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1 Introduction

Maxwell’s equal area law, which states that two phases coexist when the areas above and

below a line of constant pressure P drawn through a pressure/volume curve are equal,

is one of the hallmarks of thermodynamics. It provides a straightforward computational

method for obtaining the coexistence boundary between any two phases (separated by a

first order phase transition), and generalizes straightforwardly to any pair of conjugate

thermodynamic variables. In recent years it has found utility in the thermodynamics of

AdS black holes [1–3], where the magnitude of the cosmological constant is interpreted as

thermodynamic pressure and the conjugate volume V is obtained by differentiating the

black hole mass with respect to pressure [4].

Recently there has been interest in defining equal area laws for holographic entangle-

ment entropy [5–8] as well as two-point correlation functions [9–18]. These equal area laws

have been studied for spacetimes dual to AdS black holes with phase transitions obeying an

equal area law in the black hole temperature (T )/black hole entropy (S) plane such as the

charged AdS black hole undergoing a first-order phase transition [19–21]. The holographic

equal area laws have been considered in both the T/entanglement entropy plane and the

T/geodesic length plane, as the two-point correlation function is given by the exponential

of geodesic length [22]. It has been claimed in a number of cases [5, 6, 8–18] that isocharges

in these planes obey Maxwell’s equal area construction at the phase transition temperature

of the black hole T∗, such that the areas bounded above and below the isocharge and the

isotherm T = T∗ are equal, just as is true for black hole temperature and entropy.
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The similarity between holographic entanglement entropy (HEE) and black hole en-

tropy [23] motivated the idea of an equal area law for holographic entanglement entropy,

where it was first claimed [5] that there is numerical evidence for an HEE equal area law

for the (near critically) charged AdS black hole in 3 + 1 dimensions. It was further claimed

that this equal area law for HEE sharpened the similarity between black hole entropy and

HEE. However, numerical evidence that the equal area law for HEE breaks down was sub-

sequently presented [7], the discrepancy growing as isocharges are chosen further away from

their originally considered [5] near-critical values. More recently, claims that a holographic

equal area law holds in the T/geodesic length plane have appeared [9–18].

Here we present the results of an investigation into both proposals for a holographic

equal area law. We find that any claim of an equal area law holding in either the

T/entanglement entropy or T/geodesic length plane is untrue and unfounded. We find

numerically that such equal area laws are not satisfied in either case, and explain how such

erroneous claims could arise. Furthermore, we point out that there is no reason to expect

this based on an appropriate consideration of the relevant thermodynamics.

2 Phase structure of charged AdS black holes

It is well known [19–21] that in a canonical (fixed charge) ensemble the thermodynamics

of charged AdS black holes features a first order (small black hole/large black hole) phase

transition, with the corresponding thermodynamics governed by the black hole free energy.

Alternatively, one can describe such a phenomenon using the Maxwell equal area construc-

tion in the T − S (and/or P − V ) planes. Since the charged AdS black hole will serve as a

testground for our investigation of validity of the holographic equal area laws, let us start

by briefly recapitulating these bulk results.

A d-dimensional charged AdS black hole is a solution to the Einstein-Maxwell anti de

Sitter action [19]

I = − 1

16πG

∫
ddx
√
−g
[
R− F 2 +

(d− 1)(d− 2))

l2

]
, (2.1)

where l is the AdS length scale, given by the following metric:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(d−2), (2.2)

f(r) = 1− m

rd−3
+

q2

r2(d−3)
+
r2

l2
. (2.3)

The parameters m and q are related to the ADM mass and charge of the black hole M

and Q via

M =
(d− 2)ω(d−2)

16πG
m , (2.4)

Q =

√
2(d− 2)(d− 3)ω(d−2)

8πG
q , (2.5)
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where ω(d−2) is the area of the unit (d − 2)-sphere ω(d−2) = 2π
d−1
2

Γ( d−1
2 )

. The temperature

T = f ′(r+)
4π and entropy S = ω(d−2)r

d−2
+ /4 are straightforwardly computed. The solution

for the gauge potential is

A =

(
−1

c

q

rd−3
+ Φ

)
dt , (2.6)

where c =
√

2(d−3)
d−2 , and Φ is a constant. Choosing Φ = 1

c
q

rd−3
+

, with r+ the horizon radius

of the black hole, the potential A vanishes on the horizon. The above black hole quantities

obey the following standard first law of black hole thermodynamics:

dM = TdS + ΦdQ . (2.7)

Specializing to d = 3 + 1 dimensions, we can express T as a function of S and Q

T (S,Q) =
1

4π

(
3

l2

√
S

π
+

√
π

S
−Q2 π

3
2

S
3
2

)
(2.8)

and also obtain in the canonical ensemble

F = M − TS =
1

4l2

(
l2r+ − r3

+ +
3Q2l2

r+

)
(2.9)

for the free energy F = M − TS, which completely governs the thermodynamic behavior

of the bulk black hole.

