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1 Introduction

Given a quantum dynamical system, e.g., a specific Hamiltonian, a ubiquitous feature is

the chaotic property of the same, which subsequently leads to ergodicity, thermalization

and similar universal and coarse-grained description [1]. For classical dynamical systems,

the measure of chaos is simple: a response of the classical trajectories with respect to

initial conditions [1]. Quantum mechanically, although may not be unique, a quantitative

measure can be given in terms of the square of commutators of self-adjoint operators that

are time-separated. Specifically, from the large time behaviour of the same which typically

takes the form of an exponential growth in time, one can extract the quantum analogue

of the Lyapunov exponent, that, for classical dynamical systems, measures the sensitivity

of two initially nearby (in the space of initial conditions) trajectories with respect to the

corresponding initial conditions, as time evolves to large values.

The definition of the Lyapunov exponent, and equivalently the quantitative notion

of quantum chaos, is naturally associated with large time limit of a dynamical system

and therefore can be interpreted as an inherently infra-red (IR) quantity. Within the

purview of quantum field theory (QFT) a la Wilson, one begins with an ultra-violet (UV)

description of a system, subsequently integrates out the massive modes and arrives at an

effective IR description. Given a QFT at the UV, the corresponding Lyapunov exponent

can be extracted from the large time behaviour of out-of-time-ordered (OTO) correlation

function [2]. The resulting Lyapunov exponent is a non-trivial function of the dimensionless
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couplings that define the UV-theory. In principle, a renormalization group (RG) flow maps

the set of UV couplings to a set of IR-couplings, and thus the Lyapunov exponent is a

different non-trivial function of the IR-couplings [3].

In general, given a QFT or a quantum mechanical system, it is non-trivial to obtain the

Lyapunov exponent. Recently, a lot of progress has been made in the Sachdev-Ye-Kitaev

(SYK) model [4–6], in which the Lyapunov exponent has been analytically calculated (see

e.g. [7]) and subsequently demonstrated to satisfy the maximal chaos bound, proposed and

argued in [8]. Motivated by this, specially the saturation of the maximal bound which

is thought to be a necessary condition for a quantum system to have a holographic de-

scription, connections of AdS2/CFT1 have been explored further, beginning with [9] and

followed up by a large volume of work on the SYK model and its various generalisations,

involving complex fermions, tensor models and higher dimensional analogs [10–28]. Su-

persymmetric generalisations of the SYK model have also been studied [18, 29, 30]. The

proposed holographic dual in terms of the Schwarzian action has also been analysed [31].

Although the precise connection in terms of AdS/CFT remains unclear, the SYK model

is undoubtedly unique in capturing the following features, all at once: solvable at large N ,

emergence of conformal invariance in the IR and maximal chaos. Emergence of AdS2, on

the other hand, is rather unique in stringy physics: ranging from the entropy counting of

extremal black hole horizons to the emergent IR description of a large N strongly coupled

gauge theory with non-vanishing density. Thus, a physical result obtained from the SYK

model is likely to be relevant about the physics of AdS2, viewed in the appropriate context.

In this article, we explore a simple way to tune chaos in the SYK-type model, by

introducing global conserved charges. We focus on the SYK-model with complex fermions,

that have previously been studied in e.g. [32, 33], where the fermions have an all-to-all

q-body interaction, with Gaussian random distribution for the coupling strength. The

standard SYK model corresponds to taking q = 4, however, similar to [33], we study the

limit of q →∞. This limit particularly facilitates analytical calculations, where much of the

large q analysis of [7] can be generalized in the presence of a non-vanishing global charge, to

obtain the corresponding Lyapunov exponent. There is another method of getting tunable

Lyapunov exponent by coupling peripheral fermions to the SYK model [34].

In this case, the UV-theory comes equipped with two independent couplings: {βJ, βµ},
where β = T−1 is the inverse temperature, J measures the interaction strength after

performing a random averaging, and µ is the chemical potential corresponding to the

global charge, which introduces a new scale in the problem. In the large N , large q limit,

with N ≥ q, the resulting Schwinger-Dyson equation regroups the UV couplings to an

effective IR coupling, such that the RG flow maps {βJ, βµ} → βJ̃ . The large q analysis

now yields the Lyapunov exponent: λL (βµ, βJ) ≡ λL

(
βJ̃
)

. It turns out that, by tuning

the UV data one can smoothly interpolate between λL = 2πT to λL = 0. We also obtain a

similar result for the complex fermions with a global flavour symmetry, introduced in [12].

