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1 Introduction

In view of certain remarkable features, the theory of continuous-spin gauge field has at-

tracted some interest recently [1–10]. An extensive list of references devoted to various

aspects of this topic may be found in refs. [2, 3, 9, 11]. We note interesting discussions

about possible interrelations between the string theory and continuous-spin field theory

in refs. [12, 13]. Also, we note that, it turns out that a continuous-spin field can be de-

composed into an infinite chain of coupled scalar, vector, and totally symmetric tensor

fields which consists of every spin just once. This property of a continuous-spin field trig-

gered our interest in this topic because a similar infinite chain of scalar, vector and totally

symmetric fields enters the theory of higher-spin gauge field in AdS space [14, 15] and we
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expect therefore some interesting interrelations between continuous-spin gauge field theory

and higher-spin gauge theory.

In this paper, we study interacting continuous-spin fields.1 Namely, our major aim in

this paper is to study interaction of continuous-spin fields with arbitrary spin fields which

propagate in flat space. To this end we use a light-cone gauge formulation of relativistic

dynamics of fields propagating in flat space. The light-cone formulation discovered in

ref. [16] offers conceptual and technical simplifications of approaches to many problems of

string theories and modern quantum field theory. Though this formulation hides Lorentz

symmetries but eventually turns out to be effective. For example, we mention the light-

cone gauge formulation of superstring field theories [17–19]. Recently studied light-cone

gauge superspace formulations of some supersymmetric field theories may be found in

refs. [20–23]. Various interesting applications of the light-cone formalism to field theories

such as QCD are discussed in refs. [24–26].

In this paper, we apply a light-cone formalism for studying vertices describing inter-

action of continuous-spin fields with arbitrary spin fields. To this end, first, we develop

the light-cone gauge so(d − 2) covariant formulation of free continuous-spin fields propa-

gating in the flat space Rd−1,1 with arbitrary d ≥ 4.2 Second, using such formulation and

adopting the method for constructing cubic interaction vertices developed in refs. [30–32]

for arbitrary spin massive and massless fields, we find cubic vertices describing interaction

of continuous-spin fields with arbitrary spin massive fields propagating in Rd−1,1, d ≥ 4.

Namely, we find parity invariant cubic vertices describing interaction of one continuous-spin

massless field with two arbitrary spin massive fields and parity invariant cubic vertices de-

scribing interaction of two continuous-spin massless fields with one arbitrary spin massive

field. We provide the complete classification for such vertices. Also, we analyse equations

for parity invariant cubic vertices describing interaction of one continuous-spin massless

field with two arbitrary spin massless fields and equations for parity invariant cubic ver-

tices describing interaction of two continuous-spin massless fields with one arbitrary spin

massless field. We show that such equations do not have solutions. In other words, we

demonstrate that, in the framework of so(d−2) covariant light-cone gauge formalism, there

are no parity invariant cubic vertices describing consistent interaction of continuous-spin

massless fields with arbitrary spin massless fields.

The long term motivation for our study of parity invariant cubic vertices by using the

so(d− 2) covariant light-cone gauge formulation is related to the fact that it is the parity

invariant light-cone gauge vertices that can be cast into BRST gauge invariant form in a

relatively straightforwardly way. For more discussion of this theme, see Conclusions.

This paper is organized as follows.

In section 2, we introduce our notation and describe the manifestly so(d−2) covariant

light-cone gauge formulation of free continuous-spin field propagating in Rd−1,1 space.

1Continuous-spin field is an infinite component field. Finite component fields with arbitrary but fixed

integer values of spin are referred to as arbitrary spin fields in this paper.
2In the framework of light-cone gauge helicity formalism, free continuous-spin massless field in R3,1

was discussed in ref. [11], while all cubic interaction vertices for arbitrary spin massless fields in R3,1 were

obtained in refs. [27–29].
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Also we recall the well-known light-cone gauge formulation of arbitrary spin massless and

massive fields.

In section 3, we study restrictions imposed by the Poincaré algebra symmetries on

arbitrary n-point interaction vertices. After that we restrict our attention to cubic vertices.

We formulate the light-cone gauge dynamical principle and discuss restrictions imposed by

this principle on cubic vertices. In other words, we find complete system of equations

imposed on cubic vertices by the Poincaré algebra symmetries and the light-cone gauge

dynamical principle.

In section 4, we present solution to equations for parity invariant cubic vertices describ-

ing interaction of one continuous spin massless field with two arbitrary spin massive fields

having the same masses, while, in section 5, we present solution to equations for parity

invariant cubic interaction vertices for one continuous spin massless field and two arbitrary

spin massive fields having different masses. We provide the complete classification of the

just mentioned cubic interaction vertices.

In section 6, we present solution to equations for parity invariant cubic vertices describ-

ing interaction of two continuous-spin massless fields with one arbitrary spin massive field.

Using our solution, we provide the complete classification of such cubic interaction vertices.

In section 7, we summarize our conclusions and suggest directions for future research.

In appendix A, we describe the basic notation and conventions we use in this paper.

In appendix B, we discuss light-cone gauge formulation of continuous-spin field prop-

agating in R3,1 by using realization of physical fields in the helicity basis.

In appendix C, we outline the procedure of derivation of cubic vertices describing

interaction of one continuous-spin massless field with two arbitrary spin massive fields,

while, in appendix D, we outline the procedure of derivation of cubic vertices for two

continuous-spin massless fields and one arbitrary spin massive field.

In appendix E, we discuss equations for cubic vertices describing interaction of one

continuous-spin massless fields with two arbitrary spin massless fields, while, in appendix F,

we study equations for cubic vertices describing interaction of two continuous-spin massless

fields with one arbitrary spin massless field. We demonstrate that such equations do not

have consistent solution.

2 Free light-cone gauge continuous-spin fields and arbitrary spin massive

and massless fields

Poincaré algebra in light-cone frame. Light cone gauge method developed in ref. [16]

reduces the problem of finding a new dynamical system to a problem of finding a new

(light cone gauge) solution for commutation relations of a basic symmetry algebra. For

continuous-spin field and arbitrary spin massive and massless fields that propagate in the

flat space Rd−1,1, basic symmetries are associated with the Poincaré algebra iso(d− 1, 1).

We start therefore with a description of a realization of the Poincaré algebra symmetries

on a space of continuous-spin field and arbitrary spin massive and massless fields. In this

section, we discuss free light-cone gauge fields.
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The Poincaré algebra iso(d − 1, 1) is spanned by the translation generators Pµ and

rotation generators Jµν which are generators of the Lorentz algebra so(d − 1, 1). The

commutation relations of the Poincaré algebra we use are given by3

[Pµ, Jνρ] = ηµνP ρ − ηµρP ν , [Jµν , Jρσ] = ηνρJµσ + 3 terms , (2.1)

where ηµν stands for the mostly positive flat metric tensor. The translation generators Pµ

are considered to be hermitian, while the Lorentz algebra generators Jµν are taken to be

anti-hermitian.

In order to discuss the light-cone formulation, we introduce, in place of the Lorentz

basis coordinates xµ, the light-cone basis coordinates x±, xi which are defined by the rela-

tions

x± ≡ 1√
2

(xd−1 ± x0) , xi , i = 1, . . . , d− 2 . (2.2)

In what follows, the coordinate x+ is treated as an evolution parameter. Using notation

in (2.2), we note then that the so(d − 1, 1) Lorentz algebra vector Xµ is decomposed as

X+, X−, X i, while scalar product of the so(d− 1, 1) Lorentz algebra vectors Xµ and Y µ is

decomposed as

ηµνX
µY ν = X+Y − +X−Y + +XiY i . (2.3)

From (2.3), we see that in light-cone frame, non vanishing elements of the flat metric are

given by η+− = η−+ = 1, ηij = δij , i.e., for the covariant and contravariant components

of vectors we have the relations X+ = X−, X− = X+, Xi = Xi. In light-cone approach,

generators of the Poincaré algebra are separated into the following two groups:

P+, P i, J+i, J+−, J ij , kinematical generators; (2.4)

P−, J−i , dynamical generators. (2.5)

For x+ = 0, in the field theoretical realization, kinematical generators (2.4) are quadratic in

fields,4 while, dynamical generators (2.5) involve quadratic and higher order terms in fields.

In light-cone frame, commutators of the Poincaré algebra generators (2.4), (2.5) are

obtained from the ones in (2.1) by using the non vanishing elements of the flat metric,

η+− = η−+ = 1, ηij = δij . We assume the following hermitian conjugation rules for the

generators of the Poincaré algebra,

P±† = P±, P i† = P i, J ij† = −J ij , J+−† = −J+−, J±i† = −J±i . (2.6)

In order to provide a field theoretical realization of the Poincaré algebra generators on a

space of continuous-spin fields and arbitrary spin massive and massless fields we exploit a

light-cone gauge description of the fields. We discuss continuous-spin field and arbitrary

spin massive and massless fields in turn.

3Indices µ, ν, ρ, σ = 0, 1, . . . , d− 1 are vector indices of the Lorentz algebra so(d− 1, 1).
4For arbitrary x+ 6= 0, dynamical generators (2.5) can be presented as G = G1+x+G2, where a functional

G1 is quadratic in fields, while a functional G2 involves quadratic and higher order terms in fields.
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Continuous-spin massless/massive field. To discuss the light-cone gauge description

of a continuous-spin massless/massive field, we introduce the following set of scalar, vector

and traceless tensor fields of the so(d− 2) algebra:

φi1...in , n = 0, 1, 2, . . . ,∞ . (2.7)

In (2.7), fields with n = 0 and n = 1 are the respective scalar and vector fields of the

so(d−2) algebra, while fields with n ≥ 2 are traceless tensor fields of the so(d−2) algebra,

φiii3...in = 0 , n = 2, 3, . . . ,∞ . (2.8)

In order to discuss the light-cone gauge formulation of a continuous-spin field in an

easy-to-use form we introduce the creation operators αi, υ and the respective annihilation

operators ᾱi, ῡ,

[ᾱi, αj ] = δij , [ῡ, υ] = 1 , ῡ|0〉 = 0 , ᾱi|0〉 = 0 , αi† = ᾱi , υ† = ῡ . (2.9)

Throughout this paper, the creation and annihilation operators will be referred to as os-

cillators. We note that the oscillators αi, ᾱi and υ, ῡ transform in the respective vector

and scalar representations of the so(d − 2) algebra. Using the oscillators αi, υ, we collect

all fields (2.7) into a ket-vector |φ〉 defined as

|φ(p, α)〉 =
∞∑
n=0

υn

n!
√
n!
αi1 . . . αinφi1...in(p)|0〉 , (2.10)

where the argument α in (2.10) stands for the oscillators αi, υ, while the argument p stands

for the momenta pi, β. Ket-vector (2.10) satisfies the following algebraic constraints

(Nα −Nυ)|φ〉 = 0 , Nα = αiᾱi , Nυ = υῡ , (2.11)

ᾱ2|φ〉 = 0 . (2.12)

We note that constraint (2.12) amounts to tracelessness constraints (2.8).

Arbitrary spin massive fields. To discuss light-cone gauge description of an arbitrary

spin-s massive field, we introduce the following set of scalar, vector, and tensor fields of

the so(d− 2) algebra:

φi1...in , n = 0, 1, 2, . . . , s . (2.13)

In (2.13), fields with n = 0 and n = 1 are the respective scalar and vector fields of the

so(d−2) algebra, while fields with n ≥ 2 are totally symmetric tensor fields of the so(d−2)

algebra. Physical D.o.F of a massive field in flat space Rd−1,1 are described by irreps of

the so(d − 1) algebra. For the fields (2.13) to be associated with irreps of the so(d − 1)

algebra, we should impose a constraint on fields (2.13). To simplify the presentation of the

constraint we use the vector oscillators αi, ᾱi (2.9) and scalar oscillators ζ, ζ̄ defined by

the relations

[ζ̄, ζ] = 1 , ζ̄|0〉 = 0 , ζ† = ζ̄ . (2.14)
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Using the oscillators αi, ζ, we collect all fields (2.13) into a ket-vector |φ〉 defined as

|φs(p, α)〉 =

s∑
n=0

ζs−n

n!
√

(s− n)!
αi1 . . . αinφi1...in(p)|0〉 , (2.15)

where the argument α in (2.15) stands for the oscillators αi, ζ, while the argument p stands

for the momenta pi, β. Ket-vector (2.15) satisfies the algebraic constraints

(Nα +Nζ − s)|φs〉 = 0 , (2.16)

(ᾱ2 + ζ̄2)|φs〉 = 0 . (2.17)

Constraint (2.16) tells us that ket-vector |φ〉 (2.15) is a degree-s homogeneous polynomial

in the oscillators αi, ζ, while relation (2.17) is the constraint required for the fields (2.13)

to be associated with irreps of the so(d−1) algebra. Sometimes we prefer to use an infinite

chain of massive fields which consists of every spin just once. Such chain of massive fields

is described by the ket-vector

|φ(p, α)〉 =

∞∑
s=0

|φs(p, α)〉 , (2.18)

where, in (2.18), the |φs(p, α)〉 stands for the ket-vector of spin-s massive field given

in (2.15).

Arbitrary spin massless fields. To discuss light-cone gauge description of an arbitrary

spin-s massless field, we introduce a rank-s totally symmetric traceless tensor field of the

so(d− 2) algebra

φi1...is , φiii3...is = 0 . (2.19)

To simplify the presentation we use oscillators αi (2.9) and introduce the following ket-

vector:

|φs(p, α)〉 =
1

s!
αi1 . . . αisφi1...is(p)|0〉 , (2.20)

where the argument α in (2.20) stands for the oscillators αi, while the argument p stands

for the momenta pi, β. Ket-vector (2.20) satisfies the algebraic constraints

(Nα − s)|φs〉 = 0 , (2.21)

ᾱ2|φs〉 = 0 . (2.22)

From (2.21), we learn that ket-vector (2.20) is a degree-s homogeneous polynomial in the

oscillators αi, while the constraint for the ket-vector in (2.22) amounts to the tracelessness

constraint for tensor fields in (2.19). Sometimes it is convenient to use an infinite chain

of massless fields which consists of every spin just once. Such chain of massless fields is

described by the ket-vector

|φ(p, α)〉 =

∞∑
s=0

|φs(p, α)〉 , (2.23)

where, in (2.23), the |φs(p, α)〉 stands for the ket-vector of spin-s massless field given

in (2.20).
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Field-theoretical realization of Poincaré algebra. We now discuss a field theoretical

realization of the Poincaré algebra on the space of continuous fields and arbitrary spin

massive and massless fields. A realization of kinematical generators (2.4) and dynamical

generators (2.5) in terms of differential operators acting on the ket-vector |φ〉 is given by5

Kinematical generators:

P i = pi , P+ = β , (2.24)

J+i = ∂piβ , J+− = ∂ββ , (2.25)

J ij = pi∂pj − pj∂pi +M ij , (2.26)

Dynamical generators:

P− = −p
ipi +m2

2β
, (2.27)

J−i = −∂βpi + ∂piP
− +

1

β
(M ijpj +M i) , (2.28)

where we use the notation

β ≡ p+ , ∂β ≡ ∂/∂β , ∂pi ≡ ∂/∂pi . (2.29)

In (2.26), (2.28) and below, the M ij stands for a spin operator of the so(d− 2) algebra,

[M ij ,Mkl] = δjkM il + 3 terms. (2.30)

On spaces of ket-vectors of continuous-spin (2.10), arbitrary spin massive (2.15) and arbi-

trary spin massless (2.20) fields, the operator M ij is realized as

M ij = αiᾱj − αjᾱi . (2.31)

In (2.27), (2.28), the m is a mass parameter, while the M i is a spin operator. The m and

M i satisfy the commutation relations

[M i,M jk] = δijMk − δikM j , (2.32)

[M i,M j ] = −m2M ij . (2.33)

We now see that all that remains to complete the description of the differential operators

in (2.24)–(2.28) is to provide a realization of the spin operator M i on the ket-vectors of

the fields under consideration. On spaces of ket-vectors of continuous-spin (2.10), mas-

sive (2.15) and massless (2.20) fields, the operator M i is realized in the following way:

5In this paper, without loss of generality, the generators of the Poincaré algebra are analysed for x+ = 0.
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Continuous-spin field (massless, m2 = 0, and massive, m2 < 0):

M i = gᾱi +Aiḡ , (2.34)

Ai = αi − α2 1

2Nα + d− 2
ᾱi , (2.35)

g = gυῡ , ḡ = −υgυ , (2.36)

gυ =
( 1

(Nυ + 1)(2Nυ + d− 2)
Fυ

)1/2
, (2.37)

Fυ = κ2 −Nυ(Nυ + d− 3)m2 , (2.38)

Nα = αiᾱi , Nυ = υῡ . (2.39)

Arbitrary spin massive field, m2 > 0:

M i = m(ζᾱi − αiζ̄) (2.40)

Arbitrary spin massless field, m = 0:

M i = 0 . (2.41)

In (2.38), the m stands for mass parameter of continuous-spin field, while κ is a dimen-

sionfull real-valued parameter, κ2 > 0. We note that κ2 is realized as eigenvalue of square

of Pauli-Lubanski vector operator. Also we note that, for a continuous-spin massless field,

we have m = 0, while for a continuous-spin massive field, we assume m2 < 0.

