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1 Introduction

The evolution of the quark-gluon plasma (QGP) produced in high energy heavy-ion col-

lisions is well described by the equations of relativistic hydrodynamics including viscous

corrections (see [1] for a recent review). The success of such hydrodynamic descriptions

suggests that the system of quarks and gluons which emerge shortly after the collisions

is brought close to local equilibrium on a relatively short time scale, a process commonly

referred to as thermalization. Understanding the detailed mechanisms by which such a

thermalization occurs remains a theoretical challenge. At very early times, one may argue

that the dynamics is dominated by classical color fields and the system evolution is gov-

erned by the classical Yang-Mills equations [2, 3]. At a time scale of order 1/Qs, where

Qs is the saturation momentum, the system may be sufficiently dilute for kinetic theory to

become applicable [4]. Kinetic theory naturally fills the gap between the dynamics of clas-

sical field and that of dissipative fluids, and it offers the possibility to follow in details how

the pre-equilibrium system evolves into a state of quasi local equilibrium well accounted

for by viscous hydrodynamics. This is the framework that we shall consider in this work

(see e.g. [5–9] for some recent representative works, and more specifically [10, 11] for the

analysis of the onset of hydrodynamics in a weakly coupled system using kinietic theory).

The transition from kinetic theory to hydrodynamics is commonly achieved by taking

suitable moments of the kinetic equations, with lower moments encompassing conservation

laws and higher moments various dissipative effects. For some particular geometries, it is
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possible to recast the solution of the Boltzmann equation in terms of an infinite hierarchy

of equations for a particular set of moments of the distribution function (see e.g. [12]).

Provided this infinite hierarchy can be limited to the first few moments, this technique

could represent a convenient alternative to the direct solution of the kinetic equation. Aside

from this aspect, there is another interest in using moments. Defined in terms of integrals

of the phase-space distribution function with suitable weights, the moments allow us to

focus on the relevant (typically long wavelength) information, and wash out the irrelevant

(short wavelength) one from the distribution function, thereby automatically implementing

a strategy akin to that of effective field theories.

In this paper, we introduce a specific set of moments, defined as weighted integrals of

the momentum distribution function f(p), Ln ∝
∫
p p

2P2n(cos θ)f(p), where P2n is a Leg-

endre polynomial, and cos θ = pz/p with pz the longitudinal momentum of a particle with

total momentum p. These moments capture the deviation of the momentum distribution

from an isotropic distribution and are therefore damped as the system approaches local

equilibrium. They are tailored to take into account the (strong) effect of the longitudinal

expansion. In addition, these moments are found to be in correspondence with viscous

corrections in hydrodynamics, order by order in a gradient expansion. They can therefore

provide an alternative view of the viscous corrections, in terms of the damping of high mul-

tipoles of the momentum distribution as the system approaches local equilibrium. Their

relative magnitudes can be used as an indicator of the onset of hydrodynamics. In this

work, we shall provide a description of the evolution of these moments, obtained by solving

the Boltzmann equation for a longitudinally expanding system. The usefulness of these

moments as a practical tool in solving the kinetic equation will be addressed in a separate

publication.

This paper is organized as follows. The moments Ln, and their usefulness in a boost

invariant setting, are introduced in section 2. In this section, we also present some of

the major results obtained in this work, concerning the correspondence between the Ln’s

and the transport coefficients used in second order viscous conformal hydrodynamics [13].

Relations to higher order viscous corrections are also derived. Then, in section 3, we discuss

the evolution of the moments in the pre-equilibrium stage towards local equilibrium using

kinetic theory. To do so we solve the Boltzmann equation in a boost invariant setting, using

two different approximations for the collision kernel. In the first case, we use the relaxation

time approximation, with a constant relaxation time, and obtain analytical solutions that

allow us to verify the general relations to viscous hydrodynamics established in section 2.

Then, in section 3.2, we consider a more realistic setting: we use leading order 2 ↔ 2 QCD

matrix elements for the collision kernel, and solve the corresponding Boltzmann equation

in the small scattering angle approximation in order to study the evolution of the moments.

Summary and conclusions are given in section 4.

2 Formulation of moments in expanding systems

In this section, after a brief review of the main features of expanding boost invariant

systems, we define a set of moments of the distribution function that are suited to the
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description of such systems. We show that, near the hydrodynamic regime, these moments

are in correspondence to the viscous corrections that emerge from a gradient expansion.

2.1 Kinetic theory in a boost invariant expanding system

The quark-gluon plasma produced in the very early stages of a heavy ion collision experi-

ences a strong expansion along the collision axis (referred to as the longitudinal direction).

A simple description of the system (Bjorken flow) is obtained when one assumes boost

invariance in the longitudinal direction and translational invariance in the transverse di-

rections [14]. It becomes then convenient to use in place of the usual space-time coordinates,

the proper time τ =
√
t2 − z2 and the space-time rapidity tan−1(z/t) , where z is the lon-

gitudinal coordinate and t the time. In fact, boost invariance makes it possible to focus on

a slice of the fluid located around the plane z = 0, where τ = t. There, the distribution

function depends only on time and the three components of the momentum, f(t, pT , pz),

and it obeys the kinetic equation

∂f

∂t
− pz

t

∂f

∂pz
= −C[f ], (2.1)

with C the collision term.1

Averages of various physical quantities with the phase space distribution function play

an important role in this paper, and we shall denote them with double brackets2

〈〈. . .〉〉 ≡
∫
p
. . . f ,

∫
p
≡
∫

d3p

(2π)3p0
. (2.2)

For instance, the energy density is given by e(t) = 〈〈(p0)2〉〉 = 〈〈p2〉〉, where we have used

p0 = p, assuming massless particles.

By multiplying eq. (2.1) by p2, and integrating over momentum, we obtain,

de

dt
+
e(t) + PL(t)

t
= 0, (2.3)

where we have used the fact that the collisions conserve energy, so that the contribution

of the collision term vanishes. The quantity PL is the longitudinal pressure,

PL(t) ≡ 〈〈p2z〉〉 = −d(te(t))

dt
. (2.4)

We define similarly the transverse pressure

PT ≡
1

2
〈〈p2T 〉〉 ≡

1

2

∫
p
(p2x + p2y)f(p) =

1

2t

d(t2e(t))

dt
, (2.5)

where in the last equality, we have used e(t) = PL + 2PT and eq. (2.3).

