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1 Introduction

ABJM theory in three dimensions [1, 2] is likely to be solvable, at least in the planar

limit, as it is believed to be the case for its four-dimensional cousin, maximally super-

symmetric Yang-Mills theory. Several exact results for certain observables in the ABJM

model are already available from established techniques such as integrability [3–7] and
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localization [8–10], paralleling progress in four-dimensional N = 4 SYM. In particular,

integrability allows in principle to solve exactly for the anomalous dimensions of composite

operators, in the planar limit [11], by mapping the dilatation operator of the theory to the

Hamiltonian of an integrable spin chain. Furthermore certain supersymmetric theories (for

instance N = 4 SYM in four dimensions and N = 2 Chern-Simons-matter theories in three

dimensions, including ABJM) can be defined on curved compact manifolds where the path

integral of the theory localizes onto a matrix model. Certain supersymmetric observables

of these theories, notably circular Wilson loops, can be computed as matrix model aver-

ages and if the resulting matrix model can be solved, this provides exact formulae for their

expectation values [12].

These techniques seem to apply to different sectors of the given theory. However, in

N = 4 SYM a particular object was found that lies in both the ranges of applicability of

localization and integrability [13]. This is the so-called Bremsstrahlung function. Such an

object governs the small angle ϕ expansion of the cusp anomalous dimension Γcusp(ϕ) that,

in turn, controls the short distance divergences of a Wilson loop near a cusp, according

to the universal behaviour 〈WL〉 ∼ exp (−Γcusp log Λ
µ ) (with Λ and µ IR and UV cutoffs,

respectively). In formulae the Bremsstrahlung function is defined as

Γcusp(ϕ) = −ϕ2B +O(ϕ4) (1.1)

In a conformal field theory, this function can be shown to also govern the energy radiated by

a massive probe (a quark), moving at a velocity v, undergoing a deviation in its trajectory

by an angle ϕ, in the small angle limit [13]

∆E ∼ B
∫
dt |v̇(t)|2 (1.2)

hence the name Bremsstrahlung function.

More precisely, we consider supersymmetric extensions of ordinary Wilson loops, given

as the holonomy of generalized connections that include also couplings to matter. Con-

sequently we can consider a cusped Wilson loop which depends on two parameters, ϕ

representing the geometric angle between the two Wilson lines meeting at the cusp, and

an internal space angle θ describing the change in the orientation of the couplings to mat-

ter between the two rays [14, 15], thus defining a generalized cusp Γcusp(ϕ, θ). Hence one

derives the small angles expansion of Γcusp

Γcusp(θ, ϕ) ∼ (Bθ θ2 −Bϕ ϕ2) (1.3)

where Bθ and Bϕ are two a priori distinct Bremsstrahlung functions, associated to the

respective angles. They are both expressed as a functions of the coupling constant of the

theory, e.g. the ’t Hooft coupling λ, in the planar limit. In certain remarkable cases, the

generalized cusp satisfies a BPS condition (this happens for θ2 = ϕ2 in all known examples),

where some amount of supersymmetry is conserved. As a consequence the cusp anomalous

dimension vanishes in such a situation, which in turn forces the Bremsstrahlung functions

to coincide, since the BPS condition has to hold in the small angle limit as well.
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We stress that in principle the Bremsstrahlung function is not a supersymmetric quan-

tity and hence cannot be localized. Nonetheless, in the context of N = 4 SYM a prescrip-

tion was devised in the seminal paper [13], so as to extract an exact formula for this

non-BPS observable in terms of BPS loops which can be determined explicitly via local-

ization. Remarkably, the very same result can be obtained with an integrability based

approach. This deals with an exact set of TBA equations [16–18] describing the gener-

alized cusp [19, 20] in the near-BPS limit [21]. This is done by considering the spectral

problem for certain operators inserted at the tip of the cusp, which is mapped to an inte-

grable spin chain with reflecting boundary conditions. Moreover, the use of the quantum

spectral curve techniques [22, 23] has allowed to obtain results away from the BPS point

and in a number of generalized settings [21, 24, 25].

Since the generalized cusps constructed with supersymmetric Wilson loops (and their

small angle limits) have proven to be such a fruitful playground in the search for exact re-

sults inN = 4 SYM, in this note we aim at its extension to three-dimensional ABJM theory.

In this setting, a first stark difference emerges, with respect to the four-dimensional case.

In N = 6 Chern-Simons-matter theories one can consider two structurally different super-

symmetric Wilson loops: the 1/6-BPS [26–29] and the 1/2-BPS [30], by supplementing

the gauge connection with some coupling to the matter fields of the theory. In particular,

the first are bosonic objects, in the sense that they are constructed as the holonomy of a

connection containing the gauge field (as in the ordinary case) and a coupling to a bi-scalar

operator. On the contrary, the latter also feature a coupling to fermion fields which can be

elegantly embedded in generalized superconnections (in the sense that they are super-Lie

algebra valued) whose holonomy gives rise to 1/2-BPS loop operators. In particular, these

operators are holographically dual to fundamental strings in AdS4 × CP 3. Moreover, we

recall that he 1/2 BPS Wilson loop is cohomologically equivalent to a linear combination

of 1/6 BPS ones, meaning that their difference is annihilated by a supercharge. For circu-

lar Wilson loops this property translates to a relation between the respective expectation

values computed via localization.

Still, the fact that they preserve different amounts of supersymmetry allows for the

construction of different non-BPS observables (i.e. generalized cusps) from them. Indeed,

generalized cusps formed with 1/6-BPS rays or 1/2-BPS rays are actually different [31, 32]

and, consequently, different Bremsstrahlung functions can be defined and potentially eval-

uated exactly. The construction of such cusps in ABJM is summarized as follows. Taking

a pair of straight lines meeting at an angle ϕ, a cusp is introduced, which can be general-

ized [14, 15] via an additional deviation in the R-symmetry space of couplings to the matter

fields, by an internal angle θ [31]. This configuration breaks supersymmetry in general and

consequently the expectation value of the Wilson loop is divergent and the operator ac-

quires a cusp anomalous dimension. This is in general a function of the two angles (and

of the coupling and gauge group ranks of the theory). As recalled in (1.3), the first coef-

ficients in the small angles Taylor expansion of the cusp anomalous dimension are called

Bremsstrahlung functions and are in principle two unrelated objects for the two angles.

For the cusp constructed with 1/2-BPS rays a BPS condition is satisfied for ϕ = θ,

where some supersymmetry is preserved and the divergence cancels. As a result, the
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coefficients of the small angle expansion for ϕ and θ are opposite and one can define a

unique Bremsstrahlung function B1/2. At a difference, no BPS condition seems to hold for

the cusp built out of two 1/6-BPS lines. Therefore two different Bremsstrahlung functions

are present in this case Bϕ
1/6 and Bθ

1/6.

Paralleling the success in N = 4 SYM, the Bremsstrahlung functions of ABJM theory

are amenable of exact computations. This project has been partially (and with some degree

of conjecture) attained, and some proposals exist for them, relating their expression to the

expectation value of 1/6-BPS Wilson loops 〈Wn〉 wound n times around the great circle,

which can be computed exactly thanks to localization. The precise state of the art for

these Bremsstrahlung functions is summarized as follows.

• For B1/2 a conjecture was put forward [32, 33] on its exact expression in terms of

1/6-BPS Wilson loops which are computable exactly via localization (see also [34]).

It agrees with explicit computations at weak [31, 33, 35], up to three loop order, and

strong coupling [36–38], up to the subleading order. The proposed formula reads

B1/2 = − i

8π

〈W1〉 − 〈Ŵ1〉
〈W1〉+ 〈Ŵ1〉

(1.4)

and is valid in the ABJM limit where the gauge group ranks are equal.

• A proposal for the exact Bϕ
1/6 appeared in [32], which passes a strong coupling

check [37, 38] up to the subleading order and a weak coupling two-loop computa-

tion [31, 33]. This proposal reads

Bϕ
1/6 =

1

4π2
∂n |Wn|

∣∣∣∣
n=1

(1.5)

and was again derived in the equal ranks limit.

• The expression for Bθ
1/6 was related to a certain supersymmetric Wilson loop expec-

tation value in [33, 37]. This is a circular Wilson loop preserving 2 supersymmetries

of the theory which is evaluated on a latitude contour on S2 and with a nontrivial

profile for the coupling to the scalars in the connection. Unfortunately, the latter is

not known exactly, thus preventing from deriving an all order expression. We remark

that a few perturbative orders were computed at weak coupling (up to two-loop or-

der [33]), but its computation at strong coupling, where ABJM theory is dual to type

IIA string theory on AdS4×CP 3, is lacking and it remains unclear how to approach

it [38]. Hence, no explicit exact result is available for this quantity yet.

• Finally, no integrability computation exists for any of these functions, thus far, though

progress has been made in this direction [39, 40]. This constitutes a stark difference

with respect to N = 4 SYM in four dimensions. Such a result would be considerably

desirable, because it would potentially relate an integrability based computation to

another exact formula derived by other means (localization in this case). This would

grant a firmer handle on the interpolating h(λ) function which appears in all integra-

bility computations in ABJM and whose exact value is thus far only conjectured [23].
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As clear from the summary above, the Bremsstrahlung function associated to the

internal angle Bθ
1/6 is the least understood object in this picture. In this note we aim

at filling this gap and focus on this quantity. We start by reviewing the basics of the

construction of 1/6-BPS Wilson lines in ABJM and their generalized cusp configuration in

section 2. Then the logic behind our analysis of Bθ
1/6 is as follows.

We start trying to get some mileage by computing this quantity in the weak coupling

approximation. The two-loop result was already computed in [31, 33] and since only even

loops provide divergent contributions to this object we address the computation at the next

relevant order which is four loops. Due to this high perturbative order the computation

is rather involved, nevertheless it turns out to be completely within the reach of modern

technologies. The details of such a calculation are collected in the appendices in order not to

shadow the main results of the paper with technicalities. The main strategy underpinning

the calculation is spelled out in section 3. We restrict our approach to the planar limit,

but we allow for generic gauge group ranks (i.e. we keep them distinct as in the ABJ

generalization [2]).

