, [48] gives as best fit ns = 0.983±0.006.

This prior is fully justified in string models like ours where reheating is driven by

the decay of the lightest modulus which naturally tends to produce extra axionic

contributions to dark radiation [16–19].

• Horizon exit occurs well inside the Kähler cone since from (4.3) we have:

τ∗7 = eκ(〈φ〉+φ̂∗) ≃ 5404.82 < τmax
7 =

V
√

〈τ1〉
≃ 7231.87 ⇒ τmax

7 − τ∗7 ≃ 1827.06 .

• The mass of the inflaton around the minimum ismφ̂ ≃ 4.25·1013GeV which from (4.6)

implies a reheating temperature Trh ≃ 1.8 · 1010GeV.

• The number of efoldings computed as:

Ne =

∫ φ̂∗

φ̂end

V

V ′ dφ̂ , (4.14)

gives Ne = 52 as required by the estimate (4.5). The maximum number of efoldings

between φ̂end and φ̂max is Nmax
e ≃ 60.

• The α′ expansion is under control even if in our inflationary model the inflaton

travels over a trans-Planckian distance of order ∆φ̂ = φ̂∗− φ̂end = 5.28 since we have

ǫξ ∼ 10−4.

• The mass of the volume mode is of order the Hubble scale during inflation since

δ ≃ 1.6. Hence the inflationary energy density could either cause a significant shift of

the original LVS minimum or destabilise the volume direction. A definite answer to

this question would require a more careful multi-field analysis. As mentioned above, a

similar situation has been studied in [36], where the authors found that for δ ∼ 1 the

minimum for the volume mode gets a large shift but the inflationary evolution still

remains mostly single-field since minf ≪ mV ∼ H. However if δ ∼ 1, the inflationary

potential generated by string loops and α′3 F 4 terms is of the same order as the α′3

F 2 contribution, and so one also should carefully check if additional higher derivative

corrections can be safely neglected.
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Figure 2. Comparison between the different KK masses, m3/2 and the inflationary energy density

V 1/4 from horizon exit to the end of inflation. Note that M
(4)
KK = M

(6)
KK which is why only one of

them is displayed here.

• The effective field theory approximation is valid during the whole inflationary evolu-

tion since H ≃ 2 · 1013GeV < m3/2 ≃ 1 · 1015GeV < Mbulk
KK ≃ 9 · 1015GeV < Ms ≃

2.5 · 1016GeV.

We display the evolution of the different KK masses as compared to the gravitino mass

and the inflationary scale Minf = V 1/4 in figure 2. Notice, in particular, that at the end

of inflation the inflationary scale is of order Mbulk
KK and, above all, mildly exceeds the KK

scale M
(4)
KK by a factor of roughly 1.3. As we stressed above, during an adiabatic expansion

no energy can be extracted from the vacuum, and so our EFT is still valid even if some

KK scales become smaller than V 1/4 since they are all always larger than m3/2 which is,

in turn, larger than H. However, since all the inflationary energy density could instead be

converted into particle production at reheating, one should make sure that there is enough

Hubble friction between the end of inflation and reheating to bring the inflaton energy

density below the relevant KK scale. This effect can be estimated by noticing that from:

ρ(φ) =
1

2
φ̇2 + V (φ) = 3H2M2

p ⇔ ∂tρ(φ) = −3Hφ̇2 , (4.15)

we can obtain the following relation between the energy density at the end of inflation and

at reheating:

ρrh = ρend − 3〈φ̇2〉
∫ rh

end

da

a
= ρend − 3Nrh〈φ̇2〉 , (4.16)

where 〈φ̇2〉 is the time average between the end of inflation and reheating and Nrh =

ln(arh/aend) is the number of efoldings of the reheating epoch. At the end of inflation

when ǫ = 1 we have:

1

2
φ̇2 = H2M2

p ⇔ ρend =
3

2
Vend ≃ 10

(

M
(4)
KK

)4
. (4.17)
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On the other hand at reheating V (φrh) ≃ 0, and so ρrh ≃ φ̇2
rh/2. If we then write the

time-average kinetic energy as 〈φ̇2〉 = φ̇2
rh/x ≃ 2ρrh/x with x > 0, we end up with the

following bound:

ρrh ≃ 10

1 + 6
xNrh

(

M
(4)
KK

)4
<

(

M
(4)
KK

)4
. (4.18)

Using the fact that:

Nrh ≃ 1

3
ln

(

H2
endM

2
p

T 4
rh

)

− 1

3
ln

(

π2g∗
90

)

≃ 16 , (4.19)

the bound (4.18) becomes x < 2
3Nrh ≃ 10. Our model should satisfy this bound since

we expect φ̇end to approach φ̇rh relatively quickly due to the steepness of the potential

near the end of inflation. However a definite answer would require a detailed study of the

post-inflationary epoch which is beyond the scope of this paper.10

Let us also mention that, due to the absence of KK corrections, this scenario represents

a chiral global embedding of the α′-inflation models discussed in [45]. Moreover, no KK

scale becomes smaller than the gravitino mass even if r ≃ 0.01 and ∆φ̂ ≃ 5 in Planck units.

In fact, if we focus for example on the KK scale M
(2)
KK associated with the K3 fibre (similar

considerations apply to the KK scale M
(6)
KK associated with the base), we have:

m3/2

M
(2)
KK

= α1 e
α2φ ≃ 0.03 eα2φ , (4.20)

with:

α1 =

√

W0

2π

( gs
2π

)1/4
√

m3/2

Mp
≃ 0.03 and α2 =

1

2
√
3
. (4.21)

If we set φ = φ0 + φ̂he ≃ 7.44, the ratio in (4.20) becomes m3/2/M
(2)
KK ≃ 0.26, and so the

KK scale M
(2)
KK is always larger than the gravitino mass throughout all the inflationary

dynamics. Notice that this result seems to be in slight disagreement with the swampland

conjecture of [83, 84] where the underlying parameters α1 and α2 were generically assumed

to be of order unity.

As explained above, given that in this case δ ≃ 1.6, the inflationary dynamics can be

fully trusted only after determining the proper multi-field evolution. Due to the difficulty

to perform a full numerical analysis, in the next section we shall instead still focus on a

single-field case where δ ∼ 0.05 since ξ is larger, and so the volume mode mass is larger,

while |λ| is smaller, and so F 4 steepening terms can be easily neglected throughout the

whole inflationary dynamics. The full three-field evolution for both of these cases will then

be presented in section 4.2.

10Let us also point out that, even if ρrh &
(

M
(4)
KK

)4

, our model is not necessarily ruled out but we would

just need to describe reheating within a 6D EFT where the base of the fibration is much larger than the

characteristic size of the fibre. It would also be interesting to find brane setups where this problem is

automatically absent since there is no D7-brane wrapped around the base.
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Figure 3. Plot of the inflationary potential for the example set (4.22). The red vertical lines

correspond to the walls of the Kähler cone while the dashed vertical lines denote horizon exit and

the end of inflation where ǫ = 1.