Realizations of the operator M i for massive field (2.40) and massless field (2.41) are

well known from textbook [33]. To our knowledge, the realization of the operator M i for

continuous-spin field in Rd−1,1 with arbitrary d and m 6= 0 given in (2.34)–(2.39) has not

been discussed in earlier literature.6

Having found the realization of the Poincaré algebra generators in terms of differen-

tial operators in (2.24)–(2.41) we are ready to provide a field theoretical realization of

the Poincaré algebra generators in terms of the ket-vectors |φ〉. At the quadratic level, a

field theoretical realization of the kinematical generators (2.4) and the dynamical genera-

tors (2.5) takes the form

G[2] =

∫
βdd−1p 〈φ(p)|G|φ(p)〉 , dd−1p ≡ dβdd−2p , (2.42)

where G stands for the differential operators given in (2.24)–(2.41), while G[2] stands for

the field theoretical generators. The ket-vector |φ〉 satisfies the well known Poisson-Dirac

commutation relations

[ |φ(p, α)〉 , |φ(p′ , α′)〉 ]
∣∣
equal x+

=
δd−1(p+ p′)

2β
Π , (2.43)

6For continuous-spin massless field in R3,1 and R4,1, the discussion of the spin operator M i can be found

in section 2 in ref. [11].
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where Π stands for the projector on space of the respective ket-vectors of continuous (2.10),

massive (2.15) and massless (2.20) fields. Using (2.42), (2.43), we verify the standard

commutation relation

[|φ〉, G[2] ] = G|φ〉 . (2.44)

The following remarks are in order.

i) In the framework of the Lagrangian approach, the light-cone gauge action is given by

S =

∫
dx+dd−1p 〈φ(p)|iβ∂−|φ(p)〉+

∫
dx+P− , (2.45)

where P− is the Hamiltonian. Representation for the light-cone gauge action given

in (2.45) is valid both for the free and interacting fields. In the theory of free fields,

the Hamiltonian is obtained from relations (2.27), (2.42).

ii) The light cone gauge formulation of free continuous-spin field we described in this

section can be derived by using the Lorentz covariant and gauge invariant formulation

of continuous-spin field in terms of the double-traceless gauge fields we developed in

ref. [6] and by applying the standard method for the derivation of light-cone gauge

formulation from the Lorentz covariant and gauge invariant formulation. For the

case of totally symmetric fields in AdS, the pattern of such derivation can be found

in section 3 in ref. [34].

3 Restrictions imposed on interaction vertices by Poincaré algebra sym-

metries and by light-cone gauge dynamical principle

In theories of interacting fields, the dynamical generators given in (2.5) receive corrections

which involve higher powers of fields. Dynamical generators (2.5) can be expanded in

fields as

Gdyn =
∞∑
n=2

Gdyn
[n] , (3.1)

where we use the notation Gdyn
[n] in (3.1) to denote a functional that has n powers of

ket-vector |φ〉. Problem of finding a dynamical system of interacting fields amounts to

a problem of finding a non-trivial solution to dynamical generators Gdyn
[n] for n ≥ 3. In

this section, we describe restrictions imposed on Gdyn
[n] by the Poincaré algebra kinematical

and dynamical symmetries. After that we discuss restrictions imposed on G[3] by light-

cone gauge dynamical principle. For the reader convenience, we start with a discussion of

Poincaré algebra kinematical symmetries of dynamical generators Gdyn
[n] for arbitrary n ≥ 3.

Kinematical symmetries of dynamical generators Gdyn
[n] for n ≥ 3. From the

commutators of the dynamical generators (2.5) with the kinematical generators P i and

P+, we find that the dynamical generators Gdyn
[n] with n ≥ 3 can be cast into the following

– 9 –
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form:

P−[n] =

∫
dΓn 〈Φ[n]||p−[n]〉 , (3.2)

J−i[n] =

∫
dΓn 〈Φ[n]|j−i[n] 〉+ (Xi

[n]〈Φ[n]|)|p−[n]〉 , (3.3)

where we use the notation

〈Φ[n]| ≡
n∏
a=1

〈φ(pa, αa)| , 〈φ(pa, αa)| ≡ |φ(pa, αa)〉† , (3.4)

dΓn ≡ (2π)d−1δd−1

(
n∑
a=1

pa

)
n∏
a=1

dd−1pa

(2π)(d−1)/2
, (3.5)

Xi
[n] ≡ −

1

n

n∑
a=1

∂pia . (3.6)

The n-point densities |p−[n]〉 and |j−i[n] 〉 entering the respective generators P−[n] and J−i[n] (3.2),

(3.3) can be presented as

|p−[n]〉 = p−[n](pa, βa, αa)|0〉 , (3.7)

|j−i[n] 〉 = j−i[n] (pa, βa, αa)|0〉 . (3.8)

In this section and below, we use the indices a, b = 1, . . . , n to label fields entering n-point

interaction vertex. The Dirac δ- functions in (3.5) respect the conservation laws for the

momenta pia and βa. We note that argument pa in (3.4), (3.5) stands for the momenta pia,

βa. As seen from (3.7), (3.8), the densities p−[n] and j−i[n] depend on the momenta pia, βa, and

the quantity αa which is shortcut for spin variables. Namely, for continuous-spin field, the

shortcut αa stands for the set of oscillators αia, υa, while for massive and massless fields,

the shortcut αa stands for the respective sets of oscillators αia, ζa and αia. In this paper,

the density p−[n] will often be referred to as an n-point interaction vertex. For n = 3, the

density p−[n] will be referred to as cubic interaction vertex.

J+−-symmetry. Commutators of the dynamical generators P−, J−i with the kinemat-

ical generator J+− lead to the following equations for the densities:

n∑
a=1

βa∂βa |p−[n]〉 = 0 , (3.9)

n∑
a=1

βa∂βa |j−i[n] 〉 = 0 . (3.10)

J ij-symmetries. Commutators of the dynamical generators P−, J−i with the kinemat-

ical generators J ij lead to the following equations for the densities:

n∑
a=1

(
pia∂pja − p

j
a∂pia +M ij

a

)
|p−[n]〉 = 0 , (3.11)

n∑
a=1

(
pia∂pja − p

j
a∂pia +M ij

a

)
|j−k[n] 〉 = δjk|j−i[n] 〉 − δik|j

−j
[n] 〉 . (3.12)
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J+i-symmetries. From the commutators of the dynamical generators P−, J−i with the

kinematical generators J+i, we learn that the densities p−[n] and j−i[n] depend on the momenta

pia through the new momentum variables Piab defined by the relation

Piab ≡ piaβb − pibβa . (3.13)

Thus we see that the densities p−[n] and j−i[n] turn out to be functions of Piab in place of pia,

p−[n] = p−[n](Pab, βa, αa) , j−i[n] = j−i[n] (Pab, βa, αa) . (3.14)

To summarize our study of restrictions imposed by the kinematical symmetries we

note that the commutators between the dynamical generators P−, J−i and the kinematical

generators J+−, J ij amount to equations given in (3.9)–(3.12), while, from the commutators

between the dynamical generators P−, J−i and the kinematical generators J+i, we learn

that the n-point densities p−[n], j
−i
[n] turn out to be functions of the new momenta Piab in

place of the generic momenta pia.

Using definition of the new momenta Piab (3.13) and the conservation laws for the

momenta pia, βa, we verify that there are only n− 2 independent new momenta Piab . For

example, for n = 3, there is only one independent Piab (see relations (3.16) below). This

simplifies study of restrictions imposed by kinematical symmetries on dynamical generators.

To demonstrate this we consider kinematical symmetries for cubic densities p−[3] and j−i[3] .

Kinematical symmetries of cubic densities. Taking into account the momentum

conservation laws

pi1 + pi2 + pi3 = 0 , β1 + β2 + β3 = 0 , (3.15)

it is easy to check that the momenta Pi12, Pi23, Pi31 are expressed in terms of a new momen-

tum Pi,
Pi12 = Pi23 = Pi31 = Pi , (3.16)

where a new momentum Pi is defined by the following relations:

Pi ≡ 1

3

∑
a=1,2,3

β̌ap
i
a , β̌a ≡ βa+1 − βa+2 , βa ≡ βa+3 . (3.17)

The use of the momentum Pi (3.17) is preferable because this momentum is manifestly

invariant under cyclic permutations of the external line indices 1, 2, 3. Thus the cubic

densities p−[3] and j−i[3] are eventually a functions of the momenta Pi, βa and the spin vari-

ables αa:

p−[3] = p−[3](P, βa, αa) , j−i[3] = j−i[3] (P, βa, αa) . (3.18)

The fact that momenta pia enter cubic densities though the momentum Pi allows us to

simplify the kinematical symmetry equations given in (3.9)–(3.12). Namely, it is easy to

check that, in terms of densities (3.18), the kinematical symmetry equations (3.9)–(3.12)

can be represented as follows.
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J+−-symmetry equations:

J+− |p−[3]〉 = 0 , (3.19)

J+−|j−i[3] 〉 = 0 , (3.20)

J+− ≡ Pj∂Pj +
∑

a=1,2,3

βa∂βa . (3.21)

J ij-symmetry equations:

Jij |p−[3]〉 = 0 , (3.22)

Jij |j−k[3] 〉 = δjk|j−i[3] 〉 − δik|j
−j
[3] 〉 , (3.23)

Jij ≡ Lij(P) + Mij , Lij(P) ≡ Pi∂Pj − Pj∂Pi , Mij ≡
∑

a=1,2,3

M ij
a . (3.24)

Obviously, the kinematical symmetries do not admit to fix vertices uniquely. Therefore

we proceed with discussion of restrictions imposed by dynamical symmetries.

Dynamical symmetries of cubic densities. In this paper, restrictions on the interac-

tion vertices imposed by commutation relations between the dynamical generators will be

referred to as dynamical symmetry restrictions. We now discuss restrictions imposed on

cubic interaction vertices by the dynamical symmetries of the Poincaré algebra. In other

words, we consider the commutators

[P−, J−i] = 0 , [J−i, J−j ] = 0 . (3.25)

In the cubic approximation, commutators (3.25) amount to the following commutators:

[P−[2], J
−i
[3] ] + [P−[3], J

−i
[2] ] = 0 , (3.26)

[J−i[2] , J
−j
[3] ] + [J−i[3] , J

−j
[2] ] = 0 . (3.27)

From commutators (3.26), we obtain the following equation for the cubic densities

|p−[3](P, βa, αa)〉 and |j−i[3] (P, βa, αa)〉,

P−|j−i[3] 〉 = −J−i†|p−[3]〉 , (3.28)

where we use the notation

P− ≡
∑

a=1,2,3

P−a , P−a ≡ −
piap

i
a +m2

a

2βa
(3.29)

J−i† ≡
∑

a=1,2,3

J−i†a , J−i†a ≡ pia∂βa − p−a ∂pia −
1

βa
M ij
a p

j
a +

1

βa
M i†
a . (3.30)
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Quantities P− and J−i† defined in (3.29), (3.30) can be expressed in terms of the momentum

Pi (see appendix A in ref. [31]):

P− =
PiPi

2β
−

∑
a=1,2,3

m2
a

2βa
, (3.31)

J−i† = −Pi

β
Nβ +

1

β
MijPj +

∑
a=1,2,3

β̌a
6βa

m2
a∂Pi +

1

βa
M i†
a , (3.32)

β ≡ β1β2β3 , (3.33)

Nβ ≡
1

3

∑
a=1,2,3

β̌aβa∂βa , Mij ≡ 1

3

∑
a=1,2,3

β̌aM
ij
a , β̌a ≡ βa+1 − βa+2 . (3.34)

Equation (3.28) allows us to express the density |j−i[3] 〉 in terms of the vertex |p−[3]〉,

|j−i[3] 〉 = −(P−)−1J−i†|p−[3]〉 . (3.35)

Plugging |j−i[3] 〉 (3.35) into (3.27), we check that commutators (3.27) are fulfilled. Plugging

|j−i[3] 〉 (3.35) into kinematical symmetries equations (3.20), (3.23) we verify that, if the

vertex |p−[3]〉 satisfies eqs. (3.19), (3.22) then eqs. (3.20), (3.23) are also fulfilled. Thus, in

the cubic approximation, we checked that eqs. (3.19), (3.22), (3.35) provide the complete

list of equations obtained from all commutation relations of the Poincaré algebra.

Light-cone gauge dynamical principle. Equations (3.19), (3.22), (3.35) do not admit

to fix the vertex |p−[3]〉 uniquely. In order to fix the vertex |p−[3]〉 uniquely we impose additional

restrictions on the vertex |p−[3]〉. These additional restrictions are referred to as light-cone

gauge dynamical principle in this paper and they are formulated as follows.

i) The densities |p−[3]〉, |j−i[3] 〉 should be expandable in the momentum Pi;7

ii) The density |p−[3]〉 should satisfy the restriction

|p−[3]〉 6= P−|V 〉 , |V 〉 is expandable in Pi , (3.36)

where P− is given in (3.31).

iii) The densities |p−[3]〉, |j−i[3] 〉, and density |V 〉 (3.36) should not involve (P−)γ-terms,

γ < 0.

We note that requirement (3.36) is related to field redefinitions. Ignoring requirement (3.36)

leads to vertices which can be removed by field redefinitions. As we are interested in the

vertices that cannot be removed by using field redefinitions, we impose the requirement

in (3.36). Also we note that the assumptions i) and iii) are the light-cone counterpart of

locality condition commonly used in Lorentz covariant formulations.

7If a function f(x) is expandable in power series in x, then we refer to such function as function expand-

able in x.
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Complete system of equations for cubic vertex. To summarize the discussion in

this section, we note that, for the cubic vertex given by

|p−[3]〉 = p−[3](P, αa, βa)|0〉 , (3.37)

the complete system of equations which remains to be solved takes the form

J+−|p−[3]〉 = 0 , kinematical J+− − symmetry; (3.38)

Jij |p−[3]〉 = 0 , kinematical J ij − symmetries; (3.39)

|j−i[3] 〉 = −(P−)−1J−i†|p−[3]〉 , dynamical P−, J−i symmetries ; (3.40)

Light-cone gauge dynamical principle:

|p−[3]〉 and |j−i[3] 〉 are expandable in Pi; (3.41)

|p−[3]〉 6= P−|V 〉, |V 〉 is expandable in Pi; (3.42)

|p−[3]〉, |j−i[3] 〉, |V 〉 do not involve (P−)γ-terms, γ < 0 . (3.43)

Eqs. (3.38)–(3.43) constitute the complete system of equations which admit to fix the

cubic vertex p−[3] uniquely. Operators J+−, Jij , P−, J−i† entering equations (3.38)–(3.43)

are defined in (3.21), (3.24), (3.31), (3.32) respectively. Let us remark that, if we consider

the Yang-Mills and Einstein theories, then it can be verified that eqs. (3.38)–(3.40) and the

light-cone gauge dynamical principle (3.41)–(3.43) admit to fix the cubic interaction vertices

unambiguously (up to coupling constants). It seems then reasonable to use eqs. (3.38)–

(3.40) and the light-cone gauge dynamical principle (3.41)–(3.43) for studying the cubic

interaction vertices of the continuous-spin field theory.

3.1 Equations for parity invariant cubic interaction vertices

We recall that we study parity invariant cubic vertices for one continuous-spin massless

field and two arbitrary spin massive fields and parity invariant cubic vertices for two

continuous-spin massless fields and one arbitrary spin massive field. Namely, using the

shortcut (0, κ)CSF for continuous-spin massless field and the shortcut (m, s) for arbitrary

but fixed spin-s massive field with mass parameter m, we are going to consider cubic

vertices for the following fields:

(m1,s1)-(m2,s2)-(0,κ3)CSF two massive fields and one continuous-spin massless field (3.44)

(0,κ1)CSF-(0,κ2)CSF-(m3,s3) two continuous-spin massless fields and one massive field (3.45)

Our notation in (3.44) implies that the mass-m1, spin-s1 and mass-m2, spin-s2 massive

fields carry external line indices a = 1, 2, while the continuous-spin massless field corre-

sponds to a = 3. From our notation in (3.45), we learn that continuous-spin massless fields

carry external line indices a = 1, 2, while the mass-m3, spin-s3 massive field corresponds

to a = 3.

In general, besides the momentum variables Pi, β1, β2, β3, vertex (3.37) depends on

oscillators that involved in the ket-vectors entering P−[3] (3.4). Taking this into account
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and recalling the definition of the ket-vectors for continuous-spin field (2.10) and mas-

sive field (2.15), we note that cubic vertices describing interactions of the fields in (3.44)

and (3.45) depend on the following respective set of the oscillators and the momenta:

Pi, αi1, ζ1, β1, αi2, ζ2, β2, αi3, υ3, β3; (3.46)

Pi, αi1, υ1, β1, αi2, υ2, β2, αi3, ζ3, β3 . (3.47)

Taking into account variables in (3.46), (3.47), we now analyze restrictions (3.38)–(3.43)

in turn.

i) First, we analyze the restrictions imposed by the J ij-symmetries (3.39) which tell

us that the vertex p−[3] (3.37) depend on invariants of the so(d − 2) algebra. The

scalar oscillators ζa, υa and momenta βa are invariants of the so(d− 2) algebra. The

remaining invariants can be built by using the momentum Pi, the vector oscillators

αia, the delta-Kroneker δij , and the Levi-Civita symbol εi1...id−2 . Vertices that do

not involve the antisymmetric Levi-Civita symbol are referred to as parity invariant

vertices, while vertices involving one antisymmetric Levi-Civita symbol are referred

to as parity non-invariant vertices. In this paper, we focus on the parity invariant

vertices. This implies that invariants of the so(d − 2) algebra that can be built by

using Pi, αia, and δij are given by

PiPi, αiaPi, αiaα
i
b . (3.48)

Note that, if P−[3] (3.2) involves the bra-vector of continuous-spin field 〈φ(pa, αa)|,
then in view of constraint (2.12), the invariant αiaα

i
a does not contribute to the P−[3],

while, if P−[3] (3.2) involves bra-vector of massive field 〈φ(pa, αa)|, then in view of

constraint (2.17), the contribution of invariant αiaα
i
a, can be replaced by the (−ζ2

a).

