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Abstract: We evaluate the full time dependence of holographic complexity in various

eternal black hole backgrounds using both the complexity=action (CA) and the complex-

ity=volume (CV) conjectures. We conclude using the CV conjecture that the rate of

change of complexity is a monotonically increasing function of time, which saturates from

below to a positive constant in the late time limit. Using the CA conjecture for uncharged

black holes, the holographic complexity remains constant for an initial period, then briefly

decreases but quickly begins to increase. As observed previously, at late times, the rate

of growth of the complexity approaches a constant, which may be associated with Lloyd’s

bound on the rate of computation. However, we find that this late time limit is approached

from above, thus violating the bound. For either conjecture, we find that the late time

limit for the rate of change of complexity is saturated at times of the order of the in-

verse temperature. Adding a charge to the eternal black holes washes out the early time

behaviour, i.e. complexity immediately begins increasing with sufficient charge, but the

late time behaviour is essentially the same as in the neutral case. We also evaluate the

complexity of formation for charged black holes and find that it is divergent for extremal

black holes, implying that the states at finite chemical potential and zero temperature are

infinitely more complex than their finite temperature counterparts.
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1 Introduction

In recent years, surprising new connections have been developing between quantum infor-

mation and quantum gravity. The AdS/CFT correspondence allows us to quantitatively

study these connections in a holographic framework where certain geometric quantities in

the bulk spacetime can be related to the entanglement properties of the boundary field

theory. The Ryu-Takayanagi construction, which provides a geometrical realization of the

entanglement entropy of the boundary CFT, is the prime example of such a relation [1–4].

However, a new concept that has recently entered this discussion is quantum computational

complexity. In fact, two holographic proposals have been developed to describe the quan-

tum complexity of states in the boundary theory, namely, the complexity=volume (CV)

conjecture [5–7] and the complexity=action (CA) conjecture [8, 9].

In the holographic context, quantum complexity quantifies how hard it is to prepare a

particular state of interest, by applying a series of (simple) elementary gates to a (simple)

reference state, e.g., see [10, 11] for reviews. However, despite being relatively well under-

stood for spin-chains, only recently complexity models have been developed for quantum

field theories [12–14]. While only considering free scalars [12, 13], these calculations yield

striking similarities to the results produced with holographic complexity. In [14], the time

dependence of complexity in Abelian gauge theories was studied. Related investigations

attempting to better understand complexity from the perspective of the boundary theory

have also appeared in [15–20].

A prime arena for discussions of holographic complexity has been the eternal two-sided

black hole and this will also be the case in the present paper. This bulk geometry is dual

to the thermofield double state in the boundary theory [21],∣∣TFD(tL, tR)
〉
= Z−1/2

∑
α

e−Eα/(2T ) e−iEα(tL+tR)
∣∣Eα〉L∣∣Eα〉R , (1.1)

where L and R label the quantum states (and times) associated with the left and right

boundaries. Hence, we have an entangled state of two copies of the boundary CFT and this

entanglement is responsible for the geometric connection in the bulk, i.e.,the Einstein-Rosen

bridge [22, 23]. A puzzle was to understand the growth of the black hole interior in terms

of the boundary degrees of freedom. The conjectured holographic complexity appears to

provide an explanation [5], since a characteristic property of quantum complexity is that

it continues to grow for very long times after the system has thermalized [24]. In fact, the

complexity is conjectured to continue growing until a time scale which is exponential in

the number of degrees of freedom in the system [27]. In addition, complexity was proposed
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as a diagnostic of opacity of horizons, i.e.,the appearance of firewalls [25], in the context of

the AMPS paradox [26].

Turning to the bulk definitions proposed for holographic complexity, we have the fol-

lowing: the complexity=volume conjecture equates the complexity to the volume1 of the

extremal/maximal time slice anchored at boundary times tL and tR [5, 6],

CV = max

[
V(B)

GN `

]
, (1.2)

where ` is a certain length scale associated with the geometry (see figure 5). The com-

plexity=action conjecture instead equates the boundary complexity with the gravitational

action evaluated on a region of spacetime known as the Wheeler-DeWitt (WDW) patch,

i.e.,the region bounded by the null surfaces anchored at the relevant times on the left and

right boundaries (see, e.g., figure 1)

CA =
IWDW

π~
. (1.3)

One might also regard the WDW patch as the domain of dependence of the maximal time

slice appearing in the CV conjecture. However, one should keep in mind that there are also

certain ambiguities in defining the contributions of the null boundaries to the gravitational

action IWDW [29]. Various features of these two holographic quantities have been studied

— e.g., see [5, 6, 8, 9, 30–33]. While eqs. (1.2) and (1.3) do not yield the same results

quantitatively for the complexity, they still agree at a qualitative level. Therefore it may

be that the differences of these bulk quantities are related to differences in the microscopic

definition of complexity in the boundary theory, e.g., in the choice of elementary gates [30].

One striking result found with the CA proposal is that the late time growth rate is

proportional to 2M/π, independent of the boundary curvature and the spacetime dimen-

sion [8, 9]. Further it was suggested that this saturation of the growth rate is related to

Lloyd’s bound on the rate of computation by a system with energy M [34]. Using the CV

conjecture, the late time growth rate of the complexity also saturates, but this final rate

is only proportional to the mass at high temperatures and with a coefficient that depends

on the spacetime dimension [6, 30]. Despite extensive discussions of this late time limit for

the time dependence of the holographic complexity, the question of its full time evolution

and in particular the rate of change at early times has not been thoroughly investigated.2

Therefore, in the present paper, we study the full time evolution of holographic complexity,

for both the CV and the CA proposals, in static two-sided eternal black holes. We con-

sider black holes in various dimensions and with spherical, planar and hyperbolical horizon

geometries. We also investigate the properties of complexity for charged black holes (for

d ≥ 3, where d is the spacetime dimension of the boundary theory). The full time profile

in all cases except d = 2 requires some numerical treatment. We are, however, able to

identify certain general features.

1This extremal volume was also argued to be dual to the quantum information metric, when comparing

two vacuum states of boundary theories which differ by a marginal deformation [28].
2However, see [28] and section 8 of [9]
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For the CA proposal (and in d ≥ 3), we find that the complexity remains unchanged

for some critical time, which is of the order of the thermal scale. Immediately after this

time, the rate of change of the complexity is negatively divergent and we observe a short

transient period during which the complexity is decreasing. At late times, the rate of

change in complexity approaches a constant, previously understood to be associated with

Lloyd’s bound on the rate of computation. However we observe a violation of this late time

bound since the rate approaches the late time limit from above.3 We also comment on the

role of the arbitrary length scale in the boundary theory associated with the holographic

normalization of null-normals and its influence on the rate of change of complexity. For

the CV proposal, the rate of change of complexity is a monotonically increasing function

of time, and it saturates to a constant at late times. While at high temperatures this late

time rate is proportional to the mass, the precise value depends on the boundary curvature

for spherical and hyperbolic horizons at finite temperatures. For either conjecture, we find

that the rate of change of complexity approaches its late time limit with an exponential

decay where the characteristic time scale is proportional to the inverse temperature. For

both conjectures (and in d ≥ 3), we also examined the rate of change of complexity for

charged black holes, as well as their complexity of formation. In either case, we find that

the holographic complexity smoothly approaches to that of the neutral black holes in the

limit of zero charge. With the CA approach, adding a charge washes out the curious early

time behaviour, i.e.,complexity immediately begins increasing with sufficient charge, but

the late time violation is essentially the same as in the neutral case. Further, the complexity

of formation for charged extremal black holes is divergent in either case, implying that the

holographic states at finite chemical potential and zero temperature are infinitely more

complex than their finite temperature counterparts.

The remainder of our paper is organized as follows: in section 2, we investigate the

full time evolution of complexity for the thermofield double state (1.1), dual to an eternal

AdS black hole, using the CA conjecture. We consider different boundary geometries and

different dimensions, and investigate how the holographic complexity approaches the late

time limit. In section 3, we study the time evolution of complexity using the CV conjecture.

We consider various geometries and dimensions, and prove that it approaches its late time

limit from below. In section 4, we analyze Reissner-Nordstrom AdS charged black holes,

their complexity of formation and how they violate a proposed generalization of Lloyd’s

bound. Finally, we discuss some implications of our results, as well as possible future

directions, in section 5. We relegate certain details of the calculations to the appendices.

In appendix A, we present additional details for the action calculation for BTZ black holes.

Extra examples of the time dependence of complexity for uncharged black holes in d = 3

using the CA conjecture and for spherical and hyperbolic geometries in d = 3 and d = 4

using the CV conjecture are presented in appendix B. We present a late time expansion

of the uncharged CV results in appendix C. In appendix D, we show the details of the

calculation of the complexity of formation for charged black holes, both using the CA and

3Earlier works have investigated possible violations of Lloyd’s bound in the context of Reissner-

Nordstrom black holes [9, 35, 36]. In this work we find a generic violation of this bound appearing even for

uncharged AdS-Schwarzschild black holes.
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CV proposals. In appendix E, we discuss the influence of ambiguities associated with the

presence of null boundaries on the CA proposal results.

2 Complexity=Action

In this section, we study the time evolution of holographic complexity using the complex-

ity=action (CA) conjecture [8, 9] for (neutral) eternal AdS black holes in d+1 dimensions.

The proposed translation between the boundary and the bulk theories states that the quan-

tum complexity of the boundary state is given by the gravitational action evaluated on a

bulk region known as the Wheeler-DeWitt (WDW) patch, as in eq. (1.3). Our conventions

and notation here follow those established in [30]. The (neutral) black hole metric for

different horizon geometries reads

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dΣ2

k,d−1 , (2.1)

with the blackening factor

f(r) =
r2

L2
+ k − ωd−2

rd−2
. (2.2)

Here L denotes the AdS curvature scale while k indicates the curvature of the (d–

1)-dimensional line element dΣ2
k,d−1. The parameter k assumes three different values,

{+1, 0,−1}, which correspond to spherical, planar, and hyperbolic horizon geometries, re-

spectively. In the expressions below, we will use Ωk,d−1 to denote the dimensionless volume

of the relevant spatial geometry. For k = 1, this is just the volume of a (d–1)-dimensional

unit sphere, i.e.,Ω1,d−1 = 2πd/2/Γ (d/2), while for hyperbolic and planar geometries, we

must introduce an infrared regulator to produce a finite volume (e.g., see eq. (2.3) in [30]).

The relation between the position of the horizon rh and the ‘mass’ parameter ω

is [37, 38]

ωd−2 = rd−2
h

(
r2
h

L2
+ k

)
, (2.3)

which is then related to the mass of the black hole with

M =
(d− 1) Ωk,d−1

16πGN
ωd−2 . (2.4)

We will also use the temperature and entropy of the black hole given by

S =
Ωk,d−1

4GN
rd−1
h , T =

1

4π

∂f

∂r

∣∣∣∣
r=rh

=
1

4π rh

(
d
r2
h

L2
+ (d− 2) k

)
. (2.5)

To describe the null sheets bounding the WDW patch, it is convenient to define the

tortoise coordinate, and its asymptotic value:

r∗(r) =

∫
dr

f(r)
, r∗∞ = lim

r→∞
r∗(r) . (2.6)

We then define the Eddington-Finkelstein coordinates, u and v, describing out- and in-going

null rays, respectively,

v = t+ r∗(r) , u = t− r∗(r) . (2.7)
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Figure 1. Penrose diagram of the WDW patch of an eternal AdS black hole, moving forward in

time in a symmetric way (tL = tR).

2.1 Evaluating the action

The causal structure of the black holes described by the metric (2.1) is illustrated by

the Penrose diagram in figure 1.4 We are considering the holographic complexity of the

boundary state on the constant time slices, denoted by tL and tR, on the two asymptotic

boundaries. The corresponding WDW patch (also depicted in figure 1) is then bounded by

the light sheets sent from these two asymptotic time slices. We will be interested in the time

dependence of the complexity and therefore in the time dependence of the gravitational

action evaluated on this patch as the boundary time increases.5 The result depends only

on t = tL + tR and not on each of the boundary times separately due to the invariance

of the system under boosts in Kruskal coordinates, i.e.,under shifts tL → tL + ∆t and

tR → tR −∆t. In terms of the boundary theory, this corresponds to the invariance of the

thermofield double state (1.1) under an evolution with the Hamiltonian H = HL−HR. In

any event, we can therefore deduce the rate of change of the holographic complexity for

a general choice of time slices from the result for the symmetric configuration with times

tL = tR ≡ t/2.

For our calculations, there are two different regimes to be considered with respect to

the position of the WDW patch. The first, illustrated in the left panel of figure 1, is when

the WDW patch is in contact with the past singularity. In the second regime, shown in the

right panel, the past light sheets from the left and right boundaries intersect before hitting

the past singularity. The critical time tc separating the two regimes is easily found to be

tc = 2(r∗∞ − r∗(0)) , (2.8)

for the symmetric scenario (i.e.,tL = tR = t/2). Generally, we can only find closed form

expression for tc in specific dimensions. However, for planar black holes (i.e.,k = 0 in

4Small hyperbolic black holes are an exception since their causal structure resembles that of charged

black holes. We will comment on this case at the end of appendix D, where we discuss further properties

of charged black holes.
5The geometry is symmetric under t → −t and we only consider the behaviour of the complexity for

t > 0. We briefly comment on the decrease of the complexity found for t < 0 in section 2.2.1.
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eq. (2.2)), the solution can be written in a closed form for any d as:

tc =
2π

d

L2

rh
cot

(
π

d

)
=

1

2T
cot

(
π

d

)
, (2.9)

where T = d rh/(4πL
2) is the boundary temperature (2.5) in this case.

In the following, we evaluate the various contributions to the gravitational action for

both the 0 < t < tc and t > tc regimes. We use these results to compute the rate of change

of the holographic complexity using eq. (1.3). In fact, we will find that the action does not

change in the initial time period, 0 ≤ t ≤ tc, while it does change as t changes for t > tc.

The gravitational action can be written as follows [29]:

I =
1

16πGN

∫
M
dd+1x

√
−g
(
R+

d(d− 1)

L2

)
+

1

8πGN

∫
B
ddx
√
|h|K +

1

8πGN

∫
Σ
dd−1x

√
ση

− 1

8πGN

∫
B′
dλ dd−1θ

√
γκ+

1

8πGN

∫
Σ′
dd−1x

√
σa .

(2.10)

The first line contains the standard Einstein-Hilbert action including the Ricci scalar R and

the cosmological constant Λ = −d(d− 1)/(2L2). The second line begins with the Gibbons-

Hawking-York (GHY) surface term [39, 40] for smooth timelike and spacelike segments

of the boundary, which is defined in terms of the trace of the extrinsic curvature K. In

the second contribution there are the Hayward joint terms [41, 42], which appear at the

intersection of two such boundary segments and which are defined in terms of the “boost

angle” η between the corresponding normal vectors. The last line contains the additional

terms which are required when the boundary includes null segments [29].6 First of these is

the surface term for the null segments defined in terms of the κ, which measures the failure

of the null generators to be affinely parametrized. Secondly, there are the joint terms at

the intersection of these null boundary segments with any other boundary segment, where

a relates the normals on the intersecting segments. We follow the conventions of appendix

A of [31] and the precise definition of all of the boundary terms can be found there.

Let us recall that there are certain ambiguities associated with the null surface and

joint contributions [29]. In the following, we adopt the natural conventions presented in

the discussion of [29]. In particular, we choose the normals to the null boundary segments

to be affinely parameterized. This sets κ = 0 and hence we do not have to consider

the corresponding boundary terms for the null segments in eq. (2.10). We also fix the

conventions for a so that the action is additive — see [29] or appendix A of [31]. Finally,

we are left with a freedom to rescale each of the null normals ki by an overall constant.

We fix this ambiguity by setting ki · t̂ = ±α at the asymptotic boundary, where t̂ = ∂t is

the time-like vector describing the time flow in the boundary theory and α is some positive

constant. If we assume that t̂ is future directed on all boundaries, then the + and − sign

is chosen here for the future and past null boundaries of the WDW patch, respectively.

We will see that different choices of the normalization constant α will modify subleading

6See also [43–46] for other developments on the action with null boundaries and corners.
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contributions to dCA/dt in a late time expansion in the following. More generally, we also

comment on how making different choices to fix these ambiguities might effect our results

for the time rate of change of the holographic complexity in appendix E.

Finally, we observe that the action of the WDW patch is divergent because this space-

time region extends all the way to the asymptotic AdS boundary and so we regulate the

calculation of the complexity in the standard way (e.g., see [38, 47, 48]) by introducing a

cutoff surface at r = rmax. In general, a potential subtlety is choosing the cutoff surface

in a consistent way to allow for the comparison of WDW actions evaluated in different

spacetimes. However, as described in [30], one can describe the different geometries in a

canonical way using the Fefferman-Graham expansion and then we set the radial cutoff

surface at z = δ. As usual, δ plays the role of a short-distance cutoff in the dual boundary

theory. This highlights the fact that the divergence in the action is a UV divergence in

the holographic complexity related to establishing correlations in the boundary CFT down

to the cutoff scale [30, 31]. Further, we note that in the present calculations, this UV

divergence will be independent of time and so it does not influence the time rate of change

of the holographic complexity. We will also need to introduce a regulator surface at r = ε0
near the past and future singularities.

2.1.1 Initial times: t < tc

For times before tc, the action (2.10) contains three nonvanishing contributions: the bulk

contribution; the GHY surface contributions from the regulator surfaces at the past and

future singularities, as well as from the UV cutoff surfaces; and the null joint terms where

the null boundaries of the WDW patches intersect the regulator surfaces at the past and

future singularities, as well as the intersections with the UV cutoff surface. We will evaluate

all these contributions in turn and demonstrate that the total action is independent of time

in the interval tc ≥ t (≥ −tc).7 Due to the symmetry of the configuration that we have

chosen, we can evaluate the contributions for the right side of the Penrose diagram (in the

left panel of figure 1) and then simply multiply the result by a factor of two.

Bulk contribution: we divide the WDW patch into three regions: I, the region behind

the future horizon; II, the region outside both horizons; and III, the regions behind the

past horizon — see figure 1. The corresponding bulk contributions to the action read:

II
bulk = −

dΩk,d−1

8πGNL2

∫ rh

ε0

rd−1

(
t

2
+ r∗∞ − r∗(r)

)
dr

III
bulk = −

dΩk,d−1

4πGNL2

∫ rmax

rh

rd−1
(
r∗∞ − r∗(r)

)
dr

IIII
bulk = −

dΩk,d−1

8πGNL2

∫ rh

ε0

rd−1

(
− t

2
+ r∗∞ − r∗(r)

)
dr

(2.11)

where rmax is a UV cutoff. Summing these three contributions, we are left with:

I0
bulk = −

dΩk,d−1

2πGNL2

∫ rmax

ε0

rd−1(r∗∞ − r∗(r))dr , (2.12)

7See comment about negative times around eq. (2.44).
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where an extra factor of two was included to account for the two sides of the Penrose

diagram in figure 1. We see that the time dependences in II
bulk and IIII

bulk precisely cancel

and hence the total bulk contribution is time independent.