The non-invertible map of the couplings, from UV to IR, emerges at large q, even when

sub-leading effects in (1/q) are considered, and may be an artefact of this limit.1

1This is an interesting issue to explore further. It may happen that an attractor type behaviour exists, in

which the deep IR physics reorganizes itself in terms of emerging parameters, irrespective of the value of q.
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That the presence of global charges suppress the Lyapunov exponent and, in fact, can

tune it to vanishing values is no surprise. Conserved charges constrain the phase-space of

any dynamical system, the extreme limit of which are represented by integrable models. For

the latter, no chaotic behaviour is expected. Thus, the result above interpolates between a

chaotic behaviour to a non-chaotic regime, even with a U(1) charge, as the corresponding

chemical potential is increased. Similar feature upholds for the flavoured complex fermion

models.

In terms of the Schwinger-Dyson equation, at large N , exploring the strong coupling

phase of the system is equivalent to taking a deep IR limit. Keeping the effect of a non-

vanishing chemical potential is similar to working at an intermediate energy-scale. In fact,

Schwinger-Dyson equation comes equipped with a term (iω + µ), where ω is the frequency,

and thus µ and ω seem freely tradable. From the UV-perspective, the interpretation is

physically distinct, but for an intermediate-scale observer, studying λL as a function of βµ

is similar to studying how λL changes away from the IR-conformal limit.2 The dependence

of λL with βJ have already been explored in [7], in the q →∞ limit.

This article is divided in the following sections: in section 2, we briefly introduce

the model with complex fermions, obtain the Schwinger-Dyson equation and present the

solution in the q →∞ limit. We subsequently discuss the calculation of the retarded kernel

in the next section. Section 4 is devoted to studying the dependence of the Lyapunov

exponent, in details. We comment briefly on flavoured complex fermion model in section

5. Finally, we conclude with future directions.

2 SYK model with complex fermions and chemical potential

2.1 The SYK model

We will begin by briefly recalling the SYK model. The SYK model describes all-to-all

random interactions between N Majorana fermions in (0+1) dimension involving q fermions

at a time. The Hamiltonian is given by [5–7]

H = (i)q/2
∑

1≤i1≤......iq≤N
ji1...iqψi1 . . . ψiq , (2.1)

where q ≤ N and q = even. The set of couplings
{
ji1...iq

}
are drawn from a random

distribution, such as a Gaussian one, described by

P
(
ji1...iq

)
= exp

[
−
N3j2

i1...iq

12J2

]
, (2.2)

where P denotes the probability distribution. The gaussian distribution for a random

variable means the average value of the couplings ji1...iq is zero and the two point average

with all indices contracted is non-vanishing,〈
ji1...iq

〉
= 0 ,

〈
j2
i1...iq

〉
=
J2 (q − 1)!

N q−1
. (2.3)

2We note here that, even in the presence of a chemical potential, that defines a scale for the system, in

the deep IR conformal symmetry is recovered, when supplemented by a gauge transformation. See e.g. [32].

– 3 –



J
H
E
P
1
1
(
2
0
1
7
)
1
8
0

The Majorana condition on the fermions simply means that they satisfy the anti-

commutation relation,

{ψi, ψj} = δij . (2.4)

The Lagrangian corresponding to (2.1) is given by

S =

∫
dτLE

(
{ψi} ,

{
dψi
dτ

})
, LE =

1

2
ψi
dψi
dτ
−H , (2.5)

equivalently L = −1

2
ψi
dψi
dt
−H , with t = −iτ . (2.6)

In the above LE and L corresponds to the Lagrangian in Euclidean and Minkowski signa-

tures, respectively.

2.2 SYK model with complex fermions

In order to introduce a chemical potential, we will explore the model involving complex

fermions. This model has been studied earlier in the condensed matter context [32], fo-

cussing on transport properties and thermodynamics; and in the context of chaos in [33].

We are interested in the large q expansion of the complex fermion model with an addition

of a non-vanishing chemical potential, which seems analogous to adding a mass term.