4.1.2 Case 2: ξ = 0.456 and |λ| = 10−7

According the discussion above, we shall now focus on the following different choice of the

underlying parameters:

α = 1 , CW
1 = CW

2 = 0.034 , |CW
3 | = 10−5 , |CW

4 | = 0.068 , CW
5 = CW

6 = −0.024 ,

gs = 0.25 , V = 4500 , 〈τ1〉 = 3.10 , W0 = 150 , |λ| = 10−7 , (4.22)

with χ(X) = χeff(X) = −188 in (4.11) which gives ξ = 0.456. A larger value of the

coefficient ξ is helpful to increase the control on the single-field approximation since, as can

be seen from (4.11), the leading O(α′3) contribution to the scalar potential is proportional

to ξ. The form of the inflationary potential is plotted in figure 3 and it is characterised by:

• 〈τ7〉 ≃ 6.41 leading to ǫ〈τ7〉 ≃ 0.0004 and 〈φ〉 ≃ 1.61. Moreover 2〈τ1〉 ≃ 6.2, and

so the minimum is located close to the walls of the Kähler cone but at a distance

∆τ7 ≃ 0.21 which is still larger than the string scale since, using (4.2), we have that:

ǫ∆τ7 =
1

gs(2π)4∆τ7
≃ 0.01 . (4.23)

• The Kähler cone bounds (4.4) in terms of the canonically normalised inflaton become

φ̂min ≃ −0.028 < φ̂ < φ̂max ≃ 5.19. Inflation ends at φ̂ = φ̂end ≃ 0.93 where

ǫ(φ̂end) = 1 and Vend =
(

4.4 · 1015GeV
)4
. Horizon exit takes place at φ̂ = φ̂∗ ≃ 5.10

where r = 16ǫ = 0.0014, ns = 1 + 2η∗ − 6ǫ∗ = 0.963, V∗ =
(

6.2 · 1015GeV
)4

and the

amplitude normalisation (4.7) is satisfied. Notice that horizon exit occurs far away

from the upper bound of the Kähler cone since from (4.3) we have:

τ∗7 = eκ(〈φ〉+φ̂∗) ≃ 2325.79 < τmax
7 =

V
√

〈τ1〉
≃ 2554.55 ⇒ τmax

7 − τ∗7 ≃ 228.76 .

• The mass of the inflaton around the minimum ismφ̂ ≃ 1.85·1013GeV which from (4.6)

implies a reheating temperature Trh ≃ 5.16 · 109GeV.
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Figure 4. Comparison between the different KK masses, the gravitino mass m3/2 and the infla-

tionary energy V 1/4 from horizon exit to the end of inflation. Note that M
(4)
KK = M

(6)
KK which is why

only one of them is displayed here.

• The number of efoldings computed as:

Ne =

∫ φ̂∗

φ̂end

V

V ′ dφ̂ , (4.24)

gives Ne = 51 as required by the estimate (4.5). The maximum number of efoldings

between φ̂end and φ̂max is Nmax
e ≃ 57.5.

• The α′ expansion is under control even if in our inflationary model the inflaton

travels over a trans-Planckian distance of order ∆φ̂ = φ̂∗− φ̂end = 4.17 since we have

ǫξ ≃ 0.0004.

• The single-field approximation is under control since δ ≃ 0.05.

• The effective field theory approximation is valid during the whole inflationary evolu-

tion since H ≃ 7 · 1012GeV < m3/2 ≃ 8 · 1015GeV < Mbulk
KK ≃ 1.6 · 1016GeV < Ms ≃

4.5 · 1016GeV.

We display the evolution of the different KK masses as compared to the gravitino mass

and the inflationary energy density Minf = V 1/4 in figure 4. Notice that, contrary to case 1

where r = 0.01, all KK scales remain above Minf throughout all the inflationary dynamics.

The reason is that in this scale the tensor-to-scalar ratio, and so also the inflationary scale,

is smaller since r = 0.001. Moreover, as stressed above, no energy can be extracted from

the vacuum during an adiabatic expansion, and so the consistency condition to be imposed

during inflation is H ≪ M
(i)
KK which is clearly satisfied since H = Minf√

3

(

Minf
Mp

)

< Minf .

Moreover, no KK scale becomes smaller than the gravitino mass m3/2 ≃ 8 ·1015GeV. If we
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focus for example on the KK scale M
(2)
KK associated with the K3 fibre (similar considerations

apply to the KK scale M
(6)
KK associated with the base of the fibration), we have:

m3/2

M
(2)
KK

= α1 e
α2φ ≃ 0.126 eα2φ , (4.25)

with:

α1 =

√

W0

2π

( gs
2π

)1/4
√

m3/2

Mp
≃ 0.126 and α2 =

1

2
√
3
. (4.26)

If we set φ = φ0 + φ̂he ≃ 6.71, the ratio in (4.25) becomes m3/2/M
(2)
KK ≃ 0.87, and so the

KK scale M
(2)
KK is always larger than the gravitino mass throughout all the inflationary

dynamics. This result seems to be more in agreement with the swampland conjecture

of [83, 84] than the one of case 1 since r is smaller, r ≃ 0.001, and the field range is

slightly reduced, ∆φ̂ ≃ 4. Moreover larger values of φ would bring the effective field theory

approach out of control.

Even if this example satisfies all consistency and phenomenological constraints and the

single-field inflationary analysis is under control, in section 4.2 we shall perform a more

precise multifield analysis where the motion along the orthogonal directions enlarges the

field space as well as the allowed number of efoldings.

4.2 Multi-field evolution

The following five consistency conditions require generically a multi-field study of the in-

flationary evolution (which might however still be mainly along a single direction in field

space):

1. The whole inflationary dynamics takes place well inside the Kähler cone described

by the conditions in (4.3);

2. The quantum fluctuations of the inflaton produce a correct amplitude of the density

perturbations at horizon exit;

3. The directions orthogonal to the inflaton are not destabilised by the inflationary

dynamics. This is guaranteed if inflation occurs in field space along a through which

can however bend;

4. Throughout all the inflationary dynamics, no Kaluza-Klein scale becomes smaller

than the gravitino mass;

5. The steepening of the inflationary potential due to F 4 corrections is negligible, so

that enough efoldings can be obtained before destroying slow roll inflation.

If V ∼ 103 and W0 ∼ O(1), the last four conditions can be easily satisfied but the Kähler

cone conditions (4.3) for such a small value of the volume would give an upper bound on the

inflaton direction which would not allow to generate enough efoldings. In order to enlarge

the inflaton field space, the value of the volume has therefore to be larger, of order V ∼ 104.

In the large volume regime where we can trust the 4D EFT, the inflationary potential then
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becomes more suppressed, and so the COBE normalisation condition (2) above can be

satisfied only if W0 ∼ O(100). However, given that the gravitino mass is proportional

to W0, for such a large value of the flux-generated superpotential, it is hard to satisfty

the fourth condition above keeping m3/2 below all KK scales during the whole inflationary

evolution. Moreover, it becomes harder to suppress higher derivative corrections (condition

(5) above) unless their numerical coefficient λ turns out to be extremely small: |λ| . 10−6.

This is the example of case 2 above of section 4.1.2.

Another option for V ∼ 104 could be to keep W0 ∼ O(1), so that the gravitino mass

can remain small and the F 4 terms are still negligible, and to tune the background fluxes to

increase the complex structure-dependent coefficients of the winding loop corrections. This

would however make the inflaton-dependent potential of the same order of magnitude of

the leading order α′ correction. Hence the mass of the volume mode becomes of order the

Hubble scale during inflation. This is the example of case 1 of section 4.1.1 where δ ≃ 1.6.

