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1 Introduction

When we consider higher-dimensional supersymmetric (SUSY) theories, it is useful to
describe the action in terms of A" = 1 superfields [1]-[9] for various reasons.! It makes
the expression of the action much more compact than the component field expression. In
particular, the complicated spacetime index structures become much simpler. In higher
than six dimensions (6D), however, the full superspace formulation is not known due to
the extended SUSY structure. Even in such cases, the N' = 1 superfield expression is still
possible because only partial SUSY structure is respected. Such an expression is useful to
discuss a system in which the spacetime is compactified to four dimensions (4D) and the
N =1 SUSY is preserved. We can derive the 4D effective action directly from the higher
dimensional theory, keeping the N’ = 1 superspace structure manifest. Especially, when
the system contains lower dimensional branes or orbifold fixed points in the compactified
space, the bulk-brane interactions are described in a transparent manner because all the
sectors are expressed on the common N = 1 superspace. Besides, the N/ = 1 superfield
formalism is familiar to many researchers, and is easy to handle.

For global SUSY theories, the N' = 1 superfield description of the action has been al-
ready provided in 5-10 dimensions [2]. We have to extend it to the supergravity (SUGRA)
in order to discuss the moduli stabilization, the interactions to the moduli or the higher
dimensional gravitational multiplet, and so on. However, such an extension is not straight-
forward. First, it is a nontrivial task to identify the component fields of the N = 1
superfields. It usually happens that the non-gravitational fields form the superfields with
the help of the gravitational fields, such as the vierbein and the gravitini. Of course, these
superfields should reduce to the ones in ref. [2] if the gravitational fields are replaced with
their background values in the flat spacetime. However, such an observation alone is not
enough to identify the dependence of each component of the superfield on the gravita-
tional fields. The complete identification can be achieved by requiring the invariance of
the action under various symmetry transformations, such as the gauge transformations,
the diffeomorphisms, the Lorentz transformations, etc. We should note that the diffeo-
morphisms and the Lorentz transformations have to be divided into the 4D parts and the
extra-dimensional parts, and treated separately because we only respect the N'=1 SUSY.
The invariance under their 4D parts is obvious. In contrast, the invariances under the
diffeomorphism in the extra dimensions and the Lorentz transformations that mix the 4D
index with the extra-dimensional one are less trivial, but they are also expressed as the

L4A =17 denotes SUSY with four supercharges in this paper.



N = 1 superfield transformations. Besides, we should also note that the N/ = 1 super-
conformal parameters? depend on the extra-dimensional coordinates, and that the desired
superfield action involves the derivatives with respective to such coordinates. Therefore,
we need to covariantize such derivatives. The corresponding connection superfields contain
the “off-diagonal” components of the vierbein e, and e,;, where {y, v} and {m,n} denote
the 4D and the extra-dimensional indices, respectively.

The simplest background for the extra-dimensional models is the five-dimensional (5D)
spacetime. The N' = 1 description of the 5D SUGRA action is provided in refs. [8, 9]. These
works specify the dependence of the action on the “modulus” superfields that contains
the extra-dimensional component of the fiinfbein 644. This superfield description makes it
possible to derive the 4D effective action for various setups systematically [15-18]. However,
the superfield action in refs. [8, 9] does not contain the “off-diagonal” components of the
finfbein ef, e~ and their N' = 1 SUSY partners. Thus, the action is not invariant under
the diffeomorphism in the extra dimension and the Lorentz transformations that mix the
4D and the fifth dimensions. Those missing ingredients are incorporated at the linearized
level in ref. [19], and play an important role in the calculation of the one-loop effective
potential [20-22].