The Hamiltonian for the SYK model with complex fermions is

H =
∑

Ji1i2...iq/2iq/2+1...iqψ
†
i1
ψ†i2 . . . ψ

†
iq/2

ψiq/2+1
. . . ψiq . (2.7)

In what follows we will use the notations and conventions used in [32]. In addition to this

interaction term we introduce a chemical potential µ. We are interested in studying the

effect of a conserved charge on the chaotic behaviour of the model. Some of the earlier

works [32, 33] have analysed this model with either quartic interactions or in the non-

chaotic regime. We will work in the large q limit and find out how the Lyapunov exponent

changes as we tune in the chemical potential.

2.3 Free fermion propagator, with a chemical potential

We define, following [32], the Green’s function to be: G (τ) = −
〈
Tψ (τ)ψ† (0)

〉
, where

the symbol T stands for time-ordering and τ is the imaginary time. The free fermion

propagator, in the Fourier space, takes the form:

G(µ, ω) =
1

iω + µ
, (2.8)

which, in the real space, corresponds to the operator (−∂t + µ). The two point function in

the interacting theory, in the large q limit, can be expanded as:

G(µ, τ) = G0(µ, τ)

(
1 +

g(µ, τ)

q
+ . . .

)
, (2.9)

where G0(µ, τ) is the Fourier transform of the free propagator, which at zero temperature

it is given by,

G0(µ, τ) = −eµτΘ(−τ) . (2.10)
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Here Θ is the Heaviside step function. At non-vanishing temperature, however, it is ob-

tained by evaluating the sum over Matsubara frequencies that appear in the propagator,

(iωn + µ)−1, which yields,

G0(µ, τ) = − eµτ

eµβ + 1
, 0 ≤ τ ≤ β , (2.11)

G0(µ, τ) =
eµτ

e−µβ + 1
, −β ≤ τ ≤ 0 . (2.12)

The propagator for τ < 0 is obtained using the periodicity τ → τ + β. The relative sign

between τ < 0 and τ > 0 is a reflection of the fact that G0(µ, τ) is a fermion propagator.

Finally, the function g(µ, τ) is the correction due to melonic diagrams to the free propa-

gator, in the large q limit. In the next subsection we will derive a differential equation for

g(µ, τ) and subsequently solve it.

2.4 Differential equation for g(µ, τ )

To derive the desired differential equation, we follow a simple generalisation of the method

discussed in [7]. First, note that, in the large N limit, all melonic Feynman diagram can

be summed up to obtain the following Schwinger-Dyson equation:

1

G(µ, ω)
= iω + µ− Σ(ω, µ) , (2.13)

Σ(ω, µ) = J2(−1)q/2(G(µ, τ))q/2(G(µ,−τ))q/2−1 . (2.14)

It is straightforward to derive the above Schwinger-Dyson equations by summing up the

one particle irreducible diagrams. Specifically, it is straightforward to observe the second

line above via Feynman diagrammatic, see figure 1.

These Schwinger-Dyson equations take especially simple form in the q →∞ limit. In

particular, the function g(µ, τ) in this limit appears in the exponential:

1

G(µ, ω)
= iω + µ− (iω + µ)2 f ∗ g(µ, ω)

2q
. (2.15)

Σ(µ, τ) =
J2G0(µ, τ)

(2 + 2 cosh(µβ))q/2−1
e

1
2

(g(µ,τ)+g(µ,−τ)) . (2.16)

We can now identify the self energy contribution to the inverse propagator as the Fourier

transform of Σ(µ, τ) appearing in (2.16). Taking the inverse Fourier transform of the self

energy contribution in (2.15) we get the differential equation:

(∂t − µ)2 [G0(µ, τ)g(µ, τ)] = 2
qJ2G0(µ, τ)

2(2 + 2 cosh(µβ))q/2−1
e

1
2

(g(µ,τ)+g(µ,−τ)) . (2.17)

For τ > 0 this equation reduces to:

∂2
τ g(µ, τ) = 2J̃2e

1
2

(g(µ,τ)+g(µ,−τ)) , (2.18)

where,

J̃2 =
qJ2

2(2 + 2 cosh(µβ))
q
2
−1

. (2.19)
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⌃ ⇠ J2G (µ, ⌧)
q
2 G (µ,�⌧)

q
2�1

⇣q
2
� 1

⌘
lines

⇣q
2
� 1

⌘
lines

J J

Figure 1. A diagrammatic representation of Σ. Each vertex is worth of strength J , and
(
q
2 − 1

)
propagators run inside the loop in each direction. The direction of the arrows correlate with the

sign of τ in the argument of the propagators. The overall direction of the diagram, from left to

right, selects out two additional propagators running in this direction and hence the corresponding

powers of G.

