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1 Introduction

Two-dimensional QCD (hereafter QCD2) has long served as a valuable toy model to mimic

some essential dynamical features of strong interaction in the real world. A gratifying

feature of this theory is that, due to the absence of transverse degree of freedom, the

gluon is no longer a dynamical degree of freedom (at least in non-covariant gauges), but

merely provides a linear color Coulomb potential, with the quark confinement as an almost

trivial outcome. Despite this great simplification, QCD2 still constitutes a rather nontrivial

quantum field theory, which contains rich hadron phenomenology for mesons and baryons.

There have been some numerical explorations of the QCD2 with finite N based on the

first-principle approaches, e.g., from the lattice Monte Carlo simulations [1, 2] and from

discretized light-cone quantization [3].

The 1/N expansion is a powerful and indispensable arsenal to tackle the nonperturba-

tive dynamics of QCD [4–6]. As first exemplified in a 1974 seminal paper by ’t Hooft [7],

thanks to the dominance of the planar diagrams, QCD2 in the large N limit (hereafter

abbreviated as the ’t Hooft model) indeed becomes much more tractable. The limit of

infinite number of colors is in the following sense:

N →∞, λ ≡ g2N

4π
fixed, mf � g ∼ 1√

N
, (1.1)

where g is the strong coupling constant in QCD2, which carries the mass dimension one,

and λ is often referred to as ’t Hooft coupling constant. The first two conditions are
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standard large N assumptions. The last requirement, that the quark masses, mf , are

much greater than the gauge coupling, is usually referred to as the weak coupling regime

of the QCD2. The bulk of investigation on ’t Hooft model has been mainly concentrating

on this particular regime.

Employing the light-cone gauge Aa+(x) = 0 and invoking the large-N limit, ’t Hooft

showed that mass spectra of an infinite tower of mesonic states can be inferred from the

following integral equation:(
M2
n −

m2
1 − 2λ

x
− m2

2 − 2λ

1− x

)
φ(n)(x) = −2λ

ˆ
−

1

0

dy

(x− y)2
φ(n)(y), (1.2)

which is nothing but the light-cone Bethe-Salpeter equation for a relativistic qq̄ bound

state. m1,2 are quark (antiquark) bare masses, Mn denotes the mass of the n-th excited

mesonic state (n is the principal quantum number to characterize a meson living on a

string), and φ(n)(x) signifies the corresponding light-cone wave function, with x ∈ [0, 1]

representing the fraction of the light-cone momentum carried by the quark with respect

to that by the meson. The symbol −́ implies that a principle-value prescription is exerted

to eliminate the infrared divergence that occurs at y → x. In general, eq. (1.2) is not

admissible to an analytic solution, yet can only be solved using numerical recipes.

Intriguingly, the discrete meson spectrum determined from (1.2) exhibits the Regge

trajectory. Specifically speaking, for highly excited states (n � 1), the squared meson

masses are well described by

M2
n = 2π2λn+

(
m2

1 +m2
2 − 4λ

)
lnn+O(n0). (1.3)

In ’t Hooft’s pioneering work, some essential properties that closely resemble the or-

dinary QCD, such as color confinement and Regge trajectory, have already been revealed.

Afterwards there have been extensive investigations on various “phenomenological” as-

pects of the large-N QCD2, e.g., hadron decay/scattering amplitudes, current correla-

tors, form factors, (naive) asymptotic freedom and parton model, fragmentation functions,

Pomeron, (generalized) parton distribution functions, quark-hadron duality, and many

more else [8–13]. Apart from these work, a very remarkable feature of this model has also

been uncovered in the mid 1980s: the non-vanishing quark condensate, the spontaneous

breaking of chiral symmetry, and the clarification of (quasi-)Goldstone mode [14–16].

Historically, most aforementioned features of the ’t Hooft model have been deduced by

utilizing the light-cone gauge (often peppered with the light front (LF) quantization). The

greatest advantage of this procedure is that, it allows to yield the manifest boost-invariant

bound-state equation, (1.2), and generates compact expressions for various physical quan-

tities. Nevertheless, there also exist some disadvantages inherent to this approach, e.g., the

mechanism initiating chiral symmetry breaking becomes obscure, due to the perturbative

nature of the vacuum in LF quantization.

Interestingly, there also exists an alternative perspective to tackle QCD2, that is, by

imposing the axial gauge (Aa1(x) = 0) condition in the ordinary equal-time quantization.

Despite its technical complication, this approach does possess some notable virtues. For

example, unlike the light front quantization, the equal-time quantization accommodates
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a nontrivial vacuum state, which makes the study of the spontaneous chiral symmetry

breaking much more transparent. Moreover, this approach has a natural connection to

the familiar constituent quark model, in analogy with the intimate connection between the

light-cone gauge and the parton model.

In 1978, by quantizing ’t Hooft model in the axial gauge, Bars and Green presented

a formal proof that Poincaré algebra does close in the color-singlet channel [17]. They

further derived the axial gauge Bethe-Salpeter equations for mesons in an arbitrary frame.

The resulting relativistic bound-state equation (hereafter dubbed Bars-Green equation)

does look much more sophisticated than its light-cone counterpart, eq. (1.2). As is widely

known, it is highly nontrivial to conduct the Lorentz boost for a bound-state wave function

constructed in the equal-time quantization procedure [18]. It was anticipated that Bars-

Green equation must preserve Poincaré invariance, i.e., the meson mass should not rely

at all on which Lorentz frame one is carrying out the measurement, which is clearly a

rudimentary requirement for any sensible theory. A special and gratifying situation is

when a meson is viewed in the infinite momentum frame (IMF), the Bars-Green equation

can be proven to exactly reduce to the ’t Hooft equation [17]. Nevertheless, it remains an

analytic challenge to prove that Bars-Green equation does preserve Poincaré invariance in

any finite momentum reference frame.

In general, it is impossible to solve the Bars-Green equations in an analytic fashion.

The numerical investigation of these equations were pioneered by Li and collaborators

in late 1980s [19], but only for the mesons in the zero-momentum frame. They indeed

confirmed that the calculated meson spectra using axial gauge agreed with what were

found by solving the ’t Hooft equation.

The aim of this work is to extend the earlier investigation in [19], by numerically

solving the Bars-Green equations for a generic moving meson, with hadron species ranging

from the chiral pion to heavy quarkonium. Our primary goal is to numerically validate

the Poincaré invariance of the Bars-Green equations. Moreover, we wish to quantitatively

assert that, to which extent when a meson gets boosted, the Bars-Green wave function

would resemble the corresponding ’t Hooft wave function to a decent degree.