To summarize the discussion of J ij-symmetries, we note that general solution to par-

ity invariant cubic vertices for the fields (3.44) and (3.45) that respect J ij-symmetries

and lead to the nontrivial P−[3] is given by the following respective expressions

p−[3] = p−[3](PiPi, βa, αiaPi, αaa+1 , ζ1, ζ2, υ3) , (3.49)

p−[3] = p−[3](PiPi, βa, αiaPi , αaa+1 , υ1 , υ2, ζ3) . (3.50)

In (3.49), (3.50) and below, the shortcut p−[3](qa) implies that p−[3] depends on q1, q2, q3.

ii) We now analyse the restriction in (3.42), (3.43). One can demonstrate that, using

field redefinitions, we can remove terms in (3.49), (3.50) which are proportional to

PiPi (see appendix B in ref. [31]). In other words, we can drop down the dependence

on PiPi in the vertices p−[3] (3.49), (3.50). Representation for the vertices in which they

do not depend on PiPi will be referred to minimal scheme in this paper. Obviously,

in the minimal scheme, vertices satisfy eqs. (3.42), (3.43) automatically. Thus, in the

minimal scheme, vertices (3.49), (3.50) take the form

p−[3] = p−[3](βa, Ba, αaa+1 , ζ1, ζ2, υ3) , (3.51)

p−[3] = p−[3](βa, Ba , αaa+1 , υ1 , υ2, ζ3) , (3.52)
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where in (3.51), (3.52) and below we use the notation

Ba ≡
αiaPi

βa
, αab ≡ αiaαib . (3.53)

Note also that, in place of the variables αiaPi appearing in (3.49), (3.50), we use re-

scaled variables Ba (3.53) in expressions (3.51), (3.52). We now see that dependence

of vertices (3.51), (3.52) on the momentum Pi enters through the variable Ba (3.53).

iii) We now proceed with vertices in (3.51), (3.52) and analyze the restrictions given

in (3.40), (3.41). To this end, we compute action of the operator J−i† (3.32) on the

vertices (3.51), (3.52),

J−i†|p−[3]〉 = P−
∑

a=1,2,3

2β̌a
3βa

αia∂Ba |p−[3]〉+ PiGβ |p−[3]〉+
∑

a=1,2,3

αia
βa
Ga,P2 |p−[3]〉 , (3.54)

where operators Ga,P2 , Gβ are given in the appendices C, D. Using (3.40), (3.54), and

explicit form of operators Ga,P2 , Gβ , it is easy to see that requiring the density |j−i[3] 〉
to respect equations (3.40), (3.43), we get the equations (see appendices C, D)

Ga|p−[3]〉 = 0 , a = 1, 2, 3; (3.55)

Gβ |p−[3]〉 = 0 . (3.56)

Using eqs. (3.40), (3.54)–(3.56) and (C.1), (D.1), we obtain the representations for

the densities |j−i[3] 〉 corresponding to the interaction vertices (3.51), (3.52),

|j−i[3] 〉 = −
∑

a=1,2,3

2β̌a
3βa

αia∂Ba |p−[3]〉 −
2β

β3
3

gυ3∂υ3
2N3 + d− 2

∂2
B3
|p−[3]〉 , (3.57)

|j−i[3] 〉 = −
∑

a=1,2,3

2β̌a
3βa

αia∂Ba |p−[3]〉 −
∑
a=1,2

2β

β3
a

gυa∂υa
2Na + d− 2

∂2
Ba |p

−
[3]〉 , (3.58)

Na ≡ NBa +Nαaa+1 +Nαa+2a , a = 1, 2, 3 . (3.59)

From (3.57), (3.58), we see that if vertices |p−[3]〉 (3.51), (3.52) are expandable in

Ba (3.53) and satisfy eqs. (3.55), (3.56), then the respective densities |j−i[3] 〉 (3.57),

(3.58) are also expandable in the Ba.

iv) Finally, we analyze the restrictions of J+−-symmetry (3.38). We note that, in terms

of vertices given in (3.51), (3.52), eq. (3.38) is simplified as∑
a=1,2,3

βa∂βap
−
[3] = 0 . (3.60)

Summary of analysis of eqs. (3.38)–(3.43). To summarize the discussion in this

section, we note that, in the minimal scheme, the cubic vertices describing interactions of

the fields given in (3.44) and (3.45) can be cast into the form given in (3.51) and (3.52)

respectively. Vertices (3.51) and (3.52) should satisfy eqs. (3.55), (3.56), (3.60), while the
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respective densities |j−i[3] 〉 are expressed in terms of the cubic vertices |p−[3]〉 as in (3.57)

and (3.58).

Thus all that remains is to solve eqs. (3.55), (3.56), (3.60) for vertices (3.51) and (3.52)

which describe the respective interactions of the fields given in (3.44) and (3.45). From

now on, we separately consider solutions of eqs. (3.55), (3.56), (3.60) for vertices (3.51)

and (3.52). We note also that, for vertices (3.51), there are two different cases: a) Two

arbitrary spin massive fields have the same mass values; b) Two arbitrary spin massive

fields have the different mass values. Structure of cubic vertices for these cases turns out

to be different. We consider therefore these two cases in turn.

4 Parity invariant cubic vertices for one continuous-spin massless field

and two massive fields with the same mass values

We start with considering parity invariant cubic vertices for one continuous-spin massless

field and two arbitrary spin massive fields having the same mass values. Namely, using the

shortcut (0, κ)CSF for a continuous-spin massless field and the shortcut (m, s) for a mass-m

and spin-s massive field, we consider a parity invariant cubic vertices for the following three

fields:

(m1, s1)-(m2, s2)-(0, κ3)CSF two massive fields and one continuous-spin massless field

m1 = m2 = m. (4.1)

Our notation in (4.1) implies that the mass-m1, spin-s1 massive field and the mass-m2, spin-

s2 massive field carry the respective external line indices a = 1, 2, while the continuous-spin

massless field corresponds to a = 3.

The general solution to cubic vertex for fields (4.1) takes the form (see appendix C)

p−[3] = Uυ3U3UβUζUBUz2V
(6) , (4.2)

p−[3] = p−[3](βa, Ba, αaa+1 , ζ1, ζ2, υ3) , (4.3)

V (6) = V (6)(Ba, αaa+1) , (4.4)

where, in solution (4.2), we introduce new vertex V (6), while, in relations (4.3), (4.4), we

show explicitly arguments of the generic vertex p−[3] and new vertex V (6). The arguments Ba
and αab (4.3), (4.4) are defined in (3.53). Quantities denoted by U in (4.2) are differential

operators w.r.t. the Ba and αaa+1. Before presenting explicit expressions for the operators

U in (4.2), we note that, for vertex V (6) (4.4), we find two solutions given by

V (6) = cosh(Ω3z3)V , (4.5)

V (6) =
sinh(Ω3z3)

Ω3
V , (4.6)

V = V (B1, B2, α12, α23, α31) , (4.7)

z3 =
B3

m
, (4.8)
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where, in relations (4.5), (4.6), in place of B3 (3.53), we use a re-scaled variable z3 (4.8) as

a argument of the vertex V (6). In (4.7), we show explicitly arguments of the vertex V . The

quantity Ω3 is a differential operator independent of z3. This operator is defined below.

From (4.2)–(4.7), we see that general solution for the generic vertex p−[3], which depends

on the twelve variables (4.3), is expressed in terms of the vertex V which is arbitrary

function of the five variables (4.7). Note however that vertex V (4.7) is restricted to be

expandable in the five variables B1, B2, α12, α23, α31. Thus, the general solution for the

generic vertex p−[3] (4.2) is expressed in terms of the operators U , Ω3 and vertex V (4.7).

Therefore all that remains to complete a description of the vertex p−[3] is to provide explicit

expressions for the operators U , Ω3. The operators U , Ω3 entering our solution in (4.2) are

given by

Uυ3 = υN3
3 , N3≡NB3 +Nα31 +Nα23 , (4.9)

U3 =

(
2N3Γ

(
N3+ d−2

2

)
Γ(N3+1)

)1/2

, (4.10)

Uβ = exp

(
− β̌1

2β1
mζ1∂B1−

β̌2

2β2
mζ2∂B2−

β̌3

2β3
κ3∂B3

)
, (4.11)

Uζ = exp

(
−1

2
mζ1∂B1 +

1

2
mζ2∂B2

)
, (4.12)

UB = exp

((
ζ1

m
B2−

ζ2

m
B1−ζ1ζ2

)
∂α12−

ζ1

m

(
B3+

1

2
κ3

)
∂α31 +

ζ2

m

(
B3−

1

2
κ3

)
∂α23

)
,

(4.13)

Uz2 = exp

(
1

2
z3X+

1

4
z2

3Y

)
, (4.14)

X =− 1

m
(B2∂α23 +B1∂α31) , (4.15)

Y =
2

κ3
(B2∂α23−B1∂α31) , (4.16)

Z = 2α12∂α31∂α23 , (4.17)

Ω2
3 = 1+

1

2
{Y,ν3}+

1

4
X2+Z , (4.18)

ν3 =Nα23 +Nα31 +
d−4

2
, (4.19)

where β̌a, NBa , Nαab , Na are given in (A.4)–(A.6), while Γ (4.10) stands for the Gamma-

function.

Expressions (4.2)–(4.19) provide the complete description of cubic vertices for one

continuous-spin massless field and two arbitrary spin massive fields (4.1). More precisely,

these cubic vertices describe an interaction of one continuous-spin massless field with two

chains of totally symmetric massive fields. Each chain consists of every spin just once.

Such chains of massive fields are described by ket-vectors given in (2.18). We now consider

vertices for one continuous-spin massless field and two massive fields with arbitrary but

fixed spin-s1 and spin-s2 values. Taking into account that the ket-vectors for massive fields

– 18 –



J
H
E
P
1
1
(
2
0
1
7
)
1
9
7

|φsa〉 (2.15) are the respective degree-sa homogeneous polynomials in the oscillators αia, ζa,

a = 1, 2, (2.16), it is easy to see that vertices we are interested in must satisfy the equations

(Nαa +Nζa − sa)|p−[3]〉 = 0 , a = 1, 2, (4.20)

which tell us that the vertices should be degree-s1 and degree-s2 homogeneous polynomials

in the respective oscillators αi1, ζ1 and αi2, ζ2. Using (4.2), we verify that, in terms of

V (4.5)–(4.7), eqs. (4.20) take the form

(NB1 +Nα12 +Nα31 − s1)V = 0 , (4.21)

(NB2 +Nα12 +Nα23 − s2)V = 0 . (4.22)

As vertex V (4.7) is considered to be expandable in the variables B1, B2, α12, α23, α31, a

general solution of eqs. (4.21), (4.22) can be labelled by s1, s2 and by some three integers

n1, n2, n3. Using then notation Vs1,s2(n1, n2, n3) for the vertex V (4.7) that satisfies

eqs. (4.21), (4.22), we find the following general solution:

V =Vs1,s2(n1,n2,n3) ,

Vs1,s2(n1,n2,n3) =Bs1−n1
1 Bs2−n2

2 αl312α
l1
23α

l2
31 , (4.23)

l1 =
1

2
(−n1+n2+n3) , l2 =

1

2
(n1−n2+n3) , l3 =

1

2
(n1+n2−n3) . (4.24)

Integers n1, n2, n3 appearing in (4.23), (4.24) are the freedom of our solution for vertices,

i.e., these integers label all possible cubic vertices that can be constructed for three fields

shown in (4.1). In order for vertices (4.23) to be sensible, we should impose the following

restrictions:

0 ≤ n1 ≤ s1 , 0 ≤ n2 ≤ s2 , l1, l2, l3 ∈ N0 . (4.25)

Restrictions (4.25) amount to the requirement that the powers of all variables B1, B2, α12,

α23, α31 in (4.23) be non-negative integers. We note then that by using relations (4.24),

we can rewrite restrictions (4.25) as

|n1 − n2| ≤ n3 ≤ n1 + n2 , (4.26)

0 ≤ n1 ≤ s1 , 0 ≤ n2 ≤ s2 , (4.27)

n1 + n2 + n3 ∈ 2N0 , n1, n2, n3 ∈ N0 . (4.28)

Expressions for cubic vertices in (4.2), (4.5), (4.6), (4.23) supplemented by the restrictions

on allowed values of the integers n1, n2, n3 given in (4.26)–(4.28) provide the complete

description and classification of cubic interaction vertices that can be constructed for the

one continuous-spin massless field and the two spin-s1 and spin-s2 massive fields having

the same mass parameter (4.1).

The following remarks are in order.

i) From restrictions in (4.26), (4.27), we see that, given spin values s1 and s2, a number

of cubic vertices that can be constructed for fields in (4.1) is finite.

– 19 –



J
H
E
P
1
1
(
2
0
1
7
)
1
9
7

ii) From (3.53) and (4.8), we see that the variable z3 is a degree-1 homogeneous polyno-

mial in the momentum Pi. Taking this into account and using expressions in (4.5),

(4.6), we see that vertex p−[3] (4.2) involves all positive powers of the momentum Pi.
Note also that vertex V (6) (4.5) involves all even positive powers of the momentum

Pi, while vertex V (6) (4.6) involves all odd positive powers of the momentum Pi. On

the other hand, from (4.23), (4.27), we see that vertex V (4.23) is finite-order poly-

nomial in the momentum Pi. Namely, vertex V (4.23) is a degree-(s1 + s2− n1− n2)

homogeneous polynomial in the Pi.

iii) From (4.23), (4.24), we find the relation

(Nα23 +Nα31 − n3)Vs1,s2(n1, n2, n3) = 0 . (4.29)

From (4.23), (4.29), we see that the vertex Vs1,s2(n1, n2, n3) is a degree-n3 monomial

in the variables α23, α31. From relations (4.15)–(4.19), we notice the commutators

[ν3, X] = −X , [ν3, Y ] = −Y , [ν3, Z] = −2Z . (4.30)

From (4.30), it is clear that action of the operator XpY qZn on the vertex

Vs1,s2(n1, n2, n3) gives a degree-(n3 − p − q − 2n) homogeneous polynomial in the

variables α23, α31. Taking this into account and using expressions for operators U

and Ω3 (4.9)–(4.19), it is easy to see that given values s1 and s2 the cubic vertex p[3]
given by (4.2), (4.5), (4.6), (4.23) is a finite-order polynomial in the variables B1, B2,

α12, α23, α31.

iv) Two solutions for vertex V (6) (4.5), (4.6) appear as follows. Equations (3.55), (3.56)

lead to the following 2nd-order differential equation for vertex V (6) (for details, see

appendix C)

(∂2
z3 − Ω2

3)V (6) = 0 . (4.31)

Differential equation (4.31) for the vertex V (6), which depends on the six variables

B1, B2, z3, α12, α23, α31 (4.4), (4.8), has two solutions presented in (4.5), (4.6), where

the vertex V depends on the five variables B1, B2, α12, α23, α31 (4.7).

Interaction of scalar massive fields and continuous-spin massless field.8 By way

of example and in order to demonstrate how to use our result we consider cubic vertex

for two scalar massive fields and one continuous-spin massless field. For spin values of the

scalar fields, we get s1 = 0, s2 = 0, while for mass values we set m1 = m, m2 = m (4.1).

From (4.27), we find n1 = 0, n2 = 0. Using this in (4.26), we find n3 = 0. Thus there is

only one cubic vertex for two scalar massive fields and one continuous-spin massless field.

Plugging values n1 = 0, n2 = 0, n3 = 0 in (4.23), (4.24), we find V = 1. Plugging V = 1

in (4.5), (4.6) we find the following two vertices V (6):

V (6) = cosh z3 , V (6) = sinh z3 , z3 =
1

m
B3 . (4.32)

8X. Bekaert informed us that, in collaboration with J.Mourad and M.Najafizadeh, he described the

minimal cubic coupling between a continuous-spin gauge field and scalar matter.
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Plugging (4.32) into (4.2), we get the following two interaction vertices p−[3]:

p−[3] = U cosh

(
1

m
υ3B3 −

β̌3κ3

2β3m

)
, (4.33)

p−[3] = U sinh

(
1

m
υ3B3 −

β̌3κ3

2β3m

)
, (4.34)

U =

(
2B3Γ(NB3 + d−2

2 )

Γ(NB3 + 1)

)1/2

, NB3 = B3∂B3 . (4.35)

Vertex (4.33) is symmetric upon the replacement of external line indices of scalar fields,

1↔ 2, and this vertex describes interaction of two scalar massive fields with one continuous-

spin massless field. In the limit κ3 → 0, vertex (4.33) is decomposed into a direct sum of

vertices which describe interactions of two scalar massive fields with massless fields having

even spin values. Vertex (4.34) is anti-symmetric upon the replacement of external line

indices of scalar fields, 1 ↔ 2, and this vertex also describes interaction of two scalar

massive fields with one continuous-spin massless field. In the limit κ3 → 0, vertex (4.34) is

decomposed into a direct sum of vertices which describe interactions of two scalar massive

fields with massless fields having odd spin values.9

v) We see that vertices (4.33), (4.34) are singular in the limit m→ 0. This implies that

there are no cubic vertices describing consistent interaction of one continuous-spin

massless field with two scalar massless fields. In appendix E, we demonstrate that,

contrary to the cubic vertices for three arbitrary spin massless fields, cubic vertices

for one continuous-spin massless field and two arbitrary spin massless fields are not

consistent.10

vi) We describe symmetry properties of various quantities and operators entering our

solution (4.2). Upon the replacement of the external line indices of arbitrary spin

massive fields, 1↔ 2, the quantities β̌a, Pi (3.17) and Ba (3.53) are changed as

β̌1 ↔ −β̌2 , β̌3 ↔ −β̌3 , Pi ↔ −Pi , B1 ↔ −B2 , B3 ↔ −B3 . (4.36)

Using (4.36), we note then the behaviour of quantities in (4.15)–(4.19) upon the

replacement of the external line indices of arbitrary spin massive fields, 1 ↔ 2,

X ↔ X , Y ↔ −Y , Z ↔ Z , z3 ↔ −z3 , Ω2
3 ↔ Ω2

3 , ν3 ↔ ν3 . (4.37)

9In order to get non-trivial interaction for vertices in (4.34) one needs, as usually, to introduce internal

symmetry. Incorporation of the internal symmetry into the game can be done via the Chan-Paton method

in string theory [35], and could be performed as in ref. [36].
10In light-cone gauge approach, parity invariant cubic vertices for three arbitrary spin massless fields in

Rd−1,1, d ≥ 4, were obtained in ref. [31]. In BRST approach, such vertices were studied in refs. [37, 38],

while, in metric-like approach, in refs. [39–41]. In BRST approach, cubic vertices involving arbitrary spin

massless and massive fields were derived in ref. [31]. Interesting discussion of BRST approach may be found

in refs. [42–44].
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Relations (4.36), (4.37) imply that all operators U (4.9)–(4.14) are symmetric upon

the replacement of external line indices of arbitrary spin massive fields, 1 ↔ 2,

Uυ3 ↔ Uυ3 , U3 ↔ U3 , Uβ ↔ Uβ , Uζ ↔ Uζ , UB ↔ UB , Uz2 ↔ Uz2 .

(4.38)

5 Parity invariant cubic vertices for one continuous-spin massless field

and two arbitrary spin massive fields with the different mass values

In this section, we consider parity invariant cubic vertices for one continuous-spin massless

field and two arbitrary spin massive fields having different mass values. Namely, using the

shortcut (0, κ)CSF for continuous-spin massless field and the shortcut (m, s) for mass-m and

spin-s massive field, we consider parity invariant cubic vertices for the following three fields:

(m1, s1)-(m2, s2)-(0, κ3)CSF two massive fields and one continuous-spin massless field

m1 6= m2 . (5.1)

Our notation in (5.1) implies that mass-m1, spin-s1 and mass-m2, spin-s2 massive fields

carry the respective external line indices a = 1, 2, while the continuous-spin massless field

corresponds to a = 3.