It is worth pointing out at this point that this differential equation is quite similar to that

appearing in [7]. We will solve this equation analytically in the next section.

Before moving further, a few comments regarding the large q result are in order. It is

straightforward to check that, if one goes beyond the leading order in (1/q)-expansion, the

Schwinger-Dyson equation again rearranges itself to the differential equation of the type

discussed above, with the same effective coupling J̃ .

To see this explicitly let us first notice that the µ dependence of J̃ comes only from

the free part. If we look at the behavior of the self-energy contribution at O( 1
q2

) we find

for µ = 0 case, the terms take the form

J2

(
1 +

g(τ)

q
+
g′(τ)

q2
+ . . .

)q−1

. (2.20)

The equation for function g′ cannot be obtained by simply exponentiating it, as was done

for the leading correction, namely g(τ). We instead have an asymptotic series expansion

in 1
q . Now if we turn on finite µ then from the self-energy expression we get,

J2

2(2+2cosh(µβ))q/2−1

(
1+

g(µ,τ)

q
+
g′(µ,τ)

q2
+...

) q
2
(

1+
g(µ,−τ)

q
+
g′(µ,−τ)

q2
+...

) q
2
−1

(2.21)

The form is exactly like in the SYK model. As a result the equation that we would obtain in

this case will be identical to that for g′ in the SYK model. In other words even for finite µ,
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the effective coupling constant J̃ remains unaltered even at higher order in 1/q. The emer-

gence of one effective coupling is an inherent feature of this asymptotic expansion in (1/q).

3 Calculating the retarded kernel

The right hand side of the differential equation (2.18) is symmetric under τ → −τ , whereas

on the left hand side we switch from g(µ, τ) → g(µ,−τ). We can therefore send τ →
−τ , and subsequently obtain the resulting equation for g(µ,−τ). The solutions to the

differential equations are exactly of the Maldacena-Stanford form [7], and are given by

eg(µ,±τ) =
cos2

(
πν
2

)
cos2

(
πν
(
τ
β ∓

1
2

)) , with βJ̃ =
πν

cos
(
πν
2

) . (3.1)

Note that, the parameter ν that naturally emerges here contains information about the

two independent UV-couplings: βJ and βµ.

3.1 The retarded Green’s function

We begin by defining the retarded Green’s function

GR (µ, t) = lim
ε→0+

[G> (µ, it+ ε)−G< (µ, it− ε)] Θ(t) . (3.2)

In the q →∞ limit, we obtain:

GR (µ, t) = −eiµtΘ(t) . (3.3)

The above result, in the limit µ → 0, yields: GR(t) = Θ(t) which is the expected answer.

We can also define:

GR (µ,−t) = lim
ε→0+

[G> (µ,− (it+ ε))−G< (µ,− (it− ε))] Θ(t) , (3.4)

which implies GR (µ,−t) = e−iµtΘ(t).

3.2 The retarded kernel

Now we analyze the four-point function. In the large N limit, the four-point function

can be expanded in a series of (1/N) and, here, we will only compute the leading (1/N)-

contribution, in which only the ladder diagrams contribute. Since we are working with

complex fermions, the only non-trivial four-point function is given by

1

N2

N∑
i,j=1

〈
T
(
ψi(t1)ψ†i (t2)ψ†j(t3)ψj(t4)

)〉
= G (t12)G (t34) +

1

N
F (t1, t2, t3, t4) + . . . (3.5)

The contribution at order (1/N) is collectively denoted by F =
∑

nFn, where n is the

number of rungs in the corresponding ladder diagram. We refer to [7] for more details.

The composition rule is pictorially represented in figure 2.

– 7 –
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+ + + . . .

t1 t3

t2 t4

. . . . . . . . .