The result of this computation is reported in formula (4.7) and constitutes one of the

main achievements of the paper. This is the starting point of our subsequent argumenta-

tions which are developed in section 5 and briefly outline here. The perturbative result for

Bθ
1/6 and its comparison with Bϕ

1/6 suggest a simple relation between the two observables

Bϕ
1/6 = 2Bθ

1/6 (1.6)

We remark that we have verified such a relation up to fourth order at weak coupling. The

agreement is non-trivial since it occurs for all the coefficients of the different powers of the

gauge group ranks N1 and N2 that we keep distinct. This provides quite a compelling hint

at the validity of (1.6) beyond four loops and we conjecture that is holds to all orders. If

true, relation (1.6) entails that Bθ
1/6 can in turn be computed exactly and that it is related

to the expectation value of a multiply wound 1/6-BPS circular Wilson loop, as is Bϕ
1/6, as

recalled in (1.5). Hence, this study completes the picture of the exact computation of the

Bremsstrahlung functions for ABJM theory, in the planar approximation, by supplying a

conjecture for the last missing ingredient: Bθ
1/6. In particular, this allows its straightfor-

ward computation at strong coupling, where as of today, no string computation is available

for this object yet [37, 38].

2 The cusp

2.1 The 1/6-BPS generalized cusp in ABJM

We start by defining the generalized cusped Wilson loop constructed with 1/6-BPS rays.

We consider the ABJM model with gauge groups U(N1)k × U(N2)−k with Chern-Simons

level k. The Lagrangian of the theory as well as its Feynman rules which we use for pertur-

bative computations are collected in appendices B and C. We restrict to the planar limit

N1, N2 � 1 in the weak coupling regime k � N1, N2. The gauge connections for the gauge

groups A, Â, along with complex scalars CI , C̄
J and fermions ψI , ψ̄J (where I, J = 1, . . . 4)
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transforming in the bi-fundamental representation, constitute the field content of the the-

ory. The 1/6-BPS Wilson loop [27–29] in Euclidean space reads

W1/6[Γ] =
1

N1
Tr

[
P exp−i

∫
Γ
dτ

(
Aµẋ

µ − 2πi

k
|ẋ|M I

J CIC̄
J

)
(τ)

]
(2.1)

on a contour Γ describing a cusp at an angle ϕ

Γ : x0 = 0 x1 = s cos
ϕ

2
x2 = |s| sin ϕ

2
−∞ ≤ s ≤ ∞ (2.2)

We can introduce an additional angle θ in the internal space, by taking different coupling

matrices M with the scalars on the two edges of the cusp

M I
1J =


− cos θ2 − sin θ

2 0 0

− sin θ
2 cos θ2 0 0

0 0 −1 0

0 0 0 1

 and M I
2J =


− cos θ2 sin θ

2 0 0

sin θ
2 cos θ2 0 0

0 0 −1 0

0 0 0 1

 (2.3)

This configuration breaks the supersymmetries of the individual straight line Wilson loops,

which is not restored even for special values of the angles, but ϕ = θ = 0. As a consequence

the vacuum expectation value of the Wilson loop develops ultraviolet divergences and the

operator has an anomalous dimension Γ1/6(ϕ, θ) which is in general a function of the angles,

according to the universal behaviour

〈Wcusp〉 = e
−Γcusp(k,N,ϕ,θ) log Λ

µ + finite (2.4)

where Λ is an IR cutoff and µ stems for the renormalization scale. The divergences associ-

ated to the cusp singularity of Wilson loops exponentiate thanks to general exponentiation

theorems for non-local operators (2.4) [41]. More precisely, their expectation value can

be written as the exponential of the sum of all two-particle irreducible diagrams [42, 43].

Thus, we expect the 1/6-BPS Wilson line in ABJM to respect the usual exponentiation

pattern, allowing us to define and compute the anomalous dimension for the cusp, accord-

ing to standard text-book procedures. Our four-loop result, that we derive in the following,

explicitly confirms the correctness of this picture (see further discussion in section 4).

2.2 The 1/6-BPS Bremsstrahlung functions

In the limit where the generalized cusp angles ϕ and θ are small, the cusp anomalous

dimension Γ(θ, ϕ) can be Taylor expanded in even powers of them. The coefficients of the

lowest orders in ϕ and θ define the Bremsstrahlung functions [13].

The generalized cusp, associated to the 1/6-BPS Wilson lines of the ABJM theory,

does not satisfy a BPS condition at ϕ = ±θ (as for instance the cusp constructed with

1/2-BPS rays does) and consequently the small angle expansion reads

Γ1/6(k,N1, N2, ϕ, θ) = Bθ
1/6(k,N1, N2) θ2 −Bϕ

1/6(k,N1, N2)ϕ2 + . . . (2.5)

where Bθ
1/6 and Bϕ

1/6 are a priori two different functions of the coupling constant k−1 and

the number of colors N1 and N2 only.

– 6 –



J
H
E
P
1
1
(
2
0
1
7
)
1
7
3

Remarkably, a proposal was derived for an exact expression for Bϕ
1/6 in [32]. This

was originally obtained in the planar limit and in the ABJM limit of equal gauge group

ranks. The argument relates this to the one-point function of the stress-energy tensor,

which in turn was argued to be connected to the entanglement entropy on a spherical

region enclosing a Wilson line insertion. Finally, the computation of this entanglement

entropy was expressed after some steps in terms of the expectation value of a multiply

wound 1/6-BPS Wilson loop 〈Wn〉, which can be computed exactly via localization [62].

In formulae

Bϕ
1/6 =

1

4π2
∂n|〈Wn〉|

∣∣∣∣
n=1

(2.6)

whose weak and strong coupling expansions read

Bϕ
1/6 =

λ2

2
− π2 λ4

2
+

47π4 λ6

72
− 17π6 λ8

18
+O

(
λ10
)

λ ≡ N

k
� 1 (2.7)

Bϕ
1/6 =

√
λ

2
√

2π
− 1

4π2
+

(
1

4π3
+

5

96π

)
1√
2λ

+O
(
λ−3/2

)
λ ≡ N

k
� 1 (2.8)

where λ ≡ N
k is the ’t Hooft coupling of ABJM. On the other hand, the Bremsstrahlung

function Bθ
1/6 was related to the expectation value of a supersymmetric circular Wilson

loop evaluated on a latitude contour in the S2 sphere, that is displaced by an angle from

the maximal circle, and potentially by an additional internal angle α in the R-symmetry

space. We refer the readers to [75], for the full details of its construction. Remarkably, the

expectation value of such a Wilson loop appears to only depend on a certain combination

of these parameters, ν = sin 2α cos θ0 [33], where the un-deformed Wilson loop recovered

at ν = 1 corresponds to the 1/6-BPS circular Wilson loop. The relation between Bθ
1/6

and this object was hinted at in [33] and developed more formally in [37], paralleling an

analogous derivation for N = 4 SYM [13]. Such a relation eventually states that the

Bθ
1/6 Bremsstrahlung function is obtained as the derivative of the latitude Wilson loop

expectation value 〈W (ν)〉 with respect to the deformation parameter ν

Bθ
1/6 =

1

4π2
∂ν log |〈W (ν)〉|

∣∣∣
ν=1

(2.9)

Such a formula was verified to hold at first order (two loops) at weak coupling in [33].

Unfortunately, unlike the N = 4 SYM case, the latitude Wilson loop has not been given

an exact expression via localization yet, thus impeding the derivation of an exact formula

for the θ-Bremsstrahlung function.

3 Strategy of the computation

In this section we sketch the computation of the θ-Bremsstrahlung function up to order 4

at weak coupling. The computation consists in few successive steps, which we summarize

here and describe in more details in a number of dedicated appendices. It proceeds as a

standard perturbation theory Feynman diagram expansion and evaluation:

• First, we select only the diagrams that actually contribute to Bθ
1/6, among the full

set of possible Feynman graphs.

– 7 –
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• The second step consists in writing down algebraic expressions for the diagrams using

the Feynman rules of the theory of appendix C. In this step the diagrams are Fourier

transformed to momentum space.

• In the third step, the momentum space integrals of the diagrams are manipulated

using automatized implementations of integration by parts (IBP) techniques. The

outcome of this step is that each diagram is mapped to a linear combination on a

basis of master integrals.

• In the fourth and final step, the master integrals are evaluated in d = 3− 2ε dimen-

sions, leading to a final result for each diagram in the form of an ε-expansion. From

the expansion of the total result, as explained below, we can finally read Bθ
1/6.

We now analyze each step in more details, starting from the selection of the diagrams.

3.1 The diagrams

To compute Bθ
1/6 we do not need the full set of diagrams generated by the perturbative

expansion of 〈W1/6[Γ]〉, since several simplifications take place. First, it can be argued that

only even perturbative orders are non-vanishing, on the basis of the Feynman rules of the

ABJM theory only [29]. Hence we consider two and four-loop diagrams only.

At four loops, as argued in [35], for the θ-Bremsstrahlung function it suffices to focus

on the contributions which contain θ, while setting the geometric angle to 0. The first

restriction entails the following simplifications. Terms containing the internal angle θ can

only come from the couplings to the scalar fields (2.3). Hence we can consider only the

subset of Feynman diagrams with insertions of scalar fields. In particular, these terms arise

(up to 4 loops) from the following traces

Tr(M1M2) = Tr(M3
1M2) = Tr(M1M

3
2 ) = 4 cos2 θ

2
≡ 4C2

θ (3.1)

As the angle θ appears in the following computation mainly in the form above, we have

defined the shorthand notation Cθ which will appear ubiquitously in the results. This

means that at least two bi-scalar insertions have to lie on different edges of the cusp,

contributing with a M1 and M2 factors in the traces.