It is worth mentioning that, the Bars-Green wave function is intimately related to the

so-called quasi-distributions in QCD4, which have received lots of attention in past few

years. The quasi-distributions, a set of instantaneous yet spatially non-local correlators,

was recently introduced by Ji as a proxy to help extract the light-cone distributions, which

can be directly computed by lattice simulation [20]. One of the key properties of the quasi-

distributions is that, when boosted to the IMF, they will reduce to their light-cone cousins,

e.g., parton distribution functions and light-cone distribution amplitudes. We wish that

our comprehensive numerical study of Bars-Green wave functions will lend some guidance

on quantitatively understanding of the properties of quasi-distributions in realistic QCD.

The paper is structured as the following. In section 2, we present a relatively succinct,

yet self-contained review on the course of arriving at the Bars-Green equation in the ’t

Hooft model. We also add more details in illustrating how does the Bars-Green equation

reduce to ’t Hooft equation in the IMF. In section 3, we investigate the renormalized chiral

condensates with a variety of quark masses in the axial gauge, and compare with the
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respective values obtained in the light-cone gauge. We also present the analytical formulas

for the decay constants of the even- and odd-parity mesons. In section 4, we briefly describe

our numerical strategies in solving the ’t Hooft equation and Bars-Green equations. In

section 5, we then present comprehensive numerical studies of the mass spectra and Bars-

Green wave functions for a variety of meson species: chiral π, physical pion, a fictitious

strangeonium, and charmonium, for each of which several different meson momenta are

chosen. We also examine how fast the Bars-Green wave function for a highly boosted meson

converges to the respective ’t Hooft wave function. We conclude this section by examining

the frame-independence of the decay constants. Finally we summarize in section 6.

2 Review of the Bars-Green formalism

In this section, our main goal is to sketch some key intermediate steps in deriving the

Bars-Green equation in axial gauge. Nothing in this section is really new, and the purpose

of including this section is mainly for the sake of completeness. We will follow the Feynman

diagramatic approach to derive the BG equation. It is worth noting that, there also exists

an elegant alternative way to derive the same equations from the Hamiltonian approach.

We start from the Lagrangian of the 1+1-dimensional QCD with the SU(N) color

gauge symmetry:

LQCD = −1

4
F aµνF

aµν +
∑
f

q̄f (iD/−mf )qf , (2.1)

where the gluon field strength F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , the gauge covariant

derivative Dµ = ∂µ + igAaµT
a, with T a being the color SU(N) generator in fundamental

representation and a running from 1 to N2 − 1. We adopt the Dirac-Pauli representation

for the γ-matrices: γ0 = σ3, γ1 = iσ2, γ5 = γ0γ1 = σ1.

Throughout this work, we are imposing the axial gauge condition Aa1(x) = 0.1 Like in

the light-cone gauge, the nonlinear term in F a01, the major characteristic complication of

QCD, simply drops out in the axial gauge. Moreover, Aa0 is no longer a dynamical variable,

instead can be expressed in term of a quark current through the Euler-Lagrange equation.

Hence, in the canonical Hamiltonian form, the gluon field Aa0(x) has been completely

eliminated, whose effects are fully encoded in the instantaneous, yet spatially-nonlocal

current-current interaction. As a common practice, the current-current interaction can

often be simulated by a gluon propagator in the axial gauge:

Dab
αβ(xµ) = − i

2
δabδα0δβ0|x1|δ(x0), (2.2)

with the only survivor from the 00-component, and xµ = (x0, x1). It can be immediately

identified with the instantaneous linear Coulomb potential. It is instructive to rewrite it

as a Fourier integral:

Dab
αβ(xµ) = δabδα0δβ0

ˆ ∞
−∞

dk0

2π
e−ik

0x0
ˆ
−
∞

−∞

dk1

2π
eik

1x1 i

(k1)2
. (2.3)

1In QCD2, the axial gauge is equivalent to the Coulomb gauge, and these two terms are often used

interchangeably.
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=S + Σ + + · · ·Σ Σ

Σ = + · · · =+ S

Figure 1. Dyson-Schwinger equation for the dressed quark propagator in large N limit.

The momentum-space gluon propagator only depends upon the spatial component of kµ,

reflecting that Aa0 in the axial gauge is a non-propagating degree of freedom. Moreover,

due to the singular behavior of the integrand near k1 → 0, one must introduce a proper

prescription to make the above Fourier integral well-defined. This is the origin of the

ubiquitous occurrence of the principle value prescription in two-dimensional gauge theory.

2.1 Mass-gap equation

Let S(pµ) denote the full (dressed) quark propagator, Σ(pµ) signify the 1PI quark self-

energy. In the large N (planarity) limit, the standard rainbow approximation in the Dyson-

Schwinger equation for the quark self-energy, as pictorially depicted in figure 1, becomes a

rigorous procedure:

S(pµ) =
i

6p−m− Σ(pµ) + iε
, (2.4a)

Σ(pµ) =
λ

2π

ˆ
−
∞

−∞

dk0dk1

(k1 − p1)2
γ0S(kµ)γ0, (2.4b)

where −́ implies a principal-value prescription.

It turns out that the quark self-energy Σ only depends on the spatial component of

the two-vector pµ, and can be parameterized as

Σ(p1) = A(p1) +B(p1)γ1. (2.5)

For notational brevity, from now on we often use the symbol p to represent p1, unless

otherwise explicitly stated. It is convenient to introduce two new variables E(p) and θ(p),

in replacement of the the functions A(p) and B(p):

A(p) = E(p) cos θ(p)−m, (2.6a)

B(p) = E(p) sin θ(p)− p, (2.6b)

where E(p) characterizes the energy dispersion of the dressed quark, and θ(p) is usually

referred to as the Bogoliubov (chiral) angle.

Integrating (2.4b) over k0, and after some algebra, one arrives at the so-called mass-gap

equation [17]:

p cos θ(p)−m sin θ(p) =
λ

2

ˆ
−
∞

−∞

dk

(p− k)2
sin(θ(p)− θ(k)). (2.7)
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Figure 2. Bogoliubov (chiral) angle θ(p) and dressed quark energy E(p) as functions of ξ =

tan−1 p√
2λ

for different current quark mass.

θ(p) is an odd, and, monotonically rising function in p, which approaches ±π
2 as p→ ±∞,

respectively. It turns out to be an impossible mission to express θ(p) in terms of the

known special functions. As matter of fact, this nonlinear integral equation can only

be solved numerically, even in the chiral limit. Notice in the free theory (λ = 0) limit,

θ(p) = tan−1(p/m), recovers the familiar Foldy-Wouthuysen angle in the free Dirac theory.

Interestingly, eq. (2.7) can also be derived from an alternative perspective, viz, by the

requirement of minimizing the vacuum energy.2

Once the θ(p) is determined, one can proceed to determine the dispersive law of the

dressed quark [17]:

E(p) = m cos θ(p) + p sin θ(p) +
λ

2

ˆ
−
∞

−∞

dk

(p− k)2
cos(θ(p)− θ(k)), (2.8)

which is clearly an even function of p. Note this dispersive relation is not even Lorentz

covariant. This can be attributed to the fact that, since the Poincaré algebra does not close

in colored sector, so the Lorentz covariance is scarified in a single quark sector, though it

must hold in color-singlet channel.