GHY surface contributions: there are three different GHY surface contributions to be

considered: those coming from the regulator surfaces at the future and past singularities,

and the surface contribution at the UV cutoff surface.8 We use the following (outward-

directed unit) normal vectors to evaluate the corresponding extrinsic curvatures

r = rmax : s = sµdx
µ =

dr√
f(rmax)

(2.13)

r = ε0 : t = tµdx
µ = − dr√

−f(ε0)

where the second normal applies for both regulator surfaces next to the past and future

singularities. For a constant r surface in the metric (2.1), the trace of the extrinsic curvature

is given by

K =
nr
2

(
∂rf(r) +

2(d− 1)

r
f(r)

)
, (2.14)

and as a result, we obtain

I future
surf = −

rd−1Ωk,d−1

8πGN

(
∂rf(r) +

2(d− 1)

r
f(r)

)(
t

2
+ r∗∞ − r∗(r)

)∣∣∣∣
r=ε0

,

Ipast
surf = −

rd−1Ωk,d−1

8πGN

(
∂rf(r) +

2(d− 1)

r
f(r)

)(
− t

2
+ r∗∞ − r∗(r)

)∣∣∣∣
r=ε0

,

Icutoff
surf =

rd−1Ωk,d−1

8πGN

(
∂rf(r) +

2(d− 1)

r
f(r)

)
(r∗∞ − r∗(r))

∣∣∣∣
r=rmax

.

(2.15)

We see that the surface contribution Icutoff
surf at the UV cutoff surface is independent of

time. Further we note that this contribution is identical in the regime t > tc. Therefore,

the UV surface terms do not contribute to the time dependence of holographic complexity

and we will ignore them both here and in the next section. For t < tc, we see that the

time dependence of the GHY surface contributions from the past and future singularities

precisely cancels leaving:

I0
surf, sing = −

rd−1Ωk,d−1

4πGN

(
∂rf(r) +

2(d− 1)

r
f(r)

)
(r∗∞ − r∗(r))

∣∣∣∣
r=ε0

. (2.16)

We note again that this contribution is independent of time for all t < tc.

Null joint contributions: there are a number of null joint contributions to be con-

sidered. In particular, we have the joint contributions at the intersections of the null

boundaries of the WDW patch with the regulator surfaces at the past and future singu-

larities and those at their intersections with the UV cutoff surface. These contributions

8Recall that we chose the null normals to be affinely parametrized and hence the null surface contributions

vanish, i.e.,κ = 0.

– 9 –



J
H
E
P
1
1
(
2
0
1
7
)
1
8
8

were carefully evaluated in [30] — see eqs. (2.34) and (2.35) of the reference — and they

are not modified in the present case. However, two key observations are that the null

joint contributions at the singularities vanish, while those at the UV cutoff surface have

no time dependence. Hence neither of these terms contribute to the time rate of change of

holographic complexity.

Total action: hence as our calculations above demonstrate, the total gravitational action

of the WDW patch is independent of time for the initial time period t < tc. If we denote

its value by I0,9 then in this early time interval, we have

0 ≤ t ≤ tc :
dCA
dt

=
1

π

dI0

dt
= 0 . (2.17)

2.1.2 Later times: t > tc

For times t > tc, the same three sets of terms make nonvanishing contributions to the

action of the WDW patch, i.e.,the bulk term, the GHY surface terms and the null joint

terms, and so we again evaluate each of these contributions in turn. We again use the

symmetry of the configuration to only explicitly evaluate the contributions for the right

side of the Penrose diagram (in the right panel of figure 1) and then simply multiply the

result by a factor of two.

Bulk contribution: as before, we split the WDW patch into three regions which we

denote as I, II and III — see figure 1. The corresponding bulk contributions to the gravi-

tational action become:

II
bulk = −

dΩk,d−1

8πGNL2

∫ rh

0
rd−1

(
t

2
+ r∗∞ − r∗(r)

)
dr

III
bulk = −

dΩk,d−1

8πGNL2

∫ rmax

rh

rd−1 2
(
r∗∞ − r∗(r)

)
dr

IIII
bulk = −

dΩk,d−1

8πGNL2

∫ rh

rm

rd−1

(
− t

2
+ r∗∞ − r∗(r)

)
dr

(2.18)

where rm is the radius behind the past horizon where the null boundary sheets from the

left and right boundaries intersect. This position is determined by the following equation:

t

2
− r∗∞ + r∗(rm) = 0 . (2.19)

Generally, this is a transcendental equation and we can only determine rm numerically.

Combining the above results, we obtain the total bulk contribution

Ibulk = I0
bulk −

dΩk,d−1

4πGNL2

∫ rm

0
rd−1

(
t

2
− r∗∞ + r∗(r)

)
dr , (2.20)

where we have again included a factor of two to account for the equal contributions coming

from the two sides of the WDW patch shown in figure 1. We have also introduced I0
bulk,

which was defined in eq. (2.12) and which is time independent.

9Note that I0 = IWDW(tL = tR = 0) and so this result is identical to the action evaluated in [30]. In

particular, the complexity of formation of the thermofield double state in the boundary is given by I0 minus

twice the corresponding action of the WDW patch in vacuum AdS.
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GHY surface contributions: for t > tc, the WDW patch does not reach the past

singularity and so only the regulator surface at the future singularity contributes here.

The expression takes the same form as in eq. (2.15) and as a result we obtain

I future
surf = −

f(r)rd−1Ωk,d−1

8πGN

(
∂rf(r)

f(r)
+

2(d− 1)

r

)(
t

2
+ r∗∞ − r∗(r)

)∣∣∣∣
r=ε0

. (2.21)

We also have the GHY contribution from the UV cutoff surface as in eq. (2.15). However,

this contribution is time independent and so we ignore it here.

Using eq. (2.16), the above expression can be rewritten as follows

Isurf = I0
surf, sing −

rd−1Ωk,d−1

8πGN

(
∂rf(r) +

2(d− 1)

r
f(r)

)(
t

2
− r∗∞ + r∗(r)

)∣∣∣∣
r=ε0

. (2.22)

The difference Isurf − I0
surf, sing encodes the change in the GHY contribution to the holo-

graphic complexity after t = tc.

Null joint contribution: there are null joint contributions from the intersection of

the null boundaries with the regulator surface at the future singularity and with the UV

cutoff surface. However, as in the previous section, the former vanish while the latter

are independent of time. Therefore neither of these contribute to dCA/dt. The last joint

contribution to consider when t > tc is that from the intersection of the two past null

boundaries at r = rm. To evaluate this term, we use the following outward-directed null

normal vectors:

Right : kR = −αdt+ α
dr

f(r)
; Left : kL = αdt+ α

dr

f(r)
. (2.23)

Here we have assumed that the Killing vector ∂t describes a flow from right to left for the

region behind the past horizon in figure 1. The joint term can then be evaluated as

Ijnt = −Ωd−1r
d−1
m

8πGN
log
|f(rm)|
α2

, (2.24)

This term depends on t through the implicit time dependence of rm, as determined by

eq. (2.19). We would like to stress that this contribution is sensitive to the ambiguities

discussed in [29], i.e.,through its dependence on the normalization constant α. We discuss

this issue further in appendix E.

Total action: the total action for t > tc is given by the sum of eqs. (2.20), (2.22)

and (2.24) plus some time independent contributions from the UV cutoff surfaces and

the null junctions. It is sometimes convenient to express our various contributions in

terms of δt = t − tc. As a consequence, the equation for the position rm of the past null

junction becomes
δt

2
+ r∗(rm)− r∗(0) = 0 . (2.25)

The total gravitational action can then be expressed as

I = I0 + δI with δI = δIbulk + δIsurf + Ijnt. (2.26)
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where

δIbulk ≡ Ibulk − I0
bulk = −

dΩk,d−1

4πGNL2

∫ rm

0
drrd−1

(
δt

2
+ r∗(r)− r∗(0)

)
, (2.27)

δIsurf ≡ Isurf − I0
surf = −

rd−1Ωk,d−1

8πGN

(
∂rf(r) +

2(d− 1)

r
f(r)

)
δt

2

∣∣∣∣
r=ε0

, (2.28)

Ijnt = − Ωd−1r
d−1
m

8πGN
log
|f(rm)|
α2

. (2.29)

We note that δI is finite, i.e.,independent of the UV cutoff δ. Further it vanishes in the

limit δt → 0, which can be seen by explicitly substituting the blackening factor (2.2) into

eqs. (2.27)–(2.29). However, we will show below that the rate of change of the holographic

complexity is discontinuous at t = tc.

2.2 Time dependence of complexity

Here we examine the time dependence of the holographic complexity. As we already noted

above in eq. (2.17), initially, we have

0 ≤ t ≤ tc :
dCA
dt

=
1

π

dI0

dt
= 0 , (2.30)

where tc was defined in eq. (2.8).

For later times t > tc, we obtain the time derivative of complexity by differentiating

eqs. (2.25)–(2.29) with respect to time. From eq. (2.25), we find the time dependence of

the meeting point rm to be
drm
dt

= −f(rm)

2
. (2.31)

Differentiating eq. (2.27) yields

dIbulk

dt
=
d δIbulk

dt
= −

Ωk,d−1

8πGNL2
rdm , (2.32)

where in obtaining this result, we used eq. (2.25) to demonstrate that the contribution

coming from differentiating the upper limit of integration vanishes. Evaluating the GHY

surface term (2.28) at r = ε0 and then taking the ε0 → 0 limit yields

dIsurf

dt
=
d δIsurf

dt
=
ωd−2dΩk,d−1

16πGN
. (2.33)

Finally, differentiating the null joint term (2.29) gives

dIjnt

dt
=

Ωk,d−1r
d−2
m

16πGN

[
(d− 1)f(rm) log

|f(rm)|
α2

+ rm∂rf(rm)

]
. (2.34)

where we have used eq. (2.31). Using the explicit form of the blackening factor (2.2)

and summing the three terms above, eq. (1.3) yields the rate of growth of holographic

complexity as

t > tc :
dCA
dt

=
1

π

(
2M +

Ωk,d−1(d− 1)rd−2
m

16πGN
f(rm) log

|f(rm)|
α2

)
. (2.35)
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Of course, this result reproduces the expected rate of growth at late times [8, 9],

i.e.,dCA/dt = 2M/π, since in this limit rm approaches rh and so the second term on

the right vanishes with f(rm → rh)→ 0−. We provide further comments on the properties

of our result (2.35) below.

2.2.1 Comments

As already noted above, this result (2.35) reproduces the expected rate of growth at late

times since in this limit rm approaches rh and so f(rm → rh)→ 0−. We also note that at

late times with rm approaching rh from below, f(rm) is small and negative and therefore

the correction to dCA/dt = 2M/π in eq. (2.35) is positive! That is, dCA/dt approaches the

late time limit from above. Recall that [8, 9] suggested that the late time limit of dCA/dt
may be related to Lloyd’s bound 2M/π for the rate of computation for a system of energy

M [34]. Therefore we see here a (small) violation of Lloyd’s bound in the eternal black hole.

Late time expansion: to get a better understanding of the late time behaviour, it is

possible to solve the equation for rm in a late time expansion. We do this by defining the

regular part of the blackening factor F (r):

f(r) ≡ F (r)(r − rh) (2.36)

and decomposing the inverse blackening factor as

1

f(r)
=

1

F (rh) (r − rh)
+

F (rh)− F (r)

F (rh)F (r) (r − rh)
. (2.37)

This leads to the following form of the tortoise coordinate

r∗(r) =
1

F (rh)
log
|r − rh|

˜̀
+

∫ r F (rh)− F (r̃)

F (rh)F (r̃)(r̃ − rh)
dr̃ (2.38)

where ˜̀ is an unspecified integration constant. Using eqs. (2.5) and (2.25), we can solve

for rm at late times as

rm = rh

(
1− c1e

−2πT (t−tc)
)

+ · · · (2.39)

with

c1 = exp

[
−
∫ rh

0
dr
F (rh)− F (r)

F (r)(r − rh)

]
> 0, (2.40)

and where the ellipsis stands for corrections which are higher order in (rh− rm), i.e.,which

would decay at least as fast as e−4πTt). Substituting this expression (2.39) into eq. (2.35),

we obtain the first corrections to the rate of change in complexity in the t→∞ limit

dCA
dt

=
2M

π
+ 2(d− 1) c1 S T

2 e−2πT (t−tc)
(
t− tc −

1

2πT
log

[
4πc1Trh
α2

])
+ · · · . (2.41)

We see that the final factor will always become positive for sufficiently late times and hence

the bound conjectured by [8, 9] will be violated.
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Early times: it is also interesting to look at an early time expansion of the expres-

sion (2.35). At very early times after tc, rm is very close to the past singularity, i.e.,as

δt = t− tc → 0, rm → 0. As a consequence, f(rm) ∼ −ωd−2/rd−2
m and the second term in

eq. (2.35) diverges to minus infinity (as long as d ≥ 3). More explicitly, one can show that

this leading divergence as δt→ 0 is logarithmic with

dCA
dt

∣∣∣∣
δt→0

−→ −(d− 2)M

(d− 1)π
log

(
2ω

α2(d−1)/(d−2)(d− 1)δt

)
for d ≥ 3 . (2.42)

Despite this divergence, we note again that the complexity itself remains finite as δt → 0

and it is only its derivative which is divergent. We would also like to stress again, that

these results are influenced by the ambiguities in the corner term mentioned in [29]. We

explore this issue further in appendix E. We also examine the case d = 2, i.e.,BTZ black

holes, in detail in the following section.

Averaging: the discussion above indicates that the action changes very rapidly in the

vicinity of δt = 0 — see also the examples in section 2.3. However, one might argue that

the holographic complexity does not have a good definition on time scales smaller than

β = 1/T in the context of the eternal black hole.10 Hence we might average the rate of

change in complexity over time scales which are longer than the thermal time scale. We

can define a simple averaged rate of change in complexity as follows:[
dCA
dt

]
γ;avg

=
1

γ β

∫ t+γ β/2

t−γ β/2

dCA
dt′

dt′ =
CA(t+ γ β/2)− CA(t− γ β/2)

γ β
, (2.43)

where γ is some numerical factor of order one. In the second expression, we see that we

have essentially constructed a discrete time derivative on a time step ∆t = γ/T .

Let us comment on the properties of this averaged rate: first, we note that
[
dCA
dt

]
γ;avg

remains continuous at all times. However, its time derivative will be discontinuous at

|t ± γβ
2 | = tc because of the discontinuity in dCA/dt noted above. When γβ/2 < tc there

will generically be a short period of time right after t = tc − γβ/2 for which this averaged

rate will be negative. After this period, the rate will rise quickly to positive values. Note

that this averaging does not remove the (small) violation of Lloyd’s bound, discussed above.

We will return to discuss this time averaging in more detail in section 5.

Negative times: in our setup, the complexity is a symmetric function of time CA(t) =

CA(−t). Of course, this implies that the time derivative is anti-symmetric

dCA
dt

(t) = −dCA
dt

(−t). (2.44)

Our system therefore admits a regime of decreasing complexity, at least for large negative

times. This situation is unstable — an arbitrary small perturbation would cause the

complexity to start increasing again. A discussion of this issue can be found in subsection

[2.1] of [49].

10We thank Lenny Susskind, Dan Roberts and Brian Swingle for correspondence on this point.
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Dependence on the boundary curvature: given the black hole metric in eqs. (2.1)

and (2.2), it is clear that L is the AdS curvature scale. However, implicitly, L also plays the

role of the curvature of the boundary metric in the cases k = ±1. Hence when we express

our results in terms of quantities of the boundary theory, it is perfectly consistent for the

final answer to depend on L. However, if we introduce a separate curvature scale R for the

boundary metric, it becomes a consistency test to demonstrate that we can eliminate the

AdS scale from our expressions.

Hence let us consider the AdS black hole metric

ds2 = −f(r)
L2

R2
dτ2 +

dr2

f(r)
+ r2dΣ2

k,d−1 , (2.45)

where f(r) is still given by eq. (2.2). Now scaling the metric in the asymptotic region

r →∞ by R2/r2 yields the boundary metric

ds2
bdy = −dτ2 +R2 dΣ2

k,d−1 , (2.46)

where the curvature of the spatial geometry is now set by R.11 Of course, the only real

change between eqs. (2.1) and (2.45) is that we have rescaled the time variable, i.e.,τ =

(R/L) t. So essentially all of our computations follow identically for the ‘new’ geometry

to those that were performed above. However, the scaling of the time coordinate appears

in various places, such as the definition of the null coordinates in eq. (2.7) or of the null

normals in eq. (2.23). Another important difference is in the definition of various quantities

which characterize the boundary state in terms of the geometric parameters appearing in

the bulk. In particular, eqs. (2.4) and (2.5) are replaced with the following

M =
(d− 1) Ωk,d−1

16πGN

L

R
ωd−2 , S =

Ωk,d−1

4GN
rd−1
h , (2.47)

T =
L

4πR

∂f

∂r

∣∣∣∣
r=rh

=
L

4πR rh

(
d
r2
h

L2
+ (d− 2) k

)
,

and the spatial volume of boundary becomes V = Ωk,d−1R
d−1. Given these changes, the

critical time is given by

τc =
2R

L
(r∗∞ − r∗(0)) (2.48)

and our result (2.35) for the rate of change of the complexity becomes

τ > τc :
dCA
dτ

=
1

π

(
2M +

Ωk,d−1(d− 1)rd−2
m

16πGN

L

R
f(rm) log

L2 |f(rm)|
R2 α2

)
, (2.49)

where the equation for the meeting point can be written as

δτ = −2R

L
(r∗(rm)− r∗(0)) . (2.50)

11Notice that for the planar geometry, i.e.,k = 0, there is no curvature scale and hence R becomes

some arbitrary length scale in the boundary theory. Further, for k = 0 in eq. (2.1), we implicitly had

chosen the boundary metric dΣ2
0,d−1 =

∑d−1
i=1 dx

2
i /L

2, following [30]. Normalizing with the AdS curvature

scale L was required to ensure that the line element was dimensionless. Here, it is more natural to set

dΣ2
0,d−1 =

∑d−1
i=1 dx̃

2
i /R

2, so that the boundary metric (2.46) is independent of R (and L). Of course, this

is equivalent to rescaling the (spatial) boundary coordinates as x̃i = (R/L)xi.
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Now we would like to recast this result (2.49) in terms of boundary quantities. We

do so by first defining a dimensionless radial coordinate x = r/rh. Next we note that

from eq. (2.47), we see that the dimensionless ratio of geometric scales rh/L in the bulk is

determined by the dimensionless product of boundary quantities RT . In particular, we find

rh
L

=
2π RT

d

(
1 +

√
1− d(d− 2) k

(2π RT )2

)
≡ 2πRT g̃(RT ) . (2.51)

Now examining the blackening factor, we can write:

f(r) =
r2

L2
+ k +

rd−2
h

rd−2

(
r2
h

L2
+ k

)
(2.52)

=
r2
h

L2

(
x2 +

k L2

r2
h

− 1

xd−2

(
1 +

k L2

r2
h

))
≡
r2
h

L2
f̃(x,RT ) .

Further, combining the above expressions in eq. (2.50), we have

π g̃(RT )Tδτ = −
∫ xm

0

dx

f̃(x,RT )
, (2.53)

which demonstrates that xm is implicitly a function of the (dimensionless) boundary quan-

tities, Tδτ and RT . Further, these results allow us to translate the rate of change in

complexity (2.49) for τ > τc to the form12

dCA
dτ

=
1

π

(
2M + ST (d− 1) g̃(RT )xd−2

m f̃(xm, RT ) log

[
2πLT

α
g̃(RT ) |f̃(xm, RT )|1/2

])
.

(2.54)

Here we see that the right-hand side is expressed in terms of boundary quantities, except

for a single factor of L appearing in the argument of the logarithm. Of course, this ar-

gument also contains a factor of the (dimensionless) normalization constant α, which is

arbitrary. Precisely, the same situation arose in [31] in investigating the structure of the

UV divergences in holographic complexity. Following [31], it is natural to choose α = L/`

which eliminates the errant factor of L but introduces some new scale ` in the boundary

theory. Hence this choice raises the question of what the most appropriate choice for `

would be. For simplicity in the following, we will set ` = R, the curvature scale in the

k = ±1 boundary geometries (2.46). As noted in the planar case (see footnote 11), R

remains an arbitrary length scale in the boundary theory. We return to discuss this point

in section 5.