This situation could either cause a considerable shift of the original LVS minimum or even

a destabilisation, and so in this case one should perform a careful multi-field analysis to

check that the condition (3) above is indeed satisfied.11

In what follows we shall therefore focus on the multifield case with V ∼ 104, W0 ∼
O(100) and |λ| . 10−6. We shall also present an example with W0 ∼ O(1) and |λ| ∼ 10−3

which satisfies all conditions above except for condition (2) since the amplitude of the

density perturbations turns out to be too small. The correct value could be generated by

the quantum fluctuations of the two light bulk axions which could play the rôle of curvaton

fields [86–88]. This study is however beyond the scope of this paper, and so we leave it for

future work.

We analyse now the full three-field cosmological evolution involving the Kähler moduli

τ7, V and τ1. Their dynamics is governed by the following evolution equations for non-

canonically normalised fields:







φ̈i + 3Hφ̇i + Γi
jkφ̇

jφ̇k + gij ∂V
∂φj = 0,

H2 =
(

ȧ
a

)2
= 1

3

(

1
2gijφ̇

iφ̇j + V
)

,
(4.27)

where the φi’s represent the scalar fields τ7, V and τ1, a is the scale factor and Γi
jk are the

target space Christoffel symbols using the metric gij for the set of real scalars φi such that
∂2K

∂ΦI∂Φ∗J ∂µΦI∂µΦ
∗J = 1

2 gij∂µφ
i∂µφj .

For numerical purposes it is more convenient to express the cosmological evolution of

the fields as a function of the number of efoldings N rather than time. In fact, by using

a(t) = eN and d
dt = H d

dN , we can directly obtain τ7(N), V(N) and τ1(N) without having

to solve for the scale factor. The equations of motion turn out to be (with ′ denoting a

11A similar situation arises in Kähler moduli inflation where however a detailed multifield analysis

shows that the minimum of the volume mode is shifted during inflation without developing a runaway

direction [33, 85].
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derivative with respect to N):

τ ′′7 = − (Lkin + 3)

(

τ ′7 + τ7V
V,V
V

+ 2τ27
V,τ7

V
+ 2τ7τ1

V,τ1

V

)

+
τ ′27
τ7

+
τ7τ

′
1

V

(

τ ′1√
τ1

− τ ′7
2
√
τ7

)

,

V ′′ = − (Lkin + 3)

(

V ′ +
3V2

2

V,V
V

+ τ7V
V,τ7

V
+ τ1V

V,τ1

V

)

+
V ′2

V , (4.28)

τ ′′1 = − (Lkin + 3)

(

τ ′1 + τ1V
V,V
V

+ 2τ7τ1
V,τ7

V
+ 4V√τ1

V,τ1

V

)

+
τ ′ 21
4τ1

+
τ1V ′

V

(

τ ′1
τ1

− τ ′7
τ7

)

+
τ1τ

′
7

2τ7

(

3τ ′7
2τ7

−
√
τ1
V τ ′1

)

,

where the kinetic Lagrangian reads:

Lkin =
1

2

(

−V ′ 2

V2
+

V ′τ ′7
Vτ7

− 3τ ′ 27
4τ27

+

√
τ1τ

′
7τ

′
1

2Vτ7
− τ ′ 21

4V√τ1

)

, (4.29)

and the full inflationary potential V is given by the sum of the standard LVS potential,

the gs loops and F 4 terms given in (3.34) and an uplifting contribution proportional to δup
which could come from an anti D3-brane at the tip of a warped throat:

V = κ

[

32A2
sπ

2

√
τ1
V e−4πτ1 − 8πAs

W0τ1
V2

e−2πτ1 +
3ζ

4g
3/2
s

W 2
0

V3

+
W 2

0

V3

(

A1

τ7
− A2√

τ7
+

B1
√
τ7

V +
B2 τ7
V

)

+
δup

V4/3

]

. (4.30)

4.2.1 |λ| = 10−6 and correct amplitude of the density perturbations

Setting α = 1 and performing the following choice of the underlying parameters:

As = 6 · 105 χ = −188 ⇒ ζ = −ζ(3)χ(X)

2(2π)3
= 0.456 W0 = 50 gs = 0.25

CW
1 = CW

2 = 0.05 |CW
3 | = 10−4 |CW

4 | = 0.1 CW
5 = CW

6 = −0.05 λ = −10−6 ,

the total potential (4.30) admits a Minkowski global minimum at:

〈V〉 = 2690.625 , 〈τ7〉 = 6.503 〈τ1〉 = 3.179 for δup = 5.9598 · 10−4 .

Notice that this minimum is inside the Kähler cone since 〈τ7〉 > 2〈τ1〉 = 6.358, which

respects the lower bound in (4.3). At this level of approximation, the closed string axions

associated to V and τ7 are flat directions. They receive a tiny potential from highly sup-

pressed non-perturbative effects, and so they remain very light. Being so light, they do

not affect the inflationary dynamics but would acquire isocurvature fluctuations of order H

during inflation. If they do not play the rôle of dark matter, their final contribution to the

amplitude of the isocurvature perturbations is negligible. On the other hand, if they are

heavy enough to decay, their isocurvature fluctuations get converted into standard density

perturbations, and so these bulk axions could behave as curvaton fields [86–88].

Let us now shift τ7 away from its minimum at the initial condition τ7(N = 0) =

〈τ7〉 + 2030 and recompute the new minimum for the other two directions 〈V〉(τ7) and
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Figure 5. Evolution of the ǫ-parameter as a function of the number of efoldings N for (left) the

entire inflationary dynamics and (right) for the last efolding.

〈τ1〉(τ7). These values would set the initial conditions for these fields, ensuring that the

inflationary dynamics takes place along a stable trough in field space:

V(0) = 〈V〉(τ7(0)) = 3671.432 , τ7(0) = 2036.503 , τ1(0) = 〈τ1〉(τ7(0)) = 3.227 .

Notice that these initial conditions are again inside the Kähler cone since τ7(0) <
V(0)√
τ1(0)

=

2043.7, which satisfies the upper bound in (4.3). We shall also focus on vanishing initial

velocities for all scalar fields: V ′(0) = τ ′7(0) = τ ′1(0) = 0.

Considering this set of initial conditions, we solved the system of equations of mo-

tion (4.28) finding the cosmological evolution of each scalar field as a function of the

number of efoldings N . Inflation occurs in the region in field space where the generalised

ǫ-parameter:

ǫ(N) = − 1

4LkinV 2

(

V,V V ′ + V,τ7 τ
′
7 + V,τ1 τ

′
1

)2
, (4.31)

is much smaller than unity. As can be seen from figure 5, ǫ ≪ 1 during the first 57 efoldings

and then quickly increases and reaches ǫ = 1 at N = 57.93 where inflation ends.