Namely, when isocharge lines are plotted in the F−T plane, swallowtail behaviour char-

acteristic of a first-order phase transition is observed for sufficiently small charges [19–21]

(figure 1). The phase transition temperature T∗ occurs at a point at which the derivatives

of the global minimum of F become discontinuous, that is, at a point where the swallowtail

intersects itself. As charge increases, the swallowtail diminishes and eventually terminates

at a critical point characterized by Q = Qcrit and T = Tcrit at which the phase transition

becomes second order. For Q > Qcrit the swallowtail no longer exists and only one phase

of black holes is present.

The thermodynamic behaviour can alternatively be inferred by studying isocharge lines

in the T − S plane. Namely, when T is plotted against S for corresponding values of Q

(right figure 1), we see that the swallowtail corresponds to an oscillatory behavior in T ,

and the disappearance of the swallowtail at Q = Qcrit corresponds to a point of inflection

in T . In particular, the critical point quantities Qcrit, Scrit, Tcrit can be found by solving

explicitly for the inflection point

∂T

∂S
=
∂2T

∂S2
= 0 , (2.10)

together with (2.8), while the phase transition temperature T∗ (for Q < Qcrit) is determined

from Maxwell’s equal area construction [19]:∫ S2

S1

T (S,Q)dS − T∗(S2 − S1) = T∗(S3 − S2)−
∫ S3

S2

T (S,Q)dS , (2.11)
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Figure 1. Phase transition of a bulk black hole. On the left, the behavior of the temperature T

against the free energy F of a charged black hole in d = 4 is shown. On the right is the behavior of

T against the entropy S. In each case we have plotted the critical isocharges (green), and isocharges

at Q > Qcrit (red) and Q < Qcrit (blue). Below criticality we see the swallowtail behavior of F ,

characteristic of a first order phase transition, and the oscillatory behaviour of T ; at criticality the

swallowtail becomes a cusp in the T − F plane, and an inflection point in the T − S plane— the

phase transition is here of second order. The AdS radius l has been set to 10 for which the critical

charge is Qc = 10/6. The values of Q on these isocharges are Q = 0.5Qcrit (blue), Q = Qcrit

(green) and Q = 1.5Qcrit (red).

with S1, S2, S3 given by the solutions of T (S,Q) = T∗ in ascending order. Graphically,

this corresponds to

Area(I) = Area(II), (2.12)

with Area(I) and Area(II) the areas bounded above and below by T (S,Q) and T∗, as

depicted in figure 2.

It is easy to see that Maxwell’s equal area law directly follows from the first law for

the free energy:

dF = −SdT + ΦdQ , (2.13)

which is a Legendre equivalent of (2.7). As dF is an exact differential, we have the equal

area condition: ∮
SdT = 0 ⇒ T∗ (S3 − S1) =

∫ S3

S1

TdS , (2.14)

on an isocharge (dQ = 0), with T∗ the temperature of the phase transition isotherm,

cf. eq. (2.11). Of course, the same derivation of the equal area law applies when the

T − S plane is (for example) replaced by the P − V plane of the extended phase space

thermodynamics [4].
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Figure 2. Maxwell’s equal area law in the bulk. The phase transition temperature T = T∗ is the

one at which Areas I and II bounded by the isocharge curve in the (T, S) plane are equal.

3 Testing holographic equal area laws

The qualitatively similar behavior of HEE and black hole entropy when plotted against

black hole temperature [23], cf. figure 1 and figure 3, have motivated investigations of

potentially interesting phase structure in the QFT dual to a charged AdS black hole. Both

entanglement entropy [5–10, 12–18] and two-point correlation functions [9–18] have been

considered to this end. In both cases equal area constructions have been respectively

proposed in the black hole temperature/entanglement entropy plane and the black hole

temperature/two point corelation function plane, where a constant entangling region or

pair of points are chosen on the boundary, and the bulk metric is varied by increasing

the mass of the black hole. In this section we put both these proposals to test. Namely,

we numerically investigate the behavior of holographic quantities for the CFT dual to the

charged AdS black hole spacetimes. We start with the entanglement entropy.

3.1 Entanglement entropy

For any quantum system localized to some region A, the entanglement entropy is given by

SA = −TrBρA log ρA , (3.1)

where the system is partitioned into region A and its complement B where ρA = TrB |ψ〉 〈ψ|
is the reduced density matrix describing subsystem A with the system originally being in

a pure state |ψ〉. A common example is that of complementary spatial volumes on a given

constant time slice, their common boundary being the “entangling surface”. One can

express ρA in the form of an effective thermal system

ρA =
e−HA/T0

Tr
(
e−HA/T0

) , (3.2)
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where HA is known as the modular Hamiltonian, and T0 is a constant with units of tem-

perature. Upon employing (3.1) this yields the first law

T0dSA = Tr
(
HAdρA

)
≡ d 〈HA〉 (3.3)

for entanglement entropy [24, 25].