In this paper, we focus on 6D SUGRA [23-25]. The 6D spacetime is the next simplest
setup for the extra-dimensional models, and the minimal setup where the shape modu-
lus for the extra-dimensional space appears. 6D SUGRA generically contains the Weyl
multiplet as the gravitational multiplet, and ny hypermultiplets, ny vector multiplets and
nt tensor multiplets as the mattter multiplets. From the anomaly cancellation condition,
the numbers of the multiplets are constrained by 29np + nyg — ny = 273 [26-28]. In
contrast to 5D SUGRA, the Weyl multiplet contains the anti-self-dual tensor field T,
(M,N =0,1,---,5), and a 6D tensor multiplet contains the self-dual tensor field B]T/[N. In
general, the (anti-)self-dual condition is an obstacle to the Lagrangian formulation, similar
to that of type IIB SUGRA. However, when nt = 1, this difficulty can be solved because
we can construct an unconstrained tensor field Bysy by combining T, 5, with B}& ~ [25,29].
When nt # 1, the (anti-)self-dual conditions remain, and thus the theory cannot be de-
scribed by the Lagrangian. Hence, we focus on the case of np = 1 in this paper.

In our previous work [30], we found the N' = 1 superfield description of the vector-
tensor couplings in 6D global SUSY theories, which is derived from the invariant action [31]
in the projective superspace [32-34].> Then, we extend this result to 6D SUGRA in ref. [38]
by identifying the “moduli superfields” that contain the extra-dimensional components of
the sechsbein e, (m,n = 4,5), and inserting them into the result in ref. [30]. We have
checked that the resultant action is invariant under the supergauge transformation, and
reproduces the known 5D SUGRA action after the dimensional reduction. In this paper,
we complete the A/ = 1 superfield description of 6D SUGRA by incorporating the missing
ingredients, i.e., the “off-diagonal” components of the sechsbein euﬂ and ey (m,n = 4,5)
and their A/ = 1 superpartners. The identification of the corresponding superfields and

24D N = 1 SUGRA can be described by the superconformal formulation [10-12], which is also expressed
by the corresponding superspace formulation [13, 14].
36D projective superspace is also discussed in refs. [35-37].



the dependence of the action on them are determined by the invariance under the full 6D
diffeomorphisms. These newly incorporated superfields, which are the real superfields U™
and the spinor superfields ¥, (m = 4,5), are also necessary for the invariance under
the Lorentz transformations that mix the 4D and the extra-dimensional indices. This work
corresponds to the 6D extension of ref. [19]. We will treat the 4D N' = 1 SUGRA part at the
linearized level for a technical reason. Due to this approximation, we can only determine
the dependence of the action on ¥{ at the linearized level. In contrast, we clarify the
dependence on U™ at the full order* because it is determined only by the invariance under
diffeomorphisms in the extra dimensions, independently of the 4D diffeomorphism.

The paper is organized as follows. We provide a brief review of our previous work [38]
in the next section. In section 3, we require the invariance of the action under the diffeo-
morphisms in the extra dimensions, and introduce the connection superfields U™ (m = 4, 5)
that contain the “off-diagonal” components of the sechsbein. In section 4, we covariantize
the derivatives with respective to the extra-dimensional coordinates by introducing another
connection superfields ¥, (m = 4,5). In section 5, we address the Lorentz transformations
that mix the 4D and the extra-dimensional indices, and show the invariance of the action
under them. In section 6, we check that the resultant superfield action of 6D SUGRA
reduces to the known 5D SUGRA action after the dimensional reduction. Section 7 is
devoted to the summary. In appendix A, we collect the results of ref. [14] that discusses
the 4D linearized SUGRA and the superfield description of the N' = 1 superconformal
transformation. In appendices B and C, we show the diffeomorphisms and the Lorentz
transformations in the component field expression, and provide the correspondence to the
superfield description.

2 Review of our previous work

The 6D spacetime indices M, N,---=0,1,2,--- .5 are divided into the 4D part p,v,--- =
0,1,2,3 and the extra-dimensional part m,n,--- = 4,5. The corresponding local Lorentz
indices are denoted by the underbarred ones. We assume that the 4D part of the spacetime
has the flat background geometry, and follow the notation of ref. [40] for the 2-component
spinors.