Moreover, we anticipate that according to the general prescription by Korchemsky and

Radyushkin [41] we can restrict to the evaluation of the 1PI contribution V (θ, ϕ), which

is given by connected corrections that do not entirely lie on either side of the cusp, but

rather stretch between the two cusp legs. We review this argument in more detail below.

The knowledge of V (θ, ϕ) is sufficient to completely reconstruct the full gauge invariant

cusp W (θ, ϕ) expectation value (which already includes the subtraction of terms arising

from the contour being open [31, 35]). In fact, according to the prescription of [41], the

full result can be obtained by subtracting the 1PI total at vanishing angles

logW (θ, ϕ) = log V (θ, ϕ)− log V (0, 0) (3.2)

– 8 –
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(b)(a)

Figure 1. List of two-loop diagrams contributing to the four-loop θ-Bremsstrahlung function.

(b)(a) (c) (d)

(e) (f ) (g) (h)

(i)

(m) (n)

(j) (k)

(o) (p)

(l)

Figure 2. List of four-loop diagrams contributing to the four-loop θ-Bremsstrahlung function.

We stress that the additional contribution from V (0, 0) is by definition independent of θ,

hence it does not contribute to the θ-Bremsstrahlung function and can consequently be

disregarded from the beginning.

Summarizing, in order to compute the θ-Bremsstrahlung function, we have to consider

the 1PI two- and four-loop diagrams at ϕ = 0 with θ dependent factors. The former

contain just one contribution with θ dependence sketched in figure 1(a), but we also need

the additional θ independent diagram arising from the gluon 1-loop self-energy 1(b), in

order to consistently extract the perturbative logarithm at four loops. The double line

here stands for the Wilson line while solid, curly and dashed lines represent respectively

fermion, vector and scalar fields.

The four-loop diagrams are depicted in figure 2.

Some comments are in order. First, we stress that some additional diagrams are not

shown in the figure, since they can be seen to vanish identically. Indeed, we recall that

in Chern-Simons-matter theories remarkable simplifications arise already when the Wilson

loop contour lies in a two-dimensional plane, let alone when the contour is a one-dimensional

line, as in our case thanks to the choice ϕ = 0. In fact, this forces the vanishing of various

tensor contractions, by virtue of the ubiquitous antisymmetric Levi-Civita tensors arising

in Chern-Simons theory, for instance from gauge propagators (C.2) and cubic vertex (C.5).

Specifically, we remark that whenever an odd number of antisymmetric tensors εµνρ emerges

from the algebra of a diagram, then it identically vanishes. This vanishing occurs as one

– 9 –
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can always reduce a product of an odd number of Levi-Civita tensors to a single one whose

indices have to be contracted with three external vectors. The latter all come from the WL

contour and hence, lying on a plane, are not linearly independent and always give vanishing

expressions when contracted with the ε tensor. This argument is even stronger on a one-

dimensional contour where all external vectors are proportional and hence it suffices that

a pair of them are contracted with an antisymmetric tensors to obtain a vanishing result.

This observation drastically reduces the number of contributions to be considered (and in

particular can be shown to force all odd loop orders to vanish, using the Feynman rules of

the theory and the definition of the 1/6-BPS Wilson loop).

Concerning the diagrams in figure 2, the dot on the Wilson line represents one of the

possible positions of the cusp point. Indeed, for some of the diagrams the cusp point can

be chosen to stay in different inequivalent sites on the Wilson line. We consider here only

the configurations where a θ dependent factor (3.1) is generated and sum over them.

Diagrams (a) and (b) in figure 2 arise from the insertion of 4 bi-scalars, which is

the maximum at 4 loops, the others are corrections to the 2-loop insertion of 2 bi-scalars.

Diagrams with an odd number of such insertions vanish by the tracelessness of the coupling

matrices M in (2.3) and of products of odd numbers of them. Diagrams with no bi-scalar

insertions do not contribute to the θ-Bremsstrahlung as mentioned above. In figure 2

grey bullets represent 1-loop corrections to the gauge propagators whereas the grey box in

diagram (p) stands for the internal corrections to the scalar bubble, which we list explicitly

in appendix G.

After selecting the diagrams, the next step consists in the derivation of their algebraic

expressions from the ABJM Feynman rules in appendix C. Technically, evaluating the

various diagrams involves a bit of index algebra. We use identities in appendix A to reduce

the expressions. We perform the relevant tensor algebra strictly in three dimensions and

deal with cumbersome combinations of γ matrices in an automated manner with a computer

program. In this process we drop all the terms containing an odd number of Levi-Civita

tensors, following the remarks above, and reduce all the products of an even number of

them to combinations of metric tensors. Finally we obtain expressions featuring scalar

products of external velocities ẋi and derivatives only. The last step consists in integrating

over internal vertices and over the Wilson loop parameters.

3.2 Momentum integrals and the HQET formalism

The greatest simplification granted by setting ϕ = 0 consists in the fact that integrals aris-

ing from Feynman diagrams reduce to 2-point function contributions, instead of retaining a

full dependence on the cusp angle. This is they evaluate to numbers rather than functions,

which makes their evaluation much easier.

The evaluation of the relevant integrals could in principle be performed directly in

x-space where the diagrams where computed. This entails solving internal integrations

first and then integrating over the Wilson line parameters. The fact that the integrals

are propagator-type allows one to employ the powerful Gegenbauer polynomial x-space

technique GPXT [44]. However this approach becomes quite involved for contributions with

more than one internal integration, many of which appear in our four loop computation.
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τ2 τ1

k
v

[
Γ(1

2 − ε)
4π3/2−ε

]2∫ +∞

0
dτ1

∫ 0

−∞
dτ2

1

[(x1 − x2)2]1/2−ε
−→

∫
d3−2ε k

(2π)3−2ε

1

k2 (−i k · v)2

Figure 3. A cartoon of the Fourier transform of Wilson line integrals to a HQET propagators.

Instead, we apply here another strategy, which has proven extremely effective in this

sort of settings. This consists in Fourier transforming the integrals to momentum space and

perform the Wilson loop contour integrations first, before the integrals over loop momenta,

instead of the other way round. With this procedure computing the integrals boils down

to evaluating non-relativistic Feynman integrals of the kind emerging in the context of

the heavy quarks effective theory (HQET) (see [45, 46] for related applications in four

dimensions). We will rather use a Euclidean version of the formalism, since we are going to

perform the computation with (+,+,+) signature. When applied to a single propagator

one-loop case, the Fourier transform is shown pictorially in figure 3, where the velocity of

the heavy quark is the vector tangent to the Wilson loop contour, v = ẋ(τ). We repeat this

also for more complicated loop diagrams appearing in our two- and four-loop computation,

obtaining multi-loop HQET integrals.

In general, the resulting HQET integrals suffer from both IR and UV divergences. UV

divergences are regulated within the framework of dimensional regularization, that is we

define space-time integrations in d = 3 − 2ε dimensions. As a consequence, the integrals

evaluate to Laurent series in the regularization parameter ε, rather to just transcendental

numbers. We work in the setting of the dimensional reduction scheme (DRED) [47], which

has proven to be consistent with supersymmetry (see e.g. [48–50] for a discussion in the

context of WLs in three dimensions). This requires the tensor index algebra in numerators

to be performed in strictly three dimensions.

IR divergences may also arise from the region of integration at infinity along the

Wilson line contour. Following [46] we regulate them introducing an exponential factor

eδ τ (Re(δ) < 0) for the more external parameters in the path ordered integration. Such

a factor suppresses IR effects and enforces the finiteness of the corresponding integrals at

large radius. From the HQET standpoint this corresponds to a residual energy for the

heavy massive probes, which offsets the HQET propagators by

1

−i k · v
−→ 1

−i k · v − δ
(3.3)

The result of the computation is independent of such a parameter and we conveniently set

it to δ = −1/2, a choice that turns out to simplify the relevant integrals.

In conclusions, we Fourier transform all contributions from the diagrams of figure 2,

turning them into heavy quark effective theory (HQET) momentum integrals [35, 46] and
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regulate their divergences. The starting strings of the diagrams in momentum space are

listed in appendix D.

The main advantage of this picture, arises form the possibility of reduction to master

integrals, which we spell out in the next section.

Before doing this we observe that the reduction of cusp loop integrals to non-relativistic

heavy particles ones has also a very suggestive physical interpretation, beyond its practical

function. Indeed, the anomalous dimension of the cusped Wilson loop translates in this

setting to the renormalization of the current of a massive quark which passes from velocity

v1 to v2 forming an angle ϕ. According to this physical description, the BPS Wilson

lines in ABJM theory are associated to heavy W-bosons, transforming in the fundamental

representations of the gauge groups and hence interpreted as a massive quark. This particles

emerge for instance by Higgsing the theory, moving it away from the origin of the moduli

space [51, 52].

Then, the Bremsstrahlung function associated to the geometric angle ϕ is interpreted

as governing the energy loss by radiation of these massive particles undergoing a deviation

in its trajectory by an infinitesimal angle ϕ. Analogously, the θ-Bremsstrahlung function

which we study in this paper is mapped in the HQET setting to the equivalent, but tech-

nically simpler, picture of a heavy probe with an internal degree of freedom (R-symmetry)

undergoing a sudden and infinitesimal kick in internal space, at fixed and vanishing geo-

metrical angle.

3.3 Master integrals

The subsequent step involves the explicit evaluation of the (potentially divergent) Feynman

integrals. Since all tensor contractions were already performed at the stage of the evaluation

in configuration space, one can easily turn all the involved integrals into scalar ones, by

rewriting scalar products in terms of inverse propagators. This leads to integrals with

several numerators. The power of having turned them to momentum HQET integrals

stems from the fact that in this form they are amenable of the powerful technique of

reduction to master integrals. In order to perform such a task we repeatedly make use of

integration by parts identities (IBP) as shown in the seminal papers [53, 54]. In practice

this step can be cumbersome and an automated implementation is needed to carry it out.