. . . . . . . . .. . .⌘

Fn+1 = K · Fn

Figure 2. A diagrammatic representation of the four point function calculation, in the large N

limit. First, only the ladder diagrams contribute, as shown in the first row here. Second, from the

structure of the diagrams, one obtains an iterative process to generate Fn+1 from Fn, composing

with a kernel.

At large N , the summation over the ladder diagrams can be performed by expressing

Fn+1 in terms of Fn integrated, weighted with a kernel, as also pictorially shown in figure 2:

Fn+1 (t1, t2, t3, t4) =

∫
dtdt′KR

(
t1, t2; t, t′

)
Fn
(
t, t′, t3, t4

)
, (3.6)

where the kernel, denoted above by KR, is given by

KR (t1, t2, t3, t4) = (−1)q/2J2(q − 1) GR (µ, t13)GR (µ,−t24)

× [Glr(µ, t34)]q/2−1 [Glr(µ,−t34)]q/2−1 . (3.7)

Here Glr (µ, t) is the Wightman function, which is essentially given by the propagator

evaluated at complex time, and in the large q limit we get:

[Glr(t)]
q/2−1 [Glr(−t)]q/2−1 = [G(it+ β/2)]q/2−1 [G(−it+ β/2)]q/2−1 . (3.8)

The above is consistent with interpreting the propagator G(µ,−t) as the fermion moving

backward in time, or the anti-fermion moving forward in time. This is why a separation

along the thermal circle picks up a relative sign.

Finally, we obtain:

(−1)q/2J2(q − 1) [Glr(t)]
q/2−1 [Glr(−t)]q/2−1 = (−1)q−1 2π2ν2

β2 cosh2
(
πνt
β

) . (3.9)

Using this, the complete retarded kernel is given by

KR (t1, t2, t3, t4) = −(−1)q−1eiµ(t13−t24) 2π2ν2Θ (t13) Θ (t24)

β2 cosh2
(
πνt34
β

) (3.10)

= eiµ(t12−t34) 2π2ν2Θ (t13) Θ (t24)

β2 cosh2
(
πνt34
β

) . (3.11)

The last equality follows from the fact that q is even.
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4 Exploring the chaos regime

So far, we have obtained the retarded kernel for four fermion fields placed at four arbitrary

points on the thermal circle, denoted respectively by t1, . . . , t4. To extract the chaos be-

haviour, one needs to calculate the OTO correlation in real time, separating the fermions by

a quarter of the thermal circle [5, 6]. We want to compute the following OTO correlation:

F (t1, t2) = Tr
[
yψi(t1)yψ†i (0)yψ†j(t2)yψj(0)

]
, y = ρ(β)1/4 . (4.1)

In the limit t1, t2 →∞, the diagram with zero rung is suppressed and thus F(t1, t2) is an

eigenfunction of the retarded kernel KR, with an eigenvalue one. This statement translates

into an integral equation of the following form:

F (t1, t2) =

∫ ∞
−∞

∫ ∞
−∞

dt3dt4KR (t1, t2, t3, t4)F (t3, t4) (4.2)

=

∫ ∞
−∞

∫ ∞
−∞

dt3dt4e
iµ(t12−t34) 2π2ν2Θ (t13) Θ (t24)

β2 cosh2
(
πνt34
β

) F (t3, t4) . (4.3)

Choosing an exponential-ansatz for F (t3, t4) of the form

F (t3, t4) = e
πν
β

(t3+t4) eiµt34

cosh
(
πνt34
β

) , (4.4)

yields:

F (t1, t2) = eiµt12
∫ t1

−∞

∫ t2

−∞
dt3dt4

2π2ν2e
πν
β

(t3+t4)

β2 cosh3
(
πνt34
β

) (4.5)

= e
πν
β

(t1+t2) eiµ(t12)

cosh
(
πνt12
β

) . (4.6)

This implies, following the subsequent steps outlined in [7], that the Lyapunov exponent

is given by

λL =
2π

β
ν , (4.7)

where ν is given in equation (3.1). In the two extreme limits, we easily get:

λL =
(

2J̃
)

+ . . . , as ν → 0 ⇐⇒ βJ̃ → 0 , (4.8)