The Ryu-Takayanagi proposal [26] extends the above construction to that of a CFT in

d− 1 dimensions constructed in a spacetime corresponding to the boundary of an asymp-

totically bulk AdSd spacetime (for which the quantum state of the CFT is not necessarily

pure). Continuing to refer to SA as the entanglement entropy, their proposal states that

SA =
AΣ

4Gd
(3.4)

applied to a bulk minimal surface Σ (with area AΣ), whose boundary matches the entan-

gling surface A in the CFT at spatial infinity. To compute this quantity a regularization

procedure is required since the minimal surface area in an asymptotically AdS bulk is for-

mally divergent. In what follows, rather than the entanglement entropy of the excited CFT

state (in the presence of a black hole), we are interested in the relative entanglement entropy

SE = SA − S(0)
A , (3.5)

given by subtracting the analogous contribution S
(0)
A from vacuum AdS.

Let us turn now to the calculation of the relative entanglement entropy in the charged

AdS black hole spacetime. Choosing the region A to be a spherical cap (as in [5]), the

entangling surface can then be described by constant polar angle θ = θ0, and the entangle-

ment entropy obtained via (3.4), where the area AΣ is obtained by minimizing the action

functional

AΣ = ω(d−3)

∫ θ0

0
(r(θ) sin θ)d−3

√
r′(θ)2

f(r(θ))
+ r(θ)2 dθ (3.6)

via Euler-Lagrangian variation. The relative entanglement entropy (3.5) is given by sub-

tracting the analogous contribution from vacuum AdS. This latter contribution is explicitly

known [23]:

r0(θ) = l

((
cos θ

cos θ0

)2

− 1

)− 1
2

(3.7)

and the corresponding quantity S
(0)
A straightforwardly computed. However the Euler-

Lagrange system following from (3.6) must in general be solved numerically with boundary

conditions

r(θ0)→∞, (3.8)

r′(0) = 0. (3.9)

where (3.8) ensures that r(θ) coincides with the entangling surface on the boundary r →∞
and (3.9) ensures regularity at the centre (θ = 0, the middle of the entangling surface,

– 6 –
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Figure 3. T -SE diagram for a d = 4 charged AdS black hole. On the left we see the oscillatory

behavior for Q < Qcrit (blue) and the point of inflection for Q = Qcrit (green). On the right the

Maxwell construction for entanglement entropy for Q < Qcrit is shown; it was claimed in [5] that

Areas I and II as shown are equal above and below the phase transition temperature of the black

hole T∗, given by the solid line. The paramaters chosen were l = 10, θ0 = 0.15, and θc = 0.149.

Again, the values of Q are Q = 0.5Qcrit (blue), Q = Qcrit (green) and Q = 1.5Qcrit (red).

which is the point of maximum penetration into the bulk). Since entanglement entropy

is divergent, a long-distance cut off must be introduced for regularization, which can be

implemented by choosing a cut-off value θc < θ0, and only integrating up to θc. In our

investigation we limit ourselves to considering small θ0.

After computing SE for a range of values of T for a charged AdS black hole in 3+1

dimensions, we can plot the isocharges in the T/SE plane; see figure 3. Comparing figure 1

and figure 3, which show the isocharges in the T/S and T/SE planes respectively, we see

that the behavior of black hole temperature against entanglement entropy is qualitatively

similar to that against the black hole entropy. In particular, we see oscillatory behavior

for charges below the critical charge Qcrit, a point of inflection at Qcrit, and monotonic

increase above Qcrit. It is perhaps natural to consider that an equal area law holds for

Q < Qcrit (such that Areas I and II are equal on the right-side of figure 3), and indeed

numerical evidence in favour of this has been presented [5].

However, as noted in [7] the apparent validity of the equal area law seems misleading,

with the discrepancy growing as isocharges are chosen further away from near critical

values, originally considered in [5]. To resolve this dispute, we have displayed in figure 4

the T versus SE diagrams for various isocharges. The phase transition temperature T∗ is

identified as the phase transition temperature in the bulk, where the isocharge intersects

itself in the free energy diagram in figure 1. The results of the equal area law are shown

in table 1, with the relative error defined as Area(I)−Area(II)
Area(I) × 100. We see that at values of

Q very close to criticality, the relative error is low enough to lead one to believe an equal

– 7 –
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Figure 4. Charge dependence of T − SE diagrams. The plots are displayed for the d = 4 charged

ADS black holes, with l = 10, θ0 = 0.15, and θc = 0.149. The phase transition temperature T∗ is

plotted in red in each case.

Q Q/Qc T∗ Area(I) Area(II) Relative error

1.5 0.9 0.0266324 5.309× 10−6 5.202× 10−6 2.02%

1 0.6 0.02847 1.040× 10−4 8.425× 10−5 19.0%

0.5 0.3 0.030198 4.745× 10−4 2.653× 10−4 44.1%

Table 1. Failure of the equal area law in the T − SE plane in d = 4. In this table l = 10 and

Qc = 5/3. We see that as we move further from criticality, the relative error between Areas I and

II increases and the equal area law does not hold. The plots of the results can be found in figure 4.

area law might hold; however, as we move away from criticality, the equal area law breaks

down, as noted in [7]. We checked that the equal area law also breaks down for charged

AdS black holes in higher spacetime dimensions.