1For simplicity, we consider in this section a single-species system. In section 3.2 we shall introduce

distinct distributions for quarks and gluons and take proper care of degeneracy factors.
2Throughout this paper, we use bold lower case letters to denote a three vector, such as p, with the

magnitude of the vector denoted by the corresponding normal lower case letter, e.g., |p| = p.
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In the hydrodynamic regime, i.e. when local equilibrium is achieved, the pressure is

isotropic and simply related to the energy density, P = PL = PT = e/3, and eq. (2.3)

becomes a closed equation for the energy density. It yields e(t) ∼ 1/t4/3 ∼ T 4, with

T (t) the local temperature. Before reaching this regime, viscous corrections need to be

taken into account. The first order correction involves the shear viscosity η, and yields a

relaxation equation for the difference of the pressures

PT − PL = 2
η

t
. (2.6)

Viscous corrections are accompanied by an entropy increase, given in leading order by the

equation (with Ts = e+ P, where s is the entropy density and T the temperature)

d(ts)

dt
=

4η

3tT
. (2.7)

Note that ts represents the total entropy in a (expanding) covolume, or equivalently the

entropy density in the transverse plane. In the absence of viscosity, this is contant.

Our purpose in this paper is to explore specific features of the approach to the hydro-

dynamical regime, studying in particular how the deviations of the momentum distribution

from an isotropic distribution are damped.

2.2 Thermalization, isotropization and moments

Quite generally, the effect of collisions is to wash out the anisotropy of the momentum

distribution, leading eventually to a spherically symmetric distribution. In the case of ex-

panding boost invariant systems, this effect is counterbalanced by the strong longitudinal

expansion. The competition between the two effects is commonly investigated in terms

of the ratio between the longitudinal pressure PL and the transverse pressure PT , local

equilibrium being established when PL/PT = 1. As an illustration, and anticipating on

the discussion of section 3.2, we show in figure 1 the typical evolution of PL/PT obtained

from the numerical solution of the Boltzmann equation, with leading order 2 ↔ 2 scat-

terings of QCD matrix elements, in the small scattering angle approximation. The trend

towards isotropization is clearly visible. However, this is a slow process, and complete

local thermal equilibrium is not reached in the time span of the simulation, with quark

production delaying the approach to equilibrium even further as compared to the case of

a purely gluonic plasma.3 Such a slow approach to isotropy of the momentum distribu-

tion seem to be quite generic for a longitudinally expanding system undergoing Bjorken

flow [11]. However, it has also been realized that the complete isotropy of the pressures,

characterized by PL/PT = 1, may not be necessary for hydrodynamics to be applicable,

since viscous corrections can accommodate rather large differences between PL and PT .

3Some readers may find it surprising to see this trend towards isotropization arise from elastic scattering

alone, as it seems to go against a prediction from the bottom-up scenario [15] emphasizing the role of

inelastic collisions in isotropization. The parametric analysis of the bottom-up scenario relies however on

values of the coupling constant much smaller than those used in the present simulation (αs ≈ 0.3). In fact,

Tanji and Venugopalan [16] have recently completed a systematic study of the same equations as ours, in

which they show explicitly how deviations form the bottom-up scenario develop as the coupling increases.

– 4 –



J
H
E
P
1
1
(
2
0
1
7
)
1
6
1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1  10  100

P
L
/P

T

t/τs

gluon
QGP

Figure 1. Time evolution of the pressure ratio PL/PT obtained from the numerical solution of the

Boltzmann equation in the small angle approximation, for a pure gluon system (solid line) and a

quark-gluon plasma (QGP, dotted line). Here τs is a natural microscopic time scale, proportional

to the inverse of the saturation momentum Qs (see section 3.2 for details).

This was first revealed by strong coupling calculations [17], where it was shown that viscous

hydrodynamics can handle pressure ratios PL/PT & 0.5. This has been later verified in a

number of calculations (see ref. [11] and references therein).

In this paper, in order to describe more details of the isotropization of an expanding

quark-gluon plasma, we introduce the following moments of the distribution function

Ln ≡ 〈〈p2P2n(cos θ)〉〉 ≡
∫
p
p2P2n(cos θ)f(p), (2.8)

where P2n is a Legendre polynomial of order 2n, and cos θ = pz/p. For an expanding system

with Bjorken geometry, odd order moments vanish as a consequence of the invariance of the

distribution function under parity. There are two distinct advantages of these moments.

First, except for the n = 0 moment which corresponds to the energy density, as already

mentioned, all higher order moments defined in eq. (2.8) naturally quantify the details of

the longitudinal momentum anisotropy. For instance, the information concerning PL/PT
is contained in the n = 1 moment,

L1 = 〈〈p2P2(cos θ)〉〉 = PL − PT . (2.9)

More precisely, L1 → 0 is equivalent to PL/PT → 1. Similarly, the moments Ln of higher

order are associated to finer structures of the momentum anisotropy of the distribution

function. Second, the moments defined in eq. (2.8), with the specified weight p2, are

closely related to hydrodynamics through Landau’s matching condition

Tµν = 〈〈pµpν〉〉, (2.10)
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of which the moment L1 provides the simplest illustration (see eq. (2.6)). These moments

are therefore expected to acquire a physically transparent meaning at late times when the

system approaches the hydrodynamic regime. Note that one may generalize the definition

in eq. (2.8) to space-time symmetries other than the boost invariant setup considered

in this paper. For a system with spatial SO(3) rotational symmetry, for instance, one

could replace the Legendre polynomials with associated Legendre polynomials to further

characterize momentum anisotropies in the azimuthal direction.

2.3 The moments Ln in the hydrodynamic regime

We now analyze more precisely the correspondence of the moments (2.8) to viscous hydro-

dynamics. At this point covariant notation is helpful. Four vectors are denoted by normal

upper case letters. Thus, for instance, Uµ is the fluid four-velocity, normalized so that

U2 = −1. The operator ∆µν = gµν + UµUν , with gµν the metric tensor,4 projects on the

space orthogonal to Uµ. The energy momentum tensor is written as

Tµν = (e+ P)UµUν + Pgµν + πµν (2.11)

where πµν represents the viscous corrections. In leading order, πµν = −ησµν , where η is the

shear viscosity, and σµν = 2〈∇µUν〉 , with ∇µ = ∆µν∂ν . Here, and in the following, single

brackets 〈. . .〉 around a tensor implies that the tensor has been made symmetric, traceless

and transverse to Uµ. For simplicity, we assume throughout this work that the fluid is made

of massless constituents, so that conformal symmetry implies that the energy-momentum

tensor is traceless, Tµµ = 0.