=
2π

β

(
1− 2

βJ̃

)
, as ν → 1 ⇐⇒ βJ̃ →∞ . (4.9)

In terms of the IR emergent coupling βJ̃ , the dependence is identical to the one observed

in [7], however, in terms of the original parameters {βJ, βµ} defining the system, there

is a non-trivial dependence of the Lyapunov exponent. The figure 3, shows behaviour of

λ = βλL/2π, which is the normalised Lyapunov exponent, as a function of the coupling

– 9 –
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Figure 3. The Lyapunov exponent λ is normalised and takes values between 0 and 1. This figure

shows dependence of λ on βJ for different values of βµ.
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 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2

λ

βµ

βJ = 100

βJ = 300

βJ = 650

βJ = 1000

Figure 4. The Lyapunov exponent λ is again normalised and takes values between 0 and 1. This

figure shows dependence of λ on βµ for different values of βJ .

βJ for various values of βµ. Similarly the figure 4 shows variation of λ as a function of βµ

for different values of βJ .

Before concluding this section, let us make some comments regarding tuning the chaotic

properties of SYK-type models. In [15], a two-body infinite-range random interaction

between Majorana fermions was introduced, in addition to the four-fermi interaction in

the SYK model. It was found that this interaction can tune the Lyapunov exponent down,

and in fact, push it all the way to zero, similar to what we have observed above. However,

the precise dependence of the Lyapunov exponent with the one-body interaction strength

is different compared to our results.
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The Hamiltonian considered in [15] is of the following form:

H =
∑

1≤i1≤i2≤i3≤i4≤N
Ji1i2i3i4 ψi1ψi2ψi3ψi4 + i

∑
1≤i1≤i2≤N

ki1i2 ψi1ψi2 , (4.10)

where Ji1i2i3i4 are chosen from a familiar Gaussian ensemble, and the couplings ki1i2 denote

the infinite-range interaction and ψi’s are Majorana fermions. Assuming N is even, we can

consider a particularly special case, in which ki1i2 are non-random, and are characterized

by a particularly nearest neighbour interaction:

ki1i2 = kδi1+1,i2 if i1 = odd ,

= 0 otherwise . (4.11)

The interaction term is now particularly simple:

Hint = i

N∑
i=odd

ki,i+1 ψiψi+1 ≡ Ψ†KΨ , (4.12)

where Ψ† = (ψ1, ψ2, . . . ψN ) . (4.13)

Evidently, the † operation is equivalent to the transpose operation since we are dealing with

Majorana fermions. The matrix K contains the information about the nearest-neighbour

interaction of (4.11). It is easy to diagonalize the coupling matrix K, and the resulting

eigenvalues are:
(
N
2

)
copies of

(
+k

2

)
and

(
N
2

)
copies of −

(
k
2

)
. Suppose that χ+

a , with

a = 1, . . . , N/2, eigenvectors have positive eigenvalues and χ−a , with a = 1, . . . , N/2, eigen-

vectors have negative eigenvalues. It is also straightforward to check that: (χ+)
†

= χ−,

thus we can drop the superscript, and subsequently the interaction term can be written as:

Hint = k

N/2∑
a

χ†aχa , where
{
χ†a, χb

}
= 2δab . (4.14)

We can now rewrite the four-body interaction in the complex χ-basis. Since our starting

point did not preserve the U(1)-symmetry of the complex fermion model in (2.7), the

full resulting Hamiltonian does not match with the complex fermion model with q = 4.

However, in the UV, with (J/k) → 0, the four-point interaction is negligible and the two

systems are physically equivalent. In the IR, the two systems are completely distinct.

5 Flavoured complex fermions with a chemical potential

Let us now generalise this set up, where instead of a U(1) symmetry we have Nf number of

flavoured fermions with a global SU(Nf ) flavour symmetry, similar to the model considered

in [12]. The fermions now carry two indices, Ψα
i . Here the α is the flavour index where as

i is the site index. One has the following operator algebra:

{Ψα
i ,Ψ

β
j } = {Ψα†

i ,Ψ
β†
j } = 0 , {Ψα

i ,Ψ
β†
j } = δijδ

αβ . (5.1)
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It is a trivial matter to find first the kinetic term without introducing the chemical potential

µ it given by

−
∫
dτΨα†

i ∂τΨα
i . (5.2)

Here repeated indices are summed over unless stated otherwise.