2.1 N =1 decomposition of 6D supermultiplets

The 6D Weyl multiplet E consists of the sechsbein e Mﬂ, the gravitino wﬁwd, the SU(2)y
(auxiliary) gauge fields Vi , and the other auxiliary fields, where & is a 6D spinor index, and
i,j = 1,2 are the SU(2);-doublet indices. The gravitino has the 6D chirality +, and is the
SU(2){;-Majorana-Weyl fermion, which can be decomposed into the two 4D Dirac fermions.

+ _ —
ol (‘“fg) - ( W) , 2
wM M

where a,& = 1,2 are the 2-component spinor indices. If we choose e/ and €% in the
6D SUSY transformation parameter €. as the 4D A = 1 SUSY one we respect, the

4Some of the U™-dependent terms are treated at the linearized level due to technical difficulties.



fields {ef, ¢I, o } form the 4D Weyl multiplet. We can construct the real superfield U#
from them as (see appendix A)

Ut = (05"0)é," +i0% (00" )} ) —i0% (057 o }) + -+, (2.2)
where &,/ is the fluctuation field around the background defined as (A.1), and
Meo¥, ot = (e t)a". (2.3)

Note that we need not discriminate the flat and the curved 4D indices for é,* at the
linearized order since the 4D part of the background spacetime is assumed to be flat
((el,ﬁ) = §,/"). As explicitly shown in appendix A.3, once the matter action is given, we
can always obtain its 4D gravitational couplings. Thus, we will omit the dependences on
U* to simplify the expressions in the following.

In our previous work [38], we have found that the extra dimensional components of
the sechsbein e,;" and its superpartners form the chiral superfield Sg and the real general

SE = “EJFO(H)’

Vi = e +0(0), (2.4)

superfield Vg as

where E,, = ens + ie,2 and e® = det(en) = e4ée5é — €4§€5é. These correspond to the

shape and the volume moduli, respectively.

The matter field content consists of hypermultiplets H4 (A =1,2,--- ,ng), vector
multiplets V! (I = 1,2,---,nv),”> and a tensor multiplet T. They are decomposed into
N =1 superfields as

HA = (H*71 724, vi=wi 2!, T=(Tra, Vi, Vis), (2.5)

where H24-1 {24 $I Y1, are chiral superfields, and V!, Vpy and Vs are real superfields.

Here, HA contains the hyperscalars (gb?A_l

*
tion: ( %Ail) = gA, (gb%A)* = —gb%A*l, V! contains a 6D vector field A{V[, and T contains

a real scalar field o and an anti-symmetric tensor field Bysn. The hypermultiplets HA are

,¢?4), which is subject to the reality condi-

divided into the compensator multiplets A = 1,2, ,ncomp and the physical ones A =

Neomp + 1, -+, Neomp + Nphys- The lowest bosonic components of the superfields are’

HA = (E4Bs5)'* 93 + 0(9),
V= —(0529) A, + O(6°),

(1

®The anomaly cancellation conditions constrain the numbers of the multiplets (see the introduction) and
the gauge group [26-28]. In this paper, we do not consider such constraints, and assume that the gauge
groups are Abelian, for simplicity.

The factor i/2 was missing for the lowest component of % in ref. [38]. Besides, Virm = —8X.m (m = 4,5)
and Y1 = 8D?Y, in the notation of ref. [38].



Yo = —ba (2Bas + io) — 2i (0#26),, B, + O(6°),
Viem = —2(00%0) By + O(0%),  (m = 4,5) (2.6)

where A =24 — 1,24, and Sg| = \/E4/E5 is the lowest component of Sg.
The supergauge transformations are given by

WVE=A + A, 4! = ogAl, (2.7)

where the transformation parameters A’ are chiral superfields, and

1
8E = 784 - SE85 (28)
SE
The gauge-invariant field strength superfields are given by
1 -
wi = —ZD2DQVI. (2.9)

The SUSY extension of the tensor gauge transformation: By;y — Buyn + Oy AN —
OnAar (Apr: real parameter) is expressed as

b))
56V = —04Vi + Re (Se5¢),  6aVirs = —5VG + Re (SG> ’
B
1
0 Yo = —ZDQDQVG, (210)

where the transformation parameters Vi and Y are a real and a chiral superfields respec-
tively, which form a 6D vector multiplet V.