As will be elaborated in section 4, we solve the mass gap equation (2.7) numerically

using Newton method. In figure 2, we plot the profiles of the chiral angle and dispersive

law as function of quark momentum, for several different quark mass. We see that the

Bogoliubov angle in chiral limit indeed assumes a nontrivial shape. For small bare quark

mass, when the quark momentum is very soft, the dressed quark energy may even become

negative. This pathological behavior can be readily seen from figure 2, which can also be

understood from the approximate formula E(0) ≈ m− πλ
8 θ
′(0) [21].

2We remind the readers that, in the original BG paper [17], a naive step function θ(p) = π
2
ε(p) (where

the sign function ε(p) equals 1 when p > 0, equals −1 when p < 0) is advocated as the solution of the gap

equation in the chiral limit. It turns out that this ansatz of θ(p) leads to a chiral symmetric vacuum state,

which bears an infinite higher energy than the true ground state, thus unacceptable [21].
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Γ = Γ

S

S

P

p

p− P

P

p− P

p

Figure 3. Bethe-Salpeter equation for the meson-quark-antiquark vertex.

2.2 The Bars-Green equation

As a confining theory, QCD2 admits an infinite tower of stable color-singlet mesons in the

large N limit. We are interested in inferring the bound-state equation from the familiar

Bethe-Salpeter approach, although the alternative approach, i.e., the Hamiltionian method,

may be particulary illuminating in certain aspects. For simplicity, throughout this work we

have focused on the flavor-neutral quarkonium state, though the extension to the flavored

mesons are straightforward.

The meson-quark-antiquark vertex, denoted by Γ(pµ, Pµ), obeys the homogenous

Bethe-Salpeter equation:

Γ(pµ, Pµ) =
iλ

2π
S(pµ)

ˆ
−
∞

−∞

dk0dk

(p− k)2
γ0Γ(kµ, Pµ)γ0S(pµ − Pµ), (2.9)

where Pµ is the two-momentum of the meson, and pµ(Pµ − pµ) is the momentum of the

external quark(antiquark) leg. This equation is pictorially represented in figure 3, where

the ladder approximation also becomes justified, thanks to the planarity condition.

It is a standard practice to introduce the Bethe-Salpeter wave function:

Φ(p, Pµ) ≡
ˆ
dp0Γ(pµ, Pµ), (2.10)

Before proceeding, it is convenient to rewrite the full quark propagator in (2.4a) as

S(pµ) =
Λ+(p)γ0

p0 − E(p) + iε
+

Λ−(p)γ0

p0 + E(p)− iε , (2.11a)

Λ±(p) = T (p)
1± γ0

2
T †(p), (2.11b)

T (p) = e−
1
2
θ(p)γ1 . (2.11c)

It is also useful to decompose the Bethe-Salpeter matrix wave function Φ into a pair of

wave functions φ±:

Φ(p, Pµ) = T (p)

(
1 + γ0

2
γ5φ+(p, P ) +

1− γ0

2
γ5φ−(p, P )

)
T †(P − p). (2.12)
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Substituting (2.11) into (2.9), and integrating both sides over p0 by employing the

method of residues, one ends up with two coupled equations for each mesonic state with

mass Mn (of the n th mesonic level) [17]:

(E(p)+E(P−p)−P 0)φ+(p,P ) =λ

ˆ
−
∞

−∞

dk

(p−k)2

[
C(p,k,P )φ+(k,P )−S(p,k,P )φ−(k,P )

]
,

(2.13a)

(E(p)+E(P−p)+P 0)φ−(p,P ) =λ

ˆ
−
∞

−∞

dk

(p−k)2

[
C(p,k,P )φ−(k,P )−S(p,k,P )φ+(k,P )

]
,

(2.13b)

where PµPµ = M2
n, the dressed quark energy E(p) is given in (2.8), and

C(p, k, P ) = cos
θ(p)− θ(k)

2
cos

θ(P − p)− θ(P − k)

2
, (2.14a)

S(p, k, P ) = sin
θ(p)− θ(k)

2
sin

θ(P − p)− θ(P − k)

2
, (2.14b)

where the Bogoliubov angle θ(p) is deduced from solving the gap equation (2.7).

Eq. (2.13) is the mesonic bound-state equation in axial gauge with equal-time quan-

tization, hereafter referred to as the Bars-Green (BG) equation. It is the instant-form

counterpart of the ’t Hooft equation, (1.2). Unlike a single meson wave function φ in light-

front formalism, here one must introduce a pair of meson wave functions φ±, in order to

warrant the Lorentz covariance in the equal-time quantization. The much more sophisti-

cated form of the BG equation with respect to the ’t Hooft equation, simply reflects the

widely-spread tenet, that boosting the equal-time bound-state wave function is a highly

nontrivial mission, in sharp contrast to the boost-invariant LF formulation.

The wave functions φ±, representing the large (small) component of bound-state so-

lution, respectively, characterize the probability amplitude for the qq̄ pair moving for-

ward (backward) in time. Their physical meanings become even more transparent in the

bosonization approach, where the φ± can be directly interpreted as the coefficient functions

associated with a Bogoliubov transformation from the composite quark-antiquark creation

operator to the mesonic creation operator [21]. Specifically speaking, there are two ways to

produce a mesonic state from the vacuum in the equal-time quantization. One can always

produce a meson state by creating a qq̄ pair out of the vacuum, regardless of the (non)trivial

nature of the vacuum, with the probability amplitude characterized by φ+. Nevertheless,

when the vacuum is nontrivial, e.g., which may accommodate a nonzero quark conden-

sate, as what is happening in the equal-time formulation for large N QCD2, one can also

create a meson by removing a redundant pair of qq̄ from some correlated quark-antiquark

pairs constantly fluctuating out of the nontrivial vacuum. It is intuitively conceivable that,

the relative magnitude of φ− with respect to φ+ gets more and more suppressed with the

increasing quark mass/meson momentum/principal quantum number.
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The meson wave functions φ± obey the following orthogonality and completeness con-

ditions [21]:3ˆ ∞
−∞

dp
(
φ

(n)
+ (p, P )φ

(m)
+ (p, P )− φ(n)

− (p, P )φ
(m)
− (p, P )

)
= |P | δmn, (2.15a)

ˆ ∞
−∞

dp
(
φ

(n)
+ (p, P )φ

(m)
− (p, P )− φ(n)

− (p, P )φ
(m)
+ (p, P )

)
= 0, (2.15b)

∞∑
n=0

(
φ

(n)
+ (p, P )φ

(n)
+ (k, P )− φ(n)