The general solution to cubic vertex for fields in (5.1) takes the form (see appendix C)

p−[3] = Uυ3U3UβUζUBUz1UzνUWV
(8) , (5.2)

p−[3] = p−[3](βa, Ba, αaa+1 , ζ1, ζ2, υ3) , (5.3)

V (8) = V (8)(Ba, αaa+1) , (5.4)

where, in the solution (5.2), we introduce new vertex denoted by V (8), while, in rela-

tions (5.3), (5.4), we show explicitly arguments of the generic vertex p−[3] and the new vertex

V (8). Before presenting operators U appearing in (5.2) we note that, for vertex V (8) (5.4),

we find two solutions which can be expressed in terms of the modified Bessel functions,

V (8) = Iν3(
√

4z3)V , (5.5)

V (8) = Kν3(
√

4z3)V , (5.6)

V = V (B1, B2, α12, α23, α31) , (5.7)

z3 =
κ2

3(m2
1 +m2

2)

2(m2
1 −m2

2)2
− κ3

m2
1 −m2

2

B3 , (5.8)

ν3 = Nα23 +Nα31 +
d− 4

2
, (5.9)

where Ba, Nαab are given in (A.4), (A.5). In (5.5), (5.6), in place of the B3 (3.53), we use

a new variable z3 (5.8) as a argument of the vertex V (8). For the modified Bessel functions

Iν and Kν (5.5), (5.6), we use conventions in ref. [45].

From (5.3), we see that the vertex p−[3] depends on twelve variables, while, from (5.7),

we learn that the vertex V depends on five variables. Vertex V (5.7) is restricted to be
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expandable in the five variables B1, B2, α12, α23, α31. The general solution for vertex

p−[3] (5.2) is expressed in terms of the operators U , operator ν3 (5.9), and vertex V (5.7).

All that remains to complete the description of the solution for the vertex p−[3] in (5.2) is to

provide explicit expressions for the operators U . The operators U appearing in (5.2) are

given by

Uυ3 = υN3
3 , N3 ≡ NB3 +Nα31 +Nα23 , (5.10)

U3 =

(
2N3Γ

(
N3 + d−2

2

)
Γ (N3 + 1)

)1/2

, (5.11)

Uβ = exp

(
− β̌1

2β1
m1ζ1∂B1 −

β̌2

2β2
m2ζ2∂B2 −

β̌3

2β3
κ3∂B3

)
, (5.12)

Uζ = exp

(
− m2

2

2m1
ζ1∂B1 +

m2
1

2m2
ζ2∂B2

)
(5.13)

UB = exp

((
ζ1

m1
B2 −

ζ2

m2
B1 −

m2
1 +m2

2

2m1m2
ζ1ζ2

)
∂α12

− ζ1

m1

(
B3 +

1

2
κ3

)
∂α31 +

ζ2

m2

(
B3 −

1

2
κ3

)
∂α23

)
, (5.14)

Uz1 = exp
(
−X + z3Y

)
, (5.15)

Uzν = z
−ν3/2
3 , (5.16)

UW =
∞∑
n=0

Γ (ν3 + n)

n!Γ (ν3 + 2n)
Wn , (5.17)

X =
2κ3(

m2
1 −m2

2

)2 (m2
1B1∂α31 −m2

2B2∂α23

)
, (5.18)

Y =
2

κ3
(B2∂α23 −B1∂α31) , (5.19)

Z = 2α12∂α31∂α23 , (5.20)

W = Z +XY , (5.21)

where β̌a, NBa , Nαab , νa, Na are defined in (A.4)–(A.6), while the symbol Γ (5.11), (5.17)

stands for the Gamma-function.

Expressions in (5.2)–(5.21) provide the complete description of the cubic vertex describ-

ing interaction of one continuous-spin massless field with two infinite chains of arbitrary

spin massive fields. We recall that the infinite chain of massive fields is described by ket-

vector given in (2.18). In the chain of massive fields carrying external line index a = 1, all

fields have mass value m1, while, in the chain of massive fields carrying external line index

a = 2, all fields have mass value m2, m1 6= m2. To consider vertices for one continuous-spin

massless field and arbitrary but fixed spin-s1 and spin-s2 massive fields (5.1) we note that

the ket-vectors for massive spin-sa fields |φsa〉 are the respective degree-sa homogeneous

polynomials in the oscillators αia, ζa, a = 1, 2, (2.16). This implies that the vertices we are

interested in must satisfy the equations

(Nαa +Nζa − sa)|p−[3]〉 = 0 , a = 1, 2, (5.22)
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which tell us that the |p−[3]〉 should be degree-s1 and degree-s2 homogeneous polynomial in

the respective oscillators αi1, ζ1 and αi2, ζ2. Using (5.2), we verify that, in terms of vertex

V (5.5), (5.6), eqs. (5.22) take the form

(NB1 +Nα12 +Nα31 − s1)V = 0 , (5.23)

(NB2 +Nα12 +Nα23 − s2)V = 0 . (5.24)

Vertex V (5.7) is restricted to be expandable in the variables B1, B2, α12, α23, α31. There-

fore solution of eqs. (5.23), (5.24) can be labelled by spin values s1, s2 and by some three

integers n1, n2, n3. Using the notation Vs1,s2(n1, n2, n3) for vertex V (5.7) that satisfies

eqs. (5.23), (5.24), we find the following general solution:

V =Vs1,s2(n1,n2,n3) ,

Vs1,s2(n1,n2,n3) =Bs1−n1
1 Bs2−n2

2 αl312α
l1
23α

l2
31 , (5.25)

l1 =
1

2
(−n1+n2+n3) , l2 =

1

2
(n1−n2+n3) , l3 =

1

2
(n1+n2−n3) . (5.26)

Integers n1, n2, n3 in (5.25), (5.26) are the freedom of our solution for vertices, i.e., these

integers label all possible cubic vertices that can be constructed for fields in (5.1). In order

for vertices (5.25) to be sensible, we should impose the following restrictions:

0 ≤ n1 ≤ s1 , 0 ≤ n2 ≤ s2 , l1, l2, l3 ∈ N0 , (5.27)

which amount to the requirement that the powers of variables B1, B2, α12, α23, α31 in (5.25)

be non-negative integers. Using relations (5.26), we represent restrictions (5.27) as

|n1 − n2| ≤ n3 ≤ n1 + n2 , (5.28)

0 ≤ n1 ≤ s1 , 0 ≤ n2 ≤ s2 , (5.29)

n1 + n2 + n3 ∈ 2N0 , n1, n2, n3 ∈ N0 . (5.30)

Relations in (5.2), (5.5), (5.6), (5.25) and restrictions in (5.28)–(5.30) provide the complete

description and classification of cubic vertices that can be constructed for one continuous-

spin massless field and two spin-s1 and spin-s2 massive fields having different mass param-

eters (5.1).

The following remarks are in order.

i) From restrictions in (5.28), (5.29), we see that given spin values s1 and s2 a number

of cubic vertices that can be constructed for fields in (5.1) is finite.

ii) From (3.53) and (5.8), we see that the variable z3 is degree-1 polynomial in the

momentum Pi. Taking this into account and using expressions in (5.5), (5.6), we see

that vertex p−[3] (5.2) involves all positive powers of the momentum Pi. On the other

hand, from (5.25), (5.29), we see that vertex V (5.25) is finite-order polynomial in the

momentum Pi. Namely, vertex V (5.25) is a degree-(s1 + s2− n1− n2) homogeneous

polynomial in the momentum Pi.
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iii) From (5.25), (5.26), we find the relation

(Nα23 +Nα31 − n3)Vs1,s2(n1, n2, n3) = 0 . (5.31)

From (5.25), (5.31), we see that the vertex Vs1,s2(n1, n2, n3) is a degree-n3 monomial

in the variables α23, α31. Using (5.9) and (5.18)–(5.21), we note the commutators

[ν3, X] = −X , [ν3, Y ] = −Y , [ν3, Z] = −2Z , [ν3,W ] = −2W . (5.32)

From (5.32), it is clear that action of the operator XpY qZnWm on the vertex

Vs1,s2(n1, n2, n3) gives a degree-(n3 − p − q − 2n − 2m) homogeneous polynomial

in the variables α23, α31. Taking this into account and using expressions for opera-

tors U (5.10)–(5.21), it is easy to see that given s1 and s2 the cubic vertex p[3] given

by (5.2), (5.5), (5.6), (5.25) is a finite-order polynomial in the variables B1, B2, α12,

α23, α31.

iv) Two solutions for vertex V (8) (5.5), (5.6) appear as follows. Equations (3.55), (3.56)

lead to the following 2nd-order differential equation for the vertex V (8) (for details,

see appendix C)(
1− (Nz3 + 1)∂z3 +

ν2
3

4z3

)
V (8) = 0 , Nz3 ≡ z3∂z3 . (5.33)

Differential equation (5.33) for the vertex V (8), which depends on the six variables

B1, B2, z3, α12, α23, α31 (5.4), (5.8), has two solutions presented in (5.5), (5.6), where

the vertex V depends on the five variables B1, B2, α12, α23, α31 (5.7).

v) Using symmetry properties (4.36) of quantities β̌a, Pi (3.17) upon the replacement

of external line indices of arbitrary spin massive fields, 1 ↔ 2, we verify behavior of

quantities in (5.8), (5.9) and (5.18)–(5.21) upon the replacement 1↔ 2,

z3 ↔ z3 , ν3 ↔ ν3 , X ↔ X , Y ↔ Y , Z ↔ Z , W ↔W . (5.34)

Also, using (4.36) and (5.34), we verify that all operators U (5.10)–(5.17) are sym-

metric upon the replacement of external line indices of arbitrary spin massive fields,

1↔ 2,

Uυ3 ↔ Uυ3 , U3 ↔ U3 , Uβ ↔ Uβ , Uζ ↔ Uζ , UB ↔ UB ,

Uz1 ↔ Uz1 , Uzν ↔ Uzν , UW ↔ UW . (5.35)

6 Parity invariant cubic vertices for two continuous-spin massless fields

and one arbitrary spin massive field

In this section, we consider parity invariant cubic vertices for two continuous-spin mass-

less fields and one arbitrary spin massive field. Namely, using the shortcut (0, κ)CSF for
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continuous-spin massless field and the shortcut (m, s) for spin-s massive field with mass

parameter m, we consider cubic interaction vertices for the following three fields:

(0, κ1)CSF-(0, κ2)CSF-(m3, s3) two continuous-spin massless fields and one massive field.

(6.1)

Our notation in (6.1) implies that two continuous-spin massless fields denoted by (0, κ1)CSF

and (0, κ2)CSF carry the respective external line indices a = 1, 2, while the mass-m3, spin-s3

massive field denoted by (m3, s3) carries external line index a = 3.

The general solution to cubic vertex for fields in (6.1) takes the form (see appendix D)

p−[3] = Uυ1,υ2U1,2UβUBUz0Uz2UzνUWV
(8) , (6.2)

p−[3] = p−[3](βa, Ba, αaa+1, υ1, υ2, ζ3) , (6.3)

V (8) = V (8)(Ba, αaa+1) , (6.4)

where, in the solution (6.2), we introduce new vertex denoted by V (8), while, in rela-

tions (6.3), (6.4), we show explicitly arguments of the generic vertex p−[3] and the new vertex

V (8). Before presenting operators U appearing in (6.2), we note that, for vertex V (8) (6.4),

we find four solutions which can be expressed in terms of the modified Bessel functions,

V (8) = Iν1
(√

4z1

)
Iν2
(√

4z2

)
V , (6.5)

V (8) = Iν1
(√

4z1

)
Kν2

(√
4z2

)
V , (6.6)

V (8) = Kν1

(√
4z1

)
Iν2
(√

4z2

)
V , (6.7)

V (8) = Kν1

(√
4z1

)
Kν2

(√
4z2

)
V , (6.8)

V = V (B3, α12, α23, α31) , (6.9)

z1 =
κ1

m2
3

(
B1 +

κ1

2

)
, (6.10)

z2 =
κ2

m2
3

(
−B2 +

κ2

2

)
, (6.11)

ν1 = Nα12 +Nα31 +
d− 4

2
, (6.12)

ν2 = Nα12 +Nα23 +
d− 4

2
, (6.13)

where Ba, Nαab are defined in (A.4), (A.5). In (6.5)–(6.8), in place of the B1 and B2,

we use new respective variables z1 and z2 (6.10), (6.11). In relations (6.5)–(6.8), the Iν
and Kν stand for the modified Bessel functions. For the modified Bessel functions, we use

conventions in ref. [45].

From (6.2)–(6.13), we see that the general solution for the vertex p−[3], which depends

on twelve variables (6.3), is expressed in terms of the vertex V which is arbitrary function

of four variables (6.9). Note that vertex V (6.9) is restricted to be expandable in the four

variables B3, α12, α23, α31. Thus, the general solution for vertex p−[3] (6.2) is expressed

in terms of the operators U , ν1, ν2 and the vertex V (6.9). Therefore all that remains to

complete a description of the vertex p−[3] is to provide explicit expressions for the operators
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U . The operators U entering our solution in (6.2) are given by

Uυ1,υ2 = υN1
1 υN2

2 , (6.14)

N1 = NB1 +Nα12 +Nα31 , N2 = NB2 +Nα12 +Nα23 , (6.15)

U1,2 =

(
2N1Γ

(
N1 + d−2

2

)
Γ (N1 + 1)

2N2Γ
(
N2 + d−2

2

)
Γ (N2 + 1)

)1/2

, (6.16)

Uβ = exp

(
− β̌1

2β1
κ1∂B1 −

β̌2

2β2
κ2∂B2 −

β̌3

2β3
m3ζ3∂B3

)
, (6.17)

Uζ = exp

(
ζ3

m3

(
B1 −

1

2
κ1

)
∂α31 −

ζ3

m3

(
B2 +

1

2
κ2

)
∂α23

)
(6.18)

Uz0 = exp

(
2κ1κ2

m2
3

∂α12 +
2κ1

m2
3

B3∂α31 −
2κ2

m2
3

B3∂α23

)
, (6.19)

Uz2 = exp

(
2m2

3

κ1κ2
z1z2∂α12 +

2

κ1
z1B3∂α31 −

2

κ2
z2B3∂α23

)
, (6.20)

Uzν = z
−ν1/2
1 z

−ν2/2
2 , (6.21)

UW =

∞∑
n=0

Un , Un =

n∑
m=0

Un−m,m , (6.22)

Un,m =
Γ (ν1 + n)

Γ (ν1 + 2n)

min(n,m)∑
k=0

1

k! (n− k)!
Wn−k

1,0 W k
1,1U0,m−k , (6.23)

U0,m =
Γ (ν2 +m)

m!Γ (ν2 + 2m)
Wm

0,1 , (6.24)

W1,0 = 2α23∂α12∂α31 −
4

m2
3

B2
3∂

2
α31

, (6.25)

W1,1 = −4∂2
α12

, (6.26)

W0,1 = 2α31∂α12∂α23 −
4

m2
3

B2
3∂

2
α23

, (6.27)

where β̌a, NBa , Nαab , νa, Na are defined in (A.4)–(A.6), while the Γ (6.16)–(6.24) stands

for the Gamma-function.

Expressions given in (6.2)–(6.27) provide the complete description of the cubic ver-

tex describing interaction of two continuous-spin massless fields with one infinite chain of

massive fields. The chain of massive fields consists of every spin just once. Such chain of

massive fields is described by ket-vector (2.18). To consider vertices for two continuous-

spin massless fields and one arbitrary but fixed spin-s3 massive field (6.1), we note that the

ket-vector for massive field |φs3〉 is a degree-s3 homogeneous polynomial in the oscillators

αi3, ζ3 (2.16). This implies that the vertices we are interested in must satisfy the equation

(Nα3 +Nζ3 − s3)|p−[3]〉 = 0 , (6.28)

which tells us that the |p−[3]〉 should be degree-s3 homogeneous polynomial in the oscillators

αi3, ζ3. Using (6.2), we verify that, in terms of vertex V (6.5)–(6.9), eq. (6.28) takes the
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form

(NB3 +Nα23 +Nα31 − s3)V = 0 . (6.29)

Vertex V (6.9) is considered to be expandable in the variables B3, α12, α23, α31. Therefore

solution of eq. (6.29) for the vertex V can be labelled by s3 and by three integers n1, n2,

n3. Using the notation Vs3(n1, n2, n3) for vertex V (6.9) that satisfies eq. (6.29), we find

the general solution,

V = Vs3(n1, n2, n3) ,

Vs3(n1, n2, n3) = Bs3−n1−n2
3 αn3

12α
n1
23α

n2
31 , (6.30)

n1, n2, n3 = 0, 1, 2, . . . ,∞ . (6.31)

Integers n1, n2, n3 in (6.30) are the freedom of our solution for vertices, i.e., these integers

label all possible cubic vertices that can be constructed for fields in (6.1). In order for

vertices (6.30) to be sensible, we should impose the following restrictions:

n1 + n2 ≤ s3 , n1, n2, n3 ∈ N0 , (6.32)

which amount to the requirement that the powers of variables B3, α12, α23, α31 in (6.30)

be non-negative integers. Relations in (6.2), (6.5)–(6.9), (6.30) and restrictions in (6.32)

provide the complete description and classification of cubic vertices that can be constructed

for two continuous-spin massless fields and one mass-m3, spin-s3 massive field.