Vo = —2(0020)\, + O(6°),
2|5g|? < 1

Im Sg| \ S|

Yo = Mg — SE|)\5> +O(0). (2.11)

The superfields other than T are neutral. The field strengths invariant under this trans-
formation are

1
Xr = §Im (D*Yrq),

1 S 1
yTOé = EW’IAQ + 7EWT5O¢ -+ §SEOETTOH (212)
where
1_
WTma = _ZD2DQVTm7 (m = 475)

1
O = 72(94 + 0Os. (213)

SE

Namely, X1 and Yp, are real linear and chiral superfields, respectively. The tensor multi-
plet (Yra, V) is subject to the constraints:

1
?WT4Q — SEWrsa + O Y1a =0,
B
D?D,, (X1Vg) = —4{0YVra — (OpSE)V1a} - (2.14)



In the global SUSY limit, these constraints reduce to the superfield version of the
self-dual condition: )
+ P n+QR
8[MBNL] —EGMNLPQRa B1ORE, (2.15)

In fact, in the limit of Sg — e~*"/* and Vi — 1, (2.14) is reduced to

WT4a + iWT5a + (64 + 265) TTa = 0,
D%D Xy = —4e"™* (94 + i85) Vra. (2.16)

The field strength superfield Y, becomes

i /4
e . .
V1o = 5 {WT4a — i Wrsa + (64 — 285) TT&}
= e/t (Wria + 04 1) = e~/ Wrsa + 05 1) - (2.17)

In the second line, we have used the first constraint in (2.16). From these expressions, we
obtain
D*Yrg = —2e7 /4 (94 — i05) Xr. (2.18)

This and the second constraint in (2.16) contain the self-dual condition (2.15). Thus, the
antisymmetric tensor By in Y1, and Vp,,, becomes the self-dual tensor B]T/[N in the
global SUSY limit.

In the SUGRA case, the second constraint in (2.14) can be solved as follows. Using
the first constraint in (2.14), Vp, can be expressed as

1
V1o = S (Wraa + 04 10)
E
= SE (WT5a + 85TTQ) . (219)

Thus the second constraint in (2.14) is rewritten as

D2Da (XTVE) = —484 <3;,Ta> + 485 (SEyTa)

B
= —404 Wrsa + 05T 1q) + 405 Wraa + 04 10)
= D?D,, (04Vrs — 05V4) (2.20)
which can be solved as
X1V = 04Vrs — O5Vra + 1 + S = Vr, (2.21)

where Y7 is a chiral superfield. The lowest component of Y is identified as
L@, _;
Yr|l= 560 = iBys. (2.22)

eq. (2.21) indicates that the “volume modulus” superfield Vg is expressed by Y14, Vim
and X7, and is not an independent degree of freedom.



2.2 Invariant action

The N = 1 superfield description of (the Ut-independent part of) the 6D SUGRA action
provided in ref. [38] is

S = /d6:E (Lyg + Lvyr),

CzeivHeven>

even

Ly = — /d40 2V, Ry’ (HgdeeVHodd + H]
+ [ / d20 { H!14d (05 — ) Heven — HY o d (0 + X) Hodd} + h.c.] ,
1
Lyr = / d*0 fr, [{—221DQV‘7 Vra+ 5 (eV!DV’ — 0eD*VIVY) Yo + h.c.}

+ X1V (Davfwg + %VIDO‘W;{ + h.c.>

+% {4 (V! — 1) (9pV! —27) — 205V 0g V7
B
ﬂﬁzfz‘f + L grs : (2.23)
Sk Sr,

where Hoqq = (H', H3, H5 -+ )t Heyen = (H?, H* HS,--.)t, d = diag(1 ~1n,)
the metric of the hyperscalar space that discriminates the compensator multiplets from the