In particular, we have used standard software such as LiteRed [55, 56] and FIRE [57–59] to

perform this step. Thanks to the ϕ = 0 condition, the integrals involved in the computation

of the θ-Bremsstrahlung function are precisely those of the kind contributing to the self-

energy corrections of a heavy quark. The presence of the cusp point on the line induces

only the simple effect of increasing the power of a HQET propagator in the diagram. This

occurrence is then dealt with automatically using integration by parts identities which can

then be employed to reduce the power of the doubled propagator to unity.

The outcome of such an analysis is that each diagram can be written as a linear

combination on a basis of 21 master integrals. They are sketched in figure 4 and explicitly

defined in appendix E. The final step consists in evaluating the master integrals in an ε

expansion up to the required order, so as to guarantee a consistent expansion of the cusp

expectation value up to the 1
ε order. This evaluation is also dealt with in appendix E. Using
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Figure 4. Master integrals needed for the computation. The double line represents an HQET

propagator. The dot indicates a squared propagator.

the master integral expressions we eventually find the ε expansion of the single diagrams

of figure 2, which are collected in appendix F.

3.4 The cusp anomalous dimension

In the previous subsection we detailed the strategy which enables us to perform the four-

loop evaluation of the expectation value of the 1/6-BPS Wilson loop on a cusped contour,

in the flat cusp limit. This expectation value is ultraviolet divergent, due to the cusp.

In this section we provide further details and explanation on the renormalization of this

object. We focus on the extraction of the cusp anomalous dimension and its small angle

limit, which provides the Bremsstrahlung function.

As recalled above, the expectation value of the cusped Wilson loop possesses both

UV and IR divergences. We already discussed the introduction of the IR regulator. UV

divergences need further explanations, since they determine the renormalization properties

of the Wilson loop and constitute the crucial object of our investigation. These can in

principle originate from different sources. At first, since the ABJM model is conformal,

we don’t need to consider renormalization of the Lagrangian of the theory. However,

divergences associated to the short distance dynamics on the Wilson line can contribute.

In the HQET picture these are sourced by the potentially divergent radiative corrections to

the heavy quark self-energy. In the case at hand, where the Wilson line is supersymmetric,

such divergent contributions are also absent. Finally, a singular geometry of contour induces

further divergent contributions. This is precisely the case for a contour with a cusp and

this kind of divergence is precisely the one we are interested in this paper.

The renormalization of non-local operators was studied in a systematic manner

in [41, 60]. Here we review some basic concepts that we need for our computation. We
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Figure 5. Factorization of quantum corrections to the cusped WL.

analyze first the contributions which are 1PI vertex diagrams in HQET picture. That is,

when we consider a configuration like that represented in figure 5, the sub-sector governed

by the Green function G(tr+1, ··, tn) decouples from the rest. Indeed, as discussed in details

in [35], the contribution of such diagrams can be factorized as the product of a 1PI term

which encodes the diagram obtained from the one in figure 5 removing the sub-sector con-

trolled by G(tr+1, ··, tn), times a factor representing the contribution due to G(tr+1, ··, tn)

to the vacuum expectation value of a straight semi-infinite line running from −∞ to 0.

Thanks to this factorization property, we can express the cusped Wilson loop ex-

pectation value as the sum of all 1PI diagrams, which we denote by V (θ, ϕ), times the

vacuum expectation value of the semi-infinite Wilson lines [S(−∞, 0), S(0,∞)], running

from −∞ to 0 and from 0 to ∞, which constitute the rays the cusp is constructed with

〈W (θ, ϕ)〉 = S(−∞, 0)V (θ, ϕ)S(0,∞) (3.4)

In the HQET description these translate into the two-point functions of the heavy quark

and (3.4) is interpreted as the ordinary decomposition of a correlation function in terms of

its 1PI sector and self-energy part.

In order to single out the cusp anomalous dimension from 〈W (θ, ϕ)〉, one should in

general perform a subtraction of the self-energy contributions. In practice this amounts to

subtracting the contribution of the straight line or the cusp at θ = ϕ = 0, leading to the

prescription

log(W̃ (θ, ϕ)) = log
W (θ, ϕ)

W (0, 0)
= log

V (θ, ϕ)

V (0, 0)
(3.5)

with V (θ, ϕ) defined in (3.4). In our case, since the contribution of the line is not divergent,

and since we are eventually only interested in contributions depending non-trivially on θ,

these subtleties can be consistently ignored and one can directly work at the level of the

1PI diagrams, as stated in section 3.
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Equipped with this formalism, we finally renormalize the UV divergent cusped Wilson

loop operator

〈WR(θ, ϕ)〉 = Z−1
1/6 〈W̃ (θ, ϕ)〉 (3.6)

From the renormalization constant we extract the cusp anomalous dimension

Γ1/6(k,N1, N2) =
d logZ1/6

d log µ
(3.7)

where µ stems for the renormalization scale, which on dimensional grounds appears at

each perturbative loop order l with a power µ2l. The perturbative computation outlined in

section 3 provides V (θ, ϕ) as an expansion in 1
k2 , since as recalled, only even perturbative

orders are divergent

V (θ, ϕ) =

(
2π

k

)2

V (2)(θ, ϕ) +

(
2π

k

)4

V (4)(θ, ϕ) +O
(
k−6

)
(3.8)

where within dimensional regularization each coefficient V (i) is expressed as a Laurent

series in the regularization parameter ε. According to the standard text-book prescription,

the cusp anomalous dimension is then extracted from the residues of the simple poles in ε

of Zcusp, leading to

logZcusp = log

(
V (θ, ϕ)

V (0, 0)

)∣∣∣∣
1
ε
terms

= − 1

4ε k2
Γ(2) − 1

8ε k4
Γ(4) +O

(
k−6

)
(3.9)

Finally, we compute the θ-Bremsstrahlung function by taking the double derivative

Bθ
1/6 =

1

2

∂2

∂θ2
Γ1/6

∣∣∣
ϕ=θ=0

(3.10)

Summing over different diagrams we were able to compute the 4-loop expectation value of

the θ-cusped Wilson loop at ϕ = 0, whose full result we spell out in the next section.

4 The result

4.1 Review two-loop result

We review here the two-loop computation of the cusped WL expectation value. As detailed

above, the two-loop result is needed because the cusp anomalous dimension is extracted

from the divergent part of the perturbative logarithm of the full expectation value. Since

at four loops we are interested in the order 1/ε of the expectation value and its loga-

rithm, we need to consider the two-loop corrections up to finite terms in the regulator.

Moreover, the two loop contributions turn out to be simple examples to describe our

computational setting.

The relevant diagrams are the ones introduced in figure 1. Parametrizing the points

on the cusp line as xµi (s) = vµτi and using the Feynman rules in appendix C, the algebra

of the first diagram in configuration space gives

(a) = N1N2

(
2π

k

)2
[

Γ(1
2 − ε)

4π3/2−ε

]2

Tr(M1M2)

∫ ∞
0

dτ1

∫ 0

−∞
dτ2

1

(x2
12)1−2ε
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with x2
12 = (x1(τ1) − x2(τ2))2. This can be Fourier transformed to momentum space

using (C.1) and, introducing the IR regulator δ, we get

(a) = 4N1N2

(
2π

k

)2

C2
θ

∫
d3−2εk1

(2π)3−2ε

d3−2εk2

(2π)3−2ε

1

k2
2(k1 − k2)2(ik1 · v + δ)2

(4.1)

where the factor Cθ = cos θ2 is produced by (3.1). We choose δ = −1/2 and absorb the

imaginary unit in the HQET propagator into the velocity v = i ṽ. The resulting vector is

such that ṽ2 = −1 and it can be conveniently used to define the master integrals in euclidean

space, making them manifestly real (see appendix E). At this stage of the computation the

momentum integrals are elaborated by FIRE and projected to the master integral basis.

In the present case the result of integration by parts is rather trivial and we get

(a) =

(
2π

k

)2

16N1N2C
2
θ (5− 2d)G0,1,1,0,1 (4.2)

where the master integral G0,1,1,0,1 is defined in (E.1). Now the master integral(s) must

be evaluated, obtaining the final result for the diagram as an ε-expansion up to the

desired order

(a) =

(
2π

k

)2

N1N2C
2
θ

(
4π

ε
+O (ε)

)
(4.3)

up to an overall factor 42εe−2γEε/(4π)3−2ε, omitted to keep the expression compact. The

same procedure can be applied to the second diagram of figure 1, which includes all the

one loop corrections to the gauge propagator. The final result reads

(b) =

(
2π

k

)2

8N1N2

(
− π

ε
+ 3π +O (ε)

)
(4.4)

The result of diagram (b) does not depend on the angle θ, which means that it does not

contribute to the two-loop Bremsstrahlung function Bθ
1/6. Nevertheless, we need to include

its contribution in V (2)(θ) in order to consistently extract the perturbative logarithm of

the cusp at four-loop order. Combining the two diagrams we find

V (2)(θ) = 4πN1N2

(
C2
θ − 2

ε
+ 6 +O (ε)

)
(4.5)

where again an overall factor 42εe−2γEε/(4π)3−2ε is understood and the dependence on the

coupling constant has been stripped out according to (3.8).