Using the variable N to parametrise the cosmological evolution of the scalar fields and

denoting by Ne the physical number of efoldings of inflation, Ne = 52, as estimated in

section 4.1, at N∗ = 5.93. This is the point of horizon exit in field space where ǫ(N∗) =
1.456 · 10−4 which yields a tensor-to-scalar ratio r = 16ǫ(N∗) = 0.0023. The amplitude of

the scalar power spectrum is:

√

P (N∗) =
1

10π

√

2V (N∗)
3 ǫ(N∗)

= 1.035 · 10−5 , (4.32)

reproducing the reference COBE value
√
PCOBE ≃ 2 · 10−5 with a good accuracy. Moreover

the scalar spectral index is given by:

ns(N∗) = 1 +
d

dN
lnP (N)

∣

∣

∣

∣

N=N∗

= 0.9701 , (4.33)

in good agreement with Planck data [47, 48].
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Figure 6. Evolution of τ7 as a function of the number of efoldings N for (left) the entire inflationary

dynamics and (right) for the last 2 efoldings. The dashed red line represents the position of the

final global minimum.

Figure 6, 7 and 8 show the cosmological evolution of the three scalar fields τ7, V and

τ1 during the whole inflationary dynamics and their final settling into the global minimum

after a few oscillations. Figure 9 shows instead the path of the inflationary trajectory in the

(τ7,V)-plane (on the left) and in the (τ7, τ1)-plane (on the right). Clearly, as expected from

the single-field analysis of section 4.1, the inflaton travels mainly along the τ7-direction.

Finally figure 10 presents a plot with the cosmological evolution of all KK mass scales,

the inflationary scale Minf = V 1/4 and the gravitino mass m3/2 from horizon exit to the

final settling into the global minimum. The fact that Minf remains always below all the KK

scales, ensures that the Hubble scale during inflationH = Minf√
3

(

Minf
Mp

)

< Minf is also always

below each KK scale. The gravitino mass also remains always smaller than M
(i)
KK ∀i. This

guarantees that the 4D effective field theory is under control. In particular, M
(2)
KK , M

(6)
KK

and the inflationary scale evolve from M
(2)
KK (N∗) ≃ 1.1 ·1016GeV, M

(6)
KK (N∗) ≃ 2.1 ·1016GeV

and Minf(N∗) ≃ 5.3 ·1015GeV at horizon exit to M
(2)
KK (N = 60) ≃ 6.2 ·1016GeV, M

(6)
KK (N =

60) ≃ 1.3 · 1016GeV and Minf(N = 60) ≃ 9.3 · 1014GeV around the final minimum. On the

other hand the other scales remain approximately constant during the whole inflationary

evolution around: H ≃ 5 · 1012GeV < m3/2 ≃ 4 · 1015GeV < Mbulk
KK ≃ 2 · 1016GeV.

4.2.2 |λ| = 10−3 and negligible amplitude of the density perturbations

We shall now relax the condition of generating the correct amplitude of the density pertur-

bations from the inflaton quantum fluctuations. As explained above, the right COBE value

of the amplitude of the power spectrum could instead be reproduced in a non-standard way

by a curvaton-like mechanism involving the quantum fluctuations of the two light bulk ax-

ions [86–88]. In this case we can focus on V ∼ 5 · 103, W0 ∼ O(1), λ ∼ 10−3 and relatively

small values of the coefficients of the winding loop corrections which generate the plateau, so

that all the remaining four conditions listed at the beginning of section 4.2 are fully satisfied.
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Figure 7. Evolution of V as a function of the number of efoldings N for (left) the entire inflationary

dynamics and (right) for the last 6 efoldings. The dashed red line represents the position of the

final global minimum.

Figure 8. Evolution of τ1 as a function of the number of efoldings N for (left) the entire inflationary

dynamics and (right) for the last 6 efoldings. The dashed red line represents the position of the

final global minimum.

Figure 9. Plot of the whole inflationary evolution in the (τ7,V)-plane (on the left) and in the

(τ7, τ1)-plane (on the right). Notice that the scales are different on the two axes since the inflaton

travels mainly along the τ7-direction.

– 30 –



J
H
E
P
1
1
(
2
0
1
7
)
2
0
7

Figure 10. Evolution of all KK masses (with M
(4)
KK = M

(2)
KK ), the inflationary scale Minf = V 1/4

and the gravitino mass m3/2 in GeV units from horizon exit to the final settling into the global

minimum.

We shall set α = 1 and perform the following choice of the underlying parameters:

As = 1 · 104 χ = −188 ⇒ ζ = −ζ(3)χ(X)

2(2π)3
= 0.455 W0 = 1 gs = 0.25

CW
1 = CW

2 = 0.05 CW
3 = −10−4 CW

4 = −0.1 CW
5 = CW

6 = −0.05 λ = −0.001 ,

which yield a global Minkowski minimum inside the Kähler cone at:

〈V〉 = 3220.899 , 〈τ7〉 = 6.403 〈τ1〉 = 3.179 for δup = 1.76588 · 10−7 .

The initial conditions for the inflationary evolution are again derived in the same way: the

fibre modulus τ7 is shifted away from its minimum at τ7(N = 0) = 〈τ7〉 + 2450 and the

other two directions 〈V〉(τ7) and 〈τ1〉(τ7) are set at the new minimum:

V(0) = 〈V〉(τ7(0)) = 4436.094 , τ7(0) = 2456.403 , τ1(0) = 〈τ1〉(τ7(0)) = 3.228 .

Notice that these initial conditions are inside the Kähler cone since τ7(0) < V(0)√
τ1(0)

=

2468.95, which satisfies the upper bound in (4.3). Focusing again on vanishing initial

velocities for all scalar fields, i.e. V ′(0) = τ ′7(0) = τ ′1(0) = 0, we worked out the cosmolog-

ical evolution of each scalar field as a function of N by solving the system of equations

of motion (4.28). Looking for a slow-roll region in field space where the generalised ǫ-

parameter (4.31) is much smaller than unity, we found that ǫ ≪ 1 during the first 69

efoldings and then quickly increases and reaches ǫ = 1 at N = 69.15 where inflation ends.

The point of horizon exit corresponding to a physical number of efoldings of inflation

Ne = 52 is localised at N∗ = 17.15 where ǫ(N∗) = 1.36 · 10−4. The main cosmological
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Figure 11. Evolution of all KK masses (with M
(4)
KK = M

(2)
KK ), the inflationary scale Minf = V 1/4

and the gravitino mass m3/2 in GeV units from horizon exit to the final settling into the global

minimum.

observables at horizon exit take the following values:

ns(N∗) = 1 +
d

dN
lnP (N)

∣

∣

∣

∣

N=N∗

= 0.9676 , r = 16ǫ(N∗) = 0.0022 ,

√

P (N∗) =
1

10π

√

2V (N∗)
3 ǫ(N∗)

= 1.64 · 10−7 .

The scalar spectral index ns and the tensor-to-scalar ratio r are in good agreement with

Planck data [47, 48] while the amplitude of the scalar power spectrum, as expected, is much

smaller than the reference COBE value
√
PCOBE ≃ 2 · 10−5. As can be seen from figure 11,

in this case the low-energy 4D effective field theory is fully under control since throughout

all the inflationary evolution all KK scales are much higher than both the gravitino mass

and the inflationary scale (and so also the Hubble scale).