Hydrodynamics effectively applies to systems whose evolution is dominated by long

wavelength modes. Corrections to ideal hydrodynamics are then naturally searched for

in a gradient expansion. The successive terms in such an expansion can be obtained by

applying the Chapman-Enskog technique.

As an illustration of the method, let us repeat the derivation of eq. (2.6) within the

relaxation time approximation for the collision term. Assuming that the viscous correc-

tion corresponds to a small deviation δf of the phase-space distribution function from its

local equilibrium value feq, we linearize the Boltzmann equation and obtain, in covariant

notation,

Pµ∂µ(feq + δf) = P · U δf

τrel
. (2.12)

where τrel is the relaxation time. Note that P · U reduces to −P 0 in the local rest frame

of a fluid cell. We shall allow the relaxation time to depend on the energy of the particle,

i.e, we assume τrel = τrel(P · U/T ), where T is the local temperature (which enters the

local equilibrium distribution). Various ansatz have been considered in the literature, in

particular a so-called “linear” ansatz, corresponding to a constant relaxation time, and a

“quadratic” ansatz, corresponding to a linear dependence of τrel on the energy [20]. The

4We use the Minkowski metric signature (−,+,+,+). More generally we refer to [18, 19] for more details

on the notation.

– 6 –



J
H
E
P
1
1
(
2
0
1
7
)
1
6
1

origin of this terminology is that, in the first case, δf/feq ∼ p/T , while δf/feq ∼ (p/T )2

when τrel is linear in p. Note that the present analysis does not rely on the specific

dependence of the relaxation time upon energy.

To proceed, we find it convenient to define

C̃p = −T 2 τrel(P · U/T )

P · U
, (2.13)

so that

Pµ∂µ(feq + δf) = −T
2

C̃p
δf . (2.14)

Since the local equilibrium distribution is a function of P · U/T , the effect of the operator

Pµ∂µ when acting on feq is to generate the structure PµP νσµν , i.e.,

Pµ∂µfeq(P · U/T ) = −f ′eq
PµP νσµν

2T
+O(∇2) , (2.15)

where the prime on feq indicates a derivative with respect to P ·U/T . Ignoring the derivative

of δf in the left hand side of eq. (2.14), one then identifies the first order viscous correction

to the phase-space distribution function

δf = C̃pf
′
eq

PµP νσµν
2T 3

+O(∇2), (2.16)

as well as the first viscous correction to the energy momentum tensor,

πµν = −ησµν =

∫
p
PµP νδf. (2.17)

A simple calculation then allows us to determine the shear viscosity [18]

η = − 1

15T 3

∫
p
p4C̃pf

′
eq . (2.18)

In the case of Bjorken flow, the contraction of the irreducible tensors in eq. (2.16) is easily

calculated in terms of the Legendre polynomials. One gets

PαP βσαβ =
4

3t

[
p2z −

1

2
p2T

]
=

4

3t
p2P2(cos θ). (2.19)

By using this expression in eq. (2.16), and the expression (2.18) of the shear viscosity, one

can then calculate the n = 1 moment, eq. (2.9), and obtain eq. (2.6).

The higher order corrections are obtained iteratively along the same line. In the second

order correction δf (2) needed to the calculation of the transport coefficients of conformal

viscous hydrodynamics [13], the following new tensor structures appear [18, 19],

PµP νPαP β〈σµνσαβ〉 , PµP νPα〈σµν∇α〉 lnT , PαPµP ν〈∇ασµν〉 , PµP ν〈σ λ
µ σνλ〉 ,

PµP ν〈σ λ
µ Ωνλ〉 , PµP ν〈Uµ∂µσµν〉 . (2.20)

– 7 –
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For Bjorken flow, the vorticity tensor Ωµν = 1
2 [∇µUν −∇νUµ] vanishes. One can also

prove that contractions of irreducible tensors of odd ranks do not contribute due to parity.

Finally, the relevant structures in eq. (2.20) are those arising from the contraction of

irreducible tensors of even ranks,

PµP νPαP β〈σµνσαβ〉 =
32

35

p4

t2
P4(cos θ) , (2.21a)

PµP ν〈σ λ
µ σνλ〉 =

8

9

p2

t2
P2(cos θ) , (2.21b)

PµP ν〈Dσµν〉 = −4

3

p2

t2
P2(cos θ) . (2.21c)

One can thus rewrite the viscous corrections to the phase space distribution up to second

order in the gradient expansion in terms of Legendre polynomials,

δf =

[
− χ̃pp̃2

(
2

3tT

)
+ χ̃′pC̃pp̃

4

(
8

63t2T 2

)
− χ̃pC̃pp̃3

(
8

9t2T 2

)
+ . . .

]
P2(cos θ)

+

[
χ̃′pC̃pp̃

4

(
8

35t2T 2

)
+ . . .

]
P4(cos θ) + . . . , (2.22)

where, for convenience, we have defined the dimensionless variables χ̃p = f ′eqC̃p and p̃ =

p/T . Ellipses in the brackets of eq. (2.22) stand for terms of higher power in 1/tT .

One recognizes in eq. (2.22) a gradient expansion, with δf expressed in powers of 1/tT .

The latter quantity may be viewed as a measure of the Knudsen number, that is, as the

ratio between a microscopic and a macroscopic length scale characterizing the fluid. Here

the typical microscopic length scale is the inverse of the temperature, while the macroscopic

length scale can be taken as the inverse of the local expansion rate, which, for a medium

system expanding according to Bjorken flow, is simply the time t. The expansion (2.22)

is also an expansion in Legendre Polynomials, the term multiplying P2n(cos θ) having a

gradient expansion starting with a leading contribution of order n, that is, ∼ 1/(tT )n.5

More explicitly, the evolution of the moments of order n = 1 and n = 2 can be expressed

in terms of the transport coefficients that enter (conformal) viscous hydrodynamics:

L1 = −2η

t
+

4

3t2
(λ1 − ητπ) +O(1/t3) (2.23)

and

L2 =
4

3t2
(λ1 + ητπ) +O(1/t3) , (2.24)

where τπ, and λ1 are second order transport coefficients [13]. In obtaining the above

results, we have used the following expressions of these transport coefficients in kinetic

5Note that the expansion (2.22) contains also terms proportional to P0(cos θ). These terms are not

shown explicitly since they are not related to momentum anisotropies, which is our primary concern.