− (p, P )φ
(n)
− (k, P )

)
= |P | δ(p− k). (2.15c)

∞∑
n=0

(
φ

(n)
+ (p, P )φ

(n)
− (k, P )− φ(n)

− (p, P )φ
(n)
+ (k, P )

)
= 0. (2.15d)

The ubiquitous minus signs are reminiscent of the nature of Bogoliubov transformation,

which are manifest using the Hamilton approach.4

It is instructive to examine the properties of the wave functions under discrete symme-

try transformation. Since QCD2 is symmetric under space inversion, charge conjugation,

the flavor-neutral quarkonium wave functions must be subject to the following relations:

φ
(n)
± (−p,−P ) = −ηnφ(n)

± (p, P ) P, (2.16a)

φ
(n)
± (P − p, P ) = (−)nφn±(p, P ) C, (2.16b)

φ
(n)
± (p− P,−P ) = φ

(n)
± (p, P ) CP, (2.16c)

where ηn = (−)n+1 signals the intrinsic parity of each meson.5 Thus all the mesonic lev-

els simply alternate in parity: parity-odd states (n = 0, 2, 4, . . .) and parity-even states

(n = 1, 3, 5, . . .). These symmetry relations signal a notable virtue of Bars-Green for-

malism versus LF formulation, since it is far from straightforward to realize the parity

transformation in the latter setup.

A very special case is the ground-state meson in the chiral limit, which turns out to

be parity-odd and exactly massless. For this reason, it is often dubbed chiral pion, πχ. Its

BG wave functions are known in a semi-analytical fashion [21]:

φ
πχ
± (p, P ) =

1

2

(
cos

θ(P − p)− θ(p)
2

± sin
θ(P − p) + θ(p)

2

)
, for P > 0, (2.17)

where θ(p) is the corresponding Bogoliubov angle in the chiral limit.

Applying (2.16a) to (2.17), we can obtain the BG wave functions of the chiral pion

that moves toward the negative x-axis:

φ
πχ
± (p, P ) =

1

2

(
cos

θ(|P |+ p) + θ(p)

2
± sin

θ(|P |+ p)− θ(p)
2

)
, for P < 0. (2.18)

3In early works, the orthogonality conditions for φ± seem to be prescribed in an ad hoc manner. For

example, in ref. [19], the normalization condition is such that a positive sign is chosen between (φ+)2 and

(φ−)2 in the integrand.

4Note that φ± in (2.15) differ from what are given in ref. [21] by a factor
√
|P |
2π

, with the advantage that

our φ+ in the IMF exactly reduces to the ’t Hooft wave function φ(x), which is cannonically normalized as´ 1

0
dx |φ(x)|2 = 1.
5Since in this work we are only considering a single flavor, each meson also bears a C-parity ηCn = (−)n.
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Since one cannot boost a massless particle to its rest frame, some sort of irregularity is

anticipated to occur in the P → 0 limit. For a fixed p, the BG wave functions for a

chiral pion, φ
πχ
± (p, P ), are continuous yet nonanalytic across the point P = 0, as indicated

in (2.17) and (2.18).

2.3 Bars-Green equation in IMF

Examining the the coupled integral equations (2.13), it is by no means transparent to

prove the meson mass spectra are frame-independent. Nevertheless, Bars and Green have

argued that, in the IMF, the backward-moving wave function φ− must diminish, so the

BG functions must reduce to the celebrated ’t Hooft equation, consequently the forward-

moving wave function φ+ can be identified with the ’t Hooft wave function φ(x). Bars and

Green have already outlined all the necessary clues for the proof. Nevertheless, for the sake

of completeness and clarity, we decide to supplement more technical details in intermediate

steps, together with some pictorial evidences, to validate Bars and Green’s claim.

Let a flavor-neutral meson carry the nonzero momentum P > 0. Let us first introduce

a pair of dimensionless ratios x, y, by x = p/P and y = k/P , where p and k represent

the quark momenta appearing in (2.13). We subsequently reexpress the Bars-Green wave

function as φ±(x, P ) ≡ φ±(p = xP, P ). At this stage, the range of x and y remains

unbounded. Let us temporarily assume x, y are not in proximity to 0. In the IMF limit

P → ∞, the Bogoliubov angle θ(xP ) is then approaching its asymptotic values, π
2 ε(x).

Consequently, one finds in the P → +∞ limit,

C (x, y, P ) −→ cos
[π

4
(ε (x)− ε (y))

]
cos
[π

4
(ε (1− x)− ε (1− y))

]
= Θ (xy) Θ ((1− x) (1− y)) , (2.19a)

S (x, y, P ) −→ sin
[π

4
(ε (x)− ε (y))

]
sin
[π

4
(ε (1− x)− ε(1− y))

]
= −Θ(−xy)Θ(−(1− x)(1− y)), (2.19b)

where Θ designates the Heaviside step function. Therefore, the C function equals 1 if

0 < x, y < 1, or x, y < 0, or x, y > 1, and vanishes in all other cases; the S function always

vanishes except when x < 0, y > 1 or x > 1, y < 0, in which cases it equals -1.

For the sake of clarity, we take the chiral limit as a concrete example, with the respective

Bogoliubov angle θ(p) shown in figure 2. We then generate the corresponding C(x, y, P )

and S(x, y, P ) functions, with several different choice of P . From figure 4, we clearly see

the trend that, in the IMF limit, C(x, y, P ) and S(x, y, P ) indeed exhibit the behavior as

dictated in (2.19).

Following ref. [17], it is straightforward to see that the right-hand sides of Bars-Green

equations (2.13) must scale as O(1/P ) in the IMF limit. Therefore, any term in the left-

hand side which scales as P 1 or P 0 must cancel, and the O(1/P ) terms in both sides must

be matched. By examining the asymptotic behavior for the factor E(p) +E(P − p)± P 0,

we thereby find that φ−(x, P ) must vanish for all x, and φ+(x) is non-vanishing only when

0 ≤ x ≤ 1. Notice than, for 0 ≤ x ≤ 1, eq. (2.19) then implies that C(x, y, P → ∞) →
Θ(y(1− y)), and, S(x, y, P →∞)→ 0.
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Figure 4. The C and S functions viewed in various reference frames. As a concrete example, here

we generate the Bogoliubov angle for the massless u quark.