In particular, M
(2)
KK , M

(6)
KK and the inflationary scale evolve from M

(2)
KK (N∗) ≃ 9.8 ·

1015GeV, M
(6)
KK (N∗) ≃ 1.8 · 1016GeV and Minf(N∗) ≃ 6.5 · 1014GeV at horizon exit to

M
(2)
KK (N = 70) ≃ 5.5 · 1016GeV, M

(6)
KK (N = 70) ≃ 1.2 · 1016GeV and Minf(N = 70) ≃

1.4 · 1014GeV around the final minimum. On the other hand the other scales remain

approximately constant during the whole inflationary evolution around: H ≃ 8·1011GeV <

m3/2 ≃ 6 · 1013GeV < Mbulk
KK ≃ 2 · 1016GeV.

5 Conclusions

The study of large field inflationary models is particularly interesting from both a phe-

nomenological and a theoretical point of view. In fact, from one side the next generation

of CMB observations will be able to test values of the tensor-to-scalar ratio in the window

0.001 . r . 0.01, while on the other hand trans-Planckian inflaton excursions need a

symmetry mechanism to trust the effective field theory approach.
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Natural inflaton candidates from type IIB string compactifications are Kähler moduli

which enjoy non-compact shift-symmetries [6]. In particular, fibre inflation models pro-

vide promising plateau-like potentials which seem to fit Planck data rather well and lead

to the prediction of observable tensor modes [36, 44–46]. These inflationary models are

built within LVS moduli stabilisation scenarios and can be globally embedded in K3-fibred

Calabi-Yau manifolds [50].

In this paper we extended previous work by constructing the first explicit realisations

of fibre inflation models in concrete type IIB Calabi-Yau orientifolds with consistent brane

setups, full closed string moduli fixing and chiral matter on D7-branes. The underlying

compactification manifold features h1,1 = 4 Kähler moduli which after D-term stabilisation

get effectively reduced to the standard 3 moduli of fibre inflation models.

We found that the inflationary dynamics is strongly constrained by the Kähler cone

conditions which never allow for enough efoldings of inflation if the internal volume is of

order V ∼ 103. For larger values of the Calabi-Yau volume of order V ∼ 104, the Kähler

cone becomes large enough for the inflaton to drive Ne ≃ 52 efoldings, as required by

an estimate of the post-inflationary evolution. However such a large value of V tends to

suppress the amplitude of the density perturbations below the reference COBE value. This

can be avoided by considering large values of either the coefficients of the winding loops

which generate the plateau, or the flux superpotential W0. Let us stress that in the string

landscape this choice is guaranteed to be possible by the fact that both of these microscopic

parameters are flux-dependent.

However, as shown in section 4.1.1, large values of the coefficients of the winding gs
corrections make the Hubble scale during inflation of the same order of magnitude of the

mass of the volume mode. This could either cause a large shift of the original LVS minimum

or even a problem for the stability of the inflationary direction against orthogonal runaway

directions. A definite answer to this issue hence requires a proper multi-field analysis even

if the two-field study of [36] revealed that the inflationary motion is still mostly single-field.

On the other hand, if the flux superpotential is of order W0 ∼ 100, the gravitino mass

can become too close to some KK scale in the model, destroying the 4D effective field

theory. Moreover, F 4 terms are proportional to |λ|W 4
0 . Thus if W0 is large, these higher

derivative effects can spoil the flatness of the inflationary potential before achieving enough

efoldings of inflation if |λ| is not small enough. Hence in section 4.1.2 we presented a model

with W0 ∼ 100 and a very small value of |λ| of order |λ| = 10−7 which makes the F 4

terms harmless. The gravitino mass also turns out to be slightly smaller than any KK

scale throughout the whole inflationary dynamics.

Due to the fact that in the single-field case not all our approximations are fully under

control, in section 4.2 we performed a complete numerical analysis of the 3-field cosmo-

logical evolution. For W0 ∼ 100 and |λ| = 10−6, the multi-field analysis of section 4.2.1

revealed that the accuracy of our approximations improves. In particular, the allowed

number of efoldings of inflation increases due to the extra motion along the volume and

blow-up directions. Hence inflation can successfully work also for smaller values of V which

cause a smaller Kähler cone for the fibre modulus. This, in turn, requires smaller values

of W0 to match the COBE normalisation of the density perturbations, which enlarges the

hierarchy between m3/2 and the KK scales in the model.
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We point out however that some of the underlying parameters are not flux-dependent,

and so are not tunable in the string landscape. Two examples of this kind of parameters

are the effective Euler number χeff which controls the strength of O(α′3) corrections due

to O7-planes [56] and the combinatorial factor λ which is the coefficient of O(α′3) higher

derivatives [41]. Both of these microscopic parameters have not been computed in full

detail yet, even if λ has been estimated to be of order 10−3 [42]. Hence in section 4.2.2 we

also presented a case with |λ| = 0.001 where it is hard to obtain enough efoldings inside the

Kähler cone and generate, at the same time, the correct amplitude of the density perturba-

tions in a framework where all the approximations are fully under control. Hence we chose

the flux superpotential so that the contribution of the inflaton quantum fluctuations to the

scalar power spectrum is negligible. In this case a viable inflationary phenomenology can

therefore be achieved only in the presence of a non-standard mechanism for the generation

of the density perturbations. A promising case could be the curvaton scenario where the

initial isocurvature fluctuations could be produced by the quantum oscillations of the two

light bulk closed string axions [86–88].

Besides a complete computation of the exact value of both χeff and λ, and the detailed

derivation of a curvaton-like mechanism, there are several other important open issues for

future work. A crucial one is a better determination of the actual Calabi-Yau Kähler cone

since the one that we used is just an approximation inherited from the Mori cone of the

ambient toric variety. It would also be interesting to develop a more systematic study of

the constraints that the Kähler cone sets on the inflationary dynamics by performing a

complete scan over all h1,1 = 3 and h1,1 = 4 K3 fibred CY threefolds with at least a del

Pezzo divisor [89]. Moreover our chiral global models still lack an explicit implementation

of a mechanism responsible for the realisation of a dS vacuum. Finally, the study of the

post-inflationary cosmological evolution of our universe is of primary importance in order

to discriminate among different models that feature the same inflationary predictions of

fibre inflation models. A first step forward towards understanding (p-)reheating has been

taken in [90, 91]. A full understanding of this mechanism requires further investigation of

the underlying microscopic dynamics.
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A Another chiral global example

A.1 Toric data

Let us consider the following toric data for a CY threefold with h1,1 = 4 which is a K3-

fibration over a P
1 base along with a so-called ‘small’ divisor:
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x1 x2 x3 x4 x5 x6 x7 x8

8 0 0 0 1 1 1 1 4

6 0 0 1 0 1 0 1 3

6 0 1 0 0 0 1 1 3

4 1 0 0 0 0 0 1 2

dP5 NdP11 NdP11 dP7 K3 K3 SD1 SD2

with Hodge numbers (h2,1, h1,1) = (106, 4) and Euler number χ = −204. The Stanley-

Reisner ideal is:

SR = {x1x4, x1x7, x3x5, x4x5, x2x3x7, x2x6x8, x4x6x8} .