– 8 –



J
H
E
P
1
1
(
2
0
1
7
)
1
6
1

theory (generalizing eq. (2.18) for the shear viscosity)

ητπ = −T
2

15

∫
p̃
p̃5χ̃pC̃p , (2.25a)

λ1 + ητπ =
2T 2

105

∫
p̃
p̃6χ̃′pC̃p . (2.25b)

Again, we emphasize that the momentum dependence of the relaxation time only affects

the values of these transport coefficients, as given by eqs. (2.25), but it does not alter the

form of relations such as those given in eq. (2.23) and eq. (2.24).

Viscous corrections in hydrodynamics get more complicated in higher orders, which

makes it more involved to derive an explicit correspondance between transport coefficients

and the p2-moments associated with higher order Legendre polynomials. Nevertheless, it is

possible to generalize the analyses in eqs. (2.23) and (2.24) to higher orders, at least for the

leading terms. Indeed, it can be shown that, after linearizing the Boltzmann equation in

order to construct the gradient expansion, there is a term with highest power in momentum

which appears on the left hand side of the Boltzmann equation as a result of applying Pµ∂µ
to feq(P · U/T ) iteratively. This highest power appears also as the leading contribution

to the coefficient of the Legendre polynomial P2n(cos θ) in δf , through contraction of

irreducible tensors,

pµ1pµ2 . . . pµ2n〈σµ1µ2 . . . σµ2n−1µ2n〉 ∝
p2n

tn
P2n(cos θ) . (2.26)

Therefore, one has

Ln =
1

tn
× cn +O(1/tn+1) . (2.27)

The coefficient cn is expected to be identified to some combinations of transport coefficients

of order n, since 1/tn represents an n-th order contribution in the gradient expansion with

a definite angular structure. For a conformal and classical gas, cn can be analytically

determined when the relaxation time is linear in p/T (quadratic ansatz),

cn = (−1)n
(2n)!

(4n+ 1)!!
Γ(2n+ 4)

(η
s

)n T 4−n

2π2
. (2.28)

One may regard eq. (2.28) as an analytical prediction of the n-th order transport coefficient

of a conformal system, with η/s a constant input. In particular, one easily verifies that

c1 = −2η, as expected. More details regarding eq. (2.26) and eq. (2.28) are given in

appendix A.

3 Evolution of the Ln moments in expanding systems

We now demonstrate how the Ln moments evolve in the pre-equilibrium stage of heavy

ion collisions by calculating them using kinetic theory. To do so, we solve the Boltzamnn
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equation (2.1) for a boost invariant system. In line with the color-glass picture (CGC) [21],

we take an initial momentum distribution function of the form

f(t0, pT , pz) = f0Θ

(
Qs −

√
ξ2p2z + p2T

)
, (3.1)

where f0 is a free parameter characterizing the typical initial gluon occupation number, and

Qs is the saturation momentum. We assume that the kinetic description applies at an initial

time t0 ∼ 1/Qs. In this work, we choose a value f0 = 0.1, for which the approach to equilib-

rium occurs smoothly, without encountering Bose-Einstein condensation [7, 8].6 Especially,

with this small initial occupancy, variation of particle number would have negligible effect

regarding the 2↔ 2 QCD matrix elements within a small angle apprximation. The param-

eter ξ controls the initial momentum anisotropy. For ξ > 1, one has initially PL/PT < 1.

Throughout this work, we take for definiteness a fixed value, ξ = 1.5, corresponding to an

initial momentum anisotropy PL/PT ≈ 0.5. One may check that, initially, the moments

calculated form the momentum distribution (3.1) are ordered such that |Ln+1| < |Ln|.
Furthermore, all odd order moments are negative, while even order moments are positive.

We shall present the results of two calculations. We start with the simple case where

the collision term is written in the relaxation time approximation. For a constant value of

the relaxation time (linear ansatz), an analytical solution to the Boltzmann equation can

be obtained [24]. For a somewhat more realistic analysis, we then proceed to the numerical

solution of the Boltzmann equations for quarks and gluons, considering 2-to-2 scatterings

among gluons and quarks within a small scattering angle approximation [8].

3.1 Relaxation time approximation

The Boltzmann equation (2.1), with the relaxation time approximation for the collision

term, reads [
∂

∂t
− pz

t

∂

∂pz

]
f(t, pT , pz) = −f(t, pT , pz)− feq

τrel
, (3.2)

We only require here energy conservation,7 so that the local equilibrium distribution func-

tion feq is a Bose-Einstein distribution with a vanishing chemical potential,

feq(pT , pz) =
1

exp
(√

p2T + p2z/T
)
− 1

. (3.3)

For a constant τrel, the solution to eq. (3.2) can be written formally as,

f(t, pT , pz) = e
− t−t0
τrel f(t0, pT , pzt/t0) +

∫ t

t0

dt′

τrel
e
− t−t

′
τrel feq

(√
p2T + p2z(t/t

′)2, t′
)
. (3.4)

6Including the inelastic processes would change the behavior of the distribution function at very small

momenta, as discussed in [22], and analyzed in detail recently in [23]. However, because of the weighting

factor p2 in their definition, the moments Ln are not sensitive to this particular region, and we do not

expect that including inelastic, number changing, processes would alter the main conclusions of the present

paper.
7If one would also require conservation of the number of constituents, the local equilibrium distribution

would also depend on a chemical potential [25]. This situation will be considered in the next subsection.
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Figure 2. Evolution of the energy density (left), and longitudinal and transverse pressures (right),

obtained by solving the Boltzmann equation with the relaxation time approximation, eq. (3.4), full

lines. Both quantities are rescaled by a factor t4/3 so that they approach constant values in the

ideal hydrodynamical regime. The initial difference between the longitudinal and the transverse

pressures is due to the parameter ξ in the initial distribution function. The symbols represent the

corresponding solutions of the Navier-Stokes hydrodynamics, started at time t = 50 (in units of

Q−1
s ) and evolved backwards in time.