The following remarks are in order.

i) Given s3, the integers n1 and n2 take finite number of values (6.32), while the integer

n3 takes infinite number of values, n3 ∈ N0 (6.32). This implies that, given s3, a

number of cubic vertices that can be constructed for fields (6.1) is infinite.

ii) From (3.53) and (6.10), (6.11), we see that the variables z1, z2 are degree-1 polynomi-

als in the momentum Pi. Taking this into account and using (6.5)–(6.8), we see that

vertex p−[3] (6.2) involves all positive powers of the momentum Pi. On the other hand,

from (6.30), (6.32), we see that, given s3, vertex V (6.30) is finite-order polynomial in

the momentum Pi. Namely, vertex V (6.30) is a degree-(s3 − n1 − n2) homogeneous

polynomial in Pi.

iii) Vertex V (6.30) is a finite-order polynomial in the variables B3, α12, α23, α31. We

now show that vertex p−[3] (6.2) is also a finite-order polynomial in the variables B3,

α12, α23, α31. To this end we note that operators ν1, ν2 (6.12), (6.13) and operators
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W1,0, W1,1 W0,1 (6.25)–(6.27) satisfy the following commutation relations

[ν1,W1,0] = −2W1,0 , (6.33)

[ν2,W1,0] = 0 , (6.34)

[ν1,W0,1] = 0 , (6.35)

[ν2,W0,1] = −2W0,1 , (6.36)

[ν1,W1,1] = −2W1,1 , (6.37)

[ν2,W1,1] = −2W1,1 , (6.38)

[W1,0,W0,1] = (ν1 − ν2)W1,1 . (6.39)

Using operator Un,m (6.23) and commutators (6.33)–(6.38), we find the commutators

[ν1, Un,m] = −2nUn,m , (6.40)

[ν2, Un,m] = −2mUn,m . (6.41)

Now using operator Un (6.22) and commutators (6.40), (6.41), we see that, for a

sufficiently large number N , action of the operator Un on the vertex V (6.30) gives

zero for all n ≥ N . This implies that an action of operator UW (6.22) on vertex

V (6.30) gives finite-order polynomial in the variables B3, α12, α23, α31. Taking this

into account and using (6.14)–(6.21) it is clear that vertex p−[3] (6.2) is also a finite-

order polynomial in the variables B3, α12, α23, α31. For the reader convenience, we

note that operator Un,m (6.23) can equivalently be represented as

Un,m =
Γ(ν2 +m)

Γ(ν2 + 2m)

min(n,m)∑
k=0

1

k!(m− k)!
Wm−k

0,1 W k
1,1Un−k,0 , (6.42)

Un,0 =
Γ(ν1 + n)

n!Γ(ν1 + 2n)
Wn

1,0 . (6.43)

iv) Four solutions for vertex V (8) (6.5)–(6.8) are obtained as follows. Equations (3.55),

(3.56) lead to the following two second-order equations for the vertex V (8) (for details,

see appendix D):(
1− (Nz1 + 1) ∂z1 +

ν2
1

4z1

)
V (8) = 0 , Nz1 ≡ z1∂z1 , (6.44)(

1− (Nz2 + 1)∂z2 +
ν2

2

4z2

)
V (8) = 0 , Nz2 ≡ z2∂z2 . (6.45)

Differential equations (6.44), (6.45) for the vertex V (8) depending on the six vari-

ables z1, z2, B3, α12, α23, α31 (6.4), (6.10), (6.11) have four solutions presented

in (6.5), (6.6), where the vertex V depends on the four variables B3, α12, α23,

α31 (6.9).

v) Using symmetry properties (4.36) of quantities β̌a, Pi (3.17) upon the replacement of

external line indices of continuous-spin massless fields, 1 ↔ 2, we verify behavior of
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quantities in (6.10)–(6.13) and (6.25)–(6.27) upon the replacement 1↔ 2,

z1 ↔ z2 , ν1 ↔ ν2 , W1,0 ↔W0,1 , W1,1 ↔W1,1 . (6.46)

Also, using (4.36) and (6.46), we verify that all operators U (6.14)–(6.22) are symmet-

ric upon the replacement of external line indices of continuous-spin massless fields,

1↔ 2,

Uυ1,υ2 ↔ Uυ1,υ2 , U1,2 ↔ U1,2 , Uβ ↔ Uβ , Uζ ↔ Uζ , UB ↔ UB ,

Uz1 ↔ Uz1 , Uzν ↔ Uzν , UW ↔ UW . (6.47)

vi) We see that vertices (6.5)–(6.11) are singular in the massless limit m3 → 0, i.e.,

the massless limit of the cubic vertices describing interaction of two continuous-spin

massless fields with one arbitrary spin massive field is problematic. In appendix F, by

analysing equations for cubic vertices, we demonstrate explicitly that cubic vertices

describing interaction of two continuous-spin massless fields with one arbitrary spin

massless field are not consistent.

7 Conclusions

In this paper, we applied the light-cone gauge formalism to build the parity invariant cubic

interaction vertices for continuous-spin massless fields and arbitrary spin massive fields. We

considered two types of cubic vertices: vertices describing interaction of one continuous-

spin massless field with two arbitrary spin massive fields and vertices describing interaction

of two continuous-spin massless fields with one arbitrary spin massive field. We found the

full lists of such vertices. Also we demonstrated that there are no cubic vertices describing

consistent interaction of continuous-spin massless fields with arbitrary spin massless fields.

We expect that our results have the following interesting applications and generalizations.

i) In this paper, we studied interaction vertices for fields propagating in flat space and

demonstrated that there are no cubic vertices describing consistent interaction of

continuous-spin massless fields with arbitrary spin massless fields. Following ideas

in ref. [46], we believe then that consistent interaction of continuous-spin fields with

arbitrary spin massless fields can be constructed by considering fields propagating

in AdS space. Metric-like gauge invariant Lagrangian formulation of continuous-spin

free AdS field was developed in refs. [6, 7]. We note however that, in the literature,

there are many other interesting approaches which, upon a suitable generalization,

could also be helpful for studying an interacting continuous-spin AdS field. For the

reader convenience, we briefly review various approaches which could be used for the

description of an interacting continuous-spin AdS field. In the framework of frame-

like approach, interacting higher-spin AdS fields are considered in refs. [47–50], while,

in the framework of ambient space metric-like approach, interacting higher-spin AdS

fields are considered in refs. [51–56].11 In this respect, recent interesting discussion of

11In frame-like approach, equations of motion for continuous-spin field were studied in ref. [57].
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interacting higher-spin AdS fields may be found in refs. [58, 59]. In the frameworks of

world-line particle and twistor-like approaches, higher-spin fields are considered, e.g.,

in refs. [60] and [61–64]. Interesting approach for analysing interacting conformal

higher-spin fields in curved background is discussed in ref. [65]. The light-cone gauge

formulation of arbitrary spin free AdS fields was developed in refs. [34, 66, 67]. It

would be interesting to extend such formulation to the case of interacting continuous-

spin fields. Extension of Hamiltonian form of AdS higher-spin fields dynamics [68]12

to the case of continuous-spin field could also be of some interest.

ii) In this paper, we developed the light-cone gauge formulation for the bosonic

continuous-spin fields. It would be interesting to extend a light-cone gauge formu-

lation to the case of fermionic continuous-spin fields and apply such formulation for

studying vertices that describes interaction of fermionic continuous-spin fields with

arbitrary spin massive fields as well as for studying supersymmetric continuous-spin

field theories. Continuous-spin supermultiplets are studied refs. [8, 11]. Recent inter-

esting discussion of higher-spin supersymmetric theories may be found in refs. [72–74].

iii) The methods for building so(d−1, 1) Lorentz covariant formulation of field dynamics

by using light-cone gauge so(d − 2) covariant formulation [33] are most suitable for

studying parity invariant vertices. Moreover such Lorentz covariant formulation turns

out to be BRST gauge invariant. Therefore, we think that the parity invariant

vertices obtained in this paper, can relatively straightforwardly be cast into BRST

gauge invariant form. For example, the full list of the parity invariant light-cone

gauge cubic vertices for arbitrary spin massless and massive fields in ref. [31] has

straightforwardly been cast into BRST gauge invariant form in ref. [38]. BRST

formulation of continuous-spin free field was discussed in ref. [75] and it was noted

that such formulation has interesting interrelations with the formulations in terms of

the unconstrained higher-spin gauge fields in ref. [76]. Discussion of other interesting

formulations in terms of unconstrained gauge fields can be found, e.g., in refs. [77–79].

BRST formulations in terms of traceceless higher-spin gauge fields may be found in

refs. [80, 81]. Use of BRST gauge fixed Lagrangian for the computation of partition

functions of higher-spin fields is discussed in refs. [82, 83].

iv) In this paper, we studied totally symmetric continuous-spin fields. As is known,

string theory spectrum involves mixed-symmetry fields. Therefore from the perspec-

tive of studying interrelations between continuous-spin fields and string theory it

seems reasonable to extend our study to the case of mixed-symmetry fields. We note,

presently, even at the level of free fields, little is known about Lagrangian formulation

of a continuous-spin mixed-symmetry fields. On the other hands, many interesting

formulations for mixed-symmetry massless and massive higher-spin fields were de-

veloped (see, e.g., refs. [84–95]). Extension of such formulations to continuous-spin

fields could be also of some interest.

12Alternative Hamiltonian formulations of AdS higher-spin field dynamics may be found in refs. [69–71].
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v) In this paper, we studied cubic vertices for continuous-spin massless fields and arbi-

trary spin massive fields. Extension of our study to quartic vertices by using meth-

ods and approaches in refs. [96–101] might contribute to better understanding of

continuous-spin field dynamics.
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A Notation and conventions

The vector indices of the so(d− 2) algebra take the values i, j, k, l = 1, . . . , d− 2. Creation

operators αi, υ, ζ and the respective annihilation operators ᾱi, ῡ, ζ̄ are referred to as os-

cillators in this paper. Commutation relations, the vacuum |0〉, and hermitian conjugation

rules are fixed by the relations

[ᾱi, αj ] = δij , [ῡ, υ] = 1, [ζ̄, ζ] = 1, ᾱi|0〉 = 0 , ῡ|0〉 = 0 , ζ̄|0〉 = 0 , (A.1)

αi† = ᾱi , υ† = ῡ , ζ† = ζ̄ . (A.2)

The oscillators αi, ᾱi and υ, ῡ, ζ, ζ̄, transform under the respective vector and scalar

representations of the so(d − 2) algebra. We use the following notation for the scalar

product of the oscillators

α2 ≡ αiαi , ᾱ2 ≡ ᾱiᾱi , Nα ≡ αiᾱi , Nζ ≡ ζζ̄ , Nυ ≡ υῡ , (A.3)

Throughout this paper we use the following definitions for momentum Pi and quantities

Ba, αab

Pi ≡ 1

3

∑
a=1,2,3

β̌ap
i
a , β̌a ≡ βa+1 − βa+2 , Ba ≡

αiaPi

βa
, αab ≡ αiaαib , (A.4)

where βa ≡ βa+3. Various quantities constructed out of the Ba, αab and derivatives of the

Ba, αab are defined as

NBa = Ba∂Ba , Nαab = αab∂αab , ∂Ba = ∂/∂Ba , ∂αab = ∂/∂αab , (A.5)

Na = NBa +Nαaa+1 +Nαa+2a , νa = Nαaa+1 +Nαa+2a +
d− 4

2
. (A.6)

B Continuous-spin field in helicity basis

Throughout this paper, we use the so(d − 2) covariant basis of light-cone gauge fields

propagating in Rd−1,1 with arbitrary d ≥ 4. For d = 4, light-cone gauge fields can also be

considered in a helicity basis. As a helicity basis is popular in many studies we decided, for

the reader convenience, to work out light-cone gauge formulation of continuous-spin field
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in such basis. To discuss continuous-spin field in a helicity basis we introduce complex

coordinates xR, xL defined by the relations

xR ≡ 1√
2

(x1 + ix2) , xL ≡ 1√
2

(x1 − ix2) . (B.1)

In the frame of the complex coordinates, a vector of the so(2) algebra Xi is decomposed

as Xi = XR, XL, while a scalar product of so(2) algebra vectors Xi, Y i is represented

as XiY i = XRY L + XLY R. We decompose the vector oscillators as αi = αR, αL and, in

place of the so(2) covariant form of ket-vector |φ〉 (2.10), we use a helicity basis ket-vector

given by

|φ〉 = |φ0〉+ |φR〉+ |φL〉 , (B.2)

|φ0〉 ≡ φ0(p)|0〉 , |φR〉 =
∞∑
n=1

υnαnL
n!

φn(p)|0〉 , |φL〉 =
∞∑
n=1

υnαnR
n!

φ−n(p)|0〉 , (B.3)

αL = αR, αR = αL, where φ0(p) is a scalar field, while φ±n(p) are fields having helicities

±n, n = 1, 2, . . . ,∞. We assume the following hermitian conjugation rules for the fields:

φ†0(p) = φ0(−p), φ†n(p) = φ−n(−p). The oscillators and a vacuum |0〉 satisfy the relations

[ᾱL, αR] = 1 , [ᾱR, αL] = 1 , ᾱR|0〉 = 0 ᾱL|0〉 = 0 . (B.4)

In the frame of the complex coordinates, the spin operator M i is decomposed as M i =

MR,ML, while the so(2) algebra generator M ij = −M ji is represented as MRL. We now

note that, in the frame of the complex coordinates, a realization of kinematical generators

and dynamical generators (2.24)–(2.28) in terms of differential operators acting on ket-

vector |φ〉 (B.2) is given by

Kinematical generators:

PR = pR , P L = pL , P+ = β , (B.5)

J+R = ∂pLβ , J+L = ∂pRβ , J+− = ∂ββ , (B.6)

JRL = pR∂pR − pL∂pL +MRL , (B.7)

Dynamical generators:

P− = −2pRpL +m2

2β
, (B.8)

J−R = −∂βpR + ∂pLP
− +

1

β
MRLpR +

1

β
MR , (B.9)

J−L = −∂βpL + ∂pRP
− − 1

β
MRLpL +

1

β
ML , (B.10)

where we use the notation

β ≡ p+ , ∂β ≡ ∂/∂β , ∂pR ≡ ∂/∂pR , ∂pL ≡ ∂/∂pL . (B.11)
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The spin operators MRL, ML, and ML appearing in (B.7)–(B.10) are given by

MRL = NR −NL , NR = αRᾱL , NL = αLᾱR , (B.12)

MR = gLᾱ
Rῡ − υαRgRΠRL , (B.13)

ML = gRᾱ
Lῡ − υαLgLΠLR , (B.14)

where quantities gR,L, ΠRL, and ΠLR are defined by the relations

gR =

(
FR

2 (NR + 1)2

)1/2

, gL =

(
FL

2 (NL + 1)2

)1/2

, (B.15)

FR = κ2 −NR (NR + 1)m2 , FL = κ2 −NL (NL + 1)m2 , (B.16)

ΠRL = 1− αL 1

NL + 1
ᾱR , ΠLR = 1− αR 1

NR + 1
ᾱL . (B.17)

Relations in (B.5)–(B.17) provide the complete description of a realization for the gen-

erators of the Poincaré algebra iso(3, 1) in terms of differential operators acting on the

ket-vector |φ〉 (B.2). To our knowledge, the realization of the operators MR, ML for

continuous-spin field in R3,1 with arbitrary κ2 > 0 and m2 < 0 given in (B.13)–(B.17) has

not been discussed in earlier literature.13

For the reader convenience, we note the following commutators for the spin operators:

[MR,ML] = −m2MRL , [MRL,MR] = MR , [MRL,ML] = −ML . (B.18)

Action of the operators ΠRL, ΠLR (B.17) on various ket-vectors defined in (B.3) is given by

ΠRL|φ0〉 = |φ0〉 , ΠRL|φR〉 = |φR〉 , ΠRL|φL〉 = 0 , (B.19)

ΠLR|φ0〉 = |φ0〉 , ΠLR|φR〉 = 0 , ΠLR|φL〉 = |φL〉 . (B.20)

We note the following helpful relations for the operators ΠRL, ΠLR (B.17) and the oscillators

ΠRLΠRL = ΠRL , ΠLRΠLR = ΠLR , ΠRLΠLR = ΠLRΠRL , (B.21)

ΠRLαL = 0 , ΠLRαR = 0 , ᾱRΠRL = 0 , ᾱLΠLR = 0 . (B.22)

Hermitian conjugation rules for various quantities above-defined are given by

αR† = ᾱL , αL† = ᾱR , (B.23)

N †R = NR , N †L = NL , ΠRL† = ΠRL , ΠLR† = ΠLR . (B.24)

To quadratic order in fields, a field representation for generators of the Poincaré algebra

takes the form

G[2] =

∫
βdβd2p 〈φ(p)|G[2]|φ(p)〉 , 〈φ(p)| ≡ |φ(p)〉† , (B.25)

where G in (B.25) are given in (B.5)–(B.10). The Poisson-Dirac commutator for fields

entering ket-vector takes the form

[φk′(p
′) , φk′′(p

′′)]
∣∣
equalx+

=
1

2β′
δ(β′ + β′′)δ2(p′ + p′′)δk′+k′′,0 , k′, k′′ ∈ Z . (B.26)

13For continuous-spin massless field, m = 0, the operators MR, ML were discussed in section 2 in ref. [11].
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C Derivation of cubic vertices p−
[3]

(4.2), (5.2)

Our aim in this appendix is to outline some details of the derivation of cubic vertices given

in (4.2), (5.2). We would like to divide our derivation in ten steps which we now discuss

in turn.

Step 1. Realization on p−
[3]. First, we find realization of operators Ga,P2 , Gβ (3.54) on

vertex p−[3] (4.3). To this end we use J−i† (3.30) with the spin operators M i
a, a = 1, 2, for the

arbitrary spin massive fields (2.40) and the spin operator M i
a, a = 3, for the continuous-

spin massless field (2.34)–(2.38). Doing so, we find that action of J−i† (3.30) on p−[3] (4.3)

can be cast into the form (3.54) with the following expressions for the Ga,P2 , Gβ :

G1,P2 =G1 , G2,P2 =G2 , G3,P2 =G3+P−
2β

β3
3

αi3
gυ3∂υ3

2N3+d−2
∂2
B3
, (C.1)

G1 =

(
B3−

β1

β3
gυ3∂υ3

)
∂α31−

(
B2+

β1

β2
m2ζ2

)
∂α12 +

1

2

(
β̌1

β1
m2

1+m2
2

)
∂B1 +m1∂ζ1 ,

(C.2)

G2 =

(
B1−

β2

β1
ζ1m1

)
∂α12−

(
B3+

β2

β3
gυ3∂υ3

)
∂α23 +

1

2

(
β̌2

β2
m2

2−m2
1

)
∂B2 +m2∂ζ2 , (C.3)

G3 =

(
B2−

β3

β2
m2ζ2

)
∂α23−

(
B1+

β3

β1
m1ζ1

)
∂α31 +

1

2
(m2

1−m2
2)∂B3 +υ3gυ3

+
gυ3∂υ3

2N3+d−2

(
2β1

β3
B1∂B3∂α31 +

2β2

β3
B2∂B3∂α23

+2α12∂α31∂α23 +α11∂
2
α31

+α22∂
2
α23

+
β

β2
3

∑
b=1,2

m2
b

βb
∂2
B3

)
, (C.4)

Gβ =− 1

β
Nβ−

1

β2
1

m1ζ1∂B1−
1

β2
2

m2ζ2∂B2−
1

β2
3

gυ3∂υ3∂B3 , (C.5)

where gυ and β̌a, Nβ are given in (2.37) and (3.34) respectively, while the Ba, αab, Na are

given in (A.4)–(A.6). Using (3.40), (3.54), and operators Ga,P2 , Gβ (C.1)–(C.5), we see that

requiring the density |j−i[3] 〉 to respect equations (3.43) amounts to the eqs. (3.55), (3.56).