2.3 Examples

In this subsection, we present two specific examples in which we solve explicitly for the

meeting point and evaluate the rate of change in complexity for all times t > tc. First, we

will consider BTZ black holes (d = 2) for which analytic results can be obtained. Further

details of the results for this special case are given in appendix A. Next, we consider

numerical solutions for d = 4 with various horizon geometries. As a further example we

consider the case d = 3 in appendix B.

12Let us note that for planar horizons, i.e.,for k = 0, eq. (2.51) yields g̃ = 2/d while eq. (2.52) simply

gives f̃(xm, RT ) = (xd − 1)/xd−2. Hence dCA/dτ does not actually depend on RT for k = 0.
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2.3.1 BTZ black holes

For BTZ black holes, most of the expressions can be evaluated analytically. The evaluation

of the action given in section 2.1 strictly applies only to d > 2 and so we must derive the

results separately here for the BTZ case. While we review the salient calculations below,

further details are also given for this special case in appendix A. Following eq. (2.45), we

write the BTZ metric as

ds2 = −f(r)
L2

R2
dτ2 +

dr2

f(r)
+ r2dφ2 , (2.55)

where the blackening factor, mass, temperature and entropy are then given by

f(r) =
r2 − r2

h

L2
, M =

r2
h

8GNLR
, T =

rh
2πLR

, S =
πrh
2GN

. (2.56)

As described in section 2.2.1, with the coordinates in eq. (2.55), the boundary geometry is

fixed by a new independent scale R. In particular, the boundary metric is given by

ds2 = −dτ2 +R2 dφ2 , (2.57)

and hence a constant τ slice is a circle with the circumference 2πR.13

We can evaluate the tortoise coordinate (2.6) analytically as

r∗(r) =
L2

2rh
log
|r − rh|
r + rh

, =⇒ r∗∞ = r∗0 = τc = 0 . (2.58)

The latter, i.e.,τc = 0, means that the action of the BTZ black hole starts changing right

away for τ > 0. This is due to the fact that for the boundary time slice at τ = 0,

i.e.,τR = τL = 0, the null rays coming from the left and right boundaries to define the

past and future boundaries of the WDW patch meet at the singularity at r = 0. Given

eq. (2.58), the meeting point relation in eq. (2.25) can be solved analytically for general

times,

rm = rh tanh

(
rhτ

2LR

)
. (2.59)

Now in evaluating the action, eqs. (2.27)–(2.29) are not modified up to some factors

of L/R coming from rescaling the time coordinate — see the details in appendix A —

and their sum still reflects the change in complexity from what it was at τ = 0. The

growth rate (2.49) is then not modified for d = 2 and substituting in the BTZ blackening

factor (2.56) and the meeting point (2.59) then yields

dCA
dτ

=
r2
h

4πGNLR

(
1 + sech2

(
rhτ

2LR

)
log

[
Rα

rh
cosh

(
rhτ

2LR

)])
, (2.60)

where we have also used Ω+1,1 = 2π above. Further using the expressions for the mass and

temperature in eq. (2.56), this result can be expressed in terms of boundary quantities as

dCA
dτ

=
2M

π

(
1 + sech2 (πTτ) log

[
α

2πLT
cosh (πTτ)

])
. (2.61)

13Note that β = 1/T should satisfy β < 2πR so that the BTZ black hole solution is the dominant saddle

point in the gravitational path integral. Further note that, R is associated with the spatial size of the

boundary here, rather than a curvature scale as in eq. (2.46).
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Of course, the above expression is evaluated for τ > 0. One simple consistency check on

our result is that in the limit τ → ∞, we recover the expected late time result of [8, 9],

i.e.,dCA/dt = 2M/π. As in eq. (2.54), we see the appearance of both L and α in the

argument of the logarithm. Hence there is some ambiguity about the interpretation of this

result in the boundary theory.

Now we can also rewrite eq. (2.61) in the following form

dCA
dτ

=
2M

π

tanh2 (πτ/β) +
log cosh (πτ/β)

cosh2 (πτ/β)
+

log
[
β e
2πL α

]
cosh2 (πτ/β)

 (2.62)

where we have introduced β = 1/T and e is simply Euler’s number, i.e.,log(e) = 1. This

form facilitates a comparison to the analogous result in [9] evaluated with a regulator based

on timelike radial geodesics in the bulk, which is

dCA
dτ

=
2M

π

(
tanh2 (πτ/β) +

log cosh (πτ/β)

cosh2 (πτ/β)
− log ε

cosh2 (πτ/β)

)
+O(ε) . (2.63)

where ε is a dimensionless UV regulator, i.e.,ε ∼ δ/β and δ is the short-distance cut-off in

the boundary theory.14 Interestingly, we see that eqs. (2.62) and (2.63) will be in complete

agreement if we choose α ∼ L/δ. We return to a discussion of this point in section 5.

To close this section, we plot both the rate of change of the complexity (2.61) and the

total complexity in figure 2 for several values of rh/L. In the figure, we have chosen α = L/R

and then in the argument of the logarithmic factor, we have 2πRT = rh/L using eq. (2.56).

Note that all of the curves for dCA/dτ in the left panel exceed the Lloyd bound and further

the violation increases for smaller black holes, i.e.,smaller rh/L, or equivalently smaller

temperatures. The right panel shows the complexity itself, found by integrating dCA/dτ .

The integration constant is chosen there so that the result of CA(τ = 0) corresponds to the

complexity of formation [30]. In particular, we choose CA(τ = 0) = Cform = − L
2GN

— see

eq. (4.8) in ref. [30].15 After dividing by βM , all of these become functions of rh/L. We

provide further details of the calculations and a more extensive discussion of the special

case of BTZ black holes in appendix A.

2.3.2 d = 4

To study the case where the boundary theory lives in d = 4, in principle, we simply

substitute this value into eqs. (2.49) or (2.54) for dCA/dτ , with the blackening factor given

by eq. (2.2). Of course, we must evaluate the meeting point rm, or alternatively the

dimensionless xm, numerically. For the latter, we introduce the dimensionless radius x =

r/rh, as well as f̃(x,RT ) = L2/r2
h f(r) from eq. (2.52). Then following eq. (2.53), we can

14We thank Ying Zhao for explaining this point.
15This corresponds to comparing the complexity of the thermofield double state to that of (two copies of)

the Neveu-Schwarz vacuum in the boundary theory [50]. Comparing to the Ramond vacuum would instead

yield Cform = 0 [30].
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Figure 2. Left panel: time derivative of the complexity for the BTZ black hole (d = 2) from

eq. (2.61) with α = L/R. Right panel: ‘total’ complexity found by integrating dCA/dτ . Results

are shown for several values of the horizon radius — rh/L = 1 (blue), rh/L = 1.5 (dashed red) and

rh/L = 3.5 (dot-dashed green).

then define a dimensionless tortoise coordinate

x∗(x,RT ) ≡
∫

dx

f̃(x,RT )
=
rh
L2

r∗(r)

=
r2
h

2r2
h + kL2

1

2
log
|1− x|
1 + x

+

√
r2
h + kL2

rh
tan−1

 rh x√
r2
h + kL2

 , (2.64)

which yields

x∗∞ ≡ x∗(∞, RT ) =
π

2
rh

√
r2
h + kL2

2r2
h + kL2

and x∗(0, RT ) = 0 . (2.65)

It is clear from eq. (2.64) that x∗ is a function of the ratio rh/L, however, as our notation

indicates the latter is implicitly fixed in eq. (2.51) by RT in the boundary theory. Com-

bining these results with eq. (2.48) yields the critical time, at which the complexity begins

to change,

τc =
2LR

rh
(x∗∞ − x∗(0)) = πLR

√
r2
h + k L2

2r2
h + k L2

=
1

2T

(
1 + k

(
L

rh

)2
)
. (2.66)

Note that for k = 0, we have τc = 1/(2T ), i.e.,the critical time does not depend on R for

the planar geometry. Figure 3 shows a plot of τc as a function of rh/L for the various

horizon geometries.

Now solving numerically for the meeting point xm using eq. (2.53), we can evaluate

dCA/dτ in eq. (2.54), as shown in figure 4 for spherical (k = 1) and planar (k = 0) horizons.

As commented above, we have set α = L/R for simplicity in these plots. Note that for a

fixed rh/L, the planar geometries seem to violate the 2M/π bound more strongly. We also

note that the violation of the bound is stronger for smaller black holes, i.e.,smaller values

of rh/L. A more careful examination shows that generally dCA/dτ is larger for k = 0 than

for k = +1 and that this difference between the rate of growth for these two cases grows as
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Figure 3. Critical time tc as a function of the horizon radius for d = 4 for the various horizon

geometries, i.e.,spherical k = 1 (blue), planar k = 0 (dashed-red) and large hyperbolic k = −1

(dot-dashed green). Note that we only consider rh > L.
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Figure 4. Time derivative of complexity as a function of time for spherical (k = +1, left) and

planar (k = 0, right) horizons with d = 4 boundary dimensions for various values of the horizon

radius, i.e.,rh/L = 1 (blue), rh/L = 1.5 (dashed red) and rh/L = 3.5 (dot-dashed green). We

present the plots as a function of δτ = τ − τc to allow for a meaningful comparison between the

different cases. We stress again that each of the curves has a different value of τc — see figure 3.

the size of the black hole shrinks. Similar results apply for hyperbolic horizon geometries

and for other boundary dimensions. We describe our results for the case of d = 3 for all

three horizon geometries in appendix B.

3 Complexity=Volume

In this section, we study the time dependence of the complexity for eternal AdS black holes

using the complexity=volume conjecture [5, 6]. Applying eq. (1.2), we must evaluate the

volume of the extremal codimension-one bulk surface, whose boundaries correspond to the

desired time slices in the two asymptotic boundaries, as shown in figure 5.16 As in the

previous section, the symmetry of our setup implies that the volume depends only on the

total boundary time t = tL+tR. Thus, it is enough to consider the symmetric case tL = tR,

16For a proposed generalization for the complexity of subsystems in terms of the co-dimension one volume

enclosed by the Ryu-Takayanagi surface, see [31, 51, 52].
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Figure 5. A representation of the maximal wormhole connecting the two boundaries anchored

at times tL and tR (depicted at symmetric times in the figure). The bridge reaches the minimum

distance inside the future horizon at rmin, and approaches each boundary tangent to constant

time slices.

as we assume from now on. Further, in eq. (1.2), we will simply set ` = L, the AdS radius,

to eliminate the ambiguity associated with the choice of the scale `.

First, we review the computation of the maximal volume following [6] and then eval-

uate its time derivative. We will see that the time derivative of the extremal volume is

determined by a conserved quantity E. With the infalling Eddington-Finkelstein coordi-

nates (2.7), the metric (2.1) becomes

v = t+ r∗(r) ; ds2 = −f(r) dv2 + 2 dv dr + r2dΣ2
k,d−1 . (3.1)

Now, assuming that the extremal surface is ‘spherically’ symmetric,17 its profile will be

determined by an embedding r(λ) and v(λ), where λ is some radial coordinate intrinsic to

the surface. The maximal volume is then obtained by extremizing

V = Ωk,d−1

∫
dλ rd−1

√
−f(r)v̇2 + 2v̇ṙ ≡ Ωk,d−1

∫
dλL(v̇, r, ṙ) , (3.2)

where the dots indicate derivatives with respect to λ. Since the integrand L does not

depend explicitly on v, we have a conserved quantity E defined as

E = −∂L
∂v̇

=
rd−1(fv̇ − ṙ)√
−fv̇2 + 2v̇ṙ

. (3.3)

17That is, the extremal surface has the same symmetry as the spatial slices described by dΣ2
k,d−1, e.g., it

is spherically symmetric for k = +1.
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We will refer to this quantity as the energy. Since the expression in eq. (3.2) is

reparametrization invariant, we are free to choose λ to keep the radial volume element

fixed, i.e.,

rd−1
√
−f v̇2 + 2v̇ṙ = 1. (3.4)

The equations determining r(λ) and v(λ) then simplify to

E = r2(d−1) (f(r)v̇ − ṙ) , (3.5)

r2(d−1)ṙ2 = f(r) + r−2(d−1)E2, (3.6)

and further, the maximal volume can be written as

V = 2Ωk,d−1

∫ rmax

rmin

dr

ṙ
= 2Ωk,d−1

∫ rmax

rmin

dr
r2(d−1)√

f(r)r2(d−1) + E2
. (3.7)

Here, we are assuming a symmetric configuration where tL = tR, as described above, and

so the integral only runs from a minimum radius rmin to the cutoff surface at r = rmax.

The minimal radius is determined by setting ṙ = 0 in eq. (3.6), i.e.,

f(rmin) r
2(d−1)
min + E2 = 0 . (3.8)

Further we note that this turning point is inside the horizon (see figure 5) and hence we

have f(rmin) < 0, ṙ|r=rmin = 0 and v̇|r=rmin > 0. Therefore we may conclude that E < 0

by evaluating eq. (3.5) at this point. Now using eqs. (3.5) and (3.6), we have

tR + r∗∞ − r∗(rmin) =

∫ v∞

vmin

dv =

∫ r=∞

rmin

dr

[
E

f(r)
√
f(r)r2(d−1) + E2

+
1

f(r)

]
, (3.9)

where the symmetry of our configuration determines t = 0 at the turning point, i.e.,vmin =

r∗(rmin). One may verify that the integrand in the final expression is well-behaved at the

horizon, using the fact that the energy is negative. The integrand also decays as L2/r2 with

r →∞ and so in the following, we will replace the upper limit of the integral by r = rmax

because the difference produced by this replacement vanishes as the short-distance cutoff

is taken to zero. We will make use of this several times in the derivation below.

Using eq. (3.9), we can rewrite eq. (3.7) as follows:

V
2Ωk,d−1

=

∫ rmax

rmin

dr

[√
f(r)r2(d−1) + E2

f(r)
+

E

f(r)

]
− E (tR + r∗∞ − r∗(rmin)) . (3.10)

Next, we would like to take the time derivative of this equation, however, we would like

to use the time coordinate introduced in eq. (2.45), i.e.,τ = R t/L. We use eq. (3.8) to

simplify the contribution from the derivative acting on rmin in the lower limit of the integral

to obtain

1

2Ωk,d−1

dV
dτR

=
dE

dτR

∫ rmax

rmin

dr

[
E

f(r)
√
f(r)r2(d−1) + E2

+
1

f(r)

]

− dE

dτR

(
L

R
τR + r∗∞ − r∗(rmin)

)
− L

R
E .

(3.11)
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Note that dE/dτR is a constant that characterizes the entire surface and so it was brought

outside of the integral in the first term. However, the remaining integral is identical to

that appearing in eq. (3.9) and so we may further simplify the result to

dV
dτR

= −2Ωk,d−1
L

R
E . (3.12)

Since we set τR = τL, the derivative with respect to τ = τR + τL is given by simply

multiplying the result by a factor of 1/2. Hence our final result for the rate of growth of

the complexity becomes

dCV
dτ

=
1

GNL

dV
dτ

= −
Ωk,d−1

GNR
E =

Ωk,d−1

GNR

√
−f(rmin) rd−1

min . (3.13)

Therefore, the time derivative of complexity is completely determined by computing either

E or rmin, with eq. (3.8).

However, as in eq. (2.54), we would like to show that eq. (3.13) can be expressed

entirely in terms of boundary quantities. After some work, the final result takes the form

dCV
dτ

=
8πM

(d− 1)

8π2R2T 2 g̃2(RT )

4π2R2T 2 g̃2(RT ) + k

√
−f̃(xmin, RT )xd−1

min , (3.14)

where the functions g̃(RT ) and f̃(x,RT ) were defined in eqs. (2.51) and (2.52), respec-

tively. Further, as above, we have introduced the dimensionless radial coordinate x = r/rh.

Then defining the corresponding tortoise coordinate x∗(x) ≡
∫
dx/f̃(x,RT ) and also

xE ≡ E/rd−1
h , xmin is determined by the boundary versions of eqs. (3.8) and (3.9):

0 = 4π2R2T 2 g̃2(RT ) f̃(xmin, RT )x
2(d−1)
min + x2

E , (3.15)

τR
β

+
x∗∞ − x∗(xmin)

2π
=

∫ x=∞

xmin

dx

[
xE +

√
4π2R2T 2g̃2(RT )f̃(x,RT )x2(d−1) + x2

E

]
2πf̃(x,RT )

√
4π2R2T 2g̃2(RT )f̃(x,RT )x2(d−1) + x2

E

.

3.1 Late time behaviour

Before examining the full time-dependence of dCV /dτ , we would like to study its late time

behaviour. At late times, the maximal surface is (almost) tangent to a special slice of

constant r = r̃min inside the black hole [6].18 To evaluate r̃min, we first define the function

W (r) as appeared in eq. (3.13),

W (r) ≡
√
−f(r) rd−1 , (3.16)

and observe that eq. (3.8) can be rewritten as −W (rmin)2 + E2 = 0. The latter generally

has two positive roots, with the larger root corresponding to rmin. However, in the late

time limit, |E| increases until the two roots meet at the extremum of −W (r)2, which also

18Similar behaviour appears in computing the time dependence of holographic entanglement entropy

for regions with components in both asymptotic boundaries [22]. However, the special (codimension-two)

surface appearing there extremizes the area rather than the volume.
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corresponds to the extremum of W (r). Hence r̃min is both a root of eq. (3.8) and the

extremum of W (r). Then r̃min can be computed as

0 = W ′(r̃min) = (d− 1)r̃d−2
min

√
−f(r̃min)−

r̃d−1
min f

′(r̃min)

2
√
−f(r̃min)

. (3.17)

Since dCV /dτ in eq. (3.13) only depends on the time τ through rmin, at late times, we have

dCV
dτ

=
Ωk,d−1

GNR

[
W (r̃min) +

1

2
W ′′(r̃min)(rmin − r̃min)2 +O((rmin − r̃min)3)

]
. (3.18)

Hence asymptotically, dCV /dτ approaches the constant value

lim
τ→∞

dCV
dτ

=
Ωk,d−1

GNR
W (r̃min) =

Ωk,d−1

GNR

√
−f(r̃min) r̃d−1

min . (3.19)

Further, we observe that dCV /dτ approaches this limit from below because W ′′(r̃min)

is negative. The latter conclusion is easily produced by noting from eq. (3.16), that W (r)

vanishes at both r = rh and 0 and that W (r) > 0 inside the horizon. Hence the ex-

tremum (3.17) must be a maximum, i.e.,W ′′(r̃min) < 0.19 In appendix C, we examine

the leading correction to the late time limit (3.19) and show that dCV /dτ approaches this

asymptotic value with an exponential decay in τ . Next we turn to computing the asymp-

totic value (3.19).

Planar horizons: with k = 0, eq. (3.17) can be solved analytically for r̃min and we find

r̃min =

(
ωd−2L2

2

) 1
d

=
rh

2
1
d

, (3.20)

which then leads to √
−f(r̃min) r̃d−1

min =
ωd−2L

2
. (3.21)

Thus, using eq. (2.47), the asymptotic value (3.19) becomes

lim
τ→∞

dCV
dτ

=
8πM

d− 1
, (3.22)

for any planar black hole. Of course, this reproduces the result first found in [6].