We recognize in the first term in the right hand side of eq. (3.4) a contribution that repre-

sents free-streaming from the initial condition f(t0, pT , pz), eq. (3.1). The time dependence

of the temperature T in feq in the second term is fixed by the condition of energy conser-

vation

e(t) =

∫
p
p2f(t, pT , pz) =

∫
p
p2feq(t,p) =

π2

30
T 4 . (3.5)

This relation, together with eq. (3.4), completely determines the solution. The resulting

energy density exhibits the expected transition from the early free streaming regime, where

e(t) ∼ 1/t (see below), to the hydrodynamic regime at late times where e(t) ∼ 1/t4/3. The

evolutions with time of the energy density and the pressures obtained from eq. (3.4) are

illustrated in figure 2, and compared to the solution of first order viscous hydrodynamics

(which we also refer to as Navier-Stokes hydrodynamics). As shown by this figure, the

energy density is well accounted for by viscous hydrodynamics for times t & 15τrel. This

is also the case for the pressure, although in this case, the existence of significant viscous

corrections at the latest times is attested by the fact that the longitudinal pressure is not

yet equal to the transverse pressure, PL/PT ' 0.9 at t = 50Q−1s .

The moments can be calculated from the distribution function given in eq. (3.4). Con-

sider first the free-streaming regime (τrel →∞). In this case, one has

LFS
n =

f0Q
4
s

4(2π)2

(
t0
ξt

)
Fn
(
t0
ξt

)
, (3.6)
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where Fn(x) is a function defined from the following integral (0 ≤ x ≤ 1)

Fn(x) =

∫ 1

−1
dy
[
1− (1− x2)y2

]1/2
P2n

(
xy

[1− (1− x2)y2]1/2

)
. (3.7)

This function has the following limits: Fn(x)→ πP2n(0)/2 as x→ 0, and Fn 6=0(x)→ 0 as

x → 1. Thus, for asymptotically large t, t � t0/ξ, Fn(x) reduces to a constant, and the

moments decay as 1/t. When t = t0/ξ, the moments with n 6= 0 vanish, which implies in

particular that they vanish at t = t0 if there is no initial momentum anisotropy (ξ = 1).

The energy density is given by the zeroth moment, with F0(0) = π/2 and F0(1) = 2.

To within the slowly varying function F0(t0/ξt), the energy density exhibits the expected

behavior in 1/t. It can also be verified that the longitudinal pressure drops rapidly, as

∼ 1/t2, so that at times t � t0/ξ, the distribution function is peaked around pz = 0, and

the energy density is dominated by transverse degrees of freedom.

For a finite τrel, eq. (3.4) leads to

Ln(t) = e−(t−t0)/τrelLFS
n + 6ζ(4)

∫ t

t0

dt′

(2π)2
e−(t−t

′)/τrel

τrel
T (t′)4

(
t′

t

)
Fn(t′/t) , (3.8)

where ζ(n) is the Riemann-zeta function. In this equation, the first term represents the

contribution of the free-streaming of the initial distribution. This is suppressed in a time

scale τrel, i.e., when collisions start to play a significant role. One thus expects the evolution

of the moments to exhibit a transition between the free-streaming regime at short time,

t� τrel, and the late time regime, dominated by collisions and represented by the second

term in eq. (3.8).

Figure 3 displays the evolution of the absolute values of the normalized moments

|Ln/L0| up to n = 4 (recall that L1 and L3 are negative). Also shown are the moments of the

pure free-streaming solution, eq. (3.6), which saturate at late times to their corresponding

asymptotic values determined by Fn(0), namely,

|LFS
2n|
|LFS

0 |
t�t0−−−→ (2n− 1)!!

(2n)!!
. (3.9)

Note that this limit is independent of the initial pressure anisotropy paramater ξ. Clearly,

the isotropization of the momentum distribution, signaled by the vanishing of the moments,

can only be achieved by the collisions. Indeed the effect of the collisions starts to be visible

around the time scale (t− t0) ∼ τrel where they begin to compete with the free streaming

and later drive the momentum distribution to isotropy. Another effect of the collisions is

to reduce the overall magnitude of the higher moments. As can be seen on figure 3, while

the free streaming moments evolve towards comparable (within a factor 2) values at late

times, the hierarchy of moments present in the initial condition is preserved but after a

time t & 15 τrel only the moment L1 remains significant. At this time the evolution of the

system is well accounted for by viscous hydrodynamics.8

8Note that the hydrodynamical behavior of the moments at large time, that is predicted by eq. (2.27),

is only observed at times later that those considered in figures 3 and 4. This is however of little practical

significance, because by that time, these moments have become very small and do not affect much the

dynamics.
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Figure 3. Time evolution of the first few moments (n = 1, · · · , 4, from top to bottom) normalized

by the energy density, and obtained by solving the Boltzmann with the relaxation time approxi-

mation. The unit of time is Q−1
s , and both the relaxation time τrel and the initial time t0 are set

equal to Q−1
s , i.e., τrel = Q−1

s = t0. The dashed lines are the corresponding moments for the free

streaming solution, eq. (3.6). We observe that by the time t & 15τrel, all moments but L1 vanish.

This is confirmed by a more detailed study of the late-time evolution of the moments

in eq. (3.8). First we consider the moment L1. According to eq. (2.23), the ratio between

this moment and the entropy density, more precisely −tL1/2s, approaches η/s in the

hydrodynamic regime. This ratio is plotted in figure 4, where we purposely rescaled the

time in figure 4 by 1/τrel so that they evolve on the same time scale. As time increases,

−tL1/2s indeed approaches the kinetic theory expectation: η/s = 1
5Tτrel, and reaches it

for t & 15 τrel.