The disagreement between our findings and those in [5, 6, 8–18] arises both from the

fact that we have probed further away from criticality than had been done, and are thus

finding larger relative errors, and also from a numerical argument. As noted in [7], when

the areas given by (2.14) are compared, there is less of a relative error than for the more

precise areas given by (2.11). As we shall elaborate on below, such discrepancies can be

huge; as much as 3 and 42 percent for Q = 0.3Qc.

3.2 Two-point correlation function

We turn now to the equal-time two-point correlation function [22]

〈O(t0, xi)O(t0, xj)〉 ≈ e−∆L(xi,xj), (3.10)

– 8 –
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Figure 5. Charge dependence of T −∆L diagrams. The plots are displayed for the d = 4 charged

ADS black holes. The phase transition temperature T∗ is plotted in red in each case. Again we

have l = 10, θ0 = 0.15, and θc = 0.149.

where L (xi, xj) is the smallest bulk geodesic between (t0, xi) and (t0, xj). In order to

formulate a Maxwell construction for the two-point correlation function, we can choose

the points x1 =
(
θ = 0, φ = π

2

)
, x2 =

(
θ = θ0, φ = π

2

)
. L (x1, x2) can be then computed by

minimising the functional

L (x1, x2) =

∫ θ0

0

√
r′(θ)2

f(r(θ))
+ r(θ)2dθ . (3.11)

This is a similar computation to that carried out using (3.6). The quantity L must be

computed by solving the Euler-Lagrange equations, a cut off θc is chosen, and the vacuum

AdS two point function L0 is be subtracted off to obtain ∆L = L−L0. Again, the vacuum

AdS solution is given by equation (3.7).

Contrary to claims [9–18] that when computed in this way L obeys a Maxwell equal

area construction, we find again that there is no equal area law in this plane as we move

away from criticality. Our results are illustrated in figure 5 and table 2, where the relative

error between Areas I and II is 45% at Q = 0.3Qcrit.

4 Failure of the equal area construction

Our results show that there is no numerical evidence for a holographic equal area law in

either the black hole temperature/entanglement entropy or the black hole temperature/two

point correlation function plane, at the phase transition temperature of the black hole.
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Q Q/Qc T∗ Area(I) Area(II) Relative error

1.5 0.9 0.0266324 3.382× 10−7 3.313× 10−7 2.01%

1 0.6 0.02847 6.685× 10−6 5.350× 10−6 20.0%

0.5 0.3 0.030198 3.032× 10−5 1.667× 10−5 45.0%

Table 2. The failure of the equal area law for the two-point correlation function. Similarly as for

SE , as we move away from criticality we see a failure in the equal area law for ∆L.

Similar evidence [7] for the failure of the equal area law for entanglement entropy has

been attributed to the first law of entanglement (3.3), which we rewrite as [27]

dEA = TentdSA, (4.1)

where EA is the energy contained in a region A and SA is the entanglement entropy between

a small region A and its complement. We note that our restriction to only small values of

θ0 ensures our calculations are well within the small-region regime. Tent is known as the

entanglement temperature, defined by comparing the energy to entropy ratio ∆EA
∆SA

for an

excited state of the region A relative to the ground state for the same region in the CFT.

EA can be computed by integrating the stress tensor of the black hole spacetime on

the boundary [28]:

EA =

∫
dd−2xTtt. (4.2)

For spherically symmetric asymptotically AdS spacetime, upon computing the difference

∆EA ≡ EA − E(0)
A between the excited and vacuum state in region A this becomes

∆EA ∝
∫
dd−2xM, (4.3)

since Ttt is proportional to the mass M [29]. For constant entangling region size we should

therefore have

TentSE ∝M (4.4)

using (3.5); since Tent depends only on entangling region size [27], which is kept constant,

we find

SE ∝M (4.5)

as a first law for the relative entanglement entropy. This relation is straightforwardly tested

numerically. Indeed, when we plot SE against M we find that these are proportional, as

depicted in figure 6. From these graphs we see that while [27] only dealt with uncharged,

asymptotically planar AdS spacetimes, its results are also valid in the charged asymptoti-

cally spherical case.

Thus, defining for an equal area law for entanglement entropy is equivalent to defining

an equal area law in the T/M plane. However, the Maxwell construction works in general

only for pairs of conjugate thermodynamical variables: there is no equal area law in the

T/M plane. Thus, there is no reason to expect an equal area law in the T/SE plane.

To study an equal area law for entanglement entropy, we would require a corresponding

– 10 –
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Figure 6. The first law for relative entanglement entropy. These plots show various isocharges in

the black hole mass-entanglement entropy plane for the charged AdS black hole in d = 4 dimensions.

The graphs verify that SE ∝M and thus verify the first law of entanglement entropy.