This corresponds to the CY threefold used in [92] to build global models with chiral matter

on D7-branes and Kähler moduli stabilisation but without any inflationary dynamics. A

detailed divisor analysis using cohomCalg [76, 77] shows that the divisor D4 is a del Pezzo

dP7 which we find to be shrinkable after investigating the CY volume form. Further, each of

the divisors {D2, D3} are non-diagonal del Pezzo surfaces and {D5, D6} are two K3 surfaces

while the divisors {D7, D8} are two ‘special deformation’ divisors with Hodge diamond:

SD1 ≡

1

0 0

3 38 3

0 0

1

and SD2 ≡

1

0 0

25 172 25

0 0

1

The intersection form in the basis of smooth divisors {D1, D4, D5, D6} can be written as:

I3 = 2D1D5D6 − 2D2
1 D5 − 2D2

1 D6 + 2D3
4 + 4D3

1 . (A.1)

Writing the Kähler form in the above basis of divisors as J = t1D1 + t4D4 + t5D5 + t6D6

and using the intersection polynomial (A.1), the CY overall volume takes the form:

V = 2 t1 t5 t6 − t21 t5 − t21 t6 +
t34
3
+

2

3
t31 . (A.2)

In order to express V in terms of four-cycle moduli, we need to know the Kähler cone

conditions which can be determined from the following Kähler cone generators:

K1 = D1 +D5 +D6, K2 = D1 −D4 +D5 +D6, K3 = D5, K4 = D6 . (A.3)

Expanding the Kähler form J in these Kähler cone generators as J =
∑4

i=1 riKi results in

the following conditions for the two-cycle moduli:

r1 = t1 + t4 > 0 , r2 = −t4 > 0 , r3 = t5 − t1 > 0 , r4 = t6 − t1 > 0 . (A.4)
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D1 D2 D3 D4 D5 D6 D7 D8

D1 C5 P
1

P
1 ∅ P

1
P
1 ∅ T

2

D2 P
1

P
1 ⊔ P

1
P
1 ⊔ P

1
T
2

T
2 ∅ P

1 C3
D3 P

1
P
1 ⊔ P

1
P
1 ⊔ P

1
T
2 ∅ T

2
P
1 C3

D4 ∅ T
2

T
2 C3 ∅ ∅ T

2 C3
D5 P

1
T
2 ∅ ∅ ∅ T

2 C2 C9
D6 P

1 ∅ T
2 ∅ T

2 ∅ C2 C9
D7 ∅ P

1
P
1

T
2 C2 C2 C3 C19

D8 T
2 C3 C3 C3 C9 C9 C19 C89

Table 4. Intersection curves of two coordinate divisors. Here Cg denotes a curve with Hodge

numbers h0,0 = 1 and h1,0 = g.

D1 D2 D3 D4 D5 D6 D7 D8

D1 4t1−2(t5+t6) 2(t5 − t1) 2(t6 − t1) 0 2(t6 − t1) 2(t5 − t1) 0 2(t5 + t6)− 4t1

D2 2(t5 − t1) 2t4 2(t1 + t4) −2t4 2t1 0 2(t5 + t4) 2(t1 + 2t4 + 2t5)

D3 2(t6 − t1) 2(t1 + t4) 2t4 −2t4 0 2t1 2(t6 + t4) 2(t1 + 2t4 + 2t6)

D4 0 −2t4 −2t4 2t4 0 0 −2t4 −4t4

D5 2(t6 − t1) 2t1 0 0 0 2t1 2t6 2(2t6 + t1)

D6 2(t5 − t1) 0 2t1 0 2t1 0 2t5 2(2t5 + t1)

D7 0 2(t5 + t4) 2(t6 + t4) −2t4 2t6 2t5 2(t4 + t5 + t6) 4t4 + 6(t5 + t6)

D8 2(t5+t6)−4t1 2(t1+2t4+2t5) 2(t1+2t4+2t6) −4t4 2(2t6+t1) 2(2t5+t1) 4t4+6(t5+t6) 4[t1+2t4+4(t5+t6)]

Table 5. Volumes of intersection curves between two coordinate divisors.

Using the four-cycle moduli, τi = ∂tiV , given by:

τ1 = 2 (t5 − t1)(t6 − t1), τ4 = t24, τ5 = t1(2 t6 − t1), τ6 = t1(2 t5 − t1) , (A.5)

the overall volume can be rewritten as:

V =
1

3

(

t1τ1 + t5τ5 + t6τ6 − τ
3/2
4

)

. (A.6)

The second Chern class of the CY threefold X is instead given by:

c2(X) = 2D6D8 + 8D7D8 − 2D2
6 − 4D6D7 − 12D2

7 , (A.7)

which results in the following values of the topological quantities Πi’s:

Π1 = 4, Π2 = Π3 = 16, Π4 = 8, Π5 = Π6 = 24, Π7 = 44, Π8 = 136 .

The intersection curves between two coordinate divisors are given in table 4 while their

volumes are listed in table 5.

A.2 Orientifold involution

We focus on orientifold involutions of the form σ : xi → −xi with i = 1, . . . , 8 which

feature an O7-plane on Di and O3-planes at the fixed points listed in table 6. The effective
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σ O7 O3 NO3 χ(O7) χeff

x1 → −x1 D1 ⊔D7 {D2D3D4} 2 54 -192

x2 → −x2 D2 {D1D6D8, D3D4D7, D6D7D8} {2, 2, 6} 14 -208

x3 → −x3 D3 {D1D5D8, D2D4D7, D5D7D8} {2, 2, 6} 14 -208

x4 → −x4 D4 {D1D2D3, D1D5D6, {2, 2, 4, 4, 2 } 10 -200

D2D5D8, D3D6D8, D5D6D7}
x5 → −x5 D5 {D1D3D8, D3D7D8, D2D4D8} {2, 2, 4} 24 -204

x6 → −x6 D6 {D1D2D8, D2D7D8, D3D4D8} {2, 2, 4} 24 -204

x7 → −x7 D1 ⊔D7 {D2D3D4} 2 54 -192

x8 → −x8 D8 ∅ 0 224 -28

Table 6. Fixed point set for the involutions which are reflections of the eight coordinates xi with

i = 1, . . . , 8.

non-trivial fixed point set in table 6 has been obtained after taking care of the SR ideal

symmetry. Moreover, the total number of O3-planes NO3 is obtained from the triple

intersections restricted to the CY hypersurface, while the effective Euler number χeff has

been computed as:

χeff = χ(X) + 2

∫

X
[O7] ∧ [O7] ∧ [O7] . (A.8)

In what follows we shall focus on the orientifold involution σ : x7 → −x7 which features

two non-intersecting O7-planes located in D1 and D7 and two O3-planes at {D2D3D4} .