4.2 The four-loop result

Following the steps outlined in the previous section, we consider the four loop diagrams

of figure 2 and express them in momentum space using the rules in appendix C. We

collect the list of starting strings in momentum space in appendix D. After gamma algebra

manipulation, IBP reduction and evaluating the master integrals we get the ε-expansions

of the diagrams, collected in appendix F.
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Putting everything together and using (3.5) the perturbative computation yields

logW
∣∣∣ϕ = 0

θ-dep

=
C2
θN1N2

4k2ε
−
C2
θN1N

2
2

((
6C2

θ + 5π2 − 12
)
N1 + π2N2

)
48k4ε

+O
(
k−6

)
+O

(
ε0
)

(4.6)

where Cθ = cos θ2 . The fact that the logarithm is expressed in terms of a simple pole

only already provides a consistency check on the exponentiation of the divergences. In

the intermediate steps of the computation, poles in ε up to order 3 are generated in the

four loops 1PI expectation value. The cubic order poles are produced by diagrams (b),

(g) and (h) (see the expansions in appendix F), and consistently cancel out. Moreover the

coefficient of the remaining double pole is such that it exponentiates the 2-loop result.

One further check is as follows. The one-loop gluon self-energy contains a non-gauge

covariant term, which is expected to drop out in physical quantities (see e.g. discussions

in [27, 31]). In fact at 2 loops it can be seen to give rise to an angle independent divergence

which is then removed automatically from the gauge invariant cusp anomalous dimension

by following the prescription (3.2). In the 4-loop computation we explicitly kept track

of terms arising from this piece and verified that they consistently drop out of the final

result (4.6).

Using (3.6), (3.7) and (3.10) we obtain the final result for the θ-Bremsstrahlung func-

tion associated with the 1/6-BPS cusp

Bθ
1/6(k,N1, N2) =

N1N2

4k2
− π2N1N

2
2 (5N1 +N2)

24k4
+O

(
k−6

)
(4.7)

for generic ranks of the gauge groups. In the ABJM limit of equal ranks this reduces to

Bθ
1/6(k,N) =

N2

4k2
− π2N4

4k4
+O

(
k−6

)
(4.8)

We notice that the result displays maximal transcendentality (though (4.6) does not) and

does not contain factors of log 2. It is therefore possible that the θ-Bremsstrahlung has a

perturbative expansion in terms of even powers of π only, as it appears to be the case for

the ϕ-Bremsstrahlung.

5 Comparison with Bϕ
1/6 and connection to matrix model

Curiously, the four-loop coefficient displays the same ratio with the two-loop one, as in the

conjectured exact ϕ-Bremsstrahlung function of [32]

Bϕ
1/6(k,N) =

N2

2k2
− π2N4

2k4
+O

(
k−6

)
(5.1)

As the cusp does not satisfy a BPS condition for ϕ = θ, the Bremsstrahlung functions

associated to the two angles differ (and indeed they do so already at 2 loops). Nevertheless

it is still conceivable that the small angle limits of the cusp anomalous dimension are related

in a simple fashion. From our four loop result it would be tempting to extrapolate an all

order relation

Bϕ
1/6(k,N) =

conj
2Bθ

1/6(k,N) (5.2)
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though this is a quite bold statement at this stage. A confirmation or disproof could come

for instance by a strong coupling computation of Bθ
1/6, but this is lacking, to the best of

our knowledge [37, 38].

We now comment on the color structure of the result (4.7). The N1N
3
2 term was

predicted in [61], as part of an all-order computation of the terms associated to the highest

N2 power N l−1
2 at a given perturbative order l. The result presented here is in complete

agreement with this prediction and confirms it. The N2
1N

2
2 term is new as is the N3

1N2

contributions that happens to vanish, as a result of remarkable cancellations across different

diagrams. We do not have a particular insight on this fact.

Still, we point out the following remarkable fact on the color structure of the re-

sult (4.7). The conjecture [32] on the exact Bϕ
1/6 function was derived in ABJM theory,

that is with equal ranks, by relating it to a circular multiple wound 1/6-BPS Wilson loop

Bϕ
1/6(k,N) =

1

4π2
∂n |Wn(k,N)|

∣∣∣∣
n=1

(5.3)

The Wilson loop can be computed exactly from localization [62] and its result reads

〈Wn〉(k,N) = 1 + iπn2N

k
+

(
2π2n2

3
− π2n4

3

)
N2

k2
− N3

18k3
iπ3n2

(
n4 − 8n2 + 4

)
+
π4N4

180k4
n2
(
n6 − 20n4 + 58n2 − 60

)
+O

(
k−5

)
(5.4)

We can now consider the same Wilson loop in the ABJ model. Expanding the matrix

model of [9] in this case we obtain the expectation value (the expression up to order 8 can

be found in the appendices of [63])

〈Wn〉(k,N1, N2) = 1 +
iπn2N1

k
−
π2n2N1

(
n2N1 +N1 − 3N2

)
3k2

−
iπ3n2N1

(
−6N1

(
2n2N2 +N2

)
+
(
n4 + 4n2 + 1

)
N2

1 + 9N2
2

)
18k3

+
π4n2N1

180k4

(
n6N3

1 + 10n4N2
1 (N1 − 3N2)

+n2N1

(
13N2

1 − 75N2N1 + 120N2
2

)
− 30N2

2 (N1 +N2)
)

+ . . . (5.5)

If we plug this expression into (5.3), even though we do not have a proof that this gives

the Bϕ
1/6-Bremsstrahlung also in the ABJ case, we obtain

Bϕ
1/6(k,N1, N2) =

conj
2Bθ

1/6(k,N1, N2) =
conj

1

4π2
∂n |Wn(k,N1, N2)|

∣∣∣∣
n=1

=
N1N2

2k2
− π2N1N

2
2 (5N1 +N2)

12k4

+
π4N1N

2
2

(
−23N3

1 + 345N2N
2
1 + 145N2

2N1 + 3N3
2

)
720k6

− π6N1N
2
2

30240k8

(
95N5

1 − 2331N2N
4
1 + 17633N2

2N
3
1

+12285N3
2N

2
1 + 875N4

2N1 + 3N5
2

)
+O

(
k−10

)
(5.6)
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Remarkably, the color components of the four-loop result are in the same ratio as in (4.7).

This could be again only a coincidence, but it seems to hint that (4.7) can be obtained as

a derivative of a winding Wilson loop, hence corroborating (5.6). It would be interesting

to extend the calculation presented here to the color subleading corrections and inspect

whether a relationship with the corresponding nonplanar piece of the winding Wilson loop

still holds (as in [35]).

We further comment on the color structure of the conjectured result (5.6). At each

order we can factorize a common N1N
2
2 . This means that on a possible range of color

structures at each order l in perturbation theory {N l
1N

0
2 , N

l−1
1 N1

2 , . . . , N1N
l−1
2 , N0

1N
l
2}

only the terms {N l−2
1 N2

2 , . . . , N1N
l−1
2 } appear. The potential contribution proportional

to N l
2 can not be present by construction, whereas the structure N l

1 would correspond to

a pure Chern-Simons piece, which, albeit it appears in the circular Wilson loop (5.5), is

not expected to contribute to the cusp anomalous dimension, and indeed its coefficient

vanishes in (5.6). The surprising fact is that also the part proportional to N l−1
1 N2 seems to

be consistently absent in the proposal (5.6) (at least to the perturbative order we probed).

We lack an explanation for this phenomenon.

6 Conclusions

In this paper we have analyzed the Bremsstrahlung function associated to the internal

angle θ for the locally 1/6-BPS generalized cusp in the ABJM model. We have performed

its computation at four loops at weak coupling in the planar limit.

Technically, our computation has considerably benefited from considering only contri-

butions which are relevant for the computation of the Bremsstrahlung function. This in

particular allowed the expansion of the cusp anomalous dimension in the small internal

angle in the R-symmetry space, at vanishing geometric angle. This limit entails remark-

able simplifications at both the level of the number of diagrams involved, and of their

practical evaluation, especially when dealing with the integrals. These indeed reduce at

ϕ = 0 to self-energy contributions, which we computed by turning to the HQET picture

(via Fourier transform to momentum space) and employing integration by parts identities

to reduce them to a restricted set of master topologies.

The aim of our four-loop computation consists in gathering more information on Bθ
1/6,

which is thus far a quite elusive object. Indeed, we remind that other Bremsstrahlung func-

tions in ABJM, namely that related to the 1/2-BPS cusp and that associated to the geo-

metric angle ϕ of the 1/6-BPS cusp have already been given exact expressions [32, 33]. This

has been achieved by relating them to the expectation value of supersymmetric 1/6-BPS

Wilson loops with multiple winding, which are computable exactly via localization [62].

On the contrary, no such expressions so far had been derived for Bθ
1/6.

Based on the four-loop result we have proposed a conjecture that relates Bθ
1/6 to Bϕ

1/6

and consequently provides an exact expression for the former. We recall that no prediction

for Bθ
1/6 at string ’t Hooft coupling is available from the dual string theory picture on the

background AdS4 × CP 3. Our exact proposal, relating the Bremsstrahlung function to

a multiply wound supersymmetric Wilson loop known exactly via localization, allows for

formulating such a prediction. Namely, at strong coupling the Bremsstrahlung function
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has the expansion (for N1 = N2 = N � 1)

Bθ
1/6 =

√
λ

4
√

2π
− 1

8π2
+

(
1

8π3
+

5

192π

)
1√
2λ

+O
(
λ−3/2

)
λ ≡ N

k
� 1 (6.1)

The exact knowledge (albeit still conjectural) of the θ-Bremsstrahlung function is al-

ready interesting, being another example of a non-BPS observable which can be com-

puted (though indirectly) with a localization result. Moreover the result can also be rel-

evant in view of a potential computation of the same quantity based on integrability, as

carried out in N = 4 SYM. Recent developments on the Quantum Spectral Curve ap-

proach [22, 23, 25, 64] in the ABJM model [39, 40] have provided progress in this direction.

We stress that an integrability based computation would not only provide a non-trivial

crossed check of the localization based proposal (5.6), but would also grant a direct proof of

the conjecture on the exact expression for the interpolating h function of ABJM [4, 65–67].