From the gap equation (2.7), it is easy to see that tan θ(xP ) = xP
m + O(1/P ) in the

P →∞ limit. Therefore, the dispersive law in (2.8) in the IMF simplifies into

E(xP ) −→ |x|P +
m2

|2x|P +
λ

2P

ˆ
−
∞

−∞

dy

(x− y)2
cos

π

2
(ε(x)− ε(y)) +O

(
1

P 2

)
= |x|P +

m2 − 2λ

|x|P +O(1/P 2). (2.20)

Employing the aforementioned simplifications in the IMF, the Bars-Green equa-

tion (2.13) then reduces to(
m2 − 2λ

x(1− x)P
+ P − P 0

)
φ+(x, P ) =

λ

P

ˆ
−

1

0

dy

(x− y)2
φ+(y, P ). (2.21)

Approximating P 0 =
√
P 2 +M2 by P+M2/2P , and matching both sides of (2.21) through

the linear order in 1/P , one finds that(
m2 − 2λ

x (1− x)
−M2

)
φ+(x, P ) = 2λ

ˆ
−

1

0
dy
φ+ (y, P )

(x− y)2
, (2.22a)

φ−(x, P ) = O(1/P 2). (2.22b)

As promised, the BG equation (2.13) for φ+(x, P ) in IMF does reduce to the ’t Hooft

equation (1.2) (with m1 = m2 = m), while φ−(x, P ) dies away with a pace ∝ 1
P 2 . In the

following sections, we will numerically examine the tendency of the BG wave functions φ±
with an ever-increasing meson momentum.

3 Some Lorentz-invariant quantities in axial gauge

There are some basic yet important nonperturative quantities, exemplified by the quark

vacuum condensate (for arbitrary quark mass) and meson decay constants, which have
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been extensively studied in the LF formulation of QCD2. In this section, we revisit these

quantities in the axial gauge in equal-time quantization. To our knowledge, the studies

from the perspective of Bars-Green formalism are novel. The purpose of this section is to

make a nontrivial examination of the gauge and Lorentz invariance (frame independence)

of these simple QCD matrix elements.

3.1 Quark condensate

Since the mid-80s, it became widely known that the 1 + 1-dimensional QCD in the large

N limit actually accommodates spontaneous chiral symmetry breaking (SCSB), signalled

by the non-zero quark condensate [15, 16].

In passing, it is worthwhile to elaborate on the possible phases in the ’t Hooft model.

The massless QCD2 (N →∞) can be classified in two distinct regimes, depending on the

order of taking the N →∞ and the chiral limit, which turn out not to commute [15]: 1) In

the weak coupling regime, one assumes mq � g ∼ 1√
N

, and the N →∞ limit is taken prior

to ultimately sending mq → 0. This phase corresponds to the familiar mass spectrum from

solving ’t Hooft equation, where the spontaneous chiral symmetry breaking occurs. 2) In

the strong coupling regime, where m� g ∼ 1√
N

is instead assumed, and one first takes the

chiral limit, then followed by sending N →∞. Chiral symmetry remains unbroken in this

phase, and the corresponding spectrum is rather different, where there appear massless

composite fermion rather than the massless meson [22–26]. In this work, we have tacitly

assumed to exclusively consider the weak-coupling phase.

At first sight, the occurrence of SCSB in QCD2 (with N →∞) appears to contradict

Coleman’s theorem [27], which seems to rule out the possibility of spontaneous breakdown

of any continuous symmetry in two dimensional field theory. This puzzle was first resolved

by Witten [14] in the context of the SU(N) Thirring model in the N → ∞ limit (this

model is also commonly referred to as the Gross-Neveu model). He pointed out that the

Berezinskii-Kosterlitz-Thouless (BKT) phenomenon actually occurs in this case [28, 29],

so that the chiral symmetry is “almost” spontaneously broken. Later Zhitnitsky realized

that, in the weak coupling regime, the ’t Hooft Model also exhibits exactly the same BKT

effect [15], so that the SCSB also occurs in the N → ∞ limit. The spontaneous chiral

symmetry breaking is consistent with the spectrum of ’t Hooft model that the mesonic

states with opposite P -parities are non-degenerate in the masses.

Specifically speaking, one can show that the following two-point correlator in the ‘t

Hooft model possesses the following large-|x| behavior [15]:

〈0|q̄(x)(1 + γ5)q(x)q̄(0)(1− γ5)q(0)|0〉 ∼ |x|−1/N . (3.1)

In the N → ∞ limit, the correlator approach a non-vanishing constant, thus exhibiting

the true long-range order, and heralding the occurrence of the massless boson mode; for

any large but finite N , the correlator falls off very slowly with x, and there does not arise

massless meson. Hence there is no contradiction with Coleman’s theorem.

Despite the notion of pertubative vacuum in the light-front quantization, a nonva-

nishing chiral condensate was first discovered from this formalism. Using the operator
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expansion technique, Zhitnistsky has found an analytic result for the vacuum quark con-

densate in the chiral limit in ’t Hooft model [15]:

〈q̄q〉
∣∣∣
m=0

= − N√
6

√
λ. (3.2)

Since the condensate is nonanalytic in the ’t Hooft coupling λ, it characterizes a type of

nonperturbative effect that cannot be captured by summing perturbation series in λn (n

being a non-negative integer) to all orders.

Later, Burkardt has extended Zhinitstsky’s analysis, and presented an analytic formula

also for massive quark [30]. After subtracting the logarithmic UV divergence, he obtains

the renormalized quark condensate for an arbitrary value of m:

〈q̄q〉ren =
Nm

2π

{
ln(πα)− 1− γE +

(
1− 1

α

)
[(1− α)I(α)− ln 4]

}
, (3.3)

where α = 2λ/m2, γE = 0.5772 . . . is the Euler constant, and

I(α) =

ˆ ∞
0

dy

y2

1− y
sinh y cosh y

1 + α(y coth y − 1)
. (3.4)

A nontrivial vacuum state naturally emerges in QCD2 if equal-time quantization is

taken. It was first by Li [16] who first reported a nonzero quark condensate in the chiral

limit in the axial gauge:

〈q̄q〉
∣∣∣
m=0

= N

ˆ
dp

2π
Tr
[
γ0Λ−(p)

]
= −N

π

ˆ ∞
0

dp cos θ(p). (3.5)

Substituting the numerical solution of θ(p) from (2.7), into this equation, one readily

verifies (3.2) obtained from light-front formalism, to a high numerical accuracy.

For nonzero quark mass, the integral in (3.5) becomes logarithmically UV divergent.

Subtracting the analogous term arising from cosine of the Foldy-Wouthysen angle of a

free quark, which amounts to performing an additive renormalization, one finds that the

renormalized quark condensate in axial gauge is

〈q̄q〉ren = −N
π

ˆ ∞
0

dp

[
cos θ(p)− m√

m2 + p2

]
. (3.6)

In figure 5, we plot the the quark condensate as function of quark mass, stemming

from the light cone gauge, (3.3), and the axial gauge, (3.6). Quite satisfactory agreement

is achieved, firmly establishing the gauge invariance of the quark condensate.