A.3 Brane setup

If the D7-tadpole cancellation condition is satisfied by placing four D7-branes on top of

the O7-plane, the string loop corrections to the scalar potential involve only KK effects

since winding contributions are absent due to the absence of any intersection between D7-

branes and/or O7-planes. Thus loop effects are too simple to generate a viable inflationary

plateau. We shall therefore focus on a slightly more complicate D7-brane setup which gives

rise also to winding loop effects. This can be achieved by placing D7-branes not entirely

on top of the O7-plane as follows:

8[O7] ≡ 8([D1] + [D7]) = 8 (2[D1] + [D2] + [D5]) . (A.9)

This brane setup involves three stacks of D7-branes wrapped around the divisors D1, D2

and D5. Moreover, the condition for D3-tadpole cancellation becomes:

ND3 +
Nflux

2
+Ngauge =

NO3

4
+

χ(O7)

12
+
∑

a

Na (χ(Da) + χ(D′
a))

48
= 14 ,

showing that there is space for turning on both gauge and background three-form fluxes

for complex structure and dilaton stabilisation.
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A.4 Gauge fluxes

In order to obtain a chiral visible sector on the D7-brane stacks wrapping D1, D2 and D5

we need to turn on worldvolume gauge fluxes of the form:

Fi =
h1,1
∑

j=1

fijD̂j +
1

2
D̂i − ι∗Di

B with fij ∈ Z and i = 1, 2, 5 , (A.10)

where the half-integer contribution is due to Freed-Witten anomaly cancellation [71, 72].

However we want to generate just one moduli-dependent Fayet-Iliopoulos term in order

to fix only one Kähler modulus via D-term stabilisation. In fact, if the number of FI-terms

is larger than one, there is no light Kähler modulus which can play the rôle of the inflaton.

Moreover we wrap a D3-brane instanton on the rigid divisor D4 in order to generate

a non-perturbative contribution to the superpotential which is crucial for LVS moduli

stabilisation. In order to cancel the Freed-Witten anomaly, the D3-instanton has to support

a half-integer flux, and so the general expression of the total gauge flux on D4 becomes:

F4 =
h1,1
∑

j=1

f4jD̂j +
1

2
D̂4 − ι∗Di

B with f4j ∈ Z . (A.11)

However a non-vanishing F4 would not be gauge invariant, and so would prevent a non-

perturbative contribution to the superpotential. We need therefore to check if it is possible

to perform an appropriate choice of B-field which can simultaneously set F1 = F2 = 0 (we

choose to have a non-vanishing gauge flux only on D5 to have just one moduli-dependent

FI-term) and F4 = 0. If we set:

B =
1

2
D̂1 +

1

2
D̂2 +

1

2
D̂4 , (A.12)

the condition F1 = F2 = F4 = 0 reduces to the requirement that the following forms are

integer:

ι∗D1

(

1

2
D̂2 +

1

2
D̂4

)

ι∗D2

(

1

2
D̂1 +

1

2
D̂4

)

ι∗D4

(

1

2
D̂1 +

1

2
D̂2

)

, (A.13)

since in this case the integer flux quanta fij can always be adjusted to yield vanishing

gauge fluxes. Taking an arbitrary integer form A ∈ H2(Z, X) which can be expanded as

A = ajD̂j with aj ∈ Z, the pullbacks in (A.13) give rise to integer forms if:

b1 ≡
∫

X

(

1

2
D̂2 +

1

2
D̂4

)

∧ D̂1 ∧A ∈ Z

b2 ≡
∫

X

(

1

2
D̂1 +

1

2
D̂4

)

∧ D̂2 ∧A ∈ Z

b4 ≡
∫

X

(

1

2
D̂1 +

1

2
D̂2

)

∧ D̂4 ∧A ∈ Z

Using the intersection polynomial (A.1) we find b1 = a5−a1 ∈ Z, b2 = b1−a4 ∈ Z and b4 =

−a4 ∈ Z, showing how the choice of B-field in (A.12) can indeed allow for F1 = F2 = F4 =
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0. The only non-zero gauge flux is F5 which does not feature any half-integer contribution

since c1(D5) = 0 given that D5 is a K3 surface. Given that all the intersection numbers

are even, the pullback of the B-field on D5 does also not generate an half-integer flux. We

shall therefore consider a non-vanishing gauge flux on the worldvolume of D5 of the form:

F5 =

h1,1
∑

j=1

f5jD̂j with f5j ∈ Z . (A.14)

A.5 FI-term and chirality

Given that the divisor D5 is transversely invariant under the orientifold involution and it

is wrapped by four D7-branes, it supports an Sp(8) gauge group which is broken down to

U(4) = SU(4)×U(1) by a non-zero flux F5 along the diagonal U(1). This non-trivial gauge

flux F5 induces also a U(1)-charge qi5 for the i-th Kähler modulus of the form:

qi5 =

∫

X
D̂i ∧ D̂5 ∧ F5 . (A.15)

Thus F5 6= 0 yields:

q15 = 2(f56 − f51) q45 = q55 = 0 q65 = 2f51 , (A.16)

together with a flux-dependent correction to the gauge kinetic function which looks like:

Re(f5) = α−1
5 =

4π

g25
= τ5 − h(F5)Re(S) , (A.17)

where:

h(F5) =
1

2

∫

X
D̂5 ∧ F5 ∧ F5 =

1

2
(f51q15 + f56q65) . (A.18)

Moreover a non-vanishing gauge flux F5 induces a moduli-dependent FI-term of the form:

ξ =
1

4πV

∫

X
D̂5 ∧ J ∧ F5 =

1

4πV

h1,1
∑

j=1

qj5 tj =
1

4πV (q15 t1 + q65 t6) . (A.19)

For vanishing open string VEVs (induced for example by non-tachyonic scalar masses), a

leading-order supersymmetric stabilisation requires ξ = 0 which implies:

t6 = −q15
q65

t1 =

(

1− f56
f51

)

t1 ≡ α t1 . (A.20)

This U(1) factor becomes massive via the Stückelberg mechanism and develops an O(Ms)

mass by eating up a linear combination of an open and a closed string axion which is mostly

given by the open string mode.

Besides breaking the worldvolume gauge group and inducing moduli-dependent FI-

terms, non-trivial gauge fluxes on D7-branes generate also 4D chiral modes. In fact, open

strings stretching between the D7-branes on D5 and the O7-planes or the image branes
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give rise to the following zero-modes in the symmetric and antisymmetric representations

of U(4):

I
(S)
5 = −1

2

∫

X
D̂5 ∧ [O7] ∧ F5 −

∫

X
D̂5 ∧ D̂5 ∧ F5 = −

(

q15 +
q65
2

)

, (A.21)

I
(A)
5 =

1

2

∫

X
D̂5 ∧ [O7] ∧ F5 −

∫

X
D̂5 ∧ D̂5 ∧ F5 = −I

(S)
5 . (A.22)

Due to the absence of worldvolume fluxes on the D7-branes wrapped around D1 and D2,

the gauge groups supported by these two D7-stacks are respectively SO(16) (since D1 is an

O7-locus) and Sp(8) (since D2 is transversely invariant) which are both unbroken. Thus

open strings stretched between the D7-branes on D5 and D1 (or its image brane) give rise

to chiral zero-modes in the bi-fundamental representation (4,16) of U(4) and SO(16) whose

number is:

I51 =

∫

X
D̂5 ∧ D̂1 ∧ F5 = q15 . (A.23)

On the other hand, the number of 4D chiral zero-modes in the bi-fundamental representa-

tion (4,8) of U(4) and Sp(8) (corresponding to open strings stretching between the D7s on

D5 and D2) is:

I52 =

∫

X
D̂5 ∧ D̂2 ∧ F5 = q65 . (A.24)