Q/Qc Relative Error

Areas: eq. (2.14) Areas: eq. (2.11)

0.9 0.00389% 1.12%

0.6 0.455% 16.7%

0.3 3.17% 42.1%

Table 3. Comparing the Accuracy of the errors given by Equations (2.14) and (2.11). We have

computed the relative error on the T/M plane between the areas defined by each equation. Due

to the areas being defined by (2.14) being much larger, their relative error is less accurate than

between the relative error between the areas of interest defined by (2.11).2

thermodynamic interpretation of the free energy, and we would need to consider SE plotted

against its thermodynamic conjugate. We likewise find that the two-point correlation

function is proportional to M , as shown in figure 7.

As noted previously, one of the main reasons for the discrepancy between our findings

and those contending an equal area law has to do with using (2.14) instead of the more

precise (2.11). In table 3 we illustrate this for several values of Q/Qc. It is clear that the

distinction can be very large, and it is clear that (2.11) provides no support for an equal

area law.

2The discrepancies between the values given for the relative errors in the T/M plane between tables 3

and 4 comes from the fact that the areas in table 3 were found exactly, whereas the areas in table 4 were

– 11 –
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Figure 7. The proportionality of ∆L and M . These plots show the isocharges in the black hole

mass-∆L plane for the charged AdS black hole in d = 4 dimensions. The graphs verify that ∆L ∝M
and thus that there is not an equal area law for ∆L.

Q Q/Qc Relative Error

Mass HEE ∆L

1.5 0.9 1.96% 2.02% 2.01%

1 0.6 18.8% 19.0% 20.0%

0.5 0.3 44.2% 44.1% 45.0%

Table 4. Comparing the Relative Errors. We have computed the relative error between Areas I

and II on the Temperature/Mass plane and we have compared this with those on the T/∆S and

T/∆L planes. The numerical errors in both cases are very close to that in the T/M plane.

We summarize in table 4 a comparison of the relative errors between Areas I and II

on the T/M , T/SE , and T/∆L planes. In all cases we find that this quantity grows as the

departure from criticality increases. We conclude that there no reason to expect an equal

area law for either the two-point correlation function or for the entanglement entropy.

We close this section by commenting on the θc and θ0 dependence of our results in

SE = SA − S(0)
A . This manifests itself differently in SA and S

(0)
A in such a way that the θc

dependence of SE was numerically found to be given by the following expression

SE = sin θ0

∫ θc

0
sind−3 x dx F (Q, r+, l) . (4.6)

numerically integrated using only the masses at the points for which the SE and ∆L values were calculated,

in order to obtain a more meaningful comparison.
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These relationships are not found in SA or in the background entanglement entropy S
(0)
A ,

but only in their difference SE . We have numerically checked this for d = 4 and 5. Thus

the proportionality between SE and M is only dependent on either of these parameters via

the proportionality constant: the slopes of the lines in Figs 6 and 7 will change, but the

relative error between Areas I and II is uneffected.

5 The “approximate” equal area law near criticality

It is evident that much of the confusion in the literature on the subject of the holographic

equal area law stems from the seemingly “approximate” equal area law obeyed on the T/M

plane near criticality. In 4 spacetime dimensions this can be explained by demonstrating

that Areas I and II on the T/M plane must approach zero at the same rate near criticality,

which we can see by Taylor expanding expressions for these areas near criticality.

Namely, in 4 spacetime dimensions an expression for the phase transition temperature

T∗, obtained by requiring that both the temperature and the free energy are equal for the

large and small black holes, is exactly known [4, 30]

T∗ =

√
l − 2Q

l3/2π
. (5.1)

Areas I and II are given by

Area(I) =

∫ M2

M1

TdM − T∗(M2 −M1) , (5.2)

Area(II) = T∗(M3 −M2)−
∫ M3

M2

TdM , (5.3)

where M1, M2, and M3 are the masses M(Si, Q) corresponding to the three solutions S1, S2,

S3 of T (S,Q) = T∗. We note that the Areas (I) and (II) as defined above approaching zero

at the same rate is equivalent to the larger areas Area(A) = T∗(M3 −M1) and Area(B) =∫M3

M1
TdM approaching zero at the same rate and so it suffices to look at the near-critical

expansions of areas A and B. S1 and S3 are known [4, 30]:

S1 =
4l2πQ2(√

l(l − 6Q) +
√
l(l − 2Q)

)2 , S3 =
π

4

(√
l(l − 6Q) +

√
l(l − 2Q)

)2
. (5.4)

This allows us to find expressions for M1 and M3 from M = S2+l2π(πQ2+S)

2l2π3/2
√
S

. After doing this,

we can expand areas A and B about the critical charge Qcrit = l/6, with δq = (Qc −Q)/l:

Area(A) = T∗(M3 −M1)

=
4

3π
(δq)1/2 +

6

π
(δq)3/2 +

9

2π
(δq)5/2 − 9

4π
(δq)7/2 + . . . . (5.5)

Area(B) =

∫ M3

M1

T (S,Q)dM =

∫ S3

S1

T
∂M

∂S
dS

=
4

3π
(δq)1/2 +

6

π
(δq)3/2 +

9

2π
(δq)5/2 +

2277

140π
(δq)7/2 + . . . , (5.6)
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Figure 8. T versus M . T is plotted against M in d = 4, with l = 10 and Q = 0.5 = 0.3Qc. We

see the oscillatory behaviour of T ; our T/SE and T/∆L graphs (Figs 4 and 5) are just rescaled

versions of this plot.

from which we can see that Areas A and B agree up to the first three terms of the Taylor

expansion. This explains the appearance of an equal law near criticality when δq is small.