Curved horizons: figure 6(a) shows a plot of the late time limit (3.19) for spherical

black holes (with k = 1) for d = 3 and 4. We can see that dCV /dτ approaches the value

8πM/(d− 1) in the limit rh � L, i.e.,RT � 1.

Since the mass of hyperbolic black holes (i.e.,k = −1) can take negative values,
d−1
8πM limt→∞ dCV /dt would diverge at M = 0 before reaching the minimal mass. Hence, we

instead present numerical plots of

d− 1

8π(M −Mmin)
lim
τ→∞

dCV
dτ

, (3.23)

19The case of small hyperbolic black holes, i.e.,k = −1 and rh < L, is slightly more complicated since

there is an inner horizon — see appendix D.3. However, implicitly rmin lies in between the two horizons

and so one reaches the same conclusion.
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Figure 6. (a) Late time rate of change in complexity d−1
8πM limτ→∞ dCV /dτ as a function of rh/L for

spherical black holes (k = 1) in d = 3 (green) and d = 4 (dashed purple) dimensions. The vertical

dashed line at rh/L = 1 indicates the Hawking-Page phase transition below which the dominant

saddle point in the bulk partition function is vacuum AdS rather than a (small) spherical black hole.

(b) Plots of (d−1)
8π(M−Mmin)

limτ→∞ dCV /dτ as a function of rh/L for hyperbolic black holes (k = −1)

in d = 3 (green) and d = 4 (dashed purple) dimensions. The vertical lines indicate the minimal

values of rh/L corresponding to extremal small hyperbolic black holes. The gray dashed horizontal

line indicates 1, which is approached in the large black hole limit (rh � L).

where Mmin is the minimal value of mass

Mmin = −
(d− 1)Ω−1,d−1

8πGNd

(
d− 2

d

) d−2
2 Ld−1

R
. (3.24)

This corresponds to the mass of the extremal small hyperbolic black holes — see ap-

pendix D.3. Figure 6(b) presents the late time limit results for d = 3 and d = 4 as a

function of rh/L. Hence we can see that eq. (3.23) approaches to 1 from above, in the

limit rh/L� 1. The divergence in these curves where rh/L approaches its minimal value,

i.e.,M →Mmin, is interesting because dCV /dτ actually vanishes in the extremal limit. The

horizon radius of the extremal black hole can be written as rexth =
√
d−2L√
d

. Then we would

readily find in the extremal limit that dCV /dτ ∼ (r − rexth ) while M −Mmin ∼ (r − rexth )2.

As a consequence, while both the numerator and denominator vanish in this limit, we still

obtain a divergent result.

Now we proceed to examine the late time behaviour analytically in the limit of large

temperatures, i.e.,for large black holes. First, we expand eq. (3.17) in the limit rh � L to

find the leading corrections to r̃min compared to its planar value (3.20),

r̃min =
rh

2
1
d

[
1−

(
22/d(d− 1)− d

)
d2

L2

r2
h

k

+
(d− 1)

(
− d2 + 2

2
d

+1d+ 24/d(d− 3)(d− 1)
)

2d4

L4

r4
h

k2 +O
(
L6

r6
h

)]
.

(3.25)

Using this expression, the asymptotic value of dCV /dτ can be written in terms of the
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following expansion20

lim
t→∞

(d− 1)

8πM

dCV
dτ

=

(
1− Mmin

M
δk,−1

)(
1− 2

2
d
−1k

L2

r2
h

+
2

2
d (γ + d) k2

d2

L4

r4
h

+ · · ·

)

=

(
1 +

2d(d(d− 2))
d−2
2

(4π)d(RT )d
δk,−1 + · · ·

)
(3.26)

×

(
1− 2

2
d
−1d2k

(4π)2(RT )2
+

2
2
d (γ − d(d− 3)) d2k2

(4π)4(RT )4
+ · · ·

)

where to reduce the clutter in the above expressions, we have defined the coefficient:

γ = 2
2
d
−3(3d− 2)(d− 2) . (3.27)

Let us first focus our attention on the second factor on the right-hand side of eq. (3.26).

Here the corrections involve (integer) powers of k/R2 and hence we expect that these terms

can be expressed as simple powers of the boundary curvature. Of course, these curvature

corrections become important when the temperature is comparable to the curvature scale,

i.e.,RT ∼ 1. However, for high temperatures where the characteristic thermal wavelength

is much shorter than the curvature scale, these terms become vanishingly small and the

asymptotic growth rate approaches the flat space limit 8πM/(d− 1), as in eq. (3.22).

The above discussion overlooks the first factor on the right-hand side of eq. (3.26).

This factor only appears for the case of the hyperbolic horizons (i.e.,k = −1) and is

related to the fact that the minimal mass is actually negative (rather than zero) for these

black holes. Further, we observe that when the boundary dimension d is odd, the first

correction in this factor involves an odd power of 1/R. Therefore while the corrections in

this factor are appearing because of the negative curvature in the boundary metric (2.46),

they will not generally be expressed in terms of geometric factors involving powers of the

curvature tensor.

We also note that the expression in eq. (3.26) only holds for d ≥ 3 and so the leading

correction for RT � 1 always comes from the second factor, i.e.,the term proportional

to k/(RT )2. Therefore we can conclude that for spherical black holes, the asymptotic

value (3.19) approaches the planar value (3.22) from below as RT → 0. Of course, this is

in agreement with the results shown in figure 6(a), where we see that for all values of RT ,

lim
τ→∞

dCV
dτ
≤ 8πM

d− 1
for k = +1 . (3.28)

Similarly for hyperbolic black holes, the asymptotic value (3.19) approaches the planar

value (3.22) from above in the limit RT → 0. Again, this agrees with the results shown in

figure 6(b), where we see that for all values of RT ,

lim
t→∞

dCV
dτ
≥ 8π

d− 1
(M −Mmin) for k = −1 . (3.29)

20This expansion can also be expressed in terms of central charge over the entropy — see [30].
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Figure 7. Plot of d−1
8πM

dCV
dτ for planar d = 4 (blue), planar d = 3 (dashed-red) and d = 2 (dot-dashed

green) black holes. All three curves are independent of rh/L and approach to one at late times.

3.2 General time dependence

To close this section, we present plots of dCV /dτ for planar black holes in various dimensions

for general values of the time. We explore further examples with spherical and hyperbolic

horizon geometries in appendix B.

In the case that k = 0 (and d ≥ 3), if we define a ≡ d−1
8πM dCV /dτ , eq. (3.13) can be

recast in the form

a = 2s
d/2
min

√
1− sdmin, (smin ≡ rmin/rh). (3.30)

Inverting this equation, we can represent smin as a function of a,

smin =
(1 +

√
1− a2

2

) 1
d
. (3.31)

Then rewriting eq. (3.9) in terms of dimensionless quantities, one can find the relation

between a = d−1
8πM dCV /dτ and τ/β

τ/β =
d a

4π

∫ ∞
smin

ds
sd−2

(1− sd)
√
sdmin(1− sdmin)− sd(1− sd)

. (3.32)

Since this relation and eq. (3.31) do not depend on rh/L, the plot of a as a function of

τ/β has the same form for all values rh/L. Figure 7 shows the plot and we see that at late

times, it approaches to one from below, as discussed above in section 3.1.

Figure 7 shows d−1
8πM dCV /dt for the case of d = 2, i.e.,BTZ black holes. A similar

derivation to the one presented for planar black holes holds in this case. Again, the result

does not depend on the value of rh/L and approaches to one at late times.

4 Charged black holes

In this section, we study the growth rate of the complexity for charged black holes with

d ≥ 3 using both the CA and CV conjectures. Charged black holes are solutions to Einstein
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gravity coupled to a Maxwell field with the following action:

I = Igrav −
1

4g2

∫
dd+1x

√
−g Fab F ab (4.1)

where Igrav is the gravitational action given in eq. (2.10). Note that the gauge coupling g

has dimensions of length
d−3
2 .

The black hole metric takes the form (2.45) with blackening factor given by,

e.g., [53, 54]:21

f(r) =
r2

L2
+ k − ωd−2

rd−2
+

q2

r2(d−2)
, (4.2)

and the Maxwell potential can be written as:22

Aτ =
g

2
√

2πGN

L

R

√
d− 1

d− 2

(
q

rd−2
+

− q

rd−2

)
. (4.3)

The new blackening factor (4.2) has two real roots, r+ and r− (where r+ ≥ r−) correspond-

ing to the outer and inner horizons, respectively. Figure 8 shows the Penrose diagrams for

these charged black holes. We note that the integration constant in Aτ was chosen such

that it vanishes at the outer horizon, which ensures that it is a well behaved differential

form at the corresponding bifurcation surface [53]. It will typically be convenient to write

our results in terms of r+ and r− by expressing ωd−2 and q2 in terms of r+ and r− using

the equations f(r+) = f(r−) = 0 — see below.

Of course, the Maxwell field in the bulk is dual to a conserved current corresponding

to a global U(1) symmetry in the boundary theory e.g., [54]. Hence the charged black

hole geometry extends the thermofield double state (1.1) to the entangled state where, as

well as a temperature T , we have a chemical potential µ which distinguishes the boundary

states by their U(1) charges. We will refer to this as the charged thermofield double state,∣∣cTFD(tL, tR)
〉
= Z−1/2

∑
α,σ

e−(Eα−µQσ)/(2T ) e−iEα(tL+tR)
∣∣Eα,−Qσ〉L∣∣Eα, Qσ〉R , (4.4)

where L and R label the quantum states (and times) at the left and right boundaries. Notice

that tracing out the states in either boundary produces the density matrix corresponding

to the grand canonical ensemble characterized by T and µ — see further discussion below.

The thermodynamic quantities describing the black hole are the same as those given

in eq. (2.47) with the replacement rh → r+ i.e.,

M =
(d− 1) Ωk,d−1

16πGN

L

R
ωd−2 , S =

Ωk,d−1

4GN
rd−1

+ , T =
L

R

1

4π

∂f

∂r

∣∣∣∣
r=r+

. (4.5)

The charge is naturally defined in terms of Gauss’ law, i.e.,

Q =

∮
∗F =

qΩk,d−1

√
(d− 1)(d− 2)

2g
√

2πGN
(4.6)

21We work with the rescaled time τ = R t/L throughout the following.
22Our conventions compare to those of [53] (denoted with tildes) as follows: At = Ãt

g

2
√
πG

, Q = Q̃ 2
√
πG
g

,

µ = µ̃ g

2
√
πG

; and to those of [54] by the identification 1/g2 = `2/GN where ` is an extra length scale

introduced there to distinguish the coupling of the Maxwell field.
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where the (d–1)-form ∗F is the Hodge dual of the field strength Fab = ∂aAb − ∂bAa. Of

course, the Maxwell field in the bulk is dual to a global symmetry current in the boundary

theory.23 In this holographic context, the charge (4.6) also corresponds to the integral

of the zeroth component of the boundary current over a constant τ slice. The chemical

potential can be determined using the thermodynamic relation dM = TdS + µdQ,

µ =
g

2
√

2πGN

L

R

√
d− 1

d− 2

q

rd−2
+

. (4.7)

Comparing to eq. (4.3), this also corresponds to the ‘non-normalizable’ mode of the gauge

potential, i.e.,µ = limr→∞Aτ .

We note that the action (4.1) provides a well defined variational principle where we

keep the gauge potential fixed at the boundary. Hence if we were examining the ther-

modynamics of these black holes, e.g., with the corresponding Euclidean action, then we

would be working with the grand canonical ensemble where the chemical potential µ is

fixed. That is, implicitly, our control parameters are the temperature T and the chemical

potential µ [53, 54]. Hence the full geometry of the eternal charged black hole is dual

to the charged thermofield double state, given in eq. (4.4). Alternatively, we could con-

sider a fixed charge ensemble, but this would require adding a boundary term of the form

1/g2
∫
∂M ddx

√
γnaFabA

b to the action. It would be interesting to pursue this possibility

in the context of the complexity=action proposal, where it seems that we would need to

include this boundary term on all of the boundaries of the WDW patch.

In order to express our results for the complexity in terms of boundary quantities,

it will be useful to also have holographic expressions for the central charges associated

with the two-point functions of the boundary stress tensor (e.g., [55–57]) and currents

(e.g., [58, 59]). That is, for a d-dimensional CFT, the leading singularities in the vacuum

correlators take the form:

〈Tµν(x)Tρσ(0)〉 =
CT
x2d
Iab,cd , 〈Jµ(x)Jν(0)〉 =

CJ

x2(d−1)
Iµν(x) (4.8)

where

Iab,cd ≡
1

2

(
Iµν(x)Iρσ(x) + Iµσ(x)Iνρ(x)

)
− 1

d
ηµνηρσ , Iµν ≡ ηµν − 2

xµxν
x2

. (4.9)

For our holographic framework, the two central charges can then be expressed in terms of

bulk parameters as

CT =
d+ 1

d− 1

Γ(d+ 1)

8π(d+2)/2 Γ (d/2)

Ld−1

GN
, CJ =

(d− 2)Γ(d)

2πd/2Γ (d/2)

Ld−3

g2
. (4.10)

It will be convenient to work in terms of the following dimensionless quantities:

x ≡ r

r+
, y ≡ r−

r+
, z ≡ L

r+
. (4.11)

23The current can be defined by varying the boundary action with respect to the gauge field, e.g., [54].
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Here, x is a dimensionless radial coordinate, while y and z can be expressed in terms of

dimensionless boundary quantities. In particular, combining the expressions above yields

ν ≡
√
CJ
CT

µ

T
= h(y, z) , RT = h̃(y, z) . (4.12)

Of course, these equations can be inverted and so one can think directly of y and z as

boundary quantities. As we will see, all our result can be expressed as functions of ν and

RT , or alternatively of y and z. Explicit expressions for h(y, z) and h̃(y, z) for the different

dimensions and geometries read

h(y, z) =
2
√

2π(d− 1)
(
y
d
2
−1
√

1− yd−2
√

(kz2 + 1)− yd−2 (kz2 + y2)
)

√
d(d+1)

(
(d−2)kz2+d−2yd−2 ((d−2)kz2+d−1) + (d−2)y2(d−2) (kz2+y2)

) ,
h̃(y, z) =

(d− 2)kz2 + d− 2yd−2
(
(d− 2)kz2 + d− 1

)
+ (d− 2)y2(d−2)

(
kz2 + y2

)
4πz (1− yd−2)

.

(4.13)

It is instructive to expand these functions in the small charge limit (i.e.,small y) where one

obtains

h(y, z) =
2
√

2π(d− 1)
√

1 + kz2√
d(d+ 1) (d+ (d− 2)kz2)

y
d
2
−1×

×
[
1 +

(
1 +

1

2

1

(1 + kz2)
− 2

d+ (d− 2)kz2

)
yd−2 +O

(
yd
)]

h̃(y, z) =
d+ (d− 2)kz2

4πz
− (1 + kz2)

4πz
(d− 2)yd−2 +O

(
y2(d−2)

)
. (4.14)

As expected, the dimensionless quantity ν goes to zero and TR to the uncharged limit as

in eq. (2.47). From the expansions in eq. (4.14), we can also conclude that the chemical

potential,
√

CJ
CT
µR = h̃(y, z)h(y, z) scales as ∝ y

d−2
2 for small charges. Similarly, the

blackening factor can be expressed as f(x, y, z) where x was defined in eq. (4.11).

Complexity of formation: the complexity of formation for uncharged black holes was

examined in detail in [30]. Hence for completeness, we also examine the ‘complexity of

formation’ of charged black holes here and the corresponding calculations are described in

detail in appendix D. The question of interest is what is the additional complexity involved

in preparing the two copies of the boundary CFT in the charged entangled thermofield

double state (4.4) compared to preparing each of the CFTs separately in their vacuum state.

Using the CA proposal,24 the bulk calculation consists of evaluating the gravitational action

for the WDW patch (anchored at tL = tR = 0) in the charged AdS black hole background

and subtracting twice the action for the WDW patch in empty AdS space (i.e.,ω = q = 0).

A key feature of this subtraction is that all of the UV (large r) divergences cancel leaving

a UV-finite result.

24Of course, an analogous calculation can also be performed using the CV proposal, see appendix D.
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Figure 8. Penrose diagrams for a charged black hole. On the left figure we breakdown the action

calculation for the Wheeler-DeWitt patch. The future (past) corner approaches the inner (outer)

horizon in the late time limit. On the right, we identify the maximal volume that is evaluated in

the CV proposal. As in section 2 we have for the case of a general boundary size t = L
Rτ .

We discuss here the charged complexity of formation using the CA conjecture for the

planar case, i.e.,k = 0, for d = 4. For small chemical potential, the charged complexity of

formation can be written as a series expansion for small y,

∆CA =
S

2π

(
1 +

(
20

3π
+

4

π
log

[
yz

2

αR

L

])
y3 + · · ·

)
, (4.15)

where S is the thermal entropy. Of course, we recover the d = 4 planar result found in [30]

in the limit of vanishing chemical potential, i.e.,y → 0. We can rewrite the above expression

without the explicit zR dependence, using the k = 0 and d = 4 instances of eq. (4.13),

which reads

ν =
3π√
10

y
√

1 + y2

(2− y2 − y4)
, TR =

(1− y2)(2 + y2)

2πz
. (4.16)

The expansion of the complexity of formation then becomes

∆CA =
S

2π

(
1 +

103/2

(3π)4

(
20 + 12 log

[
101/2

3π2

α ν

LT

])
ν3 + · · ·

)
. (4.17)

As in section 2, we might simplify the above expression by choosing the normalization

of the null normals at infinity to be α = L/R, where R is to be interpreted not as the
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Figure 9. Complexity of formation divided by the entropy for the planar charged black hole in

d = 4. Here we are subtracting the complexity of two copies of the vacuum spacetime (i.e.,the zero

mass and zero charge limit of the planar black hole). In this plot, we keep the chemical potential

fixed as
√

CJ

CT
µR = 1

2 . For a fixed chemical potential in the limit of zero temperature (dual to

extremal black hole) the complexity of formation is divergent.

curvature scale, but instead as an arbitrary reference length scale in the boundary theory

(for k = 0).

We also use the boundary quantities from eq. (4.16) to evaluate numerically the com-

plexity of formation fixing the chemical potential and varying the temperature in figure 9.

There is an unexpected behaviour when the temperature is very small, as the complexity

of formation grows unbounded. The fact that the complexity of formation for extremal

black holes of finite chemical potential is divergent suggests that the proposed ground state

for large charged black holes in [9] should be revisited. It is also interesting to notice that

in this limit of zero temperature with a fixed chemical potential, dCA/dτ goes to zero [9],

as we will show in the following subsection. We will explore further some features of the

charged complexity of formation in appendix D.

4.1 Complexity=Action

Next, we examine the time evolution of holographic complexity using the CA proposal for

the eternal charged AdS black holes. The integrand of the bulk action is given by25

I(r) ≡ 1

16πGN
(R− 2Λ)− 1

4g2
FabF

ab =
1

16πGN

(
− 2d

L2
+

2(d− 2)q2

r2(d−1)

)
. (4.18)

We then write the bulk action as

Ibulk =
L

R
Ωk,d−1

∫
dr rd−1 I(r)

∫
dτ (4.19)

25To simplify this expression, we have used the trace of Einstein equations, which yields R = − d(d+1)

L2 +
d−3
d−1

4πGN
g2

FabF
ab.
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where we still have to specify the limits of integration. In particular, we need to find the

future (r1
m) and past (r2

m) meeting points of the null sheets bounding the WDW patch —

see figure 8. These satisfy the following relations

L

R

τ

2
+ r∗∞ − r∗(r1

m) = 0,
L

R

τ

2
− r∗∞ + r∗(r2

m) = 0. (4.20)

Note that taking the time derivative of these relations yields:

R

L

dr1
m

dτ
=
f(r1

m)

2
,

R

L

dr2
m

dτ
= −f(r2

m)

2
. (4.21)

We again divide the bulk contribution into three separate regions

II
bulk = 2Ωk,d−1

∫ r+

r1m

I(r)rd−1

(
τ

2
+
R

L
(r∗∞ − r∗(r))

)
dr

III
bulk = 4Ωk,d−1

∫ rmax

r+

I(r)rd−1 R

L
(r∗∞ − r∗(r))dr

IIII
bulk = 2Ωk,d−1

∫ r+

r2m

I(r)rd−1

(
−τ

2
+
R

L
(r∗∞ − r∗(r))

)
dr .