The SU(Nf ) invariant two point function in this case will be given by

G(τ) = 〈Ψα
i (τ)Ψα†

j (0)〉 ≡
Nf sgn(τ)

2
δij . (5.3)

If we absorb this factor of Nf into the overall normalization of the kinetic piece then we

observe that now if one introduces a conserved charge µ then the relevant operator is:

µ

Nf
Ψα
i Ψα†

i .

We know that the interaction term should be a gauge singlet. We also require that,

upon imposing reality condition on the fermions, this interaction should reduce to the

corresponding interaction term in the Gross-Rosenhaus model. Under this, we intuitively

write down the interaction term as:

1

N
q/2
f

Ji1...iqΨ
α1†
i1

. . .Ψ
αq/2†
iq/2

Ψ
αq/2
iq/2+1

. . .Ψα1
iq
. (5.4)

Now we just use the melon diagrams to figure out the 1PI effective self energy contribution.

Essentially, as before, we observe that from the diagramatics one obtains:

Σ(τ) =
C
Nf
q
2

N q
f

J2 [G(τ)]q/2 [G(−τ)]q/2−1 .

So, one can redefine the coupling strength as: J2
eff =

C
Nf
q
2

Nq
f
J2. This means that, if we

have multiple groups of flavours, then the relative strength of the effective couplings scale

according to the above relation. Hence, again we get back the same set of Schwinger-Dyson

equations which we have already solved.

We already see the emergence of an effective coupling:

J2
eff =

1

N q
f

Nf !( q
2

)
!
(
Nf − q

2

)
!
J2 , (5.5)

which, in the limit q � 1, Nf � 1 such that Nf � q, naively, yields:

J2
eff =

1

N q
f

1( q
2

)
!
J2 → 0 . (5.6)

Thus, with a very large global symmetry, the emergent coupling is very weak. This implies

that the resulting chaotic behaviour will be accompanied with a vanishingly small value

of the Lyapunov exponent. Thus, we can tune the chaotic behaviour with a global flavour

symmetry, as well.
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6 Conclusion

In this article, we have explored and demonstrated a tuneable Lyapunov exponent by in-

troducing conserved charges in the system, even when the charge is a simple U(1). We have

considered SYK-type models, with complex fermions and a q-body all-to-all randomized

interaction, in the q → ∞ limit. For these models, we have explicitly demonstrated that

a non-vanishing chemical potential has an exponentially large dominance over the q-body

interaction coupling strength, in determining the chaos behaviour. It is expected, from the

structure of the Schwinger-Dyson equations, that similar features hold for the tensor mod-

els [19], which share many interesting properties of the SYK-type interaction, but without

the disorder averaging.

There are various interesting directions for future explorations. Given the results

above, one may explore higher dimensional generalizations of the SYK-model, e.g. the

model in [24], with an introduction of conserved charges. One would, náıvely, expect a

similar behaviour of the resulting Lyapunov exponent for the higher dimensional models;

however, it would be very interesting to check how the details fall into the right places.

Staying within the theme of a tuneable chaos, motivated by the similarities of SYK-model

behaviour and random matrix behaviour at late times, it is natural to incorporate the

effect of conserved charges in random matrix theories and analyze the consequences at late

times [35–37].

From a holographic perspective, our analysis suggests that by introducing bulk gauge

fields that correspond to introducing chemical potentials for the dual boundary theory, one

should be able to do away with chaos completely, or, at least, should be able to tune down

the Lyapunov exponent from its’ maximal value. This would be an interesting aspect to

check explicitly. Towards that, one presumably begins with a gravity description in e.g. (d+

1)-dimensional bulk with AdS-asymptotic, and studies a scattering problem, a la [38], in

the presence of a global charge. On a similar note, it is also very intriguing to explore the

possibility of constructing an SYK-type model from explicit D-brane construction in string

theory, with or without global charges. One natural obstacle, for the SYK-type interaction,

is to realize the dynamical origin of disorder averaging from the brane picture. Perhaps

the large N tensor models can emerge more naturally in such scenarios. We are currently

exploring some of these issues further.
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