Step 2. Realization on V (1). At this step, we fix dependence of p−[3] (4.3) on the

oscillator υ3. To this end, we note that in view of constraint (2.11), vertex p−[3] (4.3) should

satisfy the constraint

(Nα3 −Nυ3)|p−[3]〉 = 0 . (C.6)

Introducing a vertex V (1) by the relations

p−[3] = Uυ3V
(1) , Uυ3 = υN3

3 , N3 ≡ NB3 +Nα31 +Nα23 , (C.7)

and using (C.6), we find that the V (1) is independent of the oscillator υ3, i.e., we get

V (1) = V (1)(βa, Ba, αaa+1 , ζ1, ζ2) . (C.8)
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Using (C.7), we find that, on vertex V (1) (C.8), operators Ga, Gβ (C.2)–(C.5) are realized as

G1 =

(
B3−

β1

β3
g3 (N3+1)

)
∂α31−

(
B2+

β1

β2
m2ζ2

)
∂α12 +

1

2

(
β̌1

β1
m2

1+m2
2

)
∂B1 +m1∂ζ1 ,

(C.9)

G2 =

(
B1−

β2

β1
ζ1m1

)
∂α12−

(
B3+

β2

β3
g3 (N3+1)

)
∂α23 +

1

2

(
β̌2

β2
m2

2−m2
1

)
∂B2 +m2∂ζ2 ,

(C.10)

G3 =

(
B2−

β3

β2
m2ζ2

)
∂α23−

(
B1+

β3

β1
m1ζ1

)
∂α31 +

1

2

(
m2

1−m2
2

)
∂B3 +g3

+
g(1)

3 (N3+2)

2N3+d−2

(
2β1

β3
B1∂B3∂α31 +

2β2

β3
B2∂B3∂α23

+2α12∂α31∂α23 +α11∂
2
α31

+α22∂
2
α23

+
β

β3
3

∑
b=1,2

m2
b

βb
∂2
B3

)
, (C.11)

Gβ =− 1

β
Nβ−

1

β2
1

m1ζ1∂B1−
1

β2
2

m2ζ2∂B2−
1

β2
3

g3 (N3+1)∂B3 , (C.12)

g3≡ gυ3
∣∣
Nυ3→N3

, g(1)

3 ≡ gυ3
∣∣
Nυ3→N3+1

, (C.13)

where Nυ3 = υ3∂υ3 , N3 is defined in (C.7), while gυ is given by (2.37), (2.38) for m2 = 0.

Step 3. Realization on V (2). We find it convenient to introduce a vertex V (2) by the

relations

V (1) = U3V
(2) , U3 =

(
2N3Γ(N3 + d−2

2 )

Γ(N3 + 1)

)1/2

. (C.14)

We note that the vertex V (2) depends on the same variables as vertex V (1) (C.7),

V (2) = V (2)(βa, Ba, αaa+1 , ζ1, ζ2) . (C.15)

On the vertex V (2), realization of Ga, Gβ (C.9)–(C.12) takes more convenient form given by

G1 =

(
B3−

β1

β3
κ3

)
∂α31−

(
B2+

β1

β2
m2ζ2

)
∂α12 +

1

2

(
β̌1

β1
m2

1+m2
2

)
∂B1 +m1∂ζ1 , (C.16)

G2 =

(
B1−

β2

β1
ζ1m1

)
∂α12−

(
B3+

β2

β3
κ3

)
∂α23 +

1

2

(
β̌2

β2
m2

2−m2
1

)
∂B2 +m2∂ζ2 , (C.17)

G3 =

(
B2−

β3

β2
m2ζ2

)
∂α23−

(
B1+

β3

β1
m1ζ1

)
∂α31 +

1

2

(
m2

1−m2
2

)
∂B3 +

g2
3 (N3+1)

κ3

+
κ3

2N3+d−2

(
2β1

β3
B1∂B3∂α31 +

2β2

β3
B2∂B3∂α23

+2α12∂α31∂α23 +α11∂
2
α31

+α22∂
2
α23

+
β

β2
3

∑
b=1,2

m2
b

βb
∂2
B3

)
, (C.18)

Gβ =− 1

β
Nβ−

1

β2
1

m1ζ1∂B1−
1

β2
2

m2ζ2∂B2−
κ3

β2
3

∂B3 . (C.19)
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Namely, as compared with operators (C.9)–(C.12), operators (C.16)–(C.19) do not involve

square roots of N3 (C.7). Note, it is the quantities g3, g(1)

3 (C.13) that enter square roots

of the N3.

Step 4. Realization on V (3). At this step, we fix dependence of V (2) (C.15) on the

momenta β1, β2, β3. To this end, we use the transformation

V (2) = UβV
(3) , Uβ = exp

(
− β̌1

2β1
m1ζ1∂B1 −

β̌2

2β2
m2ζ2∂B2 −

β̌3

2β3
κ3∂B3

)
. (C.20)

On vertex V (3) (C.20), operators Ga, Gβ (C.16)–(C.19) are realized as14

G1 =

(
B3+

1

2
κ3

)
∂α31−

(
B2−

1

2
m2ζ2

)
∂α12 +

1

2
m2

2∂B1 +m1∂ζ1 , (C.21)

G2 =

(
B1+

1

2
ζ1m1

)
∂α12−

(
B3−

1

2
κ3

)
∂α23−

1

2
m2

1∂B2 +m2∂ζ2 , (C.22)

G3 =

(
B2+

1

2
m2ζ2

)
∂α23−

(
B1−

1

2
m1ζ1

)
∂α31 +

1

2

(
m2

1−m2
2

)
∂B3

+
κ3

2N3+d−2

(
1−
(
B1+

3

2
m1ζ1

)
∂B3∂α31−

(
B2−

3

2
m2ζ2

)
∂B3∂α23

+2α12∂α31∂α23 +α11∂
2
α31

+α22∂
2
α23
− 1

2

(
m2

1+m2
2

)
∂2
B3

)
, (C.23)

Gβ =− 1

β
Nβ . (C.24)

We find then the following equations for the vertex V (3),∑
a=1,2,3

βa∂βaV
(3) = 0 , NβV (3) = 0 . (C.25)

Namely, the first equation in (C.25) is obtained from (3.60), while the second equation

in (C.25) is obtained by using (3.56) and (C.24). Equations (C.25) imply that the vertex

V (3) does not dependent of the momenta β1, β2, β3. Thus we have the following represen-

tation for the vertex V (3):

V (3) = V (3)(Ba, αaa+1 , ζ1, ζ2) . (C.26)

Step 5. Realization on V (4). We find it convenient to introduce a vertex V (4) by the

relations

V (3) = UζV
(4) , Uζ = exp

(
− m2

2

2m1
ζ1∂B1 +

m2
1

2m2
ζ2∂B2

)
. (C.27)

We note that the vertex V (4) depends on the same variables as vertex V (3) (C.26),

V (4) = V (4)(Ba, αaa+1 , ζ1, ζ2) . (C.28)

14To analyse equations like GaV = 0 we find it convenient to use equivalence classes for the operators

Ga. Namely, the operators Ga and (2Na + d− 2)Ga are considered to be equivalent.
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On the vertex V (4), realization of Ga (C.21)–(C.23) takes more convenient form given by

G1 =

(
B3+

1

2
κ3

)
∂α31−

(
B2−

m2
1+m2

2

2m2
ζ2

)
∂α12 +m1∂ζ1 , (C.29)

G2 =

(
B1+

m2
1+m2

2

2m1
ζ1

)
∂α12−

(
B3−

1

2
κ3

)
∂α23 +m2∂ζ2 , (C.30)

G3 =

(
B2+

m2
2−m2

1

2m2
ζ2

)
∂α23−

(
B1+

m2
2−m2

1

2m1
ζ1

)
∂α31 +

1

2

(
m2

1−m2
2

)
∂B3

+
κ3

2N3+d−2

(
1−
(
B1+

3m2
1+m2

2

2m1
ζ1

)
∂B3∂α31−

(
B2−

3m2
2+m2

1

2m2
ζ2

)
∂B3∂α23

+2α12∂α31∂α23 +α11∂
2
α31

+α22∂
2
α23
− 1

2
(m2

1+m2
2)∂2

B3

)
. (C.31)

Namely, as compared with (C.21), (C.22), the G1, G2 in (C.29), (C.30) are independent of

∂B1 , ∂B2 .

Step 6. Realization on V (5). At this step, we fix dependence of V (4) (C.28) on the

variables ζ1, ζ2. To this end, we use the transformation

V (4) = UBV
(5) ,

UB = exp

((
ζ1

m1
B2 −

ζ2

m2
B1 −

m2
1 +m2

2

2m1m2
ζ1ζ2

)
∂α12

− ζ1

m1

(
B3 +

1

2
κ3

)
∂α31 +

ζ2

m2

(
B3 −

1

2
κ3

)
∂α23

)
. (C.32)

On vertex V (5) (C.32), operators Ga, Gβ (C.29)–(C.31) are realized as

G1 = m1∂ζ1 , G2 = m2∂ζ2 , (C.33)

G3 = B2∂α23 −B1∂α31 +
1

2
(m2

1 −m2
2)∂B3

+
κ3

2N3 + d− 2

(
1−B1∂B3∂α31 −B2∂B3∂α23

+ 2α12∂α31∂α23 + (α11 + ζ2
1 )∂2

α31
+ (α22 + ζ2

2 )∂2
α23
− 1

2
(m2

1 +m2
2)∂2

B3

)
. (C.34)

Using (C.33) in (3.55) when a = 1, 2, we see that the vertex V (5) is independent of the

oscillators ζ1, ζ2,

V (5) = V (5)(Ba, αaa+1) . (C.35)

Thus all that remains is to solve the equation

G3V
(5) = 0 (C.36)

with G3 as in (C.34). Up to this point our treatment has been applied on an equal footing

to vertices for massive fields having the same masses (4.1) and for massive fields having

different masses (5.1). From now on, we separately consider eq. (C.36) for vertices (4.1)

and (5.1).
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Step 7. Case m1 = m2. Realization on V (5). We now cast operator G3 (C.34) and

eq. (C.36) into more convenient form. First, we set m1 = m2 = m in (C.34). Second, in

place of the B3, we use variable z3 (4.8). Third, we note that in view of constraint (2.17),

contribution to commutators (3.25) of (αaa+ζ2
a)-terms, a = 1, 2, appearing in (C.34) cancel

out. Therefore we drop down the just mentioned terms in G3 (C.34). Also we multiply

eq. (C.36) by the factor (2N3 + d − 2)/κ3. Doing so, and using notation in (4.8), (4.15)–

(4.19), we verify that equation for the V (5) takes the form as in (C.36) with the following

expression for G3:

G3 = 1− ∂2
z3 +X∂z3 + Y (Nz3 + ν3) + Z , Nz3 ≡ z3∂z3 . (C.37)

Step 8. Case m1 = m2. Realization on V (6) . Operator G3 (C.37) is a second-order

differential operator with respect to the variable z3. We now use the transformation

V (5) = Uz2V
(6) , Uz2 = exp

(
1

2
z3X +

1

4
z2

3Y

)
, (C.38)

and verify that, on the vertex V (6), operator G3 (C.37) is realized as

G3 = −∂2
z3 + Ω2

3 , (C.39)

where Ω2
3 is given in (4.18). Remarkable feature of G3 (C.39) is that operator Ω2

3 (4.18) is in-

dependent of the z3. Solution to equation for V (6) (4.31) can be presented as in (4.5), (4.6).

Step 7. Case m1 6= m2. Realization on V (5). Here we cast operator G3 (C.34) and

eq. (C.36) to more convenient form. First, in place of B3, we introduce variable z3 (5.8).

Second, we note that in view of (2.17), contribution to commutators (3.25) of (αaa + ζ2
a)-

terms, a = 1, 2 appearing in (C.34) cancel out. Therefore we drop down the just mentioned

terms in G3 (C.34). Also we multiply eq. (C.36) by overall factor (2N3 + d− 2)/κ3. Doing

so, and using notation in (5.9) and (5.18)–(5.21) we verify that equation for the V (5) takes

the form as in (C.36) with the following G3

G3 = 1− (Nz3 + ν3 + 1) ∂z3 +X∂z3 + (Nz3 + ν3 + 1)Y + Z . (C.40)

Step 8. Case m1 6= m2. Realization on V (6). Operator G3 (C.40) is a second-

order differential operator with respect to the variable z3. To simplify the G3, we use the

transformation

V (5) = Uz1V
(6) , Uz1 = e−X+z3Y , (C.41)

and verify that, on the vertex V (6), operator G3 (C.40) is realized as

G3 = 1− (Nz3 + ν3 + 1)∂z3 +W , W = Z +XY . (C.42)

Remarkable feature of G3 (C.42) is that operator W (C.42) is independent of the z3.

Therefore, as we demonstrate below, the equation G3V
(6) = 0 can be solved in terms of

the Bessel functions.
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Step 9. Case m1 6= m2. Realization on V (7). To get more convenient form for

G3 (C.42), we use the transformation

V (6) = UzνV
(7) , Uzν = z

−ν3/2
3 , (C.43)

and verify that, on the vertex V (7), operator G3 (C.42) is realized as

G3 = 1− (Nz3 + 1)∂z3 +
Ω2

3

4z3
, Ω2

3 = ν2
3 + 4W . (C.44)

Solution to equation G3V
(7) = 0 with G3 as in (C.44) can be expressed as

V (7) = IΩ3(
√

4z3)V ′ , KΩ3(
√

4z3)V ′ , V ′ = V ′(B1, B2, α12, α23, α31). (C.45)

where IΩ3 , KΩ3 are the modified Bessel functions. Operator ν3 (5.9) entering Ω2
3 (C.44) is

diagonal on vertex V ′ (C.45), while the operator Ω3 is not diagonal.

Step 10. Case m1 6= m2. Realization on V (8). Our aim is to diagonalize operator

Ω3 (C.44). To this end we use the transformation

V (7) = UWV
(8) UW =

∞∑
m=0

Γ(ν3 +m)

m!Γ(ν3 + 2m)
Wm . (C.46)

Using the relation (
ν2

3 + 4W
)
UW = UW ν

2
3 , (C.47)

we see that, on the vertex V (8), operator Ω2
3 (C.44) becomes diagonal and operator

G3 (C.44) takes the form

G3 = 1− (Nz3 + 1)∂z3 +
ν2

3

4z3
. (C.48)

Solutions to equation G3V
(8) = 0 with G3 as in (C.48) are given in (5.5)–(5.7). Thus we

see that the vertex p−[3] takes the form given in (5.2)–(5.21).

D Derivation of cubic vertex p−
[3]

(6.2)

In this appendix, we outline some details of the derivation of cubic vertex (6.2). We divide

our derivation in ten steps which we now discuss in turn.

Step 1. Realization on p−
[3]. First, we find realization of operators Ga,P2 , Gβ (3.54)

on vertex p−[3] (6.2). To this end we use J−i† (3.30) with the spin operators M i
a, a = 1, 2,

related to the continuous-spin massless fields (2.34)–(2.38), m = 0, and the spin operator

M i
a, a = 3, related to the arbitrary spin massive field (2.40). Doing so, we find that action

of J−i† (3.30) on p−[3] (6.2) can be cast into the form (3.54) with the following expressions
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for the Ga,P2 , Gβ :

Ga,P2 = Ga + P−
2β

β3
a

αia
gυa∂υa

2Na + d− 2
∂2
Ba , a = 1, 2; G3,P2 = G3 , (D.1)

G1 =

(
B3 −

β1

β3
m3ζ3

)
∂α31 −

(
B2∂α12 +

β1

β2
gυ2∂υ2

)
∂α12 −

1

2
m2

3∂B1 + υ1gυ1

+
gυ1∂υ1

2N1 + d− 2

(
2β2

β1
B2∂B1∂α12 +

2β3

β1
B3∂B1∂α31 + 2α23∂α12∂α31

+ α33∂
2
α31

+
β2m

2
3

β1
∂2
B1

)
, (D.2)

G2 =

(
B1 −

β2

β1
gυ1∂υ1

)
∂α12 −

(
B3 +

β2

β3
m3ζ3

)
∂α23 +

1

2
m2

3∂B2 + υ2gυ2

+
gυ2∂υ2

2N2 + d− 2

(
2β3

β2
B3∂B2∂α23 +

2β1

β2
B1∂B2∂α12 + 2α31∂α12∂α23

+ α33∂
2
α23

+
β1m

2
3

β2
∂2
B2

)
, (D.3)

G3 =

(
B2 −

β3

β2
gυ2∂υ2

)
∂α23 −

(
B1 +

β3

β1
gυ1∂υ1

)
∂α31 +

β̌3

2β3
m2

3∂B3 +m3∂ζ3 , (D.4)

Gβ = − 1

β
N− 1

β2
1

gυ1∂υ1∂B1 −
1

β2
2

gυ2∂υ2∂B2 −
1

β2
3

m3ζ3∂B3 , (D.5)

where gυ is given in (2.37), (2.38) for m = 0, while β̌a, Nβ are given in (3.34). The Ba,

αab, Na are defined in (A.4)–(A.6). Using (3.40), (3.54), and explicit form of operators

Ga,P2 , Gβ (D.1)–(D.5), we see that requiring the density |j−i[3] 〉 to respect equations (3.43)

amounts to the equations (3.55), (3.56).