(4.22)

Differentiating with respect to τ we see once again (as in the neutral case) that the con-

tributions due to differentiating the limits of integration vanish using eq. (4.20). The

contribution outside the black hole (region II) is independent of time.26 Hence the only

nonvanishing contribution comes from differentiating inside the integrals and we obtain

dIbulk

dτ
=
L

R
Ωk,d−1

∫ r2m

r1m

rd−1I(r)dr =
L

R

Ωk,d−1

8πGN

[
rd

L2
+

q2

rd−2

] ∣∣∣∣∣
r1m

r2m

. (4.23)

There are no contributions to dCA/dτ from the surface terms or from the asymptotic

boundaries here, but we do expect the two joints (at r = r1
m and r2

m) to contribute:

Icorner = −
Ωk,d−1

8πGN

[
(r1
m)d−1 log

[
L2|f(r1

m)|
R2α2

]
+ (r2

m)d−1 log

[
L2|f(r2

m)|
R2α2

]]
. (4.24)

Differentiating the corner contribution with respect to τ then gives

dIcorner

dτ
= −L

R

Ωk,d−1

16πGN

[
(d− 1)rd−2f(r) log

L2|f(r)|
R2α2

+ rd−1∂rf(r)

] ∣∣∣∣∣
r1m

r2m

, (4.25)

where we used eq. (4.20). Combining the nonvanishing contributions together leads to

dCA
dτ

=
L

R

Ωk,d−1(d− 1)

8π2GN

q2

rd−2

∣∣∣∣∣
r1m

r2m

− L

R

Ωk,d−1(d− 1)

16π2GN
rd−2f(r) log

L2|f(r)|
R2α2

∣∣∣∣∣
r1m

r2m

. (4.26)

As a consistency check, we note that in the late time limit, we recover eq. (3.39) of [29]:

lim
τ→∞

dCA
dτ

=
Ωk,d−1(d− 1)q2

8π2GN

L

R

1

rd−2

∣∣∣∣∣
r−

r+

, (4.27)

26This results from the boost invariance of the exterior geometry, as noted in [8, 9].
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Figure 10. The time derivative of complexity with d = 4, k = 1 and non-zero chemical potential,

obtained by fixing the parameters in eq. (4.29). The various curves correspond to: ν = 0.1 in blue

(solid) , ν = 1 in orange (dashed) and ν = 5 in green (dot-dashed) for TR = 1 (Left) and TR = 1
2

(Right). In order to illustrate the violation of the bound, we explicitly show the late time limit

from eq. (4.28) in the right figure.

where we have used that r1
m → r− and r2

m → r+ in this limit. It is also possible to express

this late time rate of change using the black hole mass and the dimensionless quantities

from eq. (4.11) as

lim
τ→∞

dCA
dτ

=
2M

π

(
(1− yd−2)((1− yd) + kz2(1− yd−2))

(1− y2(d−1)) + kz2(1− y2(d−2))

)
. (4.28)

In these variables, the late time limit of the uncharged case is easily obtained with y → 0.

Now it is straightforward to solve for the two meeting points numerically using

eq. (4.20) and then to evaluate the rate of change in complexity (4.26). To illustrate

these results, we show dCA/dτ for d = 4 in figures 10 and 11.27 For these black holes, the

boundary quantities ν and RT in eq. (4.12) can be obtained from the ratios y and z as

ν =

√
CJ
CT

µ

T
=

3π√
10

y
√

1 + y2 + kz2

(1− y2)(2 + y2 + kz2)
, RT =

1

2π

(1− y2)(2 + y2 + kz2)

z
. (4.29)

In the figures, the rate of change in complexity is presented for fixed values of these bound-

ary quantities.

4.1.1 Comments

Let us make a number of observations about these results for the charged black holes. First,

we note that in both figures, for very small charge (or small chemical potential), the rate

of change in complexity develops a minimum at some finite time. This minimum becomes

deeper and sharper for smaller charges, and so the behaviour smoothly approaches that of

the neutral black holes (ν = 0), shown in figure 4. In particular, the pronounced minimum

in dCA/dτ is centered around the neutral τc, and its shape resembles closely the negative

divergent rate of change observed right after τc in the neutral case, and as noted above,

the late time limit approaches 2M/π, as expected for neutral AdS black holes.28

27As before, we set α = L/R for simplicity.
28In fact, one can easily show that eq. (2.49) is recovered in the zero charge limit analytically. The key

observation is that r− vanishes as rd−2
− = q2/ωd−2 in this limit. Along with r1m ∼ r− and r2m ' r(neutral)

m ,

eq. (4.26) reduces to the neutral growth rate (2.49) for τ > τc. We consider the early time behaviour in the

zero charge limit below.
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Figure 11. The time derivative of complexity with d = 4, k = 0 and non-zero chemical potential,

obtained by fixing the parameters in eq. (4.29). The various curves correspond to: ν = 0.1 in blue

(solid) , ν = 1 in orange (dashed) and ν = 5 in green (dot-dashed). We varied the chemical potential

while fixing the temperature as TR = 1
2 , where as before the scale R in the planar geometry is

related to an arbitrary scale in the boundary theory.

Next, we might consider the extremal limit of the charged black holes where T → 0. It

is straightforward to show dCA/dτ ' 0 in this limit. For example, from eq. (4.29), we see

that this limit corresponds to y → 1 and this certainly produces a vanishing rate of change

for the late time limit in eq. (4.28). More generally, this limit corresponds to r− → r+ and

we find r1
m ∼ r2

m. The latter then produces a cancellation and vanishing dCA/dτ ' 0 in

eq. (4.26).

Late time expansion: in a very similar manner to the analysis of the late time limit

in section 2.2.1, we can obtain the late time limit of the growth rate of the holographic

complexity for charged black holes. First, we decompose the inverse blackening factor as

1

f(r)
=

1

r+ − r−

(
r+

F (r+)r(r − r+)
− r−
F (r−)r(r − r−)

+H(r)

)
(4.30)

where we have defined:

f(r) ≡ F (r)(r − r+)(r − r−) (4.31)

and F (r) is a strictly positive function. Further, we have defined

H(r) =
F (r+)r − F (r)r+

F (r+)F (r)r(r − r+)
− F (r−)r − F (r)r−
F (r−)F (r)r(r − r−)

, (4.32)

which is regular both at r+ and at r− and decays at least as fast as 1/r2 when r approaches

infinity. This leads to the tortoise coordinate:

r∗(r) =
log (|r − r+|/r)
F (r+)(r+ − r−)

− log (|r − r−|/r)
F (r−)(r+ − r−)

+
1

r+ − r−

∫ r

H(r̃)dr̃. (4.33)

We have left the lower limit in the last integral implicit, as this choice does not influence

the subtractions involved in the equations determining the meeting points. Solving for the
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first subleading order in the late time limit of eq. (4.20), we obtain

r1
m = r−

(
1 + c−e

−F (r−)(r+−r−)

2
L
R
τ

)
, r2

m = r+

(
1− c+e

−F (r+)(r+−r−)

2
L
R
τ

)
(4.34)

where c+ and c− are positive constants given by

c− =

(
r+ − r−
r−

)F (r−)

F (r+)

e
−F (r−)

∫∞
r−

H(r̃)dr̃
, c+ =

(
r+ − r−
r+

)F (r+)

F (r−)

e
F (r+)

∫∞
r+

H(r̃)dr̃
. (4.35)

From eq. (4.26), we can now demonstrate that

dCA
dτ

= lim
τ→∞

dCA
dτ

+
(r+ − r−)2

2

L2

R2

Ωd−1(d− 1)

16π2GN
τ

×
(
c+r

d−1
+ F (r+)2e−

F (r+)(r+−r−)

2
L
R
τ − c−rd−1

− F (r−)2e−
F (r−)(r+−r−)

2
L
R
τ

) (4.36)

where we have neglected terms that decay exponentially compared to those that decay as

τ times an exponential above. At very late times the exponent with smaller coefficient

will dominate and will determine whether the limit is reached from above or from below.

We have checked the ratio F (r+)/F (r−) = −f ′(r+)/f ′(r−) for a variety of dimensions and

geometries and found that it is in general positive and smaller than one. As a consequence,

dCA/dτ generally approaches the late time limit from above.

Early time behaviour: we note that for the charged black holes, there is not a critical

time before which the time derivative of the complexity is equal to zero. In the charged black

hole, the past and future oriented joint terms (see the left panel in figure 8) start moving

right away. However, we will show that for a small chemical potential, the time derivative

of the complexity is exponentially suppressed at early times. In order to investigate this

behaviour, we investigate the early time regime of the rate of change of complexity in an

analytic expansion for small charges. To complete the picture, we also consider in this

section the early time behaviour of the rate of change of complexity for near extremal

black holes.

As we have already mentioned at the beginning of this subsection, in the limit in which

the charge is small, the action does not change much for a certain period of time after τ = 0.

In this situation, the future and past corner points (i.e.,r1
m and r2

m respectively, or x1
m and

x2
m in terms of the dimensionless coordinate x = r/r+) are exponentially close to the inner

horizon r− at early times. For instance in d = 4, we can derive the following expressions

in a small charge expansion, i.e.,y → 0,

x1
m = y

(
1 + exp

[
−

(
π(1 + kz2)

2 + kz2

2τT +
√

1 + kz2

y3

)
+O

(
1

y

)])
,

x2
m = y

(
1 + exp

[
−

(
π(1 + kz2)

2 + kz2

−2τT +
√

1 + kz2

y3

)
+O

(
1

y

)])
.

(4.37)

This expansion demonstrates that the two corners remain exponentially close to r− at

early times. Given the above expression, it is clear that r1
m never leaves this regime and
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keeps approaching r−. However, in the second expression for r2
m, the leading term in the

exponent flips its sign at some τ = τc = 1
2T

√
1 + kz2, which is precisely the uncharged

critical time given in eq. (2.66). Hence the rate of change of complexity given by eq. (4.26)

is exponentially suppressed as long as τ . τc.

Another case for which the early time behaviour can be studied in an analytic expansion

is the near-extremal black holes. In this case, the inner and outer horizons are very close

to each other as y → 1. If we define y = 1− ε where ε� 1, eq. (4.20) yields at early times

x1
m = 1− ε

2
(1 + πτT ) +O(ετ3T 3, ε2τT, ε2 log ε) ,

x2
m = 1− ε

2
(1− πτT ) +O(ετ3T 3, ε2τT, ε2 log ε) . (4.38)

In general, the geometry and hence, the complexity are symmetric under τ → −τ . There-

fore only even derivatives of CA are nonvanishing at τ = 0, e.g., dCA/dτ |τ=0 = 0. We

can evaluate the second derivative of CA at τ = 0 using eqs. (4.26) and (4.21), and the

expansion for xm ≡ x1
m = x2

m at τ = 0 which reads

xm = 1− ε

2
+

(
3kz2 + 7

)
ε2 log(ε)

4 (kz2 + 3)
− ε2

8 (kz2 + 3)
×

(
16π

√
1

kz2 + 2
+ 3 + 28 log(2)

+kz2

(
4π
(
kz2+4

)√ 1

kz2 + 2
+1+6 log(4)

)
−8
(
kz2+2

)3/2
cot−1

(√
kz2+2

))
.

(4.39)

Hence using the above results, the first nonvanishing derivative becomes

d2CA
dτ2

∣∣∣∣
τ=0

=
4
(
kz2 + 2

)
2kz2 + 3

εMT +O(ε3) . (4.40)

Note that the temperature here is of order ε and as a consequence the leading term in an ε

expansion is in fact of order ε2. Despite being suppressed by the parameter ε, the complexity

grows quadratically (and the rate of change grows linearly) with τ at early times.

Lloyd’s bound: a generalization of Lloyd’s bound for the case of charged black holes

has been proposed in [9] (see also [60]). According to this suggestion, the natural bound

for states at a finite chemical potential becomes

dCA
dt
≤ 2

π

[
(M − µQ)− (M − µQ)

∣∣
gs

]
. (4.41)

This bound was inspired by the late time growth rate of holographic complexity for the

charged black holes. One important element of this proposed bound is that it involves

the subtraction of certain thermodynamic quantities associated with the ground state (gs)

of the system in question, which according to the proposal of [9] is the state minimizing

(M−µQ) for a given value of the chemical potential. For instance, for spherical black holes

with µ < gL

2R
√

2πG

√
d−1
d−2 , the ground state is simply the vacuum solution (M = Q = 0) with

a constant gauge field, while for larger chemical potentials, the ground state is the extremal
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Figure 12. The time derivative of complexity with d = 4, k = 1 with non-zero chemical potential,

by fixing the parameters in eq. (4.29). The various curves correspond to: ν = 0.1 in blue (solid),

ν = 1 in orange (dashed) and ν = 5 in green (dot-dashed) for TR = 1 (left) and TR = 1
2 (right).

Late time limits are obtained from eqs. (3.17), (3.19) and are indicated by horizontal lines of the

appropriate color.

black hole with same chemical potential µ as the state of interest. However, it was also

found in [9] that the proposed bound (4.41) is violated for black holes which are intermediate

or large compared to the AdS radius (r+ & L), while for small black holes the bound is

exactly saturated. On the other hand, we showed earlier that the complexity calculated

from the action always approaches its late time limit from above, and as a consequence we

conclude that the bound in eq. (4.41) is always violated.

4.2 Complexity=Volume

We can also extend the analysis of section 3 to evaluate the rate of change of complexity

for the charged case using the CV proposal (1.2). A maximal volume connecting the two

boundaries anchored at tL and tR is depicted on the right side of figure 8. The analysis

and the results are very similar to the uncharged case. For example, one still calculates

the rate of change by computing rmin (or the associated E) in eq. (3.8), but now with the

blackening factor for charged solutions in eq. (4.2). The growth rate can be evaluated as

detailed in section 3.2.

We present some of the results in figures 12 and 13. The growth rate depends on

the charge parameter as expected, and it also approaches zero near the extremal limit,

analogous to the previous results from CA. It smoothly approaches the neutral behaviour

(e.g., shown in figures 7 and 24(b)) in the limit q → 0.

5 Discussion

In this paper, we computed the general time dependence of holographic complexity in

various AdS black hole geometries.29 Further we examined the time dependence using

both the complexity=action (CA) and the complexity=volume (CV) conjectures. Using

the CV conjecture, the rate of change of complexity is a positive monotonically increasing

function of time, and it saturates to a positive constant as t→∞. In particular, for planar

29Here, we have focused on eternal two-sided black holes and in a companion paper, we will also study

one-sided black holes [61].

– 38 –



J
H
E
P
1
1
(
2
0
1
7
)
1
8
8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 13. The time derivative of complexity with d = 4, k = 0 with non-zero chemical potential,

by fixing the parameters in eq. (4.29). The various curves correspond to: ν = 0.1 in blue (solid),

ν = 1 in orange (dashed) and ν = 5 in green (dot-dashed). Curves are independent of TR in

eq. (4.12) as expected for the planar geometry. Late time limits are obtained from eqs. (3.17), (3.19)

and are indicated by horizontal lines of the appropriate color.

black holes, the limiting rate is given by eq. (3.22),

lim
τ→∞

dCV
dτ

=
8πM

d− 1
, (3.22)

as was first found in [6]. When the boundary geometry is curved, this result is modified

by various curvature corrections which become important when the temperature is of the

same order as the curvature scale, i.e.,RT . 1.

Using the CA conjecture, the rate of change of the complexity shows some curious

features. Of course, there is a universal late time rate of growth

lim
τ→∞

dCA
dτ

=
2M

π
, (5.1)

as shown in eq. (2.41). This universal rate, discovered in [8, 9], holds in any number of

dimensions and is not affected by the boundary curvature. However, as also shown in

eq. (2.41), dCA/dτ overshoots this late time limit at early times and approaches the final

limit from above. Further dCA/dτ is initially zero and the complexity only begins to change

after some critical time τc (for d ≥ 3). This initial phase of constant complexity was also

observed in [8, 9]. In the bulk, the vanishing of dCA/dτ results because of the ‘boost’

symmetry of the eternal black hole geometry and the fact that in this initial period of time

the WDW patch touches both the past and future singularities, e.g., see the left panel in

figure 1. A third curious feature that we found is that immediately after τ = τc, dCA/dτ is

divergent and negative, as shown in eq. (2.42)30 — see also figure 4.

We reiterate that the three features above only appear for the time rate of change

evaluated with the CA proposal. None of these features appeared in the results found

using the CV proposal in section 3. Further, when a chemical potential was introduced

in section 4, this washed out the unusual behaviour at early times, at least when the

30This negative spike (as well as the overshoot of the late time limit) in dCA/dτ also appears in different

holographic settings, such as the holographic dual of non-commutative SYM theories [62]. We thank Josiah

Couch for discussing this upcoming work with us.
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chemical potential was comparable to the temperature, as shown in figures 10 and 11. Of

course, as we discussed, the limit q → 0 was a smooth one and the curious behaviour

found for the neutral black holes was recovered. So when the chemical potential was small

but nonvanishing, dCA/dτ varied very little for an initial period and then quickly dipped

to negative values before rising again. We can also add that with a chemical potential,

dCA/dτ would still overshoot the late time limit but that the amount by which the limit

was exceeded was much less pronounced when the chemical potential became large.

At this point, let us add that the curious behaviour found with the CA proposal also

seems to be particular to the eternal black hole, i.e.,to the thermofield double state (1.1).

Analogous computations of the action for a one-sided black hole yield results more similar

to those found here with the CV proposal [61]. That is, in this context, dCA/dτ is a positive

monotonically increasing function of time, which saturates to some positive constant in the

late time limit. For both proposals, the late time limit is reached exponentially fast, with

a characteristic time which is of the order of the inverse temperature. This can be seen

explicitly in eq. (2.41) for the CA calculation, and in eq. (C.15) in appendix C for the

CV calculation.

In the above discussion, we commented that for higher dimensions (i.e.,d ≥ 3), the

action (for neutral black holes) does not change at all for some period −τc ≤ τ ≤ τc and

then changes very rapidly just after τ = τc. We observe that the time scale τc is of the

order of the thermal time scale β = 1/T , e.g., see eq. (2.66) for d = 4. In particular, the

latter equation demonstrates that the critical time is a physical quantity independent of

the ambiguity introduced by the normalization constant α of null normals. In contrast,

the period of time over which dCA/dτ is negative, depends both on β and on α. For

very small black holes, it is possible to obtain an estimate of this period by equating the

r.h.s. of eq. (2.42) with the constant term in the complexity 2M/π and we see that this

period depends explicitly on the reference scale ` (as in α = L/`) (i.e.,the spike lasts

for δt0 ∼ β (`/β)2(d−1)/(d−2)). However, we might add that this negative spike can grow

arbitrarily wide31 for extremely large values of `, or alternatively, for extremely small

values of the parameter α. While the latter remains a logical possibility, it also seems very

unnatural for our complexity calculations, e.g., see [12, 31].