Figure 5 completes the discussion and illustrates the system evolution in terms of higher

order moments. Again, we consider specified dimensionless combinations of moments which

are supposed to reduce to dimensionless ratios of higher order transport coefficients at late

times. The following combination

4L2 × L0
L21

→ λ1 + ητπ
η2/(e+ P)

(3.10)

plotted in figure 5(a) is related to second order transport coefficients λ1 and τπ. In a similar

way, the combinations

8

9

L1L3
L22

and
3

4

L2L4
L23

(3.11)

that are plotted in figure 5(b) and 5(c), respectively, involve some 3rd order and 4th or-

der transport coefficients. Although these have not yet been determined in viscous hy-
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Figure 4. Evolution of the moment L1 obtained from the solution of the Boltzmann equation

in the relaxation time approximation, plotted in terms of the ratio −tL1/2s, with s the entropy

density. According to eq. (2.23), this ratio can be identified, in the hydrodynamics regime and in

leading order, to η/s. Three values of the relaxation time are considered τrel = 0.3, 1, 3 (in units of

Q−1
s ), with the same initial condition (eq. (3.1)) in the three cases. The solid lines represent the

analytical expression η/s = 1
5Tτrel obtained in the (constant) relaxation time approximation, with

the tempearture T determined from eq. (3.5). Note an unrealistic feature of this approximation

which forces η/s to vanish at large time. These curves confirm that viscous hydrodynamics can

provide an accurate description for t & 15 τrel.

drodynamics9 it is nevertheless interesting to estimate their ratios from the asymptotic

behaviors: these are the black arrows in figure 5. Note that the asymptotic value of

(λ1+ητπ)/η2/(e+P) ≈ 8.57 in figure 5(a) is consistent with what one expects from kinetic

theory with a linear ansatz for the relaxation time [26]. The asymptotic values of the ratios

in figure 5(b) and 5(c) are found to be approximately 1.3 and 1.0, respectively.

Actually, the combinations plotted in figure 5 are nothing but double ratios among

three consecutive orders of transport coefficients (to within simple numerical constants).

In terms of the cn’s defined in eq. (2.27), these are

cn−1cn+1

c2n
=

(
cn+1

cn

)/(
cn
cn−1

)
. (3.12)

Asymptotic values of these double ratios can be obtained analytically in the case of the

quadratic ansatz for the relaxation time (eq. (2.28)), or numerically for the linear ansatz.

Results for these two cases are shown in figure 6 for n ≤ 20 and n ≤ 5, respectively,10

9Note however that the third order coefficients could in principle be extracted from the works on third

order viscous hydrodynamics in refs. [27, 28]. We thank A. Jaiswal for alerting us about this.
10For the linear ansatz we limit ourselves to n ≤ 5, since the evaluation of the double ratio is challenged

by precision in numerical integrations at asymptotic large t in eq. (3.8), which become less stable for higher

orders.
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Figure 5. Evolution of higher order moments, plotted in specified combinations which correspond

to dimensionless ratios of transport coefficients in hydrodynamics regime. Black arrows indicate

asymptotic values. Note that for (λ1 + ητπ)/(η2/(e+ P)), the asymptotic value is consistent with

what was expected from kinetic theory [26].

as filled points and open symbols. For large n, the double ratio is seen to approach

unity from above, which implies a saturation of transport coefficients of asymptotically

high orders. This behavior reflects the fact that the gradient expansion leading to viscous

hydrodynamics is only asymptotic [29, 30] (see also refs. [31, 32] for a recent discussion of

this issue within the context of Bjorken expansion).

3.2 Quark-gluon system with small angle approximation

We now apply the analysis of the previous section to the evolution of a quark-gluon plasma

containing Nf = Nc = 3 flavors of massless quarks, and introduce separate distributions

for quarks (fq) and gluons (fg). We consider QCD tree-level 2 to 2 scatterings, within the

small angle approximation. Following the strategy taken in ref. [8], we reduce the coupled

Boltzmann equations for the gluon distribution function fg and the quark distribution fq
to coupled Fokker-Plank equations,

∂fg
∂t

+ v · ∇pfg = −∇p · Jg + Sg , (3.13a)

∂fq
∂t

+ v · ∇pfq = −∇p · Jq + Sq , (3.13b)

where the currents Jq,g and sources Sq,g are given by

Jg = −(4πα2
s`)Nc

[
Ia∇pfg + Ib

p

p
fg(1 + fg)

]
, (3.14a)

Jq = −(4πα2
s`)CF

[
Ia∇pfq + Ib

p

p
fq(1− fq)

]
, (3.14b)

Sg = −
Nf

CF
Sq =

(4πα2
s`)CFNfIc
p

[fq(1 + fg)− fg(1− fq)] . (3.14c)
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conformal and classical gas. The results have been obtained analytically for the quadratic ansatz

of the relaxation time (filled points) and numerically for the linear ansatz (open symbols).

While the currents are associated to conservation laws (the particle numbers), and hence

to elastic processes, the sources arise from the inelastic processes that correspond to quark

creations and annihilations. Note that all the processes considered conserve the total

number of particles. The quantities Ia, Ib and Ic are the following integrals,

Ia =

∫
p
p0[Ncfg(1 + fg) +Nffq(1− fq)], (3.15a)

Ib =

∫
p

2p0

p
(Ncfg +Nffq), (3.15b)

Ic =

∫
p

p0

p
(fg + fq). (3.15c)

For a thermal system in equilibrium, Ia/Ib is identical to the temperature. Finally the

quantity ` denotes a logarithmically divergent integral (the Coulomb logarithm)

` =

∫ qmax

qmin

dq

q
, (3.16)

which arises from small angle scatterings. For a QCD plasma close to thermal equilibrium,

` ≈ ln g−1 (with g the strong coupling constant). This Coulomb logarithm is treated as a

constant in the present work.

With all the quantities thus specified, one may check that the collision kernel in

eq. (3.13) conserves energy-momentum and constituent number (number of gluons, quarks

and anti-quarks), which implies that the local equilibrium distribution is, in the local rest

frame, a Bose-Einstein distribution for the gluons and a Fermi-Dirac distribution for the

quarks and the antiquarks, with given temperature and chemical potential (see ref. [8] for

details).
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Assuming Bjorken flow, and integrating over azimuthal angle, one transforms eq. (3.13)

into

∂tfg −
pz

t
∂pzfg =

1

pT

∂

∂pT
(pTJ

T
g ) +

∂

∂pz
Jzg + Sg , (3.17a)

∂tfq −
pz

t
∂pzfq =

1

pT

∂

∂pT
(pTJ

T
q ) +

∂

∂pz
Jzq + Sq , (3.17b)

where Jg, Jq, Sg and Sq are the currents and sources obtained from eqs. (3.14) after a

simple rescaling that eliminates the common factor 4πα2
s`. That is, in deriving eq. (3.17)

we have absorbed the factor α2
s` in a redefinition of the time, t → t(α2

s`), and we have

redefined the integrals (3.15) by multiplying them by a factor 4π. With these redefinitions,

the time scale of the simulation is measured in units of τs ≡ (α2
s`Qs)

−1. For technical

reasons related to the numerical precision of the calculated moments, our simulations end

at t = 400τs.