Step 2. Realization on V (1). Here, we find dependence of p−[3] (6.3) on the oscillators

υ1 and υ2. To this end, we note that in view of constraint (2.11), vertex p−[3] (6.3) should

satisfy the constraints

(Nαa −Nυa)|p−[3]〉 = 0 , a = 1, 2. (D.6)

Introducing a vertex V (1) by the relations

p−[3] =Uυ1,υ2V
(1) , Uυ1,υ2 = υN1

1 υN2
2 , N1 =NB1 +Nα12 +Nα31 , N2 =NB2 +Nα12 +Nα23 ,

(D.7)

we verify that eqs. (D.6) imply that the vertex V (1) does not depend on the υ1, υ2, i.e.,

we get

V (1) = V (1)(βa, Ba, αaa+1 , ζ3) . (D.8)
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Using (D.7), we find that, on vertex V (1) (D.8), operators Ga, Gβ (D.2)–(D.5) are realized

as

G1 =

(
B3−

β1

β3
m3ζ3

)
∂α31−

(
B2+

β1

β2
g2(N2+1)

)
∂α12−

1

2
m2

3∂B1 +g1

+
g(1)

1 (N1+2)

2N1+d−2

(
2β2

β1
B2∂B1∂α12 +

2β3

β1
B3∂B1∂α31 +2α23∂α12∂α31

+α33∂
2
α31

+
β2m

2
3

β1
∂2
B1

)
, (D.9)

G2 =

(
B1−

β2

β1
g1 (N1+1)

)
∂α12−

(
B3+

β2

β3
m3ζ3

)
∂α23 +

1

2
m2

3∂B2 +g2

+
g(1)

2 (N2+2)

2N2+d−2

(
2β3

β2
B3∂B2∂α23 +

2β1

β2
B1∂B2∂α12 +2α31∂α12∂α23

+α33∂
2
α23

+
β1m

2
3

β2
∂2
B2

)
, (D.10)

G3 =

(
B2−

β3

β2
g2 (N2+1)

)
∂α23−

(
B1+

β3

β1
g1 (N1+1)

)
∂α31 +

β̌3

2β3
m2

3∂B3 +m3∂ζ3 , (D.11)

Gβ =− 1

β
N− 1

β2
1

g1 (N1+1)∂B1−
1

β2
2

g2 (N2+1)∂B2−
1

β2
3

m3ζ3∂B3 , (D.12)

g1≡ gυ1
∣∣
Nυ1→N1

, g2≡ gυ2
∣∣
Nυ2→N2

, g(1)

1 ≡ gυ1
∣∣
Nυ1→N1+1

, g(1)

2 ≡ gυ2
∣∣
Nυ2→N2+1

.

(D.13)

Step 3. Realization on V (2). We find it convenient to introduce a vertex V (2) by the

relations

V (1) = U1,2V
(2) , U1,2 =

(
2N1Γ(N1 + d−2

2 )

Γ(N1 + 1)

2N2Γ(N2 + d−2
2 )

Γ(N2 + 1)

)1/2

, (D.14)

V (2) = V (2)(βa, Ba, αaa+1 , ζ3) , (D.15)

where, in (D.15), we show that vertex V (2) depends on the same variables as vertex

V (1) (D.7). On the vertex V (2), realization of Ga, Gβ (D.9)–(D.12) takes more conve-

nient form given by

G1 =

(
B3 −

β1

β3
m3ζ3

)
∂α31 −

(
B2 +

β1

β2
κ2

)
∂α12 −

1

2
m2

3∂B1 +
1

κ1
g2

1 (N1 + 1)

+
κ1

2N1 + d− 2

(
2β2

β1
B2∂B1∂α12 +

2β3

β1
B3∂B1∂α31 + 2α23∂α12∂α31

+ α33∂
2
α31

+
β2m

2
3

β1
∂2
B1

)
, (D.16)

G2 =

(
B1 −

β2

β1
κ1

)
∂α12 −

(
B3 +

β2

β3
m3ζ3

)
∂α23 +

1

2
m2

3∂B2 +
1

κ2
g2

2 (N2 + 1)

+
κ2

2N2 + d− 2

(
2β3

β2
B3∂B2∂α23 +

2β1

β2
B1∂B2∂α12 + 2α31∂α12∂α23

+ α33∂
2
α23

+
β1m

2
3

β2
∂2
B2

)
, (D.17)
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G3 =

(
B2 −

β3

β2
κ2

)
∂α23 −

(
B1 +

β3

β1
κ1

)
∂α31 +

β̌3

2β3
m2

3∂B3 +m3∂ζ3 , (D.18)

Gβ = − 1

β
N− 1

β2
1

κ1∂B1 −
1

β2
2

κ2∂B2 −
1

β2
3

m3ζ3∂B3 . (D.19)

Namely, as compared with operators (D.9)–(D.12), operators (D.16)–(D.19) do not involve

square roots of the operators N1, N2 (D.7). Note, it is the quantities ga, g
(1)
a , a = 1, 2 (D.13)

that enter square roots of the N1, N2.

Step 4. Realization on V (3). At this step, we fix dependence of V (2) (D.15) on the

momenta β1, β2, β3. To this end, using notation in (3.17), we introduce the transformation

V (2) = UβV
(3) , Uβ = exp

(
− β̌1

2β1
κ1∂B1 −

β̌2

2β2
κ2∂B2 −

β̌3

2β3
m3ζ3∂B3

)
. (D.20)

On vertex V (3) (D.20), operators Ga, Gβ (D.16)–(D.19) are realized as

G1 =

(
B3+

1

2
m3ζ3

)
∂α31−

(
B2−

1

2
κ2

)
∂α12−

1

2
m2

3∂B1

+
κ1

2N1+d−2

(
1−
(
B2+

3

2
κ2

)
∂B1∂α12−

(
B3−

3

2
m3ζ3

)
∂B1∂α31 +2α23∂α12∂α31

+α33∂
2
α31
− 1

2
m2

3∂
2
B1

)
, (D.21)

G2 =

(
B1+

1

2
κ1

)
∂α12−

(
B3−

1

2
m3ζ3

)
∂α23 +

1

2
m2

3∂B2

+
κ2

2N2+d−2

(
1−
(
B3+

3

2
m3ζ3

)
∂B2∂α23−

(
B1−

3

2
κ1

)
∂B2∂α12 +2α31∂α12∂α23

+α33∂
2
α23
− 1

2
m2

3∂
2
B2

)
, (D.22)

G3 =

(
B2+

1

2
κ2

)
∂α23−

(
B1−

1

2
κ1

)
∂α31 +m3∂ζ3 , (D.23)

Gβ =− 1

β
N . (D.24)

We find then the following equations for the vertex V (3),∑
a=1,2,3

βa∂βaV
(3) = 0 , NβV (3) = 0 . (D.25)

The first equation in (D.25) is obtained from (3.60), while the second equation in (D.25) is

obtained by using (3.56) and (D.24). Equations (D.25) imply that the vertex V (3) (D.20)

is independent of the momenta β1, β2, β3. Thus, we have the following representation for

the V (3):

V (3) = V (3)(Ba, αaa+1 , ζ3) . (D.26)
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Step 5. Realization on V (4). At this step, we fix dependence of V (3) (D.26) on the

oscillator ζ3. To this end, we use the transformation

V (3) = UζV
(4) , Uζ = exp

(
ζ3

m3

(
B1 −

1

2
κ1

)
∂α31 −

ζ3

m3

(
B2 +

1

2
κ2

)
∂α23

)
. (D.27)

On vertex V (4) (D.27), operators Ga, Gβ (D.21)–(D.23) are realized as

G1 = B3∂α31 −
(
B2 −

1

2
κ2

)
∂α12 −

1

2
m2

3∂B1

+
κ1

2N1 + d− 2

(
1−

(
B2 +

3

2
κ2

)
∂B1∂α12 −B3∂B1∂α31 + 2α23∂α12∂α31

+ (α33 + ζ2
3 )∂2

α31
− 1

2
m2

3∂
2
B1

)
, (D.28)

G2 =

(
B1 +

1

2
κ1

)
∂α12 −B3∂α23 +

1

2
m2

3∂B2

+
κ2

2N2 + d− 2

(
1−B3∂B2∂α23 −

(
B1 −

3

2
κ1

)
∂B2∂α12 + 2α31∂α12∂α23

+ (α33 + ζ2
3 )∂2

α23
− 1

2
m2

3∂
2
B2

)
, (D.29)

G3 = m3∂ζ3 . (D.30)

Using (D.30) in (3.55) for a = 3, we see that the vertex V (4) is independent of the oscilla-

tor ζ3,

V (4) = V (4)(Ba, αaa+1) . (D.31)

Thus all that remains is to solve the equations

G1V
(4) = 0 , G2V

(4) = 0 , (D.32)

where G1, G2 take the form given in (D.28), (D.29).

Step 6. Realization on V (4). Here we cast G1, G2 (D.28), (D.29), and eq. (D.32)

to more convenient form. First, in place of B1, B2 (3.53), we introduce variables z1,

z2 (6.10), (6.11). Second, we note that in view of (2.17), contribution of (α33 + ζ2
3 )-

terms (D.28), (D.29) to commutators (3.25) cancel out. Therefore we drop down the just

mentioned terms in G1, G2 (D.28), (D.29). Also we multiply first and second equations

in (D.32) by the respective overall factors (2N1 + d− 2)/κ1 and (2N2 + d− 2)/κ2. Doing

so, and using notation in (6.10)–(6.13), we verify that equations for V (4) take the form as

in (D.32) with the following G1, G2:

G1 = 1− (Nz1 + ν1 + 1) ∂z1 +
2

κ1
(Nz1 + ν1 + 1)B3∂α31 −

2κ1

m2
3

B3∂z1∂α31

+ 2α23∂α12∂α31 +
2m2

3

κ1κ2
(Nz1 + ν1 + 1) z2∂α12 −

2κ1κ2

m2
3

∂z1∂α12 , (D.33)

G2 = 1− (Nz2 + ν2 + 1) ∂z2 −
2

κ2
(Nz2 + ν2 + 1)B3∂α23 +

2κ2

m2
3

B3∂z2∂α23

+ 2α31∂α12∂α23 +
2m2

3

κ1κ2
(Nz2 + ν2 + 1) z1∂α12 −

2κ1κ2

m2
3

∂z2∂α12 , (D.34)
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where Nza = za∂za . The G1, G2 (D.33), (D.34) are 2nd-order differential operators w.r.t.

z1, z2. Our next aim is to simplify operators G1, G2 (D.33), (D.34).

Step 7. Realization on V (5) . To simplify G1, G2, (D.33), (D.34), we use the

transformation

V (4) = Uz0V
(5) , Uz0 = exp

(
2κ1κ2

m2
3

∂α12 +
2κ1

m2
3

B3∂α31 −
2κ2

m2
3

B3∂α23

)
, (D.35)

and verify that, on the vertex V (5), operators G1, G2 (D.33), (D.34) are realized as

G1 = 1− (Nz1 + ν1 + 1) ∂z1 +
2

κ1
(Nz1 + ν1 + 1)B3∂α31 + 2α23∂α12∂α31

+
2m2

3

κ1κ2
(Nz1 + ν1 + 1) z2∂α12 − 4z2∂

2
α12
− 4

κ2
z2B3∂α12∂α31 −

4

m2
3

B2
3∂

2
α31

, (D.36)

G2 = 1− (Nz2 + ν2 + 1) ∂z2 +
2

κ2
(Nz2 + ν2 + 1)B3∂α23 + 2α31∂α12∂α23

+
2m2

3

κ1κ2
(Nz2 + ν2 + 1) z1∂α12 − 4z1∂

2
α12
− 4

κ1
z1B3∂α12∂α23 −

4

m2
3

B2
3∂

2
α23

. (D.37)

As compared with (D.33), (D.34), operatorsG1, G2 in (D.36), (D.37) do not involve ∂za∂α12-

terms and B3∂za∂αa3-terms, a = 1, 2.

Step 8. Realization on V (6). To get more simple form for G1,G2 (D.36), (D.37), we

use the transformation

V (5) = Uz2V
(6) , Uz2 = exp

(
2m2

3

κ1κ2
z1z2∂α12 +

2

κ1
z1B3∂α31 −

2

κ2
z2B3∂α23

)
, (D.38)

and verify that, on the vertex V (6), operators G1, G2 (D.36), (D.37) are realized as

G1 = 1− (Nz1 + ν1 + 1)∂z1 + 2α23∂α12∂α31 − 4z2∂
2
α12
− 4

m2
3

B2
3∂

2
α31

, (D.39)

G2 = 1− (Nz2 + ν2 + 1)∂z2 + 2α31∂α12∂α23 − 4z1∂
2
α12
− 4

m2
3

B2
3∂

2
α23

. (D.40)

As compared with (D.36), (D.37), operators (D.39), (D.40) do not involve Nza∂α12-terms,

a = 1, 2.

Step 9. Realization on V (7). In order to remove the dependence of the G1 on the

variable z2 (D.39) and the dependence of the G2 on the variable z1 (D.40) we use the

transformation

V (6) = UzνV
(7) , Uzν = z

−ν1/2
1 z

−ν2/2
2 , (D.41)

and verify that, on the vertex V (7), operators G1, G2 (D.39), (D.40) are realized as

G1 = 1− (Nz1 + 1)∂z1 +
Ω2

1

4z1
, Ω2

1 = ν2
1 + 4W1,0 + 4W1,1 , (D.42)

G2 = 1− (Nz2 + 1)∂z2 +
Ω2

2

4z2
, Ω2

2 = ν2
2 + 4W0,1 + 4W1,1 , (D.43)

where W1,0, W0,1, W1,1 are defined in (6.25)–(6.27).
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Step 10. Realization on V (8). Using commutators (6.33)–(6.39), we verify that Ω2
1,

Ω2
2 (D.42), (D.43) are commuting, [Ω2

1,Ω
2
2] = 0. We then find a transformation that casts

the Ω2
1, Ω2

2 into a diagonal form. Namely, we introduce the transformation

V (7) = UWV
(8) , (D.44)

where operator UW is defined in (6.22)–(6.27). Using the relations

Ω2
1UW = UW ν

2
1 , Ω2

2UW = UW ν
2
2 , (D.45)

we see that, on the vertex V (8), operators Ω2
1, Ω2

2 (D.42), (D.43) become diagonal, i.e., on

the vertex V (8), operators G1, G2 (D.42), (D.43) are realized as

G1 = 1− (Nz1 + 1)∂z1 +
ν2

1

4z1
, G2 = 1− (Nz2 + 1)∂z2 +

ν2
2

4z2
. (D.46)

Solutions to equations G1V
(8) = 0, G2V

(8) = 0 with G1, G2 as in (D.46), are given in (6.5)–

(6.8). Thus, we see that the vertex p−[3] takes the form given in (6.2)–(6.27).

E Analysis of equations to vertices for one continuous-spin massless field

and two massless fields

In this appendix, we prove that one continuous-spin massless field and two arbitrary spin

massless fields have no consistent cubic interaction vertices. We divide our proof into the

five steps.

Step 1. Realization on p−
[3]. Using the shortcut (0, κ)CSF for continuous-spin massless

field and the shortcut (0, s) for spin-s massless field we consider the cubic vertex for the

following three fields:

(0, s1)-(0, s2)-(0, κ3)CSF one continuous-spin massless field and two massless fields.

(E.1)

Our notation in (E.1) implies that spin-s1 and spin-s2 massless fields carry external line

indices a = 1, 2, while the continuous-spin massless field corresponds to a = 3. Using

notation in (3.53), we note that a general form of parity invariant vertex that respect

J ij-symmetries is given by

p−[3] = p−[3](βa, Ba , αaa+1 , υ3) . (E.2)

To find realization of Ga,P2 , Gβ (3.54) on p−[3] (E.2) we use J−i† (3.30), where operators

M i
a, a = 1, 2, for arbitrary spin massless fields are equal to zero, (2.41), while operator M i

a,

a = 3, for continuous-spin massless field can be read from (2.34)–(2.38) for m2 = 0. Doing

so, we find that action of J−i† (3.30) on p−[3] (E.2) can be cast into the form (3.54) with the
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following Ga,P2 , Gβ :

G1,P2 = G1 , G2,P2 = G2 , G3,P2 = G3 + P−
2β

β3
3

αi3
gυ3∂υ3

2N3 + d− 2
∂2
B3
, (E.3)

G1 =

(
B3 −

β1

β3
gυ3∂υ3

)
∂α31 −B2∂α12 , (E.4)

G2 = B1∂α12 −
(
B3 +

β2

β3
gυ3∂υ3

)
∂α23 , (E.5)

G3 = B2∂α23 −B1∂α31 + υ3gυ3

+
gυ3∂υ3

2N3 + d− 2

(
2β1

β3
B1∂B3∂α31 +

2β2

β3
B2∂B3∂α23 + 2α12∂α31∂α23

)
, (E.6)

Gβ = − 1

β
Nβ −

1

β2
3

gυ3∂υ3∂B3 , (E.7)

where gυ is given in (2.37), (2.38) for m = 0, while β̌a, Nβ are given in (3.34). The Ba,

αab, Na are defined in (A.4)–(A.6). Using (3.40), (3.54), and operators Ga,P2 , Gβ (E.3)–

(E.7), we see that requiring the density |j−i[3] 〉 to respect equations (3.43) amounts to the

eqs. (3.55), (3.56).