3.2 Decay constants

One can define the meson decay constant f (n) as

〈Ω
∣∣q̄γµγ5q

∣∣Mn(P )〉 =

f (n) Pµ√
2P 0

, n even

f (n) εµνPν√
2P 0

, n odd,
(3.7)

where εµν is the antisymmetric Levi-Civita tensor in two dimensions.
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Figure 5. Renormalized quark condensate as a function of quark mass.

In the light-cone gauge, Callan, Gross and Coote [8] were able to identify the decay

constant for the n-th mesonic level simply with the integral of the ’t Hooft wave function:

f (n) =

√
N

π

ˆ 1

0
dxφ(n)(x). (3.8)

For the chiral pion, πχ (the massless parity-odd state affiliated with m = 0),6 the ’t

Hooft wave function possesses a peculiar form: φπχ(x) = Θ(x(1−x)), so the decay constant

simply is

fπχ =

√
N

π
. (3.9)

The decay constant in the axial gauge can be most conveniently worked out following

the Hamiltonian method [21]. With the aid of the bosonization technique, one can reexpress

the axial vector current in term of meson’s creation and annihilation operators, and readily

ascertain the intended decay constant.

We separately discuss the decay constants of mesons with odd and even parity, as

designated in (3.7). First we consider the mesonic level with even n (odd parity):

f (n even) =


√

N
π

1√
PP 0

´∞
−∞dk cos θ(P−k)−θ(k)

2

[
φ

(n)
+ (k,P )−φ(n)

− (k,P )
]
, for µ= 0;√

N
π

1
P

√
P 0

P

´∞
−∞dk sin θ(P−k)+θ(k)

2

[
φ

(n)
+ (k,P )+φ

(n)
− (k,P )

]
, for µ= 1.

(3.10)

These two expressions for the decay constant are obtained by utilizing the different axial

vector Lorentz index in (3.7). Although both analytical expressions superficially differ,

6Witten emphasized that it would be a misconception to interpret this massless meson as a (decoupled)

Goldstone boson [14]. Nevertheless, for the sake of convenience, and, in conformity with most recent

literature, bearing the “almost” spontaneous chiral symmetry breaking and BKT phenomenon in mind, we

will frequently refer this massless meson as chiral pion, or Goldstone boson throughout this work.
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they are doomed to be equal by Lorentz invariance. Furthermore, although these expres-

sions explicitly depend on the meson momentum P , the frame-independence of the decay

constant enforces some identities that θ(p) must obey. In section 5, we shall present ex-

plicit numerical evidences for the frame/Lorentz-index independence of the meson decay

constants. Note it is quite delicate to extract the decay constant for a stationary (P → 0)

meson from (3.10). We emphasize that the inclusion of the small component of the BG

wave function, φ−, is crucial to warrant the frame-independence of the decay constant.

It is interesting to examine the decay constant of the chiral pion in the axial gauge.

Substituting the analytic BG wave functions (2.17) into (3.10), for a pion carrying arbitrary

positive momentum P , we find

fπχ =

√
N

π

1

P

ˆ ∞
−∞

dk cos
θ(P − k)− θ(k)

2
sin

θ(P − k) + θ(k)

2
. (3.11)

Though far from obvious to see why the integral is exactly equal to P , it has to be so to

match the LF result for chiral pion, eq. (3.9).

Next we turn to the mesonic levels with odd n (even parity). For flavor-neutral mesons,

such states have odd C parity , so the corresponding ’t Hooft wave functions are odd in

exchanging x and 1 − x. As a result, the decay constants simply vanish in line with the

prediction from the light-cone gauge, (3.8).

Notwithstanding this trivially looking result, it is still instructive to examine these

decay constants from the angle of axial gauge. The respective decay constants in this

case read

f (n odd) =


√

N
π

1√
PP 0

´∞
−∞dk sin θ(P−k)+θ(k)

2

[
φ

(n)
+ (k,P )+φ

(n)
− (k,P )

]
= 0, for µ= 0;√

N
π

1
P

√
P 0

P

´∞
−∞dk cos θ(P−k)−θ(k)

2

[
φ

(n)
+ (k,P )−φ(n)

− (k,P )
]

= 0, for µ= 1.

(3.12)

Again we show the expressions extracted from (3.7) by utilizing two different axial vector

Lorentz indices. Making use of the fact that θ(p) is an odd function of p, and the odd

C-parity of the BG wave functions for the odd-n states as encoded in (2.16b), one can

prove that the integrals in (4.4) indeed vanish, for all possible meson momentum.

4 Numerical recipes for solving bound-state equation

Numerically solving ’t Hooft equation has gained a mature status, so here we just briefly

describe the numerical strategies adopted in this work. This type of equation is usually

solved by the spectrum method, with the solution presumed to be a linear combination of

a set of basis functions. For massive quark (m�
√

2λ), it proves convenient to invoke the

so-called Multhopp method, which utilize the trigonometric basis functions [10, 31]. For

light quark (m ≤
√

2λ), yet it is more advantageous to follow ’t Hooft’s original method [7],

that adopts a set of basis functions such as Ψn(x) = Axβ1(1− x)2−β1 +Bxβ2(1− x)2−β2 +∑
nCn sin(nπx), in which parameters β1,2 are determined by the boundary conditions
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πβ1,2 cot(πβ1,2) = 1 − m2/2λ. Empirically, n ∼ O
(
101
)

is sufficient to yield stable first

three digits.

Prior to solving the Bars-Green equations, one has to first determine the chiral angle

θ(p) to a decent accuracy. Here we follow ref. [19] to use the generalized Newton method. It

is convenient to first change the variable from p to ξ using p =
√

2λ tan ξ, so ξ ∈ (−π
2 ,

π
2 ),

within a finite interval. The mass gap equation in (2.7) is then discretized to a set of

matrix equations:

tan(ξk)cos
[
θ(ξk)

]
−msin

[
θ(ξk)

]
=

1

4

N−1∑
j=−N+1


π

2N sec2(ηj)
sin[θ(ξk)−θ(ηj)]

[tan(ξk)−tan(ηj)]
2 j 6= k

0 j= k .
(4.1)

Suppose N is a prescribed large positive integer, designating the size of a grid. Both

variables ξj , ηj = jπ
2N are evenly partitioned on the grid, with j being an integer obeying

−N ≤ j ≤ N . In addition, the boundary conditions θ(±π
2 ) = ±π

2 must be imposed.

Greater N will generally decrease the discretization errors, nevertheless render the com-

putation more expensive. Practically, N = 100 works well for the case of light flavors, i.e.

π and ss̄ mesons. A finer grid with N = 300 or higher is required for heavy mesons, i.e.,

for cc̄ quarkonium. The numerical results of the chiral angle θ(p) and dispersive function

E(p) have been shown in figure 2.

Analogous to the ’t Hooft equation, Bars-Green equation can be solved by means of the

spectrum method as well. The major complication is due to the emergence of the additional

φ−(p, P ) component, so one inevitably confronts coupled integral equations. In the late

80s, Li et al. solved the BG equations for a variety of stationary flavor-neutral mesons,

choosing the basis functions as the quantum harmonic oscillator’s eigen-functions [19].