In [68] a proposal appeared on how to relate observables in ABJM and ABJ theories

which can be computed via integrability. In ABJM, integrability based computations are

given in terms of the interpolating function h(λ) [4, 65, 66], whose exact expression was

conjectured in [67]. This matches the perturbative data at weak [65, 66, 69–71] and strong

coupling [72–74]. Assuming that ABJ is also integrable and according to the prescription

of [68], the same observable in ABJ would then be obtained by replacing the ’t Hooft

coupling λ = N
k with an effective ABJ version λeff(N1, N2), whose explicit expression can

be found in [68]. Assuming that the θ-Bremsstrahlung computed in this note could indeed

be computed via integrability, we however observe that the replacement λ→ λeff described

above fails to reproduce (4.7) from (4.8). This indicates that some of the assumptions

above do not hold in this case or that the prescription of [68] somehow does not directly

apply in this case. Still, the ABJ theory is expected to be integrable (it was proven to be

so in a particular sector in the limit of [61]), therefore a derivation of its Bremsstrahlung

function from integrability is also foreseeable. This, together with a deeper understanding

of the ABJ supersymmetric cusp, would grant a firmer handle on the conjecture for the

exact interpolating function of the ABJ model [68].

We conclude with remarks on possible perspectives. In [33, 37] a connection was con-

jectured between the θ-Bremsstrahlung and the derivative of deformed circular BPS Wilson

loops [75]. It would be interesting to compare the four-loop computation described here

with the expectation value of such a Wilson loop at the same order. However the crucial

simplifications described in section 3 that made this computation doable are absent in the

case of a circular Wilson loop and as a result its evaluation would be rather complicated.

On the contrary, a setting where part of the simplification employed here still applies, would

be the computation of the ϕ-Bremsstrahlung (a part of the four-loop Bremsstrahlung func-

tion in QCD in four dimensions has been recently performed [76]). In that case one would

have to perform derivatives of the cusp with respect to ϕ, but eventually setting it to 0

would still allow to use propagator type HQET integrals of the kind used in this paper.

However the full computation would require far more diagrams (for instance those using

the gluon 2-, 3- and 4-point functions at 3, 2 and 1 loops respectively) and master integrals.

It would be interesting to perform such a computation so as to test the conjecture of [32]

on the exact ϕ-Bremsstrahlung function at four loops.
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A Spinor and group conventions

We work in euclidean three dimensional space with coordinates xµ = (x0, x1, x2). The

Dirac matrices satisfying the Clifford algebra {γµ, γν} = 2δµνI are chosen to be

(γµ) β
α = {−σ3, σ1, σ2} (A.1)

with matrix product

(γµγν) β
α ≡ (γµ) γ

α (γν) β
γ (A.2)

The algebra of the matrices (A.1) is completely determined by the relation

γµγν = δµν1− iεµνργρ (A.3)

which gives rise to the traces

Tr(γµγν) = 2δµν and Tr(γµγνγρ) = −2iεµνρ (A.4)

Spinor indices are raised and lowered by means of the ε−tensor:

ψα = εαβψβ ψα = εαβψ
β (A.5)

with ε12 = −ε12 = 1. In particular, the antisymmetric combination of two spinors can be

reduced to scalar contractions:

ψαχβ − ψβχα = εαβψ
γχγ ≡ εαβψχ, ψαχβ − ψβχα = −εαβψγχγ ≡ −εαβψχ (A.6)

Under complex conjugation the gamma matrices transform as follows: [(γµ) β
α ]∗ = (γµ)βα ≡

εβγ(γµ) δ
γ εαδ. As a consequence, the hermitian conjugate of the vector bilinear can be

rewritten as follows

(ψγµχ)† = (ψα(γµ) β
α χβ)† = χ̄β(γµ)βαψ̄

α = χ̄β(γµ) α
β ψ̄α ≡ χ̄γµψ̄ (A.7)

where we have taken (χβ)† = χ̄β and (ψα)† = ψ̄α.

The U(N) generators are defined as TA = (T 0, T a), where T 0 = 1√
N
1 and T a

(a = 1, . . . , N2 − 1) are an orthonormal set of traceless N × N hermitian matrices. The

generators are normalized as

Tr(TATB) = δAB (A.8)

The structure constant are then defined by

[TA, TB] = ifABCT
C (A.9)
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In the paper we shall often use the double notation and the fields will carry two indices

in the fundamental representation of the gauge groups. An index in the fundamental

representation of U(N1) will be generically by the lowercase roman indices i, j, k, . . . , while

for an index in the fundamental representation of U(N2) we shall use the hatted lowercase

roman indices î, ĵ, k̂, . . .

B The ABJM action

We summarize here the basic features of the action for general U(N1)k× U(N2)−k ABJ(M)

theories. The gauge sector contains two gauge fields (Aµ)i
j and (Âµ)̂i

ĵ belonging re-

spectively to the adjoint of U(N1) and U(N2). The matter sector instead consists of the

complex fields (CI)i
ĵ and (C̄I )̂i

j as well as the fermions (ψI)i
ĵ and (ψ̄I )̂i

j . The fields

(CI , ψ̄
I) transform in the (N1, N̄2) of the gauge group while the couple (C̄I , ψI) belongs

to the representation (N̄1,N2). The additional capital index I = 1, 2, 3, 4 belongs to the

R-symmetry group SU(4). In order to quantize the theory at the perturbative level, we

introduce the usual gauge-fixing for both gauge fields and the two corresponding sets of

ghosts (c̄, c) and (¯̂c, ĉ). Then the action contains four different contributions

S = SCS

∣∣
g.f.

+ Smat + Sbos
pot + Sferm

pot (B.1)

where

SCS

∣∣
g.f.

=
k

4π

∫
d3x εµνρ

{
iTr

(
Âµ∂νÂρ +

2

3
iÂµÂνÂρ

)
−iTr

(
Aµ∂νAρ +

2

3
iAµAνAρ

)
+ Tr

[
1

ξ
(∂µA

µ)2 − 1

ξ
(∂µÂ

µ)2 + ∂µc̄D
µc− ∂µ¯̂cDµĉ

]}
(B.2a)

Smat =

∫
d3xTr

[
DµCID

µC̄I − iΨ̄IγµDµΨI

]
(B.2b)

Sbos
pot = −4π2

3k2

∫
d3xTr

[
CIC̄

ICJ C̄
JCKC̄

K + C̄ICIC̄
JCJ C̄

KCK

+ 4CIC̄
JCKC̄

ICJ C̄
K − 6CIC̄

JCJ C̄
ICKC̄

K
]

(B.2c)

Sferm
pot = −2πi

k

∫
d3xTr

[
C̄ICIΨJΨ̄J − CIC̄IΨ̄JΨJ + 2CIC̄

JΨ̄IΨJ

− 2C̄ICJΨIΨ̄
J − εIJKLC̄IΨ̄J C̄KΨ̄L + εIJKLCIΨJCKΨL

]
(B.2d)

The invariant SU(4) tensors εIJKL and εIJKL satisfy ε1234 = ε1234 = 1. The covariant

derivatives are defined as

DµCI = ∂µCI + iAµCI − iCIÂµ, DµC̄
I = ∂µC̄

I − iC̄IAµ + iÂµC̄
I

DµΨ̄I = ∂µΨ̄I + iAµΨ̄I − iΨ̄IÂµ, DµΨI = ∂µΨI − iΨIAµ + iÂµΨI (B.3)

C Feynman rules

We use the Fourier transform definition∫
d3−2εp

(2π)3−2ε

pµ

(p2)s
eip·(x−y) =

Γ(3
2 − s− ε)

4sπ3/2−εΓ(s)

(
− i∂µx

) 1

(x− y)2(3/2−s−ε) (C.1)

– 22 –



J
H
E
P
1
1
(
2
0
1
7
)
1
7
3

In euclidean space we define the functional generator as Z ∼
∫
e−S , with action (B.1).

This gives rise to the following Feynman rules

• Vector propagators in Landau gauge

〈(Aµ)i
j(x)(Aν)k

`(y)〉(0) = δ`i δ
j
k

(
2πi

k

)
Γ(3

2 − ε)
2π

3
2
−ε

εµνρ
(x− y)ρ

[(x− y)2]
3
2
−ε

= δ`i δ
j
k

(
2π

k

)
εµνρ

∫
dnp

(2π)n
pρ

p2
eip(x−y)

〈(Âµ)̂i
ĵ(x)(Âν)k̂

ˆ̀
(y)〉(0) = −δ ˆ̀

î
δĵ
k̂

(
2πi

k

)
Γ(3

2 − ε)
2π

3
2
−ε

εµνρ
(x− y)ρ

[(x− y)2]
3
2
−ε

= −δ ˆ̀

î
δĵ
k̂

(
2π

k

)
εµνρ

∫
dnp

(2π)n
pρ

p2
eip(x−y) (C.2)

• Scalar propagator

〈(CI)iĵ(x)(C̄J)k̂
l( y)〉(0) = δJI δ

l
iδ
ĵ

k̂

Γ(1
2 − ε)

4π
3
2
−ε

1

[(x− y)2]
1
2
−ε

= δJI δ
l
iδ
ĵ

k̂

∫
dnp

(2π)n
eip(x−y)

p2
(C.3)

• Fermion propagator

〈(ψαI )̂i
j(x)(ψ̄Jβ )k

l̂(y)〉(0) = i δJI δ
l̂
î
δjk

Γ(3
2 − ε)

2π
3
2
−ε

(γµ)αβ (x− y)µ

[(x− y)2]
3
2
−ε

= δJI δ
l̂
î
δjk

∫
dnp

(2π)n
(γµ)αβ pµ

p2
eip(x−y) (C.4)

• Gauge cubic vertex

i
k

12π
εµνρ

∫
d3x fabcAaµA

b
νA

c
ρ (C.5)

• Gauge-fermion cubic vertex

−
∫
d3xTr

[
Ψ̄IγµΨIAµ − Ψ̄IγµÂµΨI

]
(C.6)