18

Mcomp?

physical ones,” fr; = f;r are real constants, and®

REEIm%, v=4v, =43l (2.24)
E

The matrices t; are the generators for the Abelian gauge groups.
The above action is invariant under the gauge transformation:

Hodd — e_AHOddv Heven — 6Aervenv (A = tIAI)

Vi v AT+ AL >l 4 oAl (2.25)
where A’ are chiral superfields, and the other superfields are neutral. We should also note
that (2.23) becomes the 5D SUGRA action in refs. [8, 9] with the norm function: N'(X) =
fr7XTX7XT (the index T denotes the 5D vector multiplet originated from the 6D tensor

multiplet) after the dimensional reduction.
We list the Weyl weights of the A/ = 1 superfields in table 1.

3 Diffeomorphism invariance in extra dimensions

Now we modify (2.23) by introducing the “off-diagonal” components of the 6D Weyl mul-
tiplet. For this purpose, we require the action to be invariant under the diffeomorphism in

"In contrast to 4D SUGRA, an arbitrary number of the compensators is possible in 5D and 6D SUGRAs.
When ncomp > 1, the superconformal gauge-fixing conditions cannot eliminate all the degrees of freedom
of the compensators. So some auxiliary multiplets are necessary to eliminate them. (See ref. [39], for

example.) The number ncomp determines the geometry of the space spanned by the physical hyperscalars.
8Rg is denoted as U in ref. [38].



E HA v! T field strength

Uk lum| v | Sy | Vg | HA | VI ST | Yoo | Vi | St | WL | Xp | Yra | Vo
00 |=3/2|0/|=2/32]0/]0/[32| 001322/ 320

Table 1. The Weyl weights of the N = 1 superfields. The 4D gravitational superfield U* is
explained in appendix A, and the “off-diagonal” gravitational superfields U™ and U¢, are introduced
in section 3 and section 4, respectively.

the extra dimensions, i.e., d¢z™ = ™. The component field transformations are collected
in appendix B. It should be noted that we now have to discriminate the flat and the curved
4D indices even for the flat 4D background.

3.1 Hyper sector
3.1.1 Chiral superspace

First, we focus on the chiral superspace in the hypersector.
In the AV = 1 chiral superspace, the transformation parameters £ are promoted to
the chiral superfields as

EM(x,0) =M (x) +ia™(x) + O(0), (3.1)
where a™ are real functions. From (B.3), (B.11) and (B.13), the chiral superfields Sg,
Hoad, Heven and X! transform as

— =m 1 =4 _ 9 =5
0=Sg = =2"0,,SE + 5 <84H 052 52

64 51%38554) Sg,

=m 1 =m 209 —4

1
o=x! = =79, 51 + 3 <am5m 5 —-0,=° S%&:,E“) ! (3.2)
where H = Hyqq, Heven- Because the first terms in the right-hand sides correspond to the
shift of the coordinates =, they have the universal structure for all the chiral superfields.
In fact, noticing that

0=(0pH) = —(6=Sg)OeH + 0k (0=H)

— =70, (FuH) + ~ (3am5

5 Py S§a554) OpH

%aE (amzm + —504=° + 51%6554) H, (3.3)

52
we can show that the chiral superspace part of the action (2.23), i.e., the second line of
Ly, is invariant under (3.2) up to total derivatives.

b=Liy = O (2mL(7), (3.4)

where

Ly = Hlyqd (0g — %) Heven — Hlyend (05 + ) Hoaa. (3.5)

even



3.1.2 Full superspace

Next we consider the invariance in the full superspace. There, terms originating from
the shift of 2™ in the d=-transformation should have a common form for all superfields.
However, those for the chiral and the anti-chiral superfields have different forms. In order
to accommodate them, we introduce the real superfields U™ (m = 4,5), and introduce the
operator Py that shifts ™ by «U™.