However, one might argue that the holographic definition of circuit complexity is not

robust enough to consider time scales smaller than β in the context of the eternal black

hole.32 That is, we might only want to consider the behaviour of complexity over time scales

which are longer than the thermal time scale. Therefore we defined an averaged version of

dCA/dτ in eq. (2.43), which is essentially a symmetric discrete time derivative with a time

step ∆t = γ/T . With a large enough γ, the complexity begins changing right away and the

sharp negative spike in dCA/dτ is washed out by the averaging procedure.33 However, we

note that this averaging does not remove the behaviour where the rate of change overshoots

its late time limit. This feature should not be associated with short times since in fact, the

late time limit is being approached from above, as shown in eq. (2.41). Some examples of

31The growth rate is exceptionally slow with δt0 ∼ β log [log(`/β)] for very large values of `.
32We thank Lenny Susskind, Dan Roberts and Brian Swingle for correspondence on this point.
33This simply requires that dCA/dτ > 0 at τ = γβ/2.
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Figure 14. The averaged rate of growth of complexity from eq. (2.43) (with γ = 1) as a function

of time for the d = 3 planar black hole (left) and d = 4 planar (right). Results are shown for

several values of the horizon radius — rh/L = 1 (blue), rh/L = 1.5 (dashed red) and rh/L = 3.5

(dot-dashed green). Note that, as in figures 2 and 4, smaller black holes violate the Lloyd bound

more strongly. Note also, that the averaged derivative is discontinuous at |τ/β ± 1
2 | = τc/β, where

for d = 3, τc/β = 1
2
√
3

and for d = 4, τc/β = 1
2 .

these averaged growth rates are shown in figure 14.

Recall that [8, 9] suggested that the late time limit of dCA/dτ may be related to Lloyd’s

bound 2M/π for the rate of computation for a system of energy M [34]. These authors

also proposed a generalization of Lloyd’s bound that should apply for charged black holes

— see eq. (4.41). However, they also pointed out apparent violations of the latter bound

for intermediate or large charge black holes (i.e.,r+ & L). However, our calculations of

the rate of change of holographic complexity for general times showed that dCA/dτ always

overshoots the late time limit. As a consequence, for every situation that we examined in

sections 2.2.1 and 4.1.1, the corresponding bound on dCA/dτ was violated. This certainly

calls into question these proposals or at least their interpretation (as we describe next).

Let us comment that similar violations are observed for the proposed bounds for the

maximal rate of entanglement growth in relativistic systems [63, 64].34 In this case, the

proposal is that following a quantum quench, the rate of growth of the entanglement entropy

for a large region will be bounded by

1

seq A

dSEE

dt
≤ vE (5.2)

where seq is the equilibrium entropy density, A is the area of the entangling surface, and

vE(≤ 1) is a universal velocity that depends on the dimension of the spacetime. In certain

contexts, this bound can be proven but it requires considering a certain scaling regime

where β � t, R where R is the characteristic size of the entangling region [65]. In contrast,

in numerical studies, one may find that the rate of growth actually overshoots the expected

bound, e.g., [64, 66]. By analogy, it may be that one should only interpret the bounds on

the growth of complexity in a particular scaling regime. For example, if we demand that

β � t, then the corrections in eq. (2.41) to the late time limit would be vanishingly small.

We might also point out that one needs to test carefully the validity of the assumptions

34We thank Mark Mezei for explaining this point to us.
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entering in the derivation of Lloyd’s bound in a holographic setup, in particular the use of

orthogonalizing gates.35

We must also comment that the precise details of the manner in which dCA/dτ over-

shoots the late time limit depend on the normalization constant α, which fixes the normal

vectors on the null boundaries of the WDW patch. In our various plots, e.g., figures 2

and 4, we chose α = L/R for simplicity and as a result, the late time limit was only ex-

ceeded by a relatively small amount. However, by choosing α to be very large, the amount

by which dCA/dτ overshoots this limit can be made very large. This is easily demonstrated

by examining eq. (2.49) evaluated for two different values of the normalization constant,

i.e.,α1 and α2, but for the same time τ where dCA/dτ exceeds the late time limit for α1.

Now we see in eq. (2.49) shows that with α2, dCA/dτ is the previous value plus a positive

quantity multiplying log(α2/α1) and so by choosing α2 large enough, we can make the

excess as large as we want.

We can also study the maximal rate of complexity growth analytically when α is very

large. The simplest case to consider here is d = 2 for which the maximum was calculated

in appendix A. For example, if we choose α = L/δ, then eq. (A.23) yields

dCA
dτ

∣∣∣∣
max

=
2M

π

(
1 + log

[
1

2πδ T

])
. (5.3)

However, we should also remark that in this instance, the violation is an early time feature,

i.e.,dCA/dτ peaks at precisely τ = 0 and the width of the peak is of order β. Hence the

averaging discussed above will reduce the excess but it will still remain significant with

this extreme choice of α. A similar result holds in higher dimensions. For instance, if

we consider the planar uncharged black holes in section 2 with α = L/δ, then the limit

δ → 0 yields
dCA
dτ

∣∣∣∣
max

=
2M

π
log

(
d

4πδ T

)
+O

(
log

(
log

1

δ T

))
, (5.4)

for the leading behaviour of the peak of the growth rate. Note that this result reproduces

the leading behaviour in eq. (5.3) with d = 2.

Having noted that the amount by which dCA/dτ exceeds that late time limit is con-

trolled by α, we might add that this produces a finite shift in the complexity. That is com-

paring the complexity at late times for different choices of α has a rather simple expression

∆CA(α1)−∆CA(α2) =
S

2π2
log
(
α2

1/α
2
2

)
. (5.5)

That is, the total shift in the complexity caused by the overshoot scales with S, the

entanglement entropy between the two CFTs in the thermofield double state (1.1). The

∆ for the complexities in this difference indicates that we are subtracting two copies of

the vacuum complexity. This subtraction removes the α dependence of the UV divergent

contributions, which is not captured in the time derivative dCA/dτ .36 Of course, we should

35We thank William Cottrell and Miguel Montero for sharing their upcoming work [67] on this subject

with us.
36From [31], the leading UV behaviour is [CA]UV(α1)− [CA]UV(α2) ' − Ld−1

4π2GN

V
δd−1 log

(
α2
1/α

2
2

)
.
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also recall that the total holographic complexity diverges in this late time limit, since it is

growing linearly with time.

As we first noted in eq. (2.54), we should choose α = L/` in order that our general

results for dCA/dτ can be fully expressed in terms of boundary quantities. That is, the

argument of the logarithm in eq. (2.54) contains an errant factor of the AdS scale, which

is not a quantity that the boundary CFT should know about, but this can be eliminated

using our freedom in choosing α. However, this choice for α also introduces some new scale

` in the boundary theory. It is reassuring that precisely the same situation arises in the UV

divergences of holographic complexity [31]. That is, the contributions to the gravitational

action coming from the joints where the null boundaries intersect the asymptotic cutoff

surface also introduce logarithms where the argument contains the combination L/α, as

in eq. (2.54). Of course, choosing α = L/` leaves us with the question of what the most

appropriate choice for ` would be. While the ambiguity left in choosing ` may have origi-

nally seemed problematic, it was recently found that precisely the same ambiguity appears

in complexity models for quantum field theory [12, 13] where the complexity of ground

states of free scalar field theories were examined.37 Further let us add that setting ` = eσδ,

where σ is some numerical factor and δ is the short-distance cutoff in the boundary theory,

was a convenient choice because it removed an extra logarithmic factor in the leading UV

divergence. However, our results show that with this choice, dCA/dτ would depend on

the short-distance cutoff, i.e.,an apparently IR contribution to the complexity would now

depend on the UV cutoff.

To close our discussion, we would like to return to our calculations of the complexity

of charged AdS black holes. In particular, in section 4 (and appendix D), we found that

the complexity of formation diverged for extremal charged black holes. Both these results

appeared using either the CA or CV conjectures. We stress that in the complexity of for-

mation, there was still a cancellation of the UV divergences associated with the asymptotic

boundary. Instead this divergence was a new IR divergence, associated with the infinitely

long throat of the extremal black holes. Further, the results in section 4 indicate that

the rate of change of the complexity vanishes for extremal black holes. If one considers

the CA predictions, we find that extremal black holes with finite chemical potential has

these IR divergences, while systems with zero chemical potential and zero temperature

(i.e.,extremal hyperbolic black holes without any charge) have finite contributions to the

complexity from the IR.38 In order to illustrate these results, figure 15 shows a schematic

phase diagram for the hyperbolic black holes for d = 4, in terms of the y and z variables

introduced in eq. (4.11). There is a line of states at y = 1 with finite chemical potential

and zero temperature with infinite complexity, while the states with zero chemical potential

ends in a point y = 1, z =
√

2 with finite complexity.

Combining these results suggests a ‘Third Law of Complexity’.39 That is, the corre-

37The complexity for a free scalar quantum field theory in the time-dependent thermofield double state,

and the similarities and differences with the holographic results presented in this work, will be discussed

in [69].
38We might add that using the CV proposal actually yields a similar IR divergence for these black

holes [30].
39We thank Henry Maxfield and Robie Hennigar for independently suggesting this connection.
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Figure 15. Lines of constant µR (dashed blue) and constant TR (dot-dashed red) for the hyperbolic

black hole in d = 4, with y = r−
r+

and z = L
r+

. The temperature and chemical potential increase as

one moves towards the left, as indicated by the arrows. The line of extremal black holes at y = 1

with finite chemical potential has states with infinite complexity. However, the extremal black

hole represented by the blue dot with coordinates y = 1, z =
√

2 is the small uncharged extremal

hyperbolic black hole, with zero chemical potential and finite complexity (using the CA proposal).

sponding ‘extremal’ thermofield double states (4.4) at zero temperature and finite chemical

potential are infinitely complex compared to the finite temperature states. Hence no phys-

ical process should be able to produce the extremal states in a finite amount of time. It

would be interesting to further test this idea by examining the complexity of extremal

spinning black holes [68, 70].
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(a) τ = τL + τR > 0 (b) τ = τL + τR < 0

Figure 16. The WDW patches in the BTZ black hole background. The dashed lines represent the

cutoff surfaces. The left (right) panel illustrates the case in which τ = τL+τR > 0 (τ = τL+τR < 0).

A Details of complexity=action for BTZ black holes

In this appendix, we add some more details of the holographic complexity for the BTZ holes,

using the complexity=action proposal. Much of these results are already summarized in

section 2.3.1. The new results here include the derivation of our results for non-symmetric

boundary times τL 6= τR and their generalization for negative times.

A.1 General boundary times

We consider the BTZ metric, given in eq. (2.55):

ds2 = −f(r)
L2

R2
dτ2 +

dr2

f(r)
+ r2dφ2 , with f(r) =

r2 − r2
h

L2
. (A.1)

The boundary metric takes the form given in eq. (2.57) and so a constant time slice is

simply a circle with circumference 2πR. For general boundary times (τL, τR),40 the WDW

patch takes the form depicted in figure 16. When the total time τ = τL + τR is positive

τ > 0 (or negative τ < 0), the WDW patch does not reach the past (future) singularity and

there is a past (future) corner represented by the dot in figure 16. The radial coordinate

rm of this joint is given by

rm(τL, τR) = rh tanh
rh|τL + τR|

2LR
= rh tanh

rh|τ |
2LR

. (A.2)

The action for the WDW patch consists of a bulk term, surface terms and joint terms,

as described in the main text:

IBTZ = Ibulk + Isurf + Ijnt. (A.3)

40Here, we do not assume τL = τR, but, of course, the result depends only on the total time τ = τL + τR
due to the symmetry of the background.
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The bulk term Ibulk is given by

Ibulk = −2LR

GNδ
−

r2
h|τ |

4GNLR
+

rm
2GN

, (A.4)

where we used the cutoff r = rmax = LR/δ+r2
hδ/(4LR) corresponding to the UV regulator

z = δ in a Fefferman-Graham expansion (see [30]).

As in the text, we choose here an affine parametrization for the null generators. For this

reason, the null surface terms vanish. Therefore the only nonvanishing surface contributions

come from the surface at the future singularity and the UV cutoff surfaces. The contribution

from the singularity is given by

Isurf,sing =
r2
h|τ |

4GNLR
. (A.5)

The contribution from the cutoff surfaces is UV-divergent:

Isurf,cut =
2LR

GNδ
. (A.6)

Thus, the total surface term is given by

Isurf =
2LR

GNδ
+

r2
h|τ |

4GNLR
. (A.7)

The normalization of null vectors kL and kR are set to be the same as in the main text:

kL · τ̂L = kR · τ̂R = ±α (A.8)

where τ̂L = ∂τL and τ̂R = ∂τR , and the sign is chosen as + (−) for future (past) null

surfaces. The joint contributions come from joints at r = rm and at r = rmax and are

given by

Ijnt,cut =− LR

GNδ
log

αδ

L
. (A.9)

Ijnt,rm =− rm
4GN

log

∣∣∣∣L2f(rm)

α2R2

∣∣∣∣ =
rh

2GN
tanh

rh|τ |
2LR

log

(
αR

rh
cosh

rhτ

2LR

)
. (A.10)

Therefore, the total action reads

IBTZ = Ibulk + Isurf + Ijnt

=
rh

2GN
tanh

rh|τ |
2LR

[
1 + log

(
αR

rh
cosh

rhτ

2LR

)]
− LR

GNδ
log

αδ

L
. (A.11)

We can regularize it by subtracting twice the action of the WDW patch in the vacuum

AdS space, following [30]. If we consider the Neveu-Schwarz vacuum of the boundary

theory [50], i.e.,with the metric f0(r) = r2/L2 +1, the action of vacuum AdS space is given

by a sum of eq. (4.5) of [30] and eqs. (A.6) and (A.9) which remain the same for the empty
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AdS background (but need to be multiplied by a factor of a half if we consider a single

copy of empty AdS). We therefore obtain:

IAdS =
πL

4GN
− LR

2GNδ
log

αδ

L
. (A.12)

The regularized action is then given after the subtraction by:

Ireg(τL, τR) = IBTZ(τL, τR)− IAdS(τL)− IAdS(τR) (A.13)

= − πL

2GN
+

rh
2GN

tanh
rh|τ |
2LR

[
1 + log

(
αR

rh
cosh

rhτ

2LR

)]
. (A.14)

The finite part of the holographic complexity from the CA conjecture is thus

∆CA(τL, τR) =
Ireg

π
= − L

2GN
+

rh
2πGN

tanh
rh|τ |
2LR

[
1 + log

(
αR

rh
cosh

rhτ

2LR

)]
. (A.15)

This result can also be written as

∆CA(τL, τR) = − c
3

+
2M

π2T
tanh (πT |τ |)

(
1 + log

[ α

2πLT
cosh (πTτ)

])
, (A.16)

where c is the central charge of the boundary CFT, given by c = 3L/(2GN ), M is the

mass of the BTZ black hole M = r2
h/(8GNLR), and T is the temperature T = rh/(2πLR).

We can think of this result as the complexity of formation of the thermofield double state,

with general times τL, τR. Note that the temperature should satisfy T > 1/(2πR) so that

the BTZ black hole is the dominant saddle point for the gravitational theory in the bulk.

In order to express ∆CA solely in terms of boundary quantities, choose the normalization

constant α = L/`, where ` is a new length scale in the boundary theory, as discussed in

section 2.2.1 — see also [31].

The holographic complexity of the AdS vacuum is independent of time and hence

taking the derivative of eq. (A.16) with respect to time τ = τL + τR, yields the rate of

growth appearing in eq. (2.61)

dCA
dτ

=
2M

π

(
1 + sech2 (πTτ) log

[
α

2πLT
cosh (πTτ)

])
. (A.17)

We are assuming τ > 0 here.

Unlike the higher dimensional case, dCA/dτ is finite at τ = 0.41 In fact, we have

dCA
dτ

(τ → 0+) =
2M

π

(
1 + log

α

2πLT

)
. (A.18)

At late times, we have

dCA
dτ

(τ →∞) ∼ 2M

π

[
1 + 4

(
πTτ + log

α

4πLT

)
e−2πTτ + · · ·

]
. (A.19)

41Recall the discussion for higher dimensional black holes around eq. (2.42).
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Noting the coefficient of the exponential is positive, we find that it approaches 2M/π from

above. In figure 2, we see that dCA
dτ has a maximum at some time τpeak. We can determine

the latter by evaluating d2CA
dτ2

(τpeak) = 0 and we find

τpeak =
1

πT
cosh−1

√
e 2πLT

α
. (A.20)

At that time, dCA
dτ is greater than 2M/π with,

dCA
dτ

(τpeak) =
2M

π

[
1 +

1

2e

( α

2πLT

)2]
>

2M

π
. (A.21)

Hence dCA/dτ always exceeds the Lloyd bound and further the violation increases for

smaller black holes, i.e.,smaller temperatures. Substituting the minimum temperature,

T = 1/(2πR), into eq. (A.21) yields

dCA
dτ

(τpeak)

∣∣∣∣
T= 1

2πR

=
2M

π

[
1 +

1

2e

(
αR

L

)2]
. (A.22)

Note that implicitly the above expressions require 2πLT ≥ α/
√
e. Otherwise the maximum

occurs at τ = 0, i.e.,

dCA
dτ

∣∣∣∣
max

=
dCA
dτ

(τ = 0) =
2M

π

(
1 + log

[ α

2πLT

])
for 2πLT < α/

√
e . (A.23)

We observe, however, that the details of the violation of Lloyd’s bound depend on the

normalization constant α, i.e.,whether or not the violation is large depends crucially on

the choice of α.

A.2 Boundary counterterm

We will now add the boundary counterterm to the action, which was introduced in [29] to

make the action invariant under the reparametrizations of null boundaries of the WDW

patch. As we see in appendix E.2, the counterterm for the affine parametrization λ = r/α,

which corresponds to the normalization of kL and kR in the previous subsection A.1, is42

∆IBTZ
Σ = − 1

GN
rmax

(
log

rmax

αL̃
− 1

)
+

1

2GN
rm

(
log

rm

αL̃
− 1

)
, (A.24)

where L̃ is an arbitrary constant. Similarly the counter term for pure AdS3 is given by

∆IAdS
Σ = − 1

2GN
rAdS

max

(
log

rAdS
max

αL̃
− 1

)
, (A.25)

where we assume that the arbitrary constant L̃ is the same as that in BTZ. Subtracting

this from eq. (A.24), we obtain the regularized counter term

∆Ireg = ∆IBTZ
Σ − 2∆IAdS

Σ =
1

2GN
rm

(
log

rm

αL̃
− 1

)
=

rh
2GN

tanh
rh|τ |
2LR

[
log

(
rh

αL̃
tanh

rh|τ |
2LR

)
− 1

]
. (A.26)

42This expression holds for the general boundary size 2πR.
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Figure 17. Plot of [π/(2Mβ)]CA(τ) with TR = 1
2π for R/L̃ = 0.5 (solid blue), R/L̃ = 1.0 (dashed

red) and R/L̃ = 2.0 (dot-dashed green).