A slightly more general argument, valid for other black holes and in any dimension, is

presented in appendix A.

6 Conclusions

The observation [23] that relative entanglement entropy displays qualitatively similar be-

haviour to black hole entropy on isocharges of the 3 + 1-dimensional charged AdS black

hole below criticality seemed intriguing. Nguyen attempted to sharpen this similarity in [5]

by showing that the relative entanglement entropy obeys an equal area construction, evi-

dence for a phase transition. Further claims that a holographic equal area law holds in the

T/geodesic length plane have also been put forward (see references above).

Our results indicate, commensurate with [7], that all proposals thus far put forward

that a form of Maxwell’s equal area law holds for entanglement entropy are false (although

it is ‘almost satisfied’ near criticality, see table 4). Moreover, we do not find it surprising

that the isocharges display oscillatory behaviour below Qcrit and a point of inflection at

Qcrit on the T − SE plane. This is a simple consequence of two facts: i) SE = SE(M)

is a monotonic function due to the first law for the relative entanglement entropy and ii)

temperature T , when displayed as a function of M , demonstrates oscillatory behavior, as

shown in figure 8, with the oscillation disappearing at criticality.

After numerically studying the holographic Maxwell construction for entanglement

entropy and the two-point correlation function, we find no reason to support such proposals

for the equal area law. The entanglement entropy is not dual to the black hole entropy,
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and it should not be expected that it obeys an equal area law. Any equal area construction

for entanglement entropy should be studied in relation to its thermodynamic dual, and any

claim of a phase transition must be backed up by a free energy diagram on the boundary

similar to that in figure 1; in other words there must be an analogue of free energy that

displays swallowtail behavior.

While we expect that phase transition for a bulk black hole has a counterpart in

the boundary CFT, although the entanglement entropy jumps in such a phase transition,

the transition temperature is not given by the associated equal area law. A CFT phase

transition will be governed by the corresponding free energy of CFT. Translating this into

a holographic equal area law of some kind remains an open question.

Acknowledgments

We would like to thank the anonymous referee for helping us to improve our manuscript.

This research was supported in part by Perimeter Institute for Theoretical Physics and by

the Natural Sciences and Engineering Research Council of Canada. Research at Perimeter

Institute is supported by the Government of Canada through the Department of Innovation,

Science and Economic Development Canada and by the Province of Ontario through the

Ministry of Research, Innovation and Science.

A The approximate equal area law: general argument

In section 5 we presented an argument as to why there appears to be an “approximate”

equal area law near criticality in the T/M plane for charged AdS black holes in 4 dimensions.

Here we demonstrate that this holds more generally, in any number of dimensions and

for other black hole solutions for which the expressions for T∗, and M1 and M3 are not

explicitly known.

Areas A and B are given by

Area(A) = T∗(M3 −M1) , (A.1)

Area(B) =

∫ M3

M1

TdM . (A.2)

Assuming that for a chosen black hole there is an equal area law satisfied in the T/S plane,

we can find an expression for T∗:

T∗ =

∫ S3

S1
TdS

S3 − S1
, (A.3)

such that

Area(A) =
M3 −M1

S3 − S1

∫ S3

S1

TdS . (A.4)

To calculate the integrals (A.2) and (A.4) we expand

T = T (S,Q) = Tc +
∂T

∂S
∆S +

∂T

∂Q
∆Q+ . . .

= Tc +
∂T

∂Q
∆Q+ . . . , (A.5)

– 15 –



J
H
E
P
1
1
(
2
0
1
7
)
1
6
5

where ∆Q ≡ Q−Qc, ∆S = S−Sc, and it is understood that the derivatives are evaluated

at Qc, Sc; the last equality follows from the fact that at criticality ∂T/∂S = 0. So we have

Area(A) =
M3 −M1

S3 − S1

∫ S3

S1

(
Tc +

∂T

∂Q
∆Q

)
dS

=

(
Tc +

∂T

∂Q
∆Q

)
(M3 −M1) . (A.6)

At the same time we have

Area(B) =

∫ M3

M1

TdM =

∫ M3

M1

(
Tc +

∂T

∂Q
∆Q

)
dM

=

(
Tc +

∂T

∂Q
∆Q

)
(M3 −M1) , (A.7)

and hence the areas are equal to this order of expansion in ∆Q. Since (M3 −M1) has to

go to zero near criticality, the above formulas show that the areas are equal at least to the

order linear in ∆Q.
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any medium, provided the original author(s) and source are credited.