We initialize the system at a time t0 = 1/Qs, and assume that, at this time, the system

contains only gluons, with a distribution function given by eq. (3.1). In order to be able

to compare with the previous subsection, we shall make a rough estimate of the relaxation

time. To do so, we focus on the gluon sector, and the diffusion piece of the current (the

one proportional to the gradient of the distribution). By writing the linearized version of

the gluon kinetic equation (eq. (3.13)) as δfg/τrel ∼ δfg/p2, we get

1

τrel
∼ 4πα2

s`N
2
c

f0
p2

Q3
s

6π2
. (3.18)

For p ≈ Qs, Nc = 3, this yields

1

τrel
∼ 1

τs

6f0
π
∼ 0.2 and τrel ∼ 5τs. (3.19)

We first plot in figure 7 the absolute values of the moments Ln divided by the energy

density, for n = 1 up to n = 4 for a pure gluon system (solid lines) and a QGP (dashed

lines). The pattern seen here is analogous to that in figure 3 corresponding to the relaxation

time approximation. The curves present a (broad) peak at the transition between free-

streaming at early times and a collision dominated regime at late times. Clearly, the elastic

collisions, treated in the small angle approximation, isotropize the system: all moments

tend to vanish in the collision dominated regime. The higher moments are damped on a

time scale that decreases with increasing order of the moment. Overall, the evolution of

moments in figure 7 is comparable to that in figure 3, even semi-quantitatively (to within

a factor ∼ 2) if one takes into account the crude estimate of the relaxation time presented

above. Note that for a quark-gluon plasma, the isotropization process is significantly

delayed and the transition from the free-streaming regime to the collision dominated regime

is slower than for the pure gluon case.

In order to compare with hydrodynamics we need to take into account the fact that

our Boltzmann equation conserves the number of constituents. The equation for the energy

density needs therefore to be completed by a continuity equation for the number density,
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Figure 7. Time evolution of absolute values of the moments Ln normalized by the energy density

L0, for a pure gluon system (solid lines) and a quark gluon plasma (dashed lines), as obtained from

solving the Boltzmann equation within the small scattering angle approximation.

which, for Bjorken flow, has the simple solution n(t) = n(t0)t0/t. This also implies that

the local distribution function depends on a temperature and a chemical potential. Details

on the hydrodynamical calculations are given in appendix B.

The fact that particle number is conserved can modify the shear viscosity from its

value at vanishing chemical potential. When µ = 0, it is known in weak coupling QCD [33,

34] that

η(T, 0) = κ
T 3

α2
s`
, (3.20)

where κ is a constant depending on the number of colors and quark flavors. For instance,

for a pure gluon system, κ ≈ 0.17. We do not have (yet) a precise determination of the

viscosity appropriate to the present setting. In the present work, we shall therefore rely

on a crude approximation whereby we use eq. (3.20) for η, with κ left as an adjustable

parameter.

We initialize the hydrodynamical calculation at t = 400τs, which corresponds to the

largest time for which we can solve accurately the Boltzmann equation. At that time, the

energy density and the number density are identified with those values obtained from the

solution of the Boltzmann equation. Since after t = 200τs, the high order (n ≥ 2) moments

are relatively less significant, as shown in figure 7, one expects the system evolution to

follow first order viscous hydrodynamics at later times, t & 200τs. Note that the ratio

PL/PT ≈ 0.85 and 0.62 at t = 400τs for the pure gluon gas and the QGP, respectively.

This value for the pure glue system (0.85) is to be compared with that obtained in the

previous subsection in the relaxation time approximation (0.9), at times where we found

the system to be in the (viscous) hydrodynamic regime. The evolution of the moment L1
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Figure 8. Evolution of the moment L1 obtained by solving the Boltzmann equation for a pure gluon

gas (full lines) and a quark-gluon plasma (dashed line). These are compared to the viscous hydro-

dynamical evolution (symbols), where the initial conditions are fixed at the latest time, t = 400 τs.

is shown in figure 8, and compared to the solution of the Navier-Stokes hydrodynamics.

This comparison allows for the determination of the parameter κ in eq. (3.20). We obtain

κ = 0.62 and 0.67 respectively for the pure gluon gas and the QGP. These values are about

four times larger than the values expected from weak coupling estimates. These estimates,

however, do not take into account the effect of a non vanishing chemical potential, and the

formula (3.20) is from that point of view only an approximation in the present context,

as already stated. This approximation is sufficient for our purpose: with the viscosity

given by eq. (3.20) the pattern observed in figure 8 is similar to that observed in figure 4,

showing a brief free-streaming at early times, followed by a slow approach to the viscous

hydrodynamic regime at late times.

The evolution of the energy density obtained from the solutions of eqs. (3.13) is pre-

sented in figure 9(a) for a pure gluon gas (red solid line) and a QGP (blue dashed line).

The energy density is rescaled by a factor t4/3 to be plotted on a visible scale, and also to

make clearer the approach to ideal hydrodynamics where the quantity should be constant.

One sees that this ideal regime is not reached at t = 400 τs, which was also indicated by

the non zero value of L1 at that time (see figure 4).

Figure 9(b) displays the evolution of the entropy density in the transverse plane. It goes

to a constant when the ideal hydrodynamical regime is reached. As expected in kinetics,

a significant amount of entropy is produced at early times, when the system starts to re-

distribute momenta from the initial step function toward a smoother distribution, with in

particular a rapid growth of soft modes [7, 8]. More entropy is generated in the QGP (blue

line), as compared to the pure gluon gas (red line), due to the additional quark degrees of

freedom which, for three flavors, contribute about twice as much as the gluons to the total

entropy (chemical equilibrium is nearly reached at t = 400τs). One sees that Navier-Stokes

hydrodynamics describes well the entropy production already at times t & 100τs, for both

the gluon gas and the QGP.
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Figure 9. (a): evolution of the energy density (rescaled by t4/3) of a pure gluon system (red solid

line) and a QGP (blue dashed line) as obtained by solving the Boltzmann equation within the small

scattering angle approximation, eqs. (3.17). Right (b): evolution of entropy density of a pure gluon

gas (red) and of a QGP (blue). The blue dashed and dotted lines correspond to the gluon and quark

components of a QGP respectively. The symbols in both (a) and (b) represent the corresponding

solutions of from Navier-Stokes equations, as described in the text.