The one loop gauge propagators are given by

〈(Aµ)i
j(x)(Aν)k

`(y)〉(1) = δ`i δ
j
k

(
2π

k

)2

N2
Γ2(1

2−ε)
4π3−2ε

[
δµν

[(x−y)2]1−2ε
−∂µ∂ν

[(x−y)2]2ε

4ε(1+2ε)

]
= δ`i δ

j
k

(
2π

k

)2

N2
Γ2(1

2−ε)Γ(1
2 +ε)

Γ(1−2ε)21−2επ
3
2
−ε

∫
dnp

(2π)n
eip(x−y)

(p2)
1
2

+ε

(
δµν−

pµpν
p2

)
(C.7a)

〈(Âµ)̂i
ĵ(x)(Âν)k̂

ˆ̀
(y)〉(1) = δ

ˆ̀

î
δĵ
k̂

(
2π

k

)2

N1
Γ2(1

2−ε)
4π3−2ε

[
δµν

[(x−y)2]1−2ε
−∂µ∂ν

[(x−y)2]2ε

4ε(1+2ε)

]
= δ

ˆ̀

î
δĵ
k̂

(
2π

k

)2

N1
Γ2(1

2−ε)Γ(1
2 +ε)

Γ(1−2ε)21−2επ
3
2
−ε

∫
dnp

(2π)n
eip(x−y)

(p2)
1
2

+ε

(
δµν−

pµpν
p2

)
(C.7b)
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The one-loop fermion propagator reads

〈(ψαI )̂i
j(x)(ψ̄Jβ )k

l̂(y)〉(1) =−i
(

2π

k

)
δJI δ

l̂
î
δjkδ

α
β(N1−N2)

Γ2(1
2−ε)

16π3−2ε

1

[(x−y)2]1−2ε

=−
(

2πi

k

)
δJI δ

l̂
î
δjkδ

α
β(N1−N2)

Γ2(1
2−ε)Γ(1

2 +ε)

Γ(1−2ε)23−2επ
3
2
−ε

∫
dnp

(2π)n
eip(x−y)

(p2)
1
2

+ε

(C.8)

and is proportional to the difference (N1 −N2) of the ranks of the gauge groups, hence it

vanishes in the ABJM limit.

D Momentum space starting strings

In this appendix we list the starting expressions for the diagrams of figure 2 in momentum

space. These are derived by applying the Feynman rules of appendix C using the Fourier

transform (C.1). Omitting a common factor
(

2π
k

)4
Tr(M1M2)

∫ d3−2εk1/2/3/4

(2π)3−2ε , the full list of

integrands, except for diagram (p) which is discussed in appendix G, is given by

(a) =
1

k2
4(k1−k4)2(k1−k3)2(k2−k3)2(

8

(ik1 ·v+δ)3(ik2 ·v+δ)
+

Tr(M1M2)

(ik1 ·v+δ)2(ik2 ·v+δ)2

)
(D.1)

(b) =
2

k2
4(k1−k4)2(k3−k4)2(k2−k4)2(ik1 ·v+δ)2(ik2 ·v+δ)(ik3 ·v+δ)

(D.2)

(c) =− 4

k2
4(k1−k4)2(k1−k3)2(k2−k3)2(ik1 ·v+δ)2(ik2 ·v+δ)2

(D.3)

(d) = (c)− 8

k2
4(k1−k4)2(k1−k3)2(k2−k3)2(ik1 ·v+δ)3(ik2 ·v+δ)

(D.4)

(e) =
2ivµ((k1−k4)ν+(k2−k4)ν)Pµν(k1−k2)

k2
4(k1−k4)2(k2−k4)2(ik1 ·v+δ)2(ik2 ·v+δ)

(D.5)

(f) =− 2ivµ(k4ν−(k3−k4)ν)Pµν(k3)

k2
4(k3−k4)2(k1−k4)2(ik1 ·v+δ)2(ik3 ·v+δ)

(D.6)

(g) =−
vµvνεµρηερνλ(k2−k3)η(k1−k2)λ

k2
4(k1−k2)2(k2−k3)2(k3−k4)2(k1−k4)2(

2

(ik1 ·v+δ)2(ik2 ·v+δ)(ik3 ·v+δ)
+

1

(ik1 ·v+δ)(ik2 ·v+δ)2(ik3 ·v+δ)

)
(D.7)

(h) =−
2vµvνεµρηερνλk

η
3(k2−k3)λ

k2
3k

2
4(k2−k3)2(k2−k4)2(k1−k4)2(ik1 ·v+δ)2(ik2 ·v+δ)(ik3 ·v+δ)

(D.8)

(i) =
vµvνεµρηερνλk

η
2k

λ
3

k2
3k

2
2(k1−k4)2(k3−k4)2(k2−k4)2(ik1 ·v+δ)2(ik2 ·v+δ)(ik3 ·v+δ)

(D.9)

(j) =−
4ivµερνλεµνη(k1−k2)η(k3−k4)λ(k3+k4)ρ

k2
3k

2
4(k2−k3)2(k1−k2)2(k1−k4)2(k3−k4)2(ik1 ·v+δ)2(ik2 ·v+δ)

(D.10)

(k) =−
4ivµερνλεµνηk

η
3(k2−k4)λ(k1−k2+k1−k4)ρ

k2
3k

2
4(k2−k3)2(k1−k2)2(k2−k4)2(k1−k4)2(ik1 ·v+δ)2(ik3 ·v+δ)

(D.11)
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(l) =
2iελ1λ2λ3εµλ1ηελ2νλ4ελ3ρλ5v

µ(k1−k2)η(k1−k3)λ5(k2−k3)λ4

k2
4(k1−k2)2(k1−k3)2(k2−k3)2(k3−k4)2(k2−k4)2(k1−k4)2[

(k3−k4)ν(k1−k4)ρ+(k2−k4)ν(k3−k4)ρ+(k3−k4)ν(k3−k4)ρ

(ik1 ·v+δ)2(ik2 ·v+δ)

+(k2−k4)ν(k1−k4)ρ
]

(D.12)

(m) =−
2iελ1λ2λ3εµλ1ηελ2νλ4ελ3ρλ5v

µkη3(k2−k3)λ4kλ5
2

k2
4k

2
2k

2
3(k1−k4)2(k2−k3)2(k2−k4)2(k3−k4)2(ik1 ·v+δ)2(ik3 ·v+δ)[

−(k2−k4)νkρ4 +(k3−k4)ν(k2−k4)ρ+(k2−k4)ν(k2−k4)ρ−(k3−k4)νkρ4
]

(D.13)

(n) =
2iεµνλ2ερλ1λ3v

µ(k1−k2)λ2(k3−k4)λ3

k2
4(k1−k3)2(k1−k2)2(k2−k3)2(k3−k4)2(k2−k4)2(k1−k4)2[
(k1−k3)ν(k1−k3)ρ(k2−k4)λ1 +(k2−k3)ν(k1−k3)ρ(k2−k4)λ1

(ik1 ·v+δ)2(ik2 ·v+δ)

+(k1−k3)ν(k1−k4)ρ(k2−k4)λ1 +(k1−k3)ν(k1−k3)ρ(k2−k3)λ1

+(k2−k3)ν(k1−k3)ρ(k2−k3)λ1 +(k1−k3)ν(k1−k4)ρ(k2−k3)λ1

+(k2−k3)ν(k1−k4)ρ(k2−k3)λ1 +(k2−k3)ν(k1−k4)ρ(k2−k4)λ1
]

(D.14)

(o) =
2iεµνλ2ερλ1λ3v

µkλ2
3 (k2−k4)λ3

k2
4k

2
2k

2
3(k1−k4)2(k2−k3)2(k2−k4)2(k3−k4)2(ik1 ·v+δ)2(ik3 ·v+δ)

(D.15)[
−kν2k

ρ
2(k3−k4)λ1−(k2−k3)νkρ2(k3−k4)λ1−kν2k

ρ
4(k3−k4)λ1

−(k2−k3)νkρ4(k3−k4)λ1 +kν2k
ρ
2(k2−k3)λ1 +(k2−k3)νkρ2(k2−k3)λ1

+kν2k
ρ
4(k2−k3)λ1 +(k2−k3)νkρ4(k2−k3)λ1

]
where Pµν(k) in equations (D.5) and (D.6) stands for the 1 loop gauge propagator with

momentum k, which can be read by (C.7a).

E Master integrals definitions and expansions

We define the (Euclidean) HQET planar integrals at two and four loops by the following

products of propagators (d = 3− 2ε)

two loops: Ga1,a2,a3,a4 ≡
∫
ddk1 d

dk2

(2π)2d

1

P a1
1 P a2

2 P a3
5 P a4

6 P a5
9

four loops: Ga1,...,a14 ≡
∫
ddk1 d

dk2 d
dk3 d

dk4

(2π)4d

14∏
i=1

1

P aii
(E.1)

where the explicit propagators read

P1 = (2k1 · ṽ + 1), P2 = (2k2 · ṽ + 1), P3 = (2k3 · ṽ + 1), P4 = (2k4 · ṽ + 1)

P5 = k2
1, P6 = k2

2, P7 = k2
3, P8 = k2

4

P9 = (k1 − k2)2, P10 = (k1 − k3)2, P11 = (k1 − k4)2

P12 = (k2 − k3)2, P13 = (k2 − k4)2, P14 = (k3 − k4)2 (E.2)

and ṽ2 = −1.
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The cusp computation presented in this note requires the expansion and evaluation of

the 21 master integrals of figure 4 to certain orders in ε, depending on the integral. Here

we provide the relevant expansions needed for the calculation.

A subset of the master integrals can be evaluated exactly in terms of lower order ones.