References

[1] E. Spallucci and A. Smailagic, Maxwell’s equal area law for charged Anti-deSitter black holes,

Phys. Lett. B 723 (2013) 436 [arXiv:1305.3379] [INSPIRE].

[2] S.-Q. Lan, J.-X. Mo and W.-B. Liu, A note on Maxwell’s equal area law for black hole phase

transition, Eur. Phys. J. C 75 (2015) 419 [arXiv:1503.07658] [INSPIRE].

[3] H. Xu and Z.-M. Xu, Maxwell’s equal area law for Lovelock thermodynamics, Int. J. Mod.

Phys. D 26 (2016) 1750037 [arXiv:1510.06557] [INSPIRE].

[4] D. Kubiznak, R.B. Mann and M. Teo, Black hole chemistry: thermodynamics with Lambda,

Class. Quant. Grav. 34 (2017) 063001 [arXiv:1608.06147] [INSPIRE].

[5] P.H. Nguyen, An equal area law for holographic entanglement entropy of the AdS-RN black

hole, JHEP 12 (2015) 139 [arXiv:1508.01955] [INSPIRE].

[6] X.-X. Zeng, H. Zhang and L.-F. Li, Phase transition of holographic entanglement entropy in

massive gravity, Phys. Lett. B 756 (2016) 170 [arXiv:1511.00383] [INSPIRE].

[7] Y. Sun, H. Xu and L. Zhao, Thermodynamics and holographic entanglement entropy for

spherical black holes in 5D Gauss-Bonnet gravity, JHEP 09 (2016) 060 [arXiv:1606.06531]

[INSPIRE].

[8] X.-M. Liu, H.-B. Shao and X.-X. Zeng, Van der Waals-like phase transition from holographic

entanglement entropy in Lorentz breaking massive gravity, Adv. High Energy Phys. 2017

(2017) 6402101 [arXiv:1706.04431] [INSPIRE].

[9] X.-X. Zeng and L.-F. Li, Van der Waals phase transition in the framework of holography,

Phys. Lett. B 764 (2017) 100 [arXiv:1512.08855] [INSPIRE].

– 16 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.physletb.2013.05.038
https://arxiv.org/abs/1305.3379
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3379
https://doi.org/10.1140/epjc/s10052-015-3641-0
https://arxiv.org/abs/1503.07658
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07658
https://doi.org/10.1142/S0218271817500377
https://doi.org/10.1142/S0218271817500377
https://arxiv.org/abs/1510.06557
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.06557
https://doi.org/10.1088/1361-6382/aa5c69
https://arxiv.org/abs/1608.06147
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.06147
https://doi.org/10.1007/JHEP12(2015)139
https://arxiv.org/abs/1508.01955
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.01955
https://doi.org/10.1016/j.physletb.2016.03.013
https://arxiv.org/abs/1511.00383
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.00383
https://doi.org/10.1007/JHEP09(2016)060
https://arxiv.org/abs/1606.06531
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.06531
https://doi.org/10.1155/2017/6402101
https://doi.org/10.1155/2017/6402101
https://arxiv.org/abs/1706.04431
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.04431
https://doi.org/10.1016/j.physletb.2016.11.017
https://arxiv.org/abs/1512.08855
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.08855


J
H
E
P
1
1
(
2
0
1
7
)
1
6
5

[10] X.-X. Zeng, X.-M. Liu and L.-F. Li, Phase structure of the Born-Infeld-anti-de Sitter black

holes probed by non-local observables, Eur. Phys. J. C 76 (2016) 616 [arXiv:1601.01160]

[INSPIRE].

[11] J.-X. Mo, G.-Q. Li, Z.-T. Lin and X.-X. Zeng, Revisiting van der Waals like behavior of f(R)

AdS black holes via the two point correlation function, Nucl. Phys. B 918 (2017) 11

[arXiv:1604.08332] [INSPIRE].

[12] J.-X. Mo, An alternative perspective to observe the critical phenomena of dilaton black holes,

Eur. Phys. J. C 77 (2017) 529 [arXiv:1607.03702] [INSPIRE].

[13] S. He, L.-F. Li and X.-X. Zeng, Holographic Van der Waals-like phase transition in the

Gauss-Bonnet gravity, Nucl. Phys. B 915 (2017) 243 [arXiv:1608.04208] [INSPIRE].

[14] X.-X. Zeng and L.-F. Li, Holographic Phase Transition Probed by Nonlocal Observables, Adv.

High Energy Phys. 2016 (2016) 6153435 [arXiv:1609.06535] [INSPIRE].

[15] H. El Moumni, Phase Transition of AdS Black Holes with Non Linear Source in the

Holographic Framework, Int. J. Theor. Phys. 56 (2017) 554 [INSPIRE].

[16] H.-L. Li, S.-Z. Yang and X.-T. Zu, Holographic research on phase transitions for a five

dimensional AdS black hole with conformally coupled scalar hair, Phys. Lett. B 764 (2017)

310 [INSPIRE].