4 Summary and conclusions

In this paper, we have proposed a set of moments, Ln, that provide a simple characteri-

zation of the momentum anisotropy of the momentum distribution function and take into

account Bjorken’s symmetry of the longitudinally expanding quark-gluon plasmas created

in relativistic heavy ion collisions. At late times, i.e., when the hydrodynamic regime is ap-

proached, these moments can be associated to viscous corrections to the energy-momentum

tensor, order-by-order in a gradient expansion. The explicit correspondence with the trans-

port coefficients of viscous conformal hydrodynamics has been established. The general-

izations to cases without conformal symmetry can be carried out in a similar way. These

moments offer a convenient tool to characterize the onset of hydrodynamics.

The time evolution of the moments was studied first with the help of a Boltzmann

equation solved within a (constant) relaxation time approximation. This has allowed us to

verify the correspondence of the Ln’s with viscous hydrodynamics up to order n = 4. The

onset of hydrodynamics was subsequently analyzed in terms of these Ln’s up to n = 4.

The approach to hydrodynamics manifests itself as the decrease of the magnitudes of the

Ln with n larger than 1. In fact the moments Ln are damped more and more rapidly

as n increases, which reflects the fact that long wavelength modes thermalize faster than

short wavelength ones. Note that the preeminence of the moment L1 is reminiscent of the

arguments used in anisotropic hydrodynamics [35, 36].

Similar patterns are observed when we use the more realistic 2 ↔ 2 QCD matrix

elements in the Boltzmann equation, which we have solved numerically, within the small

scattering angle approximation. Again, we have determined the evolution of Ln up to order
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n = 4. In the calculations that we have presented, quarks are entirely generated via gluon-

quark conversion according to tree-level QCD processes. Although quarks are produced

on a relatively short time scale, this production is hindered by Pauli blocking effects which

tend to delay significantly the thermalization and the onset of hydrodynamics. Finally, the

present analysis ignores the inelastic collisions (soft and collinear splitting of gluons) whose

role in the isotropization is emphasized in particular in the bottom-up scenario. We defer

their study to future work.
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A Contraction of irreducible tensors and Legendre polynomials

The equation (2.19) expresses in terms of a Legendre polynomial the tensorial structure

that appears in the leading order gradient expansion of the distribution function. This can

be generalized to higher orders. In particular, in the n-th order viscous corrections, the

term with the highest power in momentum involves the contractions of irreducible tensors

of rank 2n.

Generally, the contraction of a two irreducible tensor of rank 2n constructed from

the product of 2n vectors Aµ and 2n vectors Bµ can be written in terms of Legendre

polynomials as follows (cf. [37]),

〈Aµ1Aµ2 . . . Aµ2n〉〈Bµ1Bµ2 . . . Bµ2n〉 = |A|2n|B|2nN2nP2n(Â · B̂) . (A.1)

In this equation, |A| and |B| denote the modulus of the vectors, while Â and B̂ are unit

vectors. The constant coefficient is

N2n =
(2n)!

(4n− 1)!!
. (A.2)

As a check, let us apply eq. (A.1) to PµP νσµν . First, we note the following identity,

PµP νσµν ≡ 2PµP ν〈∇µUν〉 = 2〈PµP ν〉∇µUν = 2〈PµP ν〉〈∇µUν〉 . (A.3)

We also know that the tensor ∇µUν with respect to Bjorken flow has only non-zero com-

ponent at ηη as ∇ηUη = τ , it is thus able to write equivalently

∇µUν = RµRν , (A.4)
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with Rµ = (0, 0, 0,
√
τ) as a 4-vector. Combining eqs. (A.1) to (A.4) and making a coordi-

nate transformation from pη to pz, one gets immediately eq. (2.19)

PµP νσµν ≡
2p2

τ
× 2

3
× P2(cos θ) . (A.5)

The similar procedure can be applied to the contraction of the irreducible tensor of rank

2n of eq. (2.26). We get

Pµ1Pµ2 . . . P µ2n〈σµ1µ2 . . . σµ2n−1µ2n〉 = 2n〈Pµ1Pµ2 . . . P µ2n〉〈∇µ1Uµ2 . . .∇µ2n−1Uµ2n〉

= 2n〈Pµ1Pµ2 . . . P µ2n〉〈Rµ1Rµ2 . . . Rµ2n〉

= 2n
p2n

τn
N2nP2n(cos θ) . (A.6)

B Hydrodynamics with a with non-zero chemical potential

When comparing the solution of the Boltzmann equation in section 3.2 to viscous hydrody-

namics, we need to pay attention to the fact that the QCD 2-to-2 scatterings conserve the

number of constituents. As a result the hydrodynamic equations should be complemented

with a continuity equation, i.e., we need to solve

∂µT
µν = 0 , ∂µn

µ = 0 ,

with energy-momentum tensor Tµν given in eq. (2.11) and

nµ = nUµ + Iµ . (B.1)

Here, Iµ represents a viscous correction to the conserved number current. For Bjorken flow,

this correction vanishes and, up to first order in the viscous corrections, the hydrodynamic

equations reduce then to

∂τe+
e+ P
τ

=
4η(T, µ)

3τ2
, (B.2a)

∂τn+
n

τ
= 0 . (B.2b)

These equations are complemented by the equation of state for massless particles, P =

e/3 ∼ T 4. Furthermore the density and the energy density are related to the temperature

and the chemical potential by (for gluons)

n(T, µ) = 2(N2
c − 1)

∫
p

p

exp(p/T − µ/T )− 1
, (B.3a)

e(T, µ) = 2(N2
c − 1)

∫
p

p2

exp(p/T − µ/T )− 1
, (B.3b)

(with analogous formulae for quarks and antiquarks). Note that the values of the tem-

perature and chemical potential thus determined are not too different from those obtained
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by a fit of the distribution function calculated from the kinetic equation. The second

equation (B.2) can be solved independently and yields τn(τ) = cste. The equation for the

energy density requires the knowledge of η(T, µ). In this work we ignore the explicit depen-

dence of η on the chemical potential, and use simply eq. (3.20) for η, with κ an adjustable

parameter. The comparison with hydrodynamics is done by fixing “initial” conditions at

t = 400τs, and running the equations backwards in time. That is, the initial density and

energy density allow us to determine the initial temperature and chemical potential, and

hence the viscosity. This process can be repeated to evolve backwards in times steps. The

entropy is determined from the thermodynamic relation Ts = e + P − µn, which does

not involve explicitly the viscosity. This provides a check of the overall consistency of the

calculation.
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