Py ™ — 2™ +iU"(z,0,0) (3.6)
Then, for a chiral superfield ® (i.e., 6=® = 20, + - - - ),
@D(a:, 0,0) = Py®(z,0,0) = &(x*, 2™ +iU™(z,0,0),0,0) (3.7)

transforms as?

A —

0=b = 62 + i(6=U™)0,n®
= E 0 ® + i(0zU™) I ® + -+
= (ReE™)9p® + -+ -, (3-8)
if we assume that
6=U™ = —Im =" + (Re EM)9,U™. (3.9)

Since U™ transform nonlinearly, these correspond to the gauge fields for the d=-
transformation. The components of U™ are identified as

U™ = (608)e,™ — 02 (9o, ) (es™ + ies™)
6% (7t ) (eg™ —ies™) + -+ (3.10)

Then, (3.9) is consistent with the component transformation (B.8).19
For an anti-chiral superfield @,

&(z,0,0) = Pyd(x,0,0) = d(z", 2™ — iU™(x,0,0),0,0) (3.11)

transforms as

~

6=® = (ReE™)9p® + - - -, (3.12)

which has the same form as (3.8).
With the Py operation, (3.2) becomes

N N N 1 — — 1 — ey —— N
0=5E = (Re=")0,,5% + 5 <84E4 — 0525 + &2 O4=5 — 5%85E4> SE,
E

N N 1 _— 1 — oy —— N
ogH = (Re Em)amH + - <8mEm 0422 + 5%85E4> H,

4 52
~ ~ ~ 1 — ]_ — Ny — ~
6=3 = (Re2™)0,, 21 + 3 (amzm ~ % 04=5 — S§a554> >l (3.13)
E

9Note that O, ® = ﬁ + i@mU"BTnE.
19As we will explain in section 3.1.3, the #f-component of Im =™ is (§ot0)d,£™.



From (2.6) and (B.12), the d=-transformation of the vector superfield V! is found to
be

6=V = (Re2™)0,, V. (3.14)
Therefore, the combination
LY = i de¥ Hoga + Hiude™" Hoven (3.15)

in the first line of Ly transforms as

A 1 — 1 — oy ——
SeLiy = (ReZ™)dn Ly} + sRe <8mEm 0=+ S§85E4> LY. (3.16)
E

As for the factor in front of Lg ) in Ly, we should note that the combination Vg Rg trans-
forms as

0= (VgRg) = (Re2™)dy, (ViRg) + Re (aﬂz\m - ;26/45 = 5%8/55\4> (VeRg), (3.17)
E

which is consistent with (B.10). This transformation law is derived from (3.52) and (3.57)
explained later.
Consider the Jacobian for Py, which is calculated as

noam TTm a N,
o = sdet (8(3: 2™ +iU™(z,0),0 ,ea)>

A(zv,z", 08, 95)

= 14 i0,U™ — 0,U05U° + 0,U°05U*, (3.18)
which satisfies
/d%d“@ Jpd = /d%d“@ d =0, (3.19)
for a chiral superfield ®. After some calculations, we can show that Jp transforms as
S=Jp = O {(Re ém)Jp} 5= Jp. (3.20)
Then, we obtain
5= |Jp| = ReE™8,, |Jp| + Re (amém_aja\m) ). (3.21)

Combining these transformation laws, we find
o= (1771 Vi "Rl L) = 0 (Re=™ 175 Vi *Ri° L) (3.22)

3.1.3 Comment on Py

Here, we give a comment on the operator Pr. Let us consider a chiral superfield ® whose
components are given by

_ ; S
O = ¢+ 0+ 0°F +i(0549)0,0 — %«92@%&0 + 10292@@, (3.23)

,10,



where [y = 0,0". After the Py operation, this becomes

d(x,0) = ®(x,0) 4+ iU, ® + O(U?)
— G+ 00 + 02 F + i(0048) (a,@ + eﬁmamgz))

i _
—20? (aw e, Omt)) 1O+ - (3.24)
Namely, the operator Py replaces the derivative J,, appearing in the components with

Oy = ¢, O = ¢,/ 0y + ¢, O

= O+ e, 0. (3.25)

We have dropped the fluctuation of e,” around the background §,”, and terms beyond
linear in the “off-diagonal” components of the sechsbein. Recall that the index of o£ is
the flat one. So the 4D indices contracted with it should also be the flat ones. In higher-
dimensional SUGRA, this means that terms involving the “off-diagonal” components of
the vielbein must be incorporated, which are missing in the original superfield . The
operator Py provides such missing terms.