In particular we can use the following bubble integrals

a2

a1 = I(a1, a2) = Ga1,a2 =
1

(4π)d/2
Γ(a1 + 2a2 − d)Γ(d/2− a2)

Γ(a1)Γ(a2)
(E.3)

a1

a2
= Ba1,a2 =

1

(4π)d/2
Γ(d/2− a1)Γ(d/2− a2)Γ(a1 + a2 − d/2)

Γ(a1)Γ(a2)Γ(d− a1 − a2)
(E.4)

and obtain for instance (we drop the 4π normalization and γE factors in what follows)

= I(1, 1)B2(1, 1) I(2ε, 1 + 2ε) = −π
4

8ε
− 1

2
π4(2 + 3 log 2) +O(ε) (E.5)

Another subset of master integrals is obtained by lower order topologies supplemented

by an additional external propagator, such as G1,1,1,0,0,0,0,1,0,1,1,1,1,0. These integrals all

factorize and can be evaluated using the master integrals of [35], for instance

= I(2 + 6ε, 1) =
2π4

3
+O(ε) (E.6)

Other integrals can be mapped to two- and three-loop topologies with non-integer indices,

after integrating bubble subtopologies, such as

= B(1, 1) I(1, 1)

1/2
+
ǫ

2ǫ

(E.7)

These cases can be dealt with by deriving expressions for general indices using the Gegen-

bauer polynomial technique (GPXT) [44] or a Mellin-Barnes (MB) representation.

The only genuinely four-loop integrals are G0,1,1,0,0,0,1,1,1,1,1,0,1,0 and G1,0,1,0,0,1,0,1,0,1,1,1,1,0

(see eqs. (E.28) and (E.29)). For these we derived a 6-fold MB representation. After ε ex-

pansion to the required order and some MB integral gymnastics we were able to reduce all

the relevant expressions to one-fold integrals which could be evaluated using the Barnes

lemmas and their corollaries, or evaluated directly, such as

∫ +i∞

−i∞

du

2πi

Γ(−u)Γ(1/2− u)Γ3(1/2 + u)

Γ(1 + u)
= 3F2

(
1
2

1
2

1
2

3
2 1

, 1

)
= 8C (E.8)

where C is the Catalan constant, providing full analytic results. Altogether, the expansions
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of the master integrals read

= − π2

48ε
− 1

36
π2(11 + 6 log 2)

− 1

432

(
π2
(
57π2 + 8(170 + 6 log 2(22 + 6 log 2))

))
ε+O

(
ε2
)

(E.9)

=
π2

16ε2
+
π2(2 + 2 log 2)

4ε

+
1

48
π2
(
11π2 + 24(6 + 2 log 2(4 + 2 log 2))

)
+O

(
ε1
)

(E.10)

= − π2

12ε3
− π2(3 + 4 log 2)

6ε2

−
π2
(
11π2 + 12(9 + 4 log 2(3 + 2 log 2))

)
36ε

+O
(
ε0
)

(E.11)

= − 3π2

32ε3
−

3
(
π2(1 + log 2)

)
4ε2

−
π2
(
13π2 + 96

(
2 + 2 log 2 + log2 2

))
32ε

+O
(
ε0
)

(E.12)

=
3π2

64ε2
+

3π2(5 + 4 log 2)

32ε

+
3

64
π2
(
5π2 + 8(10 + 2 log 2(5 + 2 log 2))

)
+O

(
ε1
)

(E.13)

= −π
4

8ε
− 1

2
π4(2 + 3 log 2) +O

(
ε1
)

(E.14)

=
π2

16ε2
+
π2(3 + 2 log 2)

4ε

+
1

48
π2
(
17π2 + 24(14 + 2 log 2(6 + 2 log 2))

)
+O

(
ε1
)

(E.15)

=
π2

24ε2
+
π2(9 + 8 log 2)

24ε

+
1

72
π2
(
189 + 13π2 + 216 log 2 + 96 log2 2

)
+O

(
ε1
)

(E.16)

= − π
2

8ε2
− π2(7 + 4 log 2)

4ε

− 1

24
π2
(
11π2 + 12(37 + 4 log 2(7 + 2 log 2))

)
+O

(
ε1
)

(E.17)

= −π
4

2ε
− 3

(
π4(−1 + 2 log 2)

)
+O

(
ε1
)

(E.18)

=
π4

48ε2
+

1
2π

4 log 2− 7π2ζ(3)
8

ε
+O

(
ε0
)

(E.19)

=
2π4

3
+O

(
ε1
)

(E.20)

– 27 –



J
H
E
P
1
1
(
2
0
1
7
)
1
7
3

=
π4

16ε2
+
π4 log 2− 7π2ζ(3)

8

ε
+O

(
ε0
)

(E.21)

=
π2

24ε3
+
π2(5 + 4 log 2)

12ε2

+
π2
(
13π2 + 12(25 + 4 log 2(5 + 2 log 2))

)
72ε

+O
(
ε0
)

(E.22)

= O
(

1

ε

)
(E.23)

= −π
4

2ε
+O

(
ε0
)

(E.24)

=
2π4

3ε
+O

(
ε0
)

(E.25)

= O
(

1

ε

)
(E.26)

=
2π4

3
+O

(
ε1
)

(E.27)

=
π2

2ε2
+

4π2 log 2

ε
+

1

6
π2
(
−84 + 7π2 + 96 log2 2

)
+O

(
ε1
)

(E.28)

=
π2

2ε2
+

4π2 log 2

ε
+

1

6
π2
(
−180 + 23π2 + 96 log2 2

)
+O

(
ε1
)

(E.29)

where an overall factor e−4γEε/(4π)2d is omitted.

F Results for the four-loop diagrams

Here we list the results for the diagrams of figure 2. A common factor
(
e−4εγE

k(4π)d/2

)4
is

understood.

(a) =
8π2C2

θ

(
C2
θ−2

)
N2

1N
2
2

ε2
+

32π2C2
θ

(
(−3+6log2)C2

θ−12log2
)
N2

1N
2
2

3ε
+O

(
ε0
)

(F.1)

(b) =
4π2C2

θN
3
1N2

ε3
+

32π2 log2C2
θN

3
1N2

ε2
+

4π2
(
13π2+96log2 2

)
C2
θN

3
1N2

3ε
+O

(
ε0
)

(F.2)

(c) =−
16π2C2

θN
2
1N

2
2

ε2
−

16π2(−7+8log2)C2
θN

2
1N

2
2

ε
+O

(
ε0
)

(F.3)

(d) =
16π2C2

θN
2
1N

2
2

ε2
+

16π2(1+8log2)C2
θN

2
1N

2
2

ε
+O

(
ε0
)

(F.4)

(e) =
128π2C2

θN
2
1N

2
2

ε
+O

(
ε0
)

(F.5)
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(p1) (p2) (p3)

+

(p4)

+

(p7)

+

(p5)

+

(p6)

Figure 6. Scalar bubble corrections.

(f) =−
32π2

(
−4+π2

)
C2
θN

2
1N

2
2

ε
+O

(
ε0
)

(F.6)

(g) =−
2π2C2

θN
3
1N2

ε3
−

2π2(−1+8log2)C2
θN

3
1N2

ε2

+
4π2

(
9−7π2+12log2−48log2 2

)
C2
θN

3
1N2

3ε
+O

(
ε0
)

(F.7)

(h) =−
2π2C2

θN
3
1N2

ε3
−

2π2(−1+8log2)C2
θN

3
1N2

ε2

+
2π2

(
18−17π2+24(1−4log2) log2

)
C2
θN

3
1N2

3ε
+O

(
ε0
)

(F.8)

(i) =−
2π4C2

θN
3
1N2

3ε
+O

(
ε0
)

(F.9)

(j) =
8π4C2

θN
2
1N

2
2

3ε
+O

(
ε0
)

(F.10)

(k) =−
8π4C2

θN
2
1N

2
2

3ε
+O

(
ε0
)

(F.11)

(l) =−
4π4C2

θN
3
1N2

3ε
+O

(
ε0
)

(F.12)

(m) =
4π4C2

θN
3
1N2

3ε
+O

(
ε0
)

(F.13)

(n) =−
8π4C2

θN
2
1N

2
2

3ε
+O

(
ε0
)

(F.14)

(o) =
8π4C2

θN
2
1N

2
2

3ε
+O

(
ε0
)

(F.15)

(p) =−
4π2C2

θN
2
1N2 (N1+4N2)

ε2
+

4π2C2
θN1N2

3ε

(
3
(
π2−8log2−6

)
N2

1

+4
(
π2−6(7+4log2)

)
N2N1−4π2N2

2

)
+O

(
ε0
)

(F.16)

G Scalar bubble corrections

Diagram (p) of figure 2 represents collectively the internal corrections to the scalar bubble.

The non-vanishing contributions are listed in figure 6.

To compute diagram (p1) we also need the expression for the 2-loop correction to the

scalar propagator, which was given for instance in [70]. Altogether, the various contribu-
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tions from diagram (p) to the cusp expectation value read

(p1) = −
4π2N1N2

(
N2

1 + 4N2N1 +N2
2

)
C2
θ

ε2
(G.1)

+
4π2N1N2C

2
θ

(
(N2

1 +N2
2 )
(
π2 − 8 log 2− 6

)
+ 4N2N1

(
π2 − 8 log 2− 22

))
ε

+O
(
ε0
)

(p2) = −
16π2

(
π2 − 12

)
N2

1N
2
2C

2
θ

ε
+O

(
ε0
)

(G.2)

(p3) = −
4π2

(
π2 − 12

)
N1N

3
2C

2
θ

ε
+O

(
ε0
)

(G.3)

(p4) =
16π2

(
π2 − 12

)
N2

1N
2
2C

2
θ

3ε
+O

(
ε0
)

(G.4)

(p5) =
8π2

(
π2 − 12

)
N1N

3
2C

2
θ

3ε
+O

(
ε0
)

(G.5)

(p6) = −
8π4N1N

3
2C

2
θ

ε
+O

(
ε0
)

(G.6)

(p7) =
4π2N1N

3
2C

2
θ

ε2
+

8π2N1N
3
2 (1 + 4 log 2)C2

θ

ε
+O

(
ε0
)

(G.7)
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