As described in section 2.3, it is convenient to introduce a momentum fraction variable

x = p/P for a flavor-neutral meson, with meson momentum denoted by P and quark

momentum represented by p. The Bars-Green wave function is then effectively expressed

as φ±(x, P ) ≡ φ±(p = xP, P ). In contrast to the light-front momentum fraction x ∈ [0, 1]

in the ’t Hooft wave function, the range of x in BG wave functions is completely unbounded.

The normalization condition in (2.15a) for the BG wave functions can be rewritten as

ˆ ∞
−∞

dx

{∣∣∣φ(n)
+ (x, P )

∣∣∣2 − ∣∣∣φ(n)
− (x, P )

∣∣∣2} = 1. (4.2)

To apply the spectrum method to a moving meson, we generalize Li et al.’s orthogonal

basis functions as follows:7

Ψm(α, x, P ) =

√
|P |α

2mm!
√
π
e−

α2P2(1−2x)2

8 Hm

(
αP

2
(1− 2x)

)
, (4.3)

7We note that, there have been some attempt to solve the BG equation numerically for a moving

meson [32]. However, the φ− component has been completely neglected thereof, consequently the Poincaré

invariance is inevitably scarified.
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where Hm represents the m-th Hermite polynomial and α is a variational parameter that

can be tuned to minimize the mass of the ground state.

φ±(x, P ) =

{∑N−1
m=0 a

±
mΨ2m(α, x, P ), n even;∑N−1

m=0 b
±
mΨ2m+1(α, x, P ), n odd.

(4.4)

Solving the original coupled integral equations are then transformed into the matrix eigen-

value problem. After diagonalization of the N × N matrix, one can determine the mass

spectra of the first N same-parity mesonic states from the discrete energy eigenstates,

Mn =
√

(P 0
n)2 − P 2, as well as the corresponding BG wave functions φ

(n)
± (x, P ). Practi-

cally, for most cases taking N ≈ 20 appears to be adequate.

Before concluding this section, we describe the principal-value prescription employed

in this work in solving ’t Hooft and Bars-Green equations. To tame severe infrared diver-

gences, two distinct strategies are implemented:
ˆ
− dy

(x− y)2
f(y) =

ˆ
dy

(x− y)2

[
f(y)− f(x)− (y − x)

df(x)

dx

]
, (4.5a)

ˆ
− dy

(x− y)2
f(y) = lim

ε→0

[ˆ x−ε dy

(x− y)2
f(y) +

ˆ
x+ε

dy

(x− y)2
f(y)− 2f(x)

ε

]
, (4.5b)

where f(y) is a smooth test function which is regular at y = x. The first recipe is the sub-

traction method utilized in [19], while the second is the Hadamard regularization for hyper-

singular integral [33]. In practice, both prescriptions yield stable and convergent results.

5 Numerical results

Being a super-renormalizable theory, QCD2 bears the gauge coupling g with unit mass

dimension. In the large N limit, we set the absolute mass scale following the ansatz in

ref. [12], e.g., choosing the value of the ’t Hooft coupling λ such that πλ = 0.18 GeV2 in

conformity to the value of string tension in the realistic QCD4. For notational brevity, we

will express any dimensionful quantity in units of
√

2λ = 340 MeV in the rest of this section.

In the hypothetic 1+1-dimensional world, we attempt to mimic realistic mesons in

QCD4 as much as possible. In the
√

2λ unit, the masses of physical π and J/ψ mesons are

Mπ = 0.41, and MJ/ψ = 9.03, respectively. Solving the ’t Hooft function for ground state,

the corresponding quark mass are found to be mu = 0.045,8 mc = 4.23.

We have also intentionally invented a fictitious strange quark with ms = 0.749. As

can be seen in figure 2, it corresponds to a peculiar threshold θ(ξ) (with ξ = tan−1 p),

through which the profile of θ(ξ) passes from the convex to concave with the increasing

quark mass. This particular strange quark mass is determined by minimizing the relative

distance between the θ(ξ) and the straight line θ(ξ) = ξ. The lowest-lying strangeonium

state has Mss̄ = 2.18. Naively speaking, the strange quark with ms = 0.749 might be

thought of severing a threshold, below which is called light flavor, and above which is

called heavy flavor.

8Here we use the symbol u to designate the light u, d flavors. In this work we only consider the neutral

mesons composed of a single flavor, concerning flavor-mixing is a sub-leading effect in 1/N expansion.
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n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

M
χ(n)
uū 0 2.43 3.76 4.81 5.68 6.46

M
(n)
uū 0.41 2.50 3.82 4.85 5.73 6.50

M
(n)
ss̄ 2.18 3.72 4.82 5.73 6.52 7.23

M
(n)
cc̄ 9.03 10.08 10.81 11.47 12.05 12.59

Table 1. Mesonic mass spectra of the uū (as well as for the massless u quark), ss̄ and cc̄ families.

The results are obtained from solving ’t Hooft equation, as well as from solving the BG equation

in different reference frames. The respective spectra obtained from different approaches are always

compatible with each other, at least agree at the second decimal digit.

Figure 6. Mass spectra of a few low-lying mesonic levels with different quark mass.

For completeness, we also consider the chiral limit with mu = 0, which can host a

lowest-lying massless state named chiral pion. The mass spectra of the first low-lying

mesonic levels, for each quark mass, are listed in table 1 as well as in figure 6. As is

well known, the excited states fit into the linear Regge trajectories to a good degree.

We stress that, the mass spectra found by solving the BG equation appear to be frame-

independent, and always agree with what are obtained by solving ’t Hooft equation. Thus

these numerical studies constitute a nontrivial validation of Poincaré invariance in the

Bars-Green formalism.

In passing, one might like to take a closer look at the spontaneous chiral symmetry

breaking in QCD2. The celebrated Gell-Mann-Oakes-Renner relation states that

M2
π = −4mu〈q̄q〉

f2
πχ

. (5.1)
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Figure 7. The solutions to the ’t Hooft (Light-front) wave functions of ground state and the

first excited state mesons, for several distinct quark mass. The ground/1st-excited state LF wave

functions are even/odd under charge conjugation transformation x↔ 1− x.

With the aid of (3.9) and (3.2), substituting fπχ = 0.564
√
N , and 〈q̄q〉

∣∣
m=0

= − N√
12

=

−0.243N , as well as mu = 0.045, into the right side of eq. (5.1), we then predict Mπ = 0.371

(126 MeV), which is quite close to the input pion mass Mπ = 0.41 (139 MeV). Thus, the

pseudo-Goldstone nature of the “physical” pion is explicitly validated.