For later convenience, we “covariantize” the spinor derivatives D, and D as
DI =PyD,P;', D =PyDsP;'. (3.26)
Then, we can also see the same effect of Py in the N/ = 1 SUSY algebra.
{DF,DL} = {Dy +iD U™y, + O(U?), D — iD U9, + O(U?)}
= {Da,Ds} — i [Da, Ds| U0 + O(U?)
— —2i0k, 0, — i (20550, 0n + ) + O(U?)

ad @

T (327)

where O(U?) denotes terms beyond linear in U™.

3.2 Vector-tensor sector
3.2.1 Field strength superfields
From (3.14), we can show that!!
0= (Py'V!) =
5= (Pg'V') =

mam (Pljlvl) ,
"0 (P V). (3.29)

[ [1]

"'Notice that Py L is different from Py because

Pyla™ = ™ —iU™(Py ', 0)
=a" —iU"(x,0) —U"(2,0)0, U™ (x,0) + - - - . (3.28)
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Hence, if we modify the field strength superfield W! in (2.9) as

WL =_Z(DP)?DFV!, (3.30)

Iy

it transforms as

6=W! = (ReE™)9,, W1, (3.31)

which is consistent with the component transformation. However, this is not gauge-
invariant under

oAVl = Al + A (3.32)
because
ST L =p 2 ypir
AW, = —E(D )" DEA
=Py <—;D2DaUm8mA> +O(U?). (3.33)

This stems from the fact that W. should include the field strength F, w» and

Fu=e LezpﬁLAp —(p )

2
= e, (0LAy — Ore," Ap) = (n > v)
= (83/1Z — aZAH> — <aﬁe£” _ azeﬁn> Ay + -, (3.34)

where the ellipsis denotes terms beyond the linear order in the “off-diagonal” compo-
nents {e,, e,"}, or terms involving the fluctuation of e, The superfield defined in (3.30)
only contains the first term in (3.34). Thus, we have to modify (3.30) by adding terms that
depend on U™ and X/, in order to cancel the variation (3.33). The identification of the
additional terms is left for the subsequent paper, in which the gauge group is extended to
non-Abelian, but such correction terms should be determined so that the transformation
law (3.31) is maintained.

Next we consider the tensor multiplet. The d=-transformations of Y., Vi, and Xy
are found from (B.1) and (B.14) as

6ETTa = Ema1nTT()u
6=Vrm = ReE"8, Vi + (Re 8,,2") Vi,
=1 = O (E™S1). (3.35)
The definition of the field strength X in (2.12) is modified as

Xr = %Im (D7 Yy . (3.36)

Then, it transforms as
6=Xr = ReE™0,, Xp. (3.37)
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The second term in 0=V, exists because V., has an external index m. Thus we extend

the operator Py as follows. For a chiral superfield ®,,,, we define the operator Qp as'?
Qud,, = By, + 10, U"D,,. (3.38)
Since ®,,, has an external index m, its d=-transformation has a form of
0P, =Z2"0,Pp, + O E" Q) + - - -, (3.39)
Then we can show that
6=(Qu®P,,) = ReZ"0,(Qu®y) + (Re 0, Z") Qudy + - - - (3.40)
Note that this has the same form as 6=V, in (3.35). Hence, it follows that!3
6=(Qp V) = E"0,(Qp Virm) + 0mE"(Qp Virn),
02(Qy " Vom) = Z"0n(Qy Vo) + 0mZ"(Qy' Virn). (3.42)
Making use of these properties, Wy in (2.13) should be modified as
Wia = ~ 1 D°Q5 QuDay Vi
- o {—i(DQ)QDO?VTm}, (3.43)
where
DE = 0uyD.9;', Df£=0QuD:.9y" (3.44)
Then, it transforms as
=EWrma = E"0uWrma + OmZ" Wrna, (3.45)