Adding this result to eq. (A.14), the regularized BTZ action with the counter term is

given by

IBTZ = − πL

2GN
+

rh
2GN

tanh
rh|τ |
2LR

[
log

(
R

L̃
sinh

rh|τ |
2LR

)]
. (A.27)

Note that α-dependence cancels out. We thus obtain the holographic complexity

∆CA(τL, τR) =
IBTZ

π
= − L

2GN
+

rh
2πGN

tanh
rh|τ |
2LR

[
log

(
R

L̃
sinh

rh|τ |
2LR

)]
(A.28)

= − c
3

+
2M

π2T
tanh (πT |τ |)

(
log

[
R

L̃
sinh (πT |τ |)

])
. (A.29)

Of course, the boundary counterterm introduces a new arbitrary length scale L̃. Hence we

again encounter an ambiguity of the choice of the arbitrary length scale like in the choice

of α without the counterterm or the ambiguous factor in the CV conjecture (1.2). The

plots of eq. (A.29) for various R/L̃ are shown in figure 17.

The time derivative of the holographic complexity for τ > 0 is

dCA
dτ

=
2M

π

[
1 +

log(R
L̃

sinh(πTτ))

cosh2(πTτ)

]
. (A.30)

We show the plots for various choices of L̃ in figure 18. Unlike the case without the counter

term, dCA/dτ is divergent at τ = 0 with

dCA
dt
∼ 2M

π
log [πTτ ] for 0 < Tτ � 1 . (A.31)

This divergence might be comparable to that found for higher dimensional black holes at

t = tc, i.e.,see eq. (2.42). However, the complexity of formation (A.29) still has a finite

value at τ = 0, as

∆CA(0) = −c/3 . (A.32)
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Figure 18. Plot of [π/(2M)]dCA/dτ for R/L̃ = 0.5 (solid blue), R/L̃ = 1.0 (dashed red) and

R/L̃ = 2.0 (dot-dashed green). The curves diverge at τ = 0 and approach to 1 from above at

late times.

This matches the complexity of formation for Neveu-Schwarz vacuum found in [30]. At

late times, dCA/dτ behaves as

dCA
dτ
∼ 2M

π

[
1 + 4

(
πTτ + log

R

2L̃

)
e−2πTτ

]
. (A.33)

Thus, the rate of growth still approaches the universal limit 2M/π from above, for any

choices of L̃.

B Additional examples of time dependence of complexity

In eq. (2.35), we provided a general expression for the time rate of change of the holographic

complexity of (neutral) AdS black holes using the CA conjecture. We examined some

specific examples in section 2.3 for boundary CFTs with d = 2 and 4 — see also appendix A.

Further, in eq. (3.13), together with eqs. (3.8) and (3.9), we provided an expression for the

rate of change of complexity based on the CV conjecture, and examined numerically the

cases of d = 2, and planar geometry with d = 3, 4 in subsection 3.2. In this appendix,

we provide further examples of the time dependence of holographic complexity. We show

that qualitatively the holographic complexity behaves in the same way in a different (odd)

dimension, namely d = 3, using the CA conjecture. We also explore the influence of the

choice of horizon geometry on the results of the CV conjecture in d = 3 and d = 4.

B.1 CA results in d = 3

For the case of d = 3, we have the dimensionless tortoise coordinate x∗(x,RT ) = rh
L2 r

∗(r),

where we have used the definition x ≡ r
rh

. This leads to

x∗(x,RT ) =
1

kL2

r2h
+ 3

log

 |x− 1|√
kL2

r2h
+ x2 + x+ 1

+

(
2kL2

r2h
+ 3
)

√
4kL2

r2h
+ 3

tan−1

 2x+ 1√
4kL2

r2h
+ 3

 ,
(B.1)
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and

x∗∞ =
π
(

2kL2

r2h
+ 3
)

2
(
kL2

r2h
+ 3
)√

4kL2

r2h
+ 3

. (B.2)

We can evaluate the critical time τc using eq. (2.48). This leads to

τc =
1

4πT
√

4kL2

r2h
+ 3

[√
4kL2

r2
h

+ 3 log

(
kL2

r2
h

+1

)
+

(
4kL2

r2
h

+6

)
tan−1

(√
4kL2

r2
h

+ 3

)]
.

(B.3)

We can apply these results to evaluate the rate of change of holographic complexity for

spherical, planar and large hyperbolic black holes. By large hyperbolic black holes, we

mean that rh/L ≥ 1 which implies that the mass is positive. Actually, we assumed here

that rh > 2L/
√

3 for the hyperbolic case with k = −1. In the regime L ≤ rh ≤ 2L/
√

3,

f(r) has two additional negative real roots. While these do not indicate the existence of

additional horizons, the tortoise coordinate is modified in this case and takes the form

x∗(x,RT ) =
1

3− L2

r2h

log

 |x− 1|√
−L2

r2h
+ x2 + x+ 1


−

(
3− 2L2

r2h

)
(

3− L2

r2h

)√
4L2

r2h
− 3

coth−1

 2x+ 1√
4L2

r2h
− 3

 (B.4)

and the critical time for the hyperbolic black holes in this mass range reads

τc =
1

4πT
√

4L2

r2h
− 3

(√
4L2

r2
h

− 3 log

(
1− L2

r2
h

)
+

(
6− 4L2

r2
h

)
tanh−1

(√
4L2

r2
h

− 3

))
.

(B.5)

We present a plot of τc T as a function of the horizon radius in figure 19.

After solving numerically for xm, the results are presented in figure 20 for k = 0, 1,

and in figure 21 for k = −1. The overall behaviour of the rate of change of complexity is

very similar to the results shown in figure 4 for spherical and planar black holes in d = 4.

We also present the integrated complexity in figures 22 and 23 to demonstrate that there

is no divergence near τ = τc. That is, these figures show CA(τ)−CA(τc) =
∫ τ
τc
dτ dCAdτ . Even

though dCA/dτ diverges at the critical time (see eq. (2.42)), it is an integrable singularity

and the complexity itself only shows a mild variation at this point. We have also included

as the integration constant CA(τc) the complexity of formation, see [30]. Recall that the

complexity of formation is given by the complexity of the thermofield double state minus

twice that of the vacuum state of the CFT, and so presents a natural finite value for the

complexity for |τ | < τc. Again we found similar results for d = 4, although we do not

explicitly show the corresponding figures here.
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Figure 19. Critical time as a function of the horizon radius for d = 3 for the various geometries

— spherical k = 1 (blue, solid), planar k = 0 (red, dashed) and large hyperbolic k = −1, rh > L

(green, dot-dashed).
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Figure 20. Time derivative of complexity as a function of time for spherical (left) and planar

(right) geometries in d = 3 boundary dimensions for various values of the horizon radius — rh = L

(solid blue), rh = 1.5L (dashed red), rh = 3.5L (dot-dashed green). We present the plot as a

function of the time coordinate in units of the thermal scale δτ T = (τ − τc)T . We stress again

that the complexity starts changing at τc and each of the curves presented has a different value of

τc. For these parameters, the violation of the late time bound is clearly manifest.

B.2 CV results for other geometries

To complete the picture of the time dependence, we also give some examples of the results

of the complexity=volume conjecture for the other geometries (i.e.,spherical and hyperbolic

horizons) in d = 3 and d = 4 in figures 24 and 25.

C Late time behaviour for the CV proposal

In this appendix, we provide further details with regards to the late time growth of the

holographic complexity, using the CV proposal. In particular, we will determine the leading

correction of the late time behaviour of dCV /dt given in eq. (3.22).

Eq. (3.9) determines rmin as a function of t. Using the function W (r) in eq. (3.16),

eq. (3.9) can be written as

t

2
= −

∫ ∞
rmin

dr
W (rmin)

f(r)
√
−W (r)2 +W (rmin)2

. (C.1)
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Figure 21. Time derivative of complexity as a function of time for large hyperbolic black holes

(rh > L) in d = 3 boundary dimensions for various values of the horizon radius — rh = 1.1L

(blue), rh = 1.5L (dashed red), rh = 3.5L (dot-dashed green). We present the plot as a function

of the time coordinate in units of the thermal scale δτ T = (τ − τc)T . We stress again that the

complexity starts changing at τc and each of the curves presented has a different value of τc. For

these parameters, the violation of the late time bound is clearly manifested.
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Figure 22. Integrated complexity as a function of time for spherical (left) and planar (right)

geometries in d = 3 boundary dimensions for various values of the horizon radius — rh = L (solid

blue), rh = 1.5L (dashed red), rh = 3.5L (dot-dashed green). We see that it does not diverge at

τ = τc (δτ = 0). The value at δτ = 0 has been set according to the complexity of formation,

see [30].

Noting that d
dr [W (r)2 −W (rmin)2]r=rmin vanishes at rmin = r̃min, we introduce a function

Y (r; rt, r̃min) defined as43

W (rmin)−W (r) ≡ (r − rmin)(r − 2r̃min + rmin)Y (r; rmin, r̃min). (C.2)

We then have

Y (rmin; rmin, r̃min) = − W ′(rmin)

2(rmin − r̃min)
, Y (r̃min; r̃min, r̃min) = −1

2
W ′′(r̃min). (C.3)

43This decomposition makes transparent the fact that the denominator of the integral (C.1) has generally

an order one root, while for rmin = r̃min, it has a root of order 2.
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Figure 23. Integrated complexity as a function of time for large hyperbolic black holes in d = 3

boundary dimensions for various values of the horizon radius — rh = 1.1L (blue), rh = 1.5L (dashed

red), rh = 3.5L (dot-dashed green). We see that it does not diverge at τ = τc (δτ = 0). The value

at δτ = 0 has been set according to the complexity of formation, see [30].
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Figure 24. Plots of d−1
8πM dCV /dt for spherical black holes (k = 1) for various values of the horizon

radius — rh/L = 1 (blue), rh/L = 2 (yellow), rh/L = 5 (green). At late times, they approach to

the asymptotic values indicated in figure 6(a). The asymptotic value at late times is always smaller

than 1 and approaches to 1 for large black holes. We can also see that the asymptotic value is

always approached from below.
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Figure 25. Plots of d−1
8π(M−Mmin)

dCV /dt for hyperbolic black holes (k = −1) for various values of

the horizon radius — rh/L = 1 (blue), rh/L = 2 (yellow), rh/L = 5 (green). Recall that Mmin was

introduced to avoid divergences as the mass takes both positive and negative values, see eq. (3.24)

and the explanation above it. The asymptotic values at late times are greater than 1 for small

black holes and approach to 1 for large black holes. The asymptotic value is always approached

from below.
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Separating the integrand in eq. (C.1) as follows

− W (rmin)

f(r)
√
−W (r)2 +W (rmin)2

(C.4)

=
−
√
W (rmin)rmin

f(rmin)r
√

2(r − rmin)(r − 2r̃min + rmin)Y (rmin; rmin, r̃min)
+ j(r; rmin, r̃min),

where

j(r; rmin, r̃min) ≡ −
√
W (rmin)

×
(

f(rmin)
√

2W (rmin)Y (rmin; rmin, r̃min)r − f(r)
√

[W (r) +W (rmin)]Y (r; rmin, r̃min)rmin

f(rmin)f(r)r
√

2 [W (r) +W (rmin)] (r − rmin)(r − 2r̃min + rmin)Y (rmin; rmin, r̃min)Y (r; rmin, r̃min)

)
(C.5)

eq. (C.1) becomes44

t

2
=

r
2d−3/2
min log

(
r̃min+

√
rmin(2m−rmin)

rmin−r̃min

)
W (rmin)

3
2

√
2(2r̃min − rmin)Y (rmin; rmin, r̃min)

+

∫ ∞
rmin

drj(r; rmin, r̃min). (C.6)

We then set

rmin

r̃min
= 1 + e

−
√
−W (r̃min)3W ′′(r̃min)

r̃2d−2
min

t
2
[c1 + ε(t)], (C.7)

where c1 is a constant and ε(t) is a function which goes to zero as t → ∞. Inserting this

form into (C.6) and taking the limit t→∞, we obtain

0 =
r̃

2d−3/2
min√

−W (r̃min)3W ′′(r̃min)
log

2

c1
+ J(r̃min), (C.8)

where J(r̃min) is a finite function

J(r̃min) ≡
∫ ∞
r̃min

drj(r; r̃min, r̃min). (C.9)

In fact, the integrand j(r; r̃min, r̃min) is harmless around r ∼ r̃min and r ∼ ∞ because it

behaves as

j(r; r̃min, r̃min) ∼ r̃2d−1
min

[−6(2d− 1)W ′′(r̃min) +W ′′′(r̃min)r̃min]

6[−W (r̃min)W ′′(r̃min)]
3
2

+O(r − r̃min), (C.10)

j(r; r̃min, r̃min) ∼ −
r̃2d−1

min√
−W (r̃min)3W ′′(r̃min)

1

r2
+O(r−3), (C.11)

44Again, we note that the second integral would have a pole at r = rh and what is actually meant by it

is to subtract this pole as described in section 3.
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and thus J(r̃min) is finite.45 Therefore, the late time behaviour of rmin is given by

rmin = r̃min

[
1 + 2e

−
√
−W (r̃min)3W ′′(r̃min)

2r̃2d−2
min

(t−2J(r̃min))
+ ε(t)

]
. (C.12)

Using eq. (3.17) the coefficient of t is computed as

−
√
−W (r̃min)3W ′′(r̃min)

2r̃2d−2
min

= −

√
−f(r̃min)

[
(d− 1)(d− 2)k + d

r̃2min
L2

]
2r̃min

. (C.13)

In particular for planar black holes (i.e.,k = 0), inserting the analytical expression of r̃min

in eq. (3.20) the coefficient is given by

−
√
−W (r̃min)3W ′′(r̃min)

2r̃2d−2
min

= − d rh

21+ 1
dL2

= −2−
1
d

2π

β
, (C.14)

and the rate of change in complexity follows from eq. (3.18) and eq. (C.12). One can find

that the late time behaviour is given by

d− 1

8πM

dCV
dt

= 1− 2d2e
−21−

1
d 2π
β

(t−2J(r̃min))
+ · · · , (C.15)

where the dots stand for corrections which decay faster at late times than the leading

exponential in eq. (C.15).

D Complexity of formation for charged black holes

In this appendix, we evaluate the complexity of formation for charged black holes. The

complexity of formation for uncharged black holes was examined in detail in [30]. There,

the complexity of formation is defined as the additional complexity involved in preparing

two copies of the boundary CFT in the entangled thermofield double state (1.1) (evaluated

at tL = tR = 0) compared to preparing each of the CFTs in their vacuum state. Using

the CA proposal,46 the bulk calculation consists of evaluating the gravitational action for

the WDW patch (anchored at tL = tR = 0) in the (neutral) AdS black hole background

and subtracting twice the action for the WDW in an appropriate vacuum of AdS space. A

key aspect of this subtraction is that all of the UV (large r) divergences cancel, which as

a consequence leaves a UV finite result.

Hence in the present charged case, the first question to settle is what is the appropriate

reference state to compare to the charged thermofield double state (4.4). Here we recall

that it was shown in [53] that at zero temperature and with a spherical boundary, the

ground state for the fixed chemical potential ensemble is pure AdS for µ < gL

2R
√

2πG

√
(d−1)
(d−2)

and an extremal black hole of the same chemical potential for µ > gL

2R
√

2πG

√
(d−1)
(d−2) . It was

also noted there that this extremal black hole may be unstable and decay by the emission

45The integrand also has a pole at r = rh but it can be cured as discussed in section 3.
46Of course, an analogous calculation can also be performed using the CV proposal — see below.
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of charged particles. For the planar boundary geometry (i.e.,k = 0) and the hyperbolic one

(i.e.,k = −1), the ground state is always the extremal black hole.

Hence in evaluating the complexity of formation for the charged thermofield dou-

ble state, one suggestion is to subtract the holographic complexity corresponding to an

extremal black hole with the same chemical potential [9]. However, we find that the holo-

graphic complexity for an extremal black hole contains an additional infrared divergence

and hence a meaningful comparison cannot be achieved by comparing a charged black

hole to the corresponding extremal one. We will see that this IR divergence appears for

both the CA and the CV conjectures. Therefore, we simply choose the uncharged vacuum

(ω = q = 0) as our reference state, i.e.,we subtract the holographic complexity of two copies

of the corresponding AdS vacuum.

As in section 4, it is convenient to work with the dimensionless variables introduced

in eq. (4.11). Recall

x ≡ r

r+
, y ≡ r−

r+
, z ≡ L

r+
. (4.11)

The first is a dimensionless radial coordinate, while the latter two can be defined in terms

of boundary quantities, as in eq. (4.12). Further, in the following, we will focus on the

case of d = 4, where that latter expressions are explicitly given in eq. (4.29). In principle

then, we can invert these formula to write our results in terms of the boundary quantities,

ν =
√
CJ/CT µ/T and RT . In the planar geometry, i.e.,k = 0, for d = 4 eq. (4.29) reads

ν =

√
CJ
CT

µ

T
=

3π√
10

y
√
y2 + 1

(1− y2)(2 + y2)
, RT =

1

2π

(1− y2)(2 + y2)

z
. (D.1)

Then the first of these equations can be inverted to obtain

y2 =

√
3
√

15ν2 − π
√

80ν2 + 9π2 + 3π2

2
√

5 ν
− 1

2
(D.2)

and for the second, we may write

z =
1

2π

(1− y2(ν))(2 + y2(ν))

RT
. (D.3)

D.1 Complexity=Action

Using the CA proposal, the complexity of formation is given by:

∆CA =
1

π
[∆Ibulk + Ijnt] (D.4)

where

∆Ibulk =
Ωk,d−1

2πGN

∫ rmax

rm

(
− d

L2
+
q2(d− 2)

r2(d−1)

)
rd−1 (r∗∞ − r∗(r)) dr

+
dΩk,d−1

2πGNL2

∫ rvacmax

0
rd−1

(
r∗∞,vac − r∗vac(r)

)
dr

(D.5)

and

Ijnt = −
Ωk,d−1

4πGN
rd−1
m log

L2|f(rm)|
R2α2

. (D.6)
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The meeting point rm is obtained by numerically solving (4.20) for τ = 0, i.e.,

r∗(rm) = r∗∞ . (D.7)

Note that here the future and past meeting points are at the same value of the radial

coordinate, i.e.,r1
m = r2

m = rm. Further, rmax corresponds to the UV cutoff z = δ in the

Fefferman-Graham expansion of the respective metric.

D.1.1 Planar d = 4

We proceed by analyzing charged planar black holes. Recall that with q = 0, the planar

black holes produced ∆CA = S/(2π) where S is the entanglement entropy of the thermofield

double state (1.1) [30]. For the curved horizons, there were curvature corrections to this

simple result, proportional to inverse powers of RT . Below, we will find that this expression

receives corrections even with k = 0 in the charged case. Since the curvature vanishes, all

of the nontrivial behaviour comes from the finite chemical potential.

As before, we redefine the tortoise coordinate (2.6) in terms of dimensionless variables

f̃(x, y) ≡ z2f(r) =

(
x2 − 1

)
(x− y)(x+ y)

(
x2 + y2 + 1

)
x4

x∗(x, y) ≡ r∗(r)

z2r+
=

∫ x dx

f̃(x, y)
=

y3

4y4 − 2y2 − 2
log
|x− y|
x+ y

− 1

2 (y4 + y2 − 2)
log
|x− 1|
x+ 1

+

(
y2 + 1

)3/2
2y4 + 5y2 + 2

tan−1

(
x√
y2 + 1

)
.

(D.8)

This allows us to rewrite eq. (D.7) for the meeting points as

x∗(xm, y) = x∗∞ =
π
(
y2 + 1

)3/2
4y4 + 10y2 + 4

(D.9)

where xm ≡ rm/r+. Given eq. (D.2), we see that xm is a function of ν only.