[17] H.-L. Li and Z.-W. Feng, Holographic Van der Waals phase transition of the higher

dimensional electrically charged hairy black hole, arXiv:1706.05530 [INSPIRE].

[18] X.-X. Zeng and Y.-W. Han, Holographic Van der Waals phase transition for a hairy black

hole, Adv. High Energy Phys. 2017 (2017) 2356174 [arXiv:1706.02024] [INSPIRE].

[19] A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and

catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

[20] A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and

fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197]

[INSPIRE].

[21] D. Kubiznak and R.B. Mann, P-V criticality of charged AdS black holes, JHEP 07 (2012)

033 [arXiv:1205.0559] [INSPIRE].

[22] V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000)

044007 [hep-th/9906226] [INSPIRE].

[23] C.V. Johnson, Large-N Phase Transitions, Finite Volume and Entanglement Entropy, JHEP

03 (2014) 047 [arXiv:1306.4955] [INSPIRE].

[24] D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative Entropy and Holography,

JHEP 08 (2013) 060 [arXiv:1305.3182] [INSPIRE].

[25] G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement Temperature and

Entanglement Entropy of Excited States, JHEP 12 (2013) 020 [arXiv:1305.3291] [INSPIRE].

[26] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[27] J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical Property of

Entanglement Entropy for Excited States, Phys. Rev. Lett. 110 (2013) 091602

[arXiv:1212.1164] [INSPIRE].

– 17 –

https://doi.org/10.1140/epjc/s10052-016-4463-4
https://arxiv.org/abs/1601.01160
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.01160
https://doi.org/10.1016/j.nuclphysb.2017.02.015
https://arxiv.org/abs/1604.08332
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.08332
https://doi.org/10.1140/epjc/s10052-017-5103-3
https://arxiv.org/abs/1607.03702
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.03702
https://doi.org/10.1016/j.nuclphysb.2016.12.005
https://arxiv.org/abs/1608.04208
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.04208
https://doi.org/10.1155/2016/6153435
https://doi.org/10.1155/2016/6153435
https://arxiv.org/abs/1609.06535
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.06535
https://doi.org/10.1007/s10773-016-3197-2
https://inspirehep.net/search?p=find+J+%22Int.J.Theor.Phys.,56,554%22
https://doi.org/10.1016/j.physletb.2016.11.043
https://doi.org/10.1016/j.physletb.2016.11.043
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B764,310%22
https://arxiv.org/abs/1706.05530
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.05530
https://doi.org/10.1155/2017/2356174
https://arxiv.org/abs/1706.02024
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.02024
https://doi.org/10.1103/PhysRevD.60.064018
https://arxiv.org/abs/hep-th/9902170
https://inspirehep.net/search?p=find+EPRINT+hep-th/9902170
https://doi.org/10.1103/PhysRevD.60.104026
https://arxiv.org/abs/hep-th/9904197
https://inspirehep.net/search?p=find+EPRINT+hep-th/9904197
https://doi.org/10.1007/JHEP07(2012)033
https://doi.org/10.1007/JHEP07(2012)033
https://arxiv.org/abs/1205.0559
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0559
https://doi.org/10.1103/PhysRevD.61.044007
https://doi.org/10.1103/PhysRevD.61.044007
https://arxiv.org/abs/hep-th/9906226
https://inspirehep.net/search?p=find+EPRINT+hep-th/9906226
https://doi.org/10.1007/JHEP03(2014)047
https://doi.org/10.1007/JHEP03(2014)047
https://arxiv.org/abs/1306.4955
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4955
https://doi.org/10.1007/JHEP08(2013)060
https://arxiv.org/abs/1305.3182
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3182
https://doi.org/10.1007/JHEP12(2013)020
https://arxiv.org/abs/1305.3291
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3291
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
https://doi.org/10.1103/PhysRevLett.110.091602
https://arxiv.org/abs/1212.1164
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1164


J
H
E
P
1
1
(
2
0
1
7
)
1
6
5

[28] J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the

gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].

[29] V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun.

Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

[30] J.-X. Mo and G.-Q. Li, Coexistence curves and molecule number densities of AdS black holes

in the reduced parameter space, Phys. Rev. D 92 (2015) 024055 [arXiv:1604.07931]

[INSPIRE].

– 18 –

https://doi.org/10.1103/PhysRevD.47.1407
https://arxiv.org/abs/gr-qc/9209012
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D47,1407%22
https://doi.org/10.1007/s002200050764
https://doi.org/10.1007/s002200050764
https://arxiv.org/abs/hep-th/9902121
https://inspirehep.net/search?p=find+EPRINT+hep-th/9902121
https://doi.org/10.1103/PhysRevD.92.024055
https://arxiv.org/abs/1604.07931
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.07931

	Introduction
	Phase structure of charged AdS black holes
	Testing holographic equal area laws
	Entanglement entropy
	Two-point correlation function

	Failure of the equal area construction
	The ``approximate'' equal area law near criticality
	Conclusions
	The approximate equal area law: general argument