Step 2. Realization on V (1). At this step, we fix dependence of p−[3] (E.2) on the

oscillator υ3. To this end, we note that in view of constraint (2.11), vertex p−[3] (E.2) should

satisfy the constraint

(Nα3 −Nυ3)|p−[3]〉 = 0 . (E.8)

Introducing a vertex V (1) by the relations

p−[3] = Uυ3V
(1) , Uυ3 = υN3

3 , N3 ≡ NB3 +Nα31 +Nα23 , (E.9)

we obtain from eq. (E.8) that the vertex V (1) is independent of the oscillator υ3, i.e., we get

V (1) = V (1)(βa, Ba, αaa+1) . (E.10)

Using (E.9), we find that, on vertex V (1) (E.10), operators Ga, Gβ (E.4)–(E.7) are real-

ized as

G1 =

(
B3 −

β1

β3
g3 (N3 + 1)

)
∂α31 −B2∂α12 , (E.11)

G2 = B1∂α12 −
(
B3 +

β2

β3
g3 (N3 + 1)

)
∂α23 , (E.12)

G3 = B2∂α23 −B1∂α31 + g3

+
g(1)

3 (N3 + 2)

2N3 + d− 2

(
2β1

β3
B1∂B3∂α31 +

2β2

β3
B2∂B3∂α23 + 2α12∂α31∂α23

)
, (E.13)

Gβ = − 1

β
Nβ −

1

β2
3

g3 (N3 + 1) ∂B3 , (E.14)

g3 ≡ gυ3
∣∣
Nυ3→N3

, g(1)

3 ≡ gυ3
∣∣
Nυ3→N3+1

, (E.15)

where Nυ3 = υ3∂υ3 , N3 is defined in (E.9), while gυ is given by (2.37), (2.38) for m2 = 0.
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Step 3. Realization on V (2). We find it convenient to introduce a vertex V (2) by the

relations

V (1) = U3V
(2) , V (2) = V (2) (βa, Ba, αaa+1) , U3 =

(
2N3Γ(N3 + d−2

2 )

Γ(N3 + 1)

)1/2

. (E.16)

Note that vertex V (2) (E.16) depends on the same variables as vertex V (1) (E.10). On vertex

V (2) (E.16), realization of Ga, Gβ (E.11)–(E.14) takes more convenient form given by

G1 =

(
B3 −

β1

β3
κ3

)
∂α31 −B2∂α12 , (E.17)

G2 = B1∂α12 −
(
B3 +

β2

β3
κ3

)
∂α23 , (E.18)

G3 = B2∂α23 −B1∂α31 +
g2

3 (N3 + 1)

κ3

+
κ3

2N3 + d− 2

(
2β1

β3
B1∂B3∂α31 +

2β2

β3
B2∂B3∂α23 + 2α12∂α31∂α23

)
, (E.19)

Gβ = − 1

β
Nβ −

κ3

β2
3

∂B3 . (E.20)

Namely, as compared with operators (E.11)–(E.14), operators (E.17)–(E.20) do not involve

square roots of N3 (E.9). Note, it is the quantities g3, g(1)

3 (E.15) that enter square roots

of the N3.

Step 4. Realization on V (3). At this step, we remove the dependence of operators

Ga (E.17)–(E.19) on the momenta β1, β2, β3. To this end we use the transformation

V (2) = UβV
(3) , V (3) = V (3) (βa, Ba, αaa+1) , Uβ = exp

(
− β̌3

2β3
κ3∂B3

)
. (E.21)

On vertex V (3) (E.21), operators Ga, Gβ (E.17)–(E.20) are realized as

G1 =

(
B3+

1

2
κ3

)
∂α31−B2∂α12 , (E.22)

G2 =B1∂α12−
(
B3−

1

2
κ3

)
∂α23 , (E.23)

G3 =B2∂α23−B1∂α31 +
κ3

2N3+d−2
(1−B1∂B3∂α31−B2∂B3∂α23 +2α12∂α31∂α23) , (E.24)

Gβ =− 1

β
Nβ . (E.25)

Step 5. Realization on V (4). Solution to equations for vertex V (3) (E.21)

G1V
(3) = 0 , G2V

(3) = 0 , (E.26)

with G1, G2 as in (E.22), (E.23) is given by

V (3) = V (4)(Ba, Z) , (E.27)

Z = B3(B1α23 +B2α31 +B3α12) +
1

2
κ3(B1α23 −B2α31)− 1

4
κ2

3α12 . (E.28)
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Multiplying (E.24) by the factor (2N3 +d−2)/κ3, we verify that equation G3V
(3) = 0 with

G3 and V (3) as in (E.24), (E.27) amounts to the following equation for V (4) (E.27):

(
B1B2(2NZ + d− 4)∂Z + 1

)
V (4) = 0 . (E.29)

Solutions to eq. (E.29) are given by

V (4) = W
6−d
2 I d−6

2
(
√

4W )V (5) , V (4) = W
6−d
2 K d−6

2
(
√

4W )V (5) , (E.30)

V (5) = V (5)(Ba) , W = − Z

2B1B2
. (E.31)

Taking into account expression for Z (E.28), we see that a power series expansion of

vertices V (4) (E.30) in the B1, B2 involves negative powers of the B1, B2. Therefore

vertices (E.30) are not consistent. To summarize, in the flat space, there are no cubic

vertices describing consistent interaction of two arbitrary spin massless fields with one

continuous-spin massless field.

F Analysis of equations to vertices for two continuous-spin massless

fields and one massless field

In this appendix, we prove that two continuous-spin massless fields and one arbitrary

spin massless field have no consistent cubic interaction vertices. We divide our proof into

five steps.

Step 1. Realization on p−
[3]. Using the shortcut (0, κ)CSF for continuous-spin massless

field and the shortcut (0, s) for spin-s massless field we consider a cubic vertex for the

following fields

(0, κ1)CSF-(0, κ2)CSF-(0, s3) two continuous-spin massless fields and one massless field.

(F.1)

Our notation in (F.1) implies that continuous-spin massless fields carry external line indices

a = 1, 2, while the spin-s3 massless field corresponds to a = 3. Using notation in (3.53), we

note that a general form of parity invariant vertex that respect J ij-symmetries is given by

p−[3] = p−[3](βa, Ba , αaa+1 , υ1 , υ2) . (F.2)

To find realization of Ga,P2 , Gβ (3.54) on p−[3] (F.2) we use J−i† (3.30), where operators

M i
a, a = 1, 2 for continuous-spin massless fields can be read from (2.34)–(2.38) for m2 = 0,

while operator M i
a, a = 3, for arbitrary spin massless field is equal to zero (2.41). Doing

so, we find that action of J−i† (3.30) on p−[3] (F.2) can be cast into the form (3.54) with the
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following Ga,P2 , Gβ :

Ga,P2 = Ga + P−
2β

β3
a

αia
gυa∂υa

2Na + d− 2
∂2
Ba , a = 1, 2; G3,P2 = G3 , (F.3)

G1 = B3∂α31 −
(
B2∂α12 +

β1

β2
gυ2∂υ2

)
∂α12 + υ1gυ1

+
gυ1∂υ1

2N1 + d− 2

(
2β2

β1
B2∂B1∂α12 +

2β3

β1
B3∂B1∂α31 + 2α23∂α12∂α31

)
, (F.4)

G2 =

(
B1 −

β2

β1
gυ1∂υ1

)
∂α12 −B3∂α23 + υ2gυ2

+
gυ2∂υ2

2N2 + d− 2

(
2β3

β2
B3∂B2∂α23 +

2β1

β2
B1∂B2∂α12 + 2α31∂α12∂α23

)
, (F.5)

G3 =

(
B2 −

β3

β2
gυ2∂υ2

)
∂α23 −

(
B1 +

β3

β1
gυ1∂υ1

)
∂α31 , (F.6)

Gβ = − 1

β
N− 1

β2
1

gυ1∂υ1∂B1 −
1

β2
2

gυ2∂υ2∂B2 , (F.7)

where gυ is given in (2.37), (2.38) for m = 0, while β̌a, Nβ are given in (3.34). The Ba, αab,

Na are defined in (A.4)–(A.6). Using operators Ga,P2 , Gβ (F.3)–(F.7) in (3.40), (3.54),

we see that requiring the density |j−i[3] 〉 to respect equations (3.43) amounts to equa-

tions (3.55), (3.56).

Step 2. Realization on V (1). We find dependence of the vertex p−[3] on the oscillators

υ1 and υ2. To this end, we note that in view of constraint (2.11), vertex p−[3] (4.3) should

satisfy the constraints

(Nαa −Nυa)|p−[3]〉 = 0 , a = 1, 2. (F.8)

Introducing a vertex V (1) by the relations

p−[3] =Uυ1,υ2V
(1) , Uυ1,υ2 = υN1

1 υN2
2 , N1 =NB1 +Nα12 +Nα31 , N2 =NB2 +Nα12 +Nα23 ,

(F.9)

and using eqs. (F.8), we find that the vertex V (1) does not depend on the υ1, υ2, i.e., we get

V (1) = V (1)(βa, Ba, αaa+1) . (F.10)

Using (F.9), we find that, on vertex V (1) (F.10), operators Ga, Gβ (F.4)–(F.7) are real-

ized as

G1 = B3∂α31 −
(
B2 +

β1

β2
g2 (N2 + 1)

)
∂α12 + g1

+
g(1)

1 (N1 + 2)

2N1 + d− 2

(
2β2

β1
B2∂B1∂α12 +

2β3

β1
B3∂B1∂α31 + 2α23∂α12∂α31

)
, (F.11)

G2 =

(
B1 −

β2

β1
g1 (N1 + 1)

)
∂α12 −B3∂α23 + g2

+
g(1)

2 (N2 + 2)

2N2 + d− 2

(
2β3

β2
B3∂B2∂α23 +

2β1

β2
B1∂B2∂α12 + 2α31∂α12∂α23

)
, (F.12)

– 50 –



J
H
E
P
1
1
(
2
0
1
7
)
1
9
7

G3 =

(
B2 −

β3

β2
g2 (N2 + 1)

)
∂α23 −

(
B1 +

β3

β1
g1 (N1 + 1)

)
∂α31 , (F.13)

Gβ = − 1

β
N− 1

β2
1

g1 (N1 + 1) ∂B1 −
1

β2
2

g2 (N2 + 1) ∂B2 , (F.14)

g1 ≡ gυ1
∣∣
Nυ1→N1

, g2 ≡ gυ2
∣∣
Nυ2→N2

, g(1)

1 ≡ gυ1
∣∣
Nυ1→N1+1

, g(1)

2 ≡ gυ2
∣∣
Nυ2→N2+1

.

(F.15)

Step 3. Realization on V (2). We find it convenient to introduce a vertex V (2) by the

relations

V (1) = U1,2V
(2) , U1,2 =

(
2N1Γ

(
N1 + d−2

2

)
Γ (N1 + 1)

2N2Γ
(
N2 + d−2

2

)
Γ (N2 + 1)

)1/2

, (F.16)

V (2) = V (2)(βa, Ba, αaa+1) , (F.17)

where, in (F.17), we show that the vertex V (2) depends on the same variables as vertex

V (1) (F.10). On the vertex V (2), the realization of Ga, Gβ (F.11)–(F.14) takes more

convenient form given by

G1 = B3∂α31 −
(
B2 +

β1

β2
κ2

)
∂α12 +

1

κ1
g2

1 (N1 + 1)

+
κ1

2N1 + d− 2

(
2β2

β1
B2∂B1∂α12 +

2β3

β1
B3∂B1∂α31 + 2α23∂α12∂α31

)
, (F.18)

G2 =

(
B1 −

β2

β1
κ1

)
∂α12 −B3∂α23 +

1

κ2
g2

2 (N2 + 1)

+
κ2

2N2 + d− 2

(
2β3

β2
B3∂B2∂α23 +

2β1

β2
B1∂B2∂α12 + 2α31∂α12∂α23

)
, (F.19)

G3 =

(
B2 −

β3

β2
κ2

)
∂α23 −

(
B1 +

β3

β1
κ1

)
∂α31 , (F.20)

Gβ = − 1

β
N− 1

β2
1

κ1∂B1 −
1

β2
2

κ2∂B2 . (F.21)

Namely, as compared with operators (F.11)–(F.14), operators (F.18)–(F.21) do not involve

square roots of the operators N1, N2 (F.9). Note, it is the quantities ga, g
(1)
a , a = 1, 2 (F.15)

that enter square roots of the N1, N2.

Step 4. Realization on V
(2)
Zβ . We study dependence of V (2) (F.17) on the α23 and α31.

Namely, we note that solution to equation G3V
(2) = 0 with V (2), G3 as in (F.17), (F.20),

is given by

V (2) = V
(2)
Zβ (βa, Ba, α12, Z) , Z =

(
B1 +

β3

β1
κ1

)
α23 +

(
B2 −

β3

β2
κ2

)
α31 . (F.22)
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Using (F.22), we find that, on vertex V
(2)
Zβ (F.22), operators G1, G2 (F.18), (F.19) are

realized as

G1 = B3

(
B2 −

β3

β2
κ2

)
∂Z −

(
B2 +

β1

β2
κ2

)
∂α12

+
κ1

2N1Z + d− 2

(
1 +

2β2

β1
B2∂B1∂α12 +

2β3

β1
B3

(
B2 −

β3

β2
κ2

)
∂B1∂Z

)
, (F.23)

G2 =

(
B1 −

β2

β1
κ1

)
∂α12 −B3

(
B1 +

β3

β1
κ1

)
∂Z

+
κ2

2N2Z + d− 2

(
1 +

2β3

β2
B3

(
B1 +

β3

β1
κ1

)
∂B2∂Z +

2β1

β2
B1∂B2∂α12

)
, (F.24)

N1Z = NB1 +Nα12 +NZ , N2Z = NB2 +Nα12 +NZ . (F.25)

Step 5. Analysis of equations for V
(2)
Zβ . We now analyse equations for vertex

V
(2)
Zβ (F.22),

G1V
(2)
Zβ = 0 , G2V

(2)
Zβ = 0 , V

(2)
Zβ = V

(2)
Zβ (βa, Ba, α12, Z) , (F.26)

where G1, G2 are given in (F.23)–(F.25). As the vertex V
(2)
Zβ is considered to be expandable

in the B3 we use the following power series expansion:

V
(2)
Zβ =

∞∑
n=0

Vn , NB3Vn = nVn , Vn = Vn(βa, Ba, α12, Z) , (F.27)

where Vn is a degree-n monomial in B3. Equations (F.26) then imply

G1V0 = 0 , G2V0 = 0 , (F.28)

G1 = −
(
B2 +

β1

β2
κ2

)
∂α12 +

κ1

2N1Z + d− 2

(
1 +

2β2

β1
B2∂B1∂α12

)
, (F.29)

G2 =

(
B1 −

β2

β1
κ1

)
∂α12 +

κ2

2N2Z + d− 2

(
1 +

2β1

β2
B1∂B2∂α12

)
, (F.30)

where N1Z , N2Z are given in (F.25). As V0 is considered to be expandable in the B1, B2,

we use the following power series expansion in the B1, B2:

V0 =
∞∑
n=0

V̄n , (NB1 +NB2)V̄n = nV̄n , V̄n = V̄n(βa, B1, B2, α12, Z) . (F.31)

From (F.28)–(F.31), we get the following equations for the vertex V̄0:(
− (2N1Z + d− 2) ∂α12 +

κ1β2

κ2β1

)
V̄0 = 0 , (F.32)(

− (2N2Z + d− 2) ∂α12 +
κ2β1

κ1β2

)
V̄0 = 0 , (F.33)

where N1Z , N2Z are given in (F.25). Subtracting (F.33) from (F.32), we get the equation(
κ1β2

κ2β1
− κ2β1

κ1β2

)
V̄0 = 0 , (F.34)
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which implies

V̄0 = 0 . (F.35)

Using (F.35) in (F.28)–(F.31), we get the following equations for the vertex V̄1:(
− (2N1Z + d− 2) ∂α12 +

2κ1β
2
2

κ2β2
1

B2∂B1∂α12 +
κ1β2

κ2β1

)
V̄1 = 0 , (F.36)(

− (2N2Z + d− 2) ∂α12 +
2κ2β

2
1

κ1β2
2

B1∂B2∂α12 +
κ2β1

κ1β2

)
V̄1 = 0 , (F.37)

where N1Z , N2Z are given in (F.25). Subtracting (F.37) from (F.36), we get the equation(
(−2NB1 + 2NB2) ∂α12 +

2κ1β
2
2

κ2β2
1

B2∂B1∂α12 −
2κ2β

2
1

κ1β2
2

B1∂B2∂α12 +
κ1β2

κ2β1
− κ2β1

κ1β2

)
V̄1 = 0 .

(F.38)

Now, in place of the B1, B2, we introduce new variables B±,

B± =
β2

1

κ1
B1 ±

β2
2

κ2
B2 , (F.39)

and note that, in terms of the B±, equation (F.38) takes the form(
−4B−∂B+∂α12 +

κ1β2

κ2β1
− κ2β1

κ1β2

)
V̄1 = 0 . (F.40)

As the vertex V̄1 is a degree-1 homogeneous polynomial in the B+, B− (F.31), we use the

expansion

V̄1 = B+V̄1+ +B−V̄1− , (F.41)

and verify that eq. (F.40) amounts to the equations

− 4∂α12 V̄1+ +

(
κ1β2

κ2β1
− κ2β1

κ1β2

)
V̄1− = 0 ,

(
κ1β2

κ2β1
− κ2β1

κ1β2

)
V̄1+ = 0 . (F.42)

The 2nd equation in (F.42) implies V̄1+ = 0. Setting then V̄1+ = 0 in the 1st equation

in (F.42), we find V̄1− = 0, i.e., vertex V̄1 (F.41) is trivial,

V̄1 = 0 . (F.43)

Thus we have demonstrated that eqs. (F.28) and relations in (F.29)–(F.31) lead to V̄0 = 0

and V̄1 = 0. We now use the induction method. Suppose eqs. (F.28)–(F.31) lead to trivial

V̄k = 0 for k = 0, 1, . . . , n−1. Then we are going to prove that V̄n = 0. To this end we note

that if V̄k = 0, for k = 0, 1, . . . n− 1 then eqs. (F.28) and relations in (F.29)–(F.31) lead to

the equation for V̄n which is obtained by replacement V̄1 → V̄n in (F.36), (F.37). Therefore

repeating analysis we used above for the vertex V̄1, we obtain the following equation for

the vertex V̄n: (
−4B−∂B+∂α12 +

κ1β2

κ2β1
− κ2β1

κ1β2

)
V̄n = 0 . (F.44)
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By definition (F.31), the vertex V̄n is a degree-n homogeneous polynomial in variables

B± (F.39). Therefore, we can present the vertex V̄n as

V̄n =
n∑
k=0

Bk
+B

n−k
− V̄n,k , (F.45)

where V̄n,k are independent of the B±. Plugging (F.45) into (F.44), we verify that V̄n,k = 0

for all k = 0, 1, . . . n, i.e., V̄n = 0. Using the induction method, we conclude then that

V̄n = 0 for all n = 0, 1, . . .∞. In other words, V0 = 0 (F.31). Using the relation V0 = 0 and

applying the induction method to the vertices Vn in (F.27) we find therefore that Vn = 0 for

all n = 0, 1, . . . ,∞. Thus we conclude that V
(2)
Zβ = 0 (F.27). This implies that vertex (F.2)

is trivial, p−[3] = 0.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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