We need finally to check that there are no chiral intersections between the D7s on D5 and

the instanton on D4 to make sure that the prefactor of the non-perturbative contribution

to the superpotential is indeed non-zero. This is ensured by the fact that:

I54 =

∫

X
D̂5 ∧ D̂4 ∧ F5 = 0 . (A.25)

A.6 Inflationary potential

Using the D-term fixing relation (A.20), the Kähler cone conditions (A.4) simplify to t5 >

t1 > −t4 > 0 and α > 1. Moreover the CY volume (A.6) reduces to:

V = (2α− 1) t5t
2
1 −

(

α− 2

3

)

t31 +
t34
3

= tbτf − 1

3
τ
3/2
4 . (A.26)

Given that this form is linear in t5, the effective CY volume after D-term stabilisation looks

like a K3 fibre τf over a P
1 base tb whose volumes are given by:

τf = τ5 = (2α− 1) t21 and tb = t5 −
(

α− 2
3

)

(2α− 1)
t1 . (A.27)

Notice that the Kähler cone condition t5 > t1 can be rewritten as:

τf < σ(α)V2/3 , (A.28)

where:

σ(α) ≡ (2α− 1)

(

3

3α− 1

)2/3

with α > 1 . (A.29)
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In terms of the canonically normalised inflaton shifted from its minimum, the condi-

tion (A.28) reads:

τf = 〈τf 〉 e2φ̂/
√
3 < σ V2/3 ⇔ φ̂ <

√
3

2
ln

(

σ

〈τf 〉
V2/3

)

. (A.30)

Let us now focus on the inflationary potential. The winding loop corrections look like (with

κ = gs/(8π) for e
Kcs = 1):

V W
gs = −κ

W 2
0

V3

CW√
τf

, (A.31)

where:

CW =
√
2α− 1

(

CW
1 +

CW
2

α

)

. (A.32)

On the other hand, the KK loop corrections read (neglecting τ4-dependent terms which

yield subdominant contributions):

V KK
gs = κg2s

W 2
0

V2

∑

i,j=1,5,6

CKK
i CKK

j Kij . (A.33)

After substituting t6 = αt1, we obtain:

ZV2
∑

i,j

CKK
i CKK

j Kij = at21 + C2
5 t5 (t5 − t1)− (1− Z)

(

bt21 + ct1t5 +
C2
5

2
t25

)

,

where:

a = C1 (C1 + C5 + C6) + C5

(

C6 +
C5

2

)

+ C2
6

(

α2 − α+
1

2

)

b = αC1C6 +
α2

2
C2
6 +

C2
1

2
c = C5 (C1 + αC6) ,

and:

Z = 1− 2

3α− 1

( τf

σ V2/3

)3/2
.

Notice that the Kähler cone conditions τf < σ V2/3 and α > 1 imply 0 < Z < 1. This

guarantees the absence of any singularity in the Kähler metric. Expressing the scalar

potential in terms of the 4-cycle moduli, we end up with:

V KK
gs = κg2s

W 2
0

ZV2





C2
5

τ2f
− 2

3 (2α− 1)3/2
C2
5

V√τf
+ d

τf
V2



1− h
τ
3/2
f

V







 , (A.34)

where h = u/d with:

d =
a

(2α− 1)
− 2

3

c

(2α− 1)2
− C2

5

(2α− 1)3

(

α2 − α

3
− 2

9

)

u =
2 b

3 (2α− 1)5/2
+

2 c

3

(

α− 2
3

)

(2α− 1)7/2
+

C2
5

3

(

α− 2
3

)2

(2α− 1)9/2
.
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If all the coefficients of the KK corrections take natural O(1) values, the term in (A.34)

proportional to h is suppressed by h ≪ 1, and so it can be safely neglected.

On the other hand, higher derivative α′3 F 4 corrections take the form (neglecting the

t4-dependent term and setting t6 = αt1):

VF 4 = −4κ2
λW 4

0

g
3/2
s V4

[(6α+ 1)t1 + 6t5] , (A.35)

which in terms of four-cycle moduli looks like:

VF 4 = −4κ2
λW 4

0

g
3/2
s V4

[

12α2 + 2α− 5

(2α− 1)3/2
√
τf + 6

V
τf

]

. (A.36)

Therefore the total inflationary potential becomes:

V = V W
gs + V KK

gs + VF 4 = κ
W 2

0

V2

(

A1

τ2f
+

A2

Vτf
− A3

V√τf
+

B1
√
τf

V2
+

B2 τf
V2

)

, (A.37)

where (with λ = −|λ| < 0):

A1 =
g2s
Z

C2
5 A2 =

3

π

|λ|W 2
0√

gs
A3 = CW +

g2s
Z

2C2
5

3 (2α− 1)3/2
≃ CW (A.38)

and:

B1 =
12α2 + 2α− 5

6(2α− 1)3/2
A2 B2 =

g2s d

Z
. (A.39)

The potential (A.37) could support single-field slow-roll inflation driven by τf [36, 45]. In

order to get enough efoldings before hitting the walls of the Kähler cone given in (A.30),

we need to focus on the region in field space where the inflaton minimum is of order

〈τf 〉 ≪ V2/3. Numerical estimates show that we need values of order 〈τf 〉 ∼ O(1) and

V ∼ O(104) which, in turn, imply W0 ∼ O(100) in order to match the observed amplitude

of the density perturbations. For gs . O(0.1), |λ| ∼ O(10−3) and natural O(1) values of

the coefficients of the string loop effects, the terms in (A.37) proportional to B1 and B2 are

both negligible with respect to the first three terms in the vicinity of the minimum where

τf ∼ O(1) ≪ V2/3.

The scalar potential (A.37) written in terms of the canonically normalised inflaton

φ = 〈φ〉+ φ̂ looks like (with k = 2/
√
3):

V = κ
A1W

2
0

〈τf 〉2V2

(

CdS + e−2kφ̂ + λ1Z e−kφ̂ − λ2Z e−
kφ̂
2 +R1Z e

kφ̂
2 +R2 e

kφ̂

)

, (A.40)

where we added a constant CdS = λ2Z − λ1Z − 1−R1Z −R2 to obtain a Minkowski (or

slightly dS) vacuum and:

λ1 =
3〈τf 〉
πC2

5

|λ|W 2
0

g
5/2
s V

∼ O(1− 10) λ2 ≃
〈τf 〉3/2
C2
5

CW

g2s V
∼ O(1− 10) ,
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while:

R1 =
12α2 + 2α− 5

6(2α− 1)3/2
λ1〈τf 〉3/2

V ≪ 1 R2 =
〈τf 〉3
C2
5

d

V2
≪ 1 .

The three negative exponentials in (A.40) compete to give a minimum at 〈τf 〉 ∼ O(1) while

the two positive exponentials cause a steepening behaviour at large φ̂.

In this section we shall not present a detailed quantitative analysis of inflation. We

however point out that, if the approximated expression (A.30) is correct, in this case the

Kähler cone bounds seem to be more constraining than in the case discussed in the main

text since the inflaton direction τf is bounded by V2/3 instead of V/√τs. Thus a viable

inflationary dynamics in this case would require a more severe tuning of the underlying

parameters and a better understanding of the validity of our effective field theory approach.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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