We proceed to show the profiles of various bound-state wave functions. In figure 7,

we first plot a number of ’t Hooft (LF) wave functions for the ground state and the first

excited state in the mass spectra, affiliated with the different quark species. As dictated

by charge conjugation symmetry, the LF wave functions with even/odd n are symmet-

ric/antisymmetric under the exchange x ↔ 1 − x. The LF wave functions always vanish

in both end points x = 0, 1. For lighter quark, the LF wave functions for ground states

exhibit a very steep rising/falling behavior when x approaches the boundaries, and a stable

plateau in the majority of range in x (Note the slope in the boundaries becomes infinite

in the chiral limit!). For heavy quark, the LF wave function possesses a much milder

rising/falling shape near the end points, and the plateau disappears.

In figure 8, 9, 10 and 11, we plot various Bars-Green wave functions of the ground state

and the first excited state associated with several quark flavors: massless u, mu = 0.045,

ms = 0.75, and mc = 4.23, respectively. For the sake of comparison, we also juxtapose the

LF wave functions of the corresponding meson in each figure. The BG wave functions with

even/odd n are symmetric/antisymmetric under the exchange x ↔ 1 − x, as required by

the charge conjugation symmetry for flavor-neutral states.

Obviously, the BG wave functions are spatially much more spread in x-axis than the ’t

Hooft wave functions, which are confined within the interval x ∈ [0, 1]. From these figures,

one clearly observes that, for all species of quark flavors, when the mesons are boosted with

higher and higher momentum, the φ+ component of the BG wave functions will approach

the ’t Hooft wave functions, while the φ− components rapidly dies off. These behav-

iors are completely compatible with the anticipated IMF limit of the BG wave functions

in (2.22).
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Figure 8. Bars-Green wave functions for the low-lying uū states in the chiral limit: chiral pion πχ
(first row), and the first excited state (second row).

Figure 9. Bars-Green wave functions for the low-lying uū states with mu = 0.045: physical pion

(first row), and the first excited state (second row).

– 20 –



J
H
E
P
1
1
(
2
0
1
7
)
1
5
1

Figure 10. Bars-Green wave functions for the low-lying strangeonium family with ms = 0.749:

ground state (first row), and the first excited state (second row).

Figure 11. Bars-Green wave functions for the low-lying charmonium states with mc = 4.23:

ground state (first row), and the first excited state (second row).
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Figure 12. Meson decay constants as functions of the quark mass (left) and the meson momentum

(right). In the right panel, the colored solid/empty symbols signify the decay constants extracted

via (3.10) from µ = 0, 1 Lorentz indices, respectively, while the black solid symbols represent the

IMF values inferred from (3.8).

In most cases, the “backward-motion” wave functions φ−(x, P ) are always much less

significant in magnitude than the “forward-motion” components φ+(x, P ). The only excep-

tion is a “wee” (very low-momentum) lowest-lying meson, as exemplified by chiral and phys-

ical pions in figure 8 and figure 9. As mentioned before, the comparable magnitude between

φ+ and φ− is expected for the soft Goldstone boson, which can be intuitively attributed

to the nontrivial vacuum structure, characterized by the nonzero quark condensate. The

φ− component becomes quickly suppressed with respect to φ+, provided that the meson

momentum increases, or going to higher excited states, or increases the quark mass, which

can be attributed to the rapidly decreasing energy denominator 1/(E(p) +E(P − p) +P 0)

in (2.13). This is somewhat analogous to the case of the Dirac equation, where the disparity

between the large component and small component of the Dirac spinor becomes substantial

when going to nonrelativistic/ultra-relativistic limit.

We would also like to mention a technical nuisance. As can be seen in figure 11, some

wiggles have emerged in φ−(x, P ) for the lowest-lying and first excited charmonium state.

This should be regarded as the calculational artifact, which presumably arises from the

truncation error due to the insufficient number of our basis functions. In principle, these

wiggles would vanish if we include an infinite number of orthogonal basis function. Typ-

ically in this work we choose about 20 harmonic oscillator basis functions. Perhaps we

should seek a smarter set of basis functions that allows for a faster convergence behav-

ior. On the other hand, we note that, whenever the wiggles appear, the corresponding

φ− component is always typically about 3 or 4 orders-of-magnitude smaller than the φ+

component, thus completely negligible in a practical sense.

With the BG wave functions φ±(x, P ) available, we can employ the formulas derived

in section 3.2 to compute the meson decay constant. In figure 12, we plot the decay

constant of the ground state meson as functions of the quark mass and meson momentum.

One finds an overall satisfactory agreement between the light-cone-gauge and axial-gauge

predictions. In the Bars-Green formalism, we have explicitly examined that the meson
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decay constant is indeed frame-independent, as it must be. This can be viewed as another

nontrivial verification of the Poincaré invariance of the Bars-Green formalism.

6 Summary

The ’t Hooft model has constantly served a fruitful theoretical laboratory to sharpen our

understanding about certain aspects of the realistic QCD. In contrast with the widely-

studied light-front quantization of QCD2, much less work has been conducted in the equal-

time quantization. The most notable formalism in this category is based on the axial gauge

quantization, with the corresponding bound-state equations first developed by Bars and

Green in late 1970s [17]. It was formally proved that when the meson is boosted to the

IMF, the large component of the BG wave equation would exactly reduce to the ’t Hooft

wave function. Moreover, it is believed that Poincaré invariance should be preserved for the

color-singlet meson wave function with arbitrary finite meson momentum. Unfortunately,

until now this important feature has never been explicitly verified in a numerical fashion.

To date, the most comprehensive numerical solutions of the BG equation were those

works done by Li and companions more than three decades ago, yet only for the stationary

mesons [16, 19]. In this paper, we have moved an important step forward, by numerically

solving the Bars-Green equation for arbitrarily moving mesons, with meson species ranging

from the chiral pion to heavy quarkonium. We are able to numerically establish the validity

of Poincaré invariance of the ’t Hooft model. Moreover, we have explicitly confirmed the

tendency that, as the meson gets more and more boosted, the large component of the Bars-

Green wave function is indeed approaching the corresponding LF wave function obtained in

the light-cone gauge. We also computed the quark condensates and meson decay constants

with a variety of meson momentum, and explicitly verified the frame-independence and

gauge invariance of these physical quantities.

As a topical application, the t’ Hooft model may serve as a concrete toy model to

extract some general features of the recently proposed quasi parton distributions [20]. We

note that the relation between the ’t Hooft light-cone gauge formulation and the Bar-Green

axial-gauge formulation for the two-dimensional QCD, is very similar to that between

the LF parton distributions and the quasi parton distributions. Right now, the lattice

simulation of the quasi distributions in the QCD4 is still in its infancy. Therefore, we hope

that our comprehensive understanding of the Bars-Green wave functions may shed some

important light on the nature of quasi-distributions in realistic QCD [34].
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