There is a subtlety in numerically solving for the meeting point for small values of

the charge. The reason is that r− approaches zero as rd−2
− = q2/ωd−2 and the tortoise

coordinate peaks very sharply around r−. The meeting point equation r∗∞ = r∗(rm) solves

for the point in which the asymptotic value of the tortoise coordinate intersects back with

the curve. As a consequence of the special form of the curve for small values of r−, this

happens very close to r−. In fact, in the limit that r− (or equivalently y) approaches zero,

the meeting point can be approximated by (see eq. (4.37) with τ = 0 and k = 0):

xm = y

(
1 + exp

(
− π

2y3
+O

(
1

y

)))
. (D.10)

This means that the corner contribution is nonvanishing in the r− → 0 limit despite the

fact that rm approaches zero. In our plots, we have used similar approximations for the

cases of small ν.
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Motivated by the results of [30] for the neutral case, we will be interested in evaluating

the ratio of complexity of formation over entropy. Using eq. (D.4) we find

∆Cform

S
=

1

π

[
∆Ibulk

S
+
Ijnt

S

]
(D.11)

where

∆Ibulk

S
=

8

π

x3
max

3
+

∫ xmax

xm

4

πx3

(
−2x6 + y4 + y2

)
(x∗∞ − x∗(x, y)) dx (D.12)

and
Ijnt

S
= −x

d−1
m

π
log

r2
+|f̃(xm, y)|
R2α2

= −x
d−1
m

π
log

∣∣∣∣g2(xm, y)L2T 2

α2

∣∣∣∣ , (D.13)

where we have defined

g2(x, y) =
4π2

(
x2 − 1

) (
x2 − y2

) (
x2 + y2 + 1

)
x4 (y2 − 1)2 (y2 + 2)2 (D.14)

and the planar black hole complexity of formation is regularized at infinity by subtracting

two copies of the vacuum [30]. A meaningful comparison between the two spacetimes is

achieved by placing the cutoff at xmax ≡ rmax/r+ corresponding to z = δ in the Fefferman-

Graham expansion of the respective metric (see e.g., appendix A of [30]). We see that the

complexity of formation can be naturally split into a sum of two functions

∆CA ≡
S

2π

(
F (ν) +G(ν) log

(
T 2L2

α2

))
, (D.15)

where S is the entropy of the charged AdS black hole, given in eq. (4.5); and F (ν) and

G(ν) are universal functions that depend only on the ratio ν through their dependence on

y as follows

G(ν) = G(y) =− 2

π
xd−1
m ,

F (ν) = F (y) =− 2

π
xd−1
m log |g2(xm, y)|+ 16

π

x3
max

3

−
∫ xmax

xm

8

πx3

(
2x6 − y4 − y2

)
(x∗∞ − x∗(x, y)) dx .

(D.16)

We note that our result for the complexity of formation depends on the arbitrary parameter

α associated to the normalization of null normals. The two functions G(ν) and F (ν) are

shown in figure 26 as a function of ν =
√

CJ
CT

µ
T . Note that in the limit ν → 0, the

complexity of formation agrees with the uncharged result found in [30], i.e.,F (ν → 0)→ 1

and G(ν → 0)→ 0.

As we showed in section 4, we can write an expansion of the complexity of formation

for small charge as an expansion in the parameter y, which reads

∆CA =
S

2π

(
1 +

(
20

3π
+

4

π
log

[
yz

2

αR

L

])
y3 + · · ·

)
. (4.15)
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Figure 26. The functions F (ν) and G(ν) defined in eq. (D.16) which appear in the complexity of

formation (D.15) for charged planar AdS5 black holes as a function of ν ≡
√

CJ

CT

µ
T .

In order to probe the limit of extremal black holes, i.e.,T → 0 with µ finite, we investigate

eq. (D.15) in this limit. The result is divergent in the T → 0 limit. To see this we use the

expansion for xm near extremality

xm = 1− ε

2
+

7

12
ε2 log ε− 8

√
2π + 3 + 28 log(2)− 16

√
2 cot−1

√
2

24
ε2 + · · · , (D.17)

where we have defined y ≡ 1− ε, and evaluate the complexity of formation

∆CA =
2S

π2

(
log
( α

LT

)
+

1

3
− log

(
π√
3

)
+O (RT log RT )

)
. (D.18)

Note that the limit RT → 0 corresponds to the limit ν → ∞, so the correction, where

we have left implicit a function of z, is in fact a function of ν only. We find that the

result diverges logarithmically at low temperatures and the coefficient of the logarithmic

divergence is proportional to the entanglement entropy of the system. The result also

depends on the arbitrary length scale ` ≡ L/α associated to the normalization of null

normals. We will see in the next subsection that a similar divergence at low temperatures

appears using the CV conjecture.

D.1.2 Spherical d = 4

The calculation of the complexity of formation for spherical charged black holes follows

closely the one of the planar case. However, the two contributions from eq. (D.4) need to

be evaluated using the appropriate blackening factor (4.2) with k = 1. We show the results

for d = 4 in figure 27 and note that again the complexity of formation diverges in the low

temperature (near extremal) limit.

As in the planar case, we can find the leading behaviour when RT is small. The

expansion for the meeting point reads

xm = 1− ε

2
+

(
3z2 + 7

)
ε2 log(ε)

4z2 + 12
− (D.19)

−
ε2
(
z2(1+12 log(2))+8

(
z2+2

)3/2
tan−1

(√
z2+2

)
+3+28 log(2)

)
8 (z2 + 3)

+O(ε3 log ε)
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Figure 27. Complexity of formation for spherical charged black holes in d = 4. In the left panel,

we fix RT = 1
2 and we show the dependence on the dimensionless boundary quantity ν. In the

right panel, we fix the quantity
√

CJ

CT
µR = νRT = 1 and show the dependence on RT .

and that of the complexity of formation

∆CA =
S

3π2(3 + z2)

(
− 9

(
z2 + 2

)
log

(
πRTz

z2 + 3

)
− 3

(
z2 + 3

)
log

(
L2
(
z2 + 3

)
α2R2z2

)
+ z2 log 64 +

(
z2 + 3

) (
3(πz − 2)z2 + 2

)
− 6z2

(
z2 + 2

)3/2
tan−1

(√
z2 + 2

)
+O (RT log RT )

)
. (D.20)

Notice that as z → 0, we recover the planar result in eq. (D.18). However, unlike in the

planar case, now the overall coefficient that controls the divergence for small temperatures

depends on z, which in turn depends on the product of the boundary size and the chemical

potential. The exact relation is obtained from eq. (4.29), which leads to the relation

z =
3
√

2√
40
(√

CJ
CT
µR
)2

− 9

. (D.21)

where CJ and CT are the coefficients in the two point function of stress tensors or currents,

respectively, see eq. (4.10). The value of chemical potential for which z becomes imaginary

in this expression exactly matches the value for which the extremal black holes cease to

exist (see discussion at the beginning of this appendix). We stress once more that the

conclusion that the complexity of formation diverges in the zero temperature limit holds

also in the spherical geometry.

It is also interesting to write the first few terms in a small charge (small y) expansion.

In fact, we will also expand our results for small z (large temperatures). In order to compare

the results for charged black holes to those of neutral black holes found in [30], we express

the result of [30] for spherical neutral black holes in d = 4, as an expansion in small z,

(large horizon radius)

∆CA
S

∣∣∣∣
µ=0

=
1

2π
+
z3

π
− 9 z4

16π
+O(z6) =

1

2π
+

1

π4

1

(TR)3
− 9

16π5

1

(TR)4
+O

(
1

(TR)6

)
. (D.22)
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The dependence on z3 in the expansion comes from the vacuum contribution to the com-

plexity of formation for the spherical geometry, as can be seen from the L3 δk,1 dependence

in equation (3.14) in [30]. For charged black holes, a double expansion in y and z reads

∆CA
S

=

(
1

2π
+
z3

π
− 9 z4

16π

)
−
(

9z2

8π
− 3 z4

16π

)
y2

+

(
2

3π2

(
5 + 3 log

Rαyz

2L

)
− z2

π2
+

z4

2π2

)
y3 +O(z5, y4) . (D.23)

We see by comparing this expression to (D.22) that the neutral limit is recovered in the

zero charge limit y → 0.

D.2 Complexity=Volume

In this subsection, we examine the complexity of formation evaluated using the CV conjec-

ture. For simplicity, we will only consider planar (i.e.,k = 0) charged black holes in d = 4.

The complexity of formation is then given by the following integrals:

∆CV =
2Ω0,3

GNL

[∫ rmax

r+

r3dr√
f(r)

−
∫ rmax

0

r3dr√
f0(r)

]
, (D.24)

where f(r) is the blackening factor (4.2) with k = 0, and f0(r) = r2/L2 is the corresponding

‘blackening’ factor for empty AdS space. Using eqs. (4.11) and (D.8) we can perform a

change of variables in (D.24) to the dimensionless coordinate x and then decompose the

integration region for x < 1 and x > 1 which reads

∆CV = 8S

∫ ∞
1

 x√
f̃(x, y)

− 1

x2dx− 1

3

 . (D.25)

To evaluate the remaining integral, it is useful to perform the following change of variables:

x2 =
1

u
+ 1 (D.26)

and the integral can be evaluated explicitly yielding

∆CV =
8
(
y4 + y2 + 1

)
3
√
y2 + 2

S K

(
2y2 + 1

y2 + 2

)
(D.27)

where K is the complete elliptic integral of the first kind and y can be expressed in terms

of the boundary quantity ν using eq. (D.2).

There are two interesting limits to explore. The small charge limit ν → 0 and the near

extremal limit ν →∞. In the small charge limit, an expansion of eq. (D.27) reads:

∆CV = S

(
2
√
πΓ
(
−3

4

)
Γ
(
−1

4

) +
5

9π3/2

(
4Γ
(

1
4

)
Γ
(

3
4

) − Γ
(
−1

4

)
Γ
(

5
4

) ) ν2

+
100

(
7
√

2Γ
(
−1

4

)
Γ
(

3
4

)
Γ
(

7
4

)
− 12πΓ

(
5
4

))
81π9/2Γ

(
7
4

) ν4

)
.

(D.28)
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Note that the leading term above matches the complexity of formation given in eq. (5.8)

of [30] for a planar neutral black hole in d = 4. A near extremal (small temperature, or

equivalently in the planar case, large ν ≡
√

CJ
CT

µ
T ) expansion reads:

∆CV =
4S√

3
log

(
48
√

5ν

π

)
− πS

3
√

15ν

(
1 + 9 log

(
48
√

5ν

π

))
+ · · · , (D.29)

and we see that the complexity of formation is logarithmically divergent at extremality.

This is similar to what we found using the action conjecture, see eq. (D.18). The reason

for the divergence is easily understood looking back at the integral in eq. (D.25) and the

definition of f̃(x, y) in eq. (D.8). In the near extremal limit ν → ∞, the function f̃(x, y)

has two zeros in the neighborhood of x = 1 namely

x1 = 1, x2 = y = 1− π

2
√

5ν
+ . . . . (D.30)

and so we are approximately integrating 1/(x− 1) all the way to x = 1.

The full ν dependence of the complexity of formation is presented in figures 28 and 29

with two possible normalizations. First, we define

∆CS =
2
√
πΓ
(
−3

4

)
Γ
(
−1

4

) S (D.31)

as a natural normalization to ∆CV where S in this expression denotes the entropy of the

charged black hole. Another potential normalization is the corresponding complexity of

formation of a neutral black hole with the same temperature. Expressing the latter in

terms of ν, we have

∆C0 =
Γ
(
−3

4

)
Γ
(
−1

4

) π6√π
10

V CTT
3 = −

√
π
(
y4 + y2 − 2

)3
Γ
(
−3

4

)
4Γ
(
−1

4

) S

=
27π7/2

(√
80ν2 + 9π2 − 3π

)3
Γ
(
−3

4

)
32000ν6Γ

(
−1

4

) S =
27π3

(√
80ν2 + 9π2 − 3π

)3

64000ν6
∆CS

(D.32)

where V = Ωk,d−1R
3 and again y was expressed in terms of ν using eq. (D.2).

The results are very similar to what we found with the CA conjecture, see e.g., figure 9

and the expansions in eqs. (4.15) and (D.18). The logarithmic divergence for near extremal

black holes is present using both the CA and the CV conjectures, however the additional

scale in the logarithm governing the divergence is now µ rather than α/L the extra scale in

the boundary theory introduced there by the choice of normalization of the null normals.

Just like for the CA conjecture, here as well the neutral result is recovered in the limit of

vanishing chemical potential.

D.3 Small hyperbolic black holes

We briefly comment below on the time evolution of uncharged small hyperbolic black holes.

For hyperbolic black holes with rh < L, the mass parameter is negative, as can be seen
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Figure 28. Complexity of formation from the CV conjecture normalized by ∆CS for planar (k =

0) charged black holes in d = 4 as a function of the dimensionless ratio of boundary quantities

ν ≡
√

CJ

CT

µ
T and its inverse. Extremal black holes (T = 0) have divergent complexity of formation

also using the CV conjecture.
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Figure 29. Complexity of formation from the CV conjecture normalized by ∆C0 for planar (k = 0)

charged black holes in d = 4 as a function of the dimensionless ratio of boundary quantities ν ≡√
CJ

CT

µ
T and its inverse. Extremal black holes (T = 0) have divergent complexity of formation also

using the CV conjecture.

from eqs. (2.3) and (2.4). In this case, the causal structure changes, with the appearance

of an inner Cauchy horizon, and becomes similar to the one of charged black holes, as in

figure 8. As was already pointed out in appendix [C.3] of [30], the CA calculation indicates

that for small uncharged hyperbolic black holes the complexity does not change with time.

In this subsection, we present an alternative argument for that statement using the neutral

limit of charged black holes.

Consider the late time limit of the rate of change in complexity in eq. (4.28). In general,

the zero charge limit is obtained by the requirement that the chemical potential vanishes.

For small hyperbolic black holes, this limit does not coincide with the one in which the

variable y vanishes. The expression for the chemical potential in general d for k = −1 can

be obtained from the multiplication of h(y, z) and h̃(y, z) in eq. (4.13), and it vanishes for

µ = 0 → z =

√
1− yd

1− yd−2
. (D.33)
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Evaluating eq. (4.28) for this value of z, namely, at zero chemical potential, results in a

vanishing time derivative of CA for small uncharged hyperbolic black holes.

E Ambiguities in the action calculations

It was argued in [29] that the null boundary terms in eq. (2.10), associated with null

boundary surfaces and null joints, introduce certain ambiguities in the numerical value of

the gravitational action. In this appendix we consider the influence of these ambiguities on

the time dependence of complexity of neutral black holes studied in this paper in section 2

using the CA conjecture. The influence of the various ambiguities on the complexity of

formation was studied in appendix D of [30] and we will follow the discussion there closely.

In particular it was demonstrated there that a large class of ambiguities are essentially

equivalent to adding a constant to the null joint term a. This amounts to changing a in

eq. (2.10) to

anew = a+ a0. (E.1)

This is indeed the effect of multiplying the function Φ(x), which determines the position

of the null surface according to Φ(x) = 0, by a constant. A similar effect is achieved by a

constant rescaling of the parameter λ, which runs along the null generators. Finally, this

is also equivalent to changing the normalization constant α, which fixes the null normal

normalization at the asymptotic boundary according to k̂ · τ̂ = ±α. We reiterate here,

that these ambiguities do not affect the late time rate of growth of holographic complexity.

In subsection E.1 we explore the influence of a constant a0 on the action calculation. In

appendix B of [29] it was argued that the reparametrization ambiguity can be avoided by

including a certain boundary counterterm. We explore this possibility in subsection E.2.

E.1 Influence of a constant a0

When a0 is a fixed constant, the joint term at r = rm in our calculations in section 2 is

modified by

∆Ijnt = a0
Ωk,d−1

8πGN
rd−1
m . (E.2)

Taking the time derivative and using eq. (2.31) yields

∆

(
dCA
dτ

)
= −a0

Ωk,d−1(d− 1)

16π2GN

L

R
rd−2
m f(rm) . (E.3)

This shift in the corner term is equivalent to changing the normalization constant α in

eq. (2.49) to αN = ea0/2 α. Note that the term in eq. (E.3) also vanishes in the late time

limit since rm approaches the horizon radius rh there and so f(rm) vanishes as τ → ∞.

The modification does however contribute to the rate of change of complexity at earlier

times. The influence of a constant a0 on the rate of change of complexity and its average

for a spherical black hole in d = 4 is studied numerically in figure 30. We note that the

averaging procedure suggested in eq. (2.43) somewhat reduces the effect of changing a0,

however the bound is still approached from above at late times.
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Figure 30. The rate of change of the complexity (left) and its average value (right) as a function

of time for spherical black holes (k = 1) in d = 4 with rh = 2L for different values of the constant

a0 — a0 = −4 (blue, solid), a0 = −2 (yellow, dashed), a0 = 0 (green, dot-dashed), a0 = 2 (red,

dashed) and a0 = 4 (purple, solid). We have set α = L/R for simplicity.

E.2 Boundary counterterm

In this subsection we discuss the effect of adding the boundary counterterm suggested

in appendix B of [29] for eternal black hole backgrounds (2.1) on the rate of change of

complexity. This counterterm makes the action invariant under the reparametrization of

null surfaces. For simplicity we set in this subsection R = L. The counterterm for each

null surface is given by

∆IΣ =
1

8πGN

∫
Σ
dλdd−1√γΘ log(L̃|Θ|), (E.4)

where γAB is the cross-sectional metric of a bundle of null generators, Θ is the expansion

parameter given by Θ = ∂λ log
√
γ and L̃ is an arbitrary length scale.47 We take for

simplicity an affine parametrization

λ =
r

α
. (E.5)

However, keep in mind that the total action with the counterterm does not depend on the

parametrization of null surfaces. In this parametrization, the expansion takes the form

Θ =
(d− 1)α

r
. (E.6)

Taking into account that there are two future null boundaries and two past ones, the

counterterm (E.4) at t > tc becomes

∆IΣ =
(d− 1)Ωk,d−1

4πGN

∫ rmax

0
dr rd−2 log

(d− 1)αL̃

r

+
(d− 1)Ωk,d−1

4πGN

∫ rmax

rm

dr rd−2 log
(d− 1)αL̃

r

=
Ωk,d−1

2πGN
rd−1

max

(
log

(d− 1)αL̃

rmax
+

1

d− 1

)
−

Ωk,d−1

4πGN
rd−1
m

(
log

(d− 1)αL̃

rm
+

1

d− 1

)
.

(E.7)

47The choice of the length scale corresponds to the ambiguous constant c in eq. (B4) of ref. [29].
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The time derivative of the counterterm is then readily evaluated using the relation (2.31)

and found to be

d∆IΣ

dt
= −

(d− 1)Ωk,d−1r
d−2
m

8πGN
f(rm) log

(
rm

(d− 1)αL̃

)
. (E.8)

If we take another parametrization of null surfaces, the expression (E.8) changes. However,

the total action is invariant under reparametrization. The rate of change of complexity with

the counterterm is given by the following expression for any parametrization:

dCA
dt

=
1

π

(
2M +

Ωk,d−1(d− 1)rd−2
m f(rm)

16πGN

[
log |f(rm)| − 2 log

(
rm

(d− 1)L̃

)])
. (E.9)

Note that the α-dependence which appeared in eq. (2.35) is totally canceled when including

the boundary counterterm. We see from this expression that the counterterm does not

resolve the divergence in dCA
dt at times shortly after the critical time tc which we observed

in section 2.2 for d > 2. In fact, eq. (E.9) behaves shortly after tc as

dCA
dt
∼

Ωk,d−1d(d− 1)ωd−2

16π2GN
log rm + finite , (E.10)

where rm is very close to r = 0 at times right after tc.
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