which leads to

4% _ 4%
0= ( ST;a + SEWT5a> =E"0n ( STE4a + SEWT5a>
1 1 Wy
—(OnE™ + S O4E° + SE0sEt | | /2 + SpW
+2(m +S%4 + Ogr0s SE+ET5a
1. _ _ Wry
_ <5234:5 — s§a5;4> ( sEa — SEWTM) . (3.46)
E
12 he operators Py and Qu are understood as ewU, where Ly is the Lie derivative along U™.
13Speciﬁcally, Q(leTm is
Qy' Vim (@) = Vem(Py'w) —i(Py ' 8mU") { Q' Virn } (2)
= Vo (P 'z) — i(Py ' 0m U™ ) Vrn (P ' @)
(PG OmU™) (PG 0nU" ) V(P ') + -+ - (3.41)
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From (3.35), we can show that

d=S
92 (S5O a) = SE0k (92T1a) = == 06T 1
=Z"0 Y Y 0,2 + L 0,20 + 205! T
= E"0n (SpOETTa) + 5 { OnE +?% W=7 + Sp05E" | SEOpY T4
1
- (28455 - 5%8554) Oe Y Ta- (3.47)
Sg
Summing (3.46) and (3.47), we obtain the d=-transformation of Y1, defined in (2.12) as
1 1
5EyTo¢ - E.mamyTa + 5 <8mEm + ?6455 + 5%8534) yTa. (348)
E

We have used the constraint (2.14).
From (3.35), we also obtain

=51 = ReE"0,, 51 + 8,25y,
0= (04Vrs — 05Vrs) = 04 (0=V15) — 05 (0=V14)
— O {ReZ" (91Vis — 95Va) }
5= (inT) — (6=Jp) S + Jpd=Sir
= O {(Re ém)inT} . (3.49)
Therefore, if we modify the definition of Vr in (2.21) as
Vo = 04V — 95Viea + JpSn + JpSi, (3.50)

we find that
55 (VT) = Bm (Re émVT> . (351)

Recall that Vg = Vr/Xr from (2.21). Thus, from (3.37) and (3.51), we obtain

5EVE = (55 (VT) = Gm <Re émVT>

Xr X
_ ReEmy,, (VT T i g =) YT
= ReZE™0,, ( XT> + (Ream_ 8 U™m J, 2 ) o (3.52)

which is consistent with (B.9). However, this and (3.13) are not consistent with (3.17).
Hence, we modify the definition of Rp given in (2.24) in such a way that Vg Rg transforms
as (3.17). We modify Rg as

Rp = tIm <Jg2> %8 _ ng)“?E> , (3.53)
2 SE Sk
where
TS = 140 (U* — 05U°) — 2iS205U* + O(U?),
I = 1—i (U = 85U°) — ;84U5 +O(U?). (3.54)
E
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The higher order terms O(U?) are determined so that .J él) and J é2) transform as

5= = Re2m0,, ) — i {Im (3/45\4 - 3/55) _ 2§21m@} J

{9, U Tm 5,2m — 2i| S |? %—1 Se 5=t b T,
Jg S

~ — — 2 —
0= = ReZm0,, 0 +i {Im (8454 - 8555) +—TIm 3455} g
3

E
40, Umm G2 4+ 2 R—?-M% 045 b 2. (3.55)
|92 J@ Sk

These lead to

5= (T8} — Rezma,, (D) 4282050 R
SE SE

n {—Re (iamU"@) +ilm (;2

E

5= [ TP 2E ) — Rezma, ()SE 2 Ry
SE SE SE

_ ] —
_ S ny =m : =5 29 =4 (2) PE
+{ Re (z@mU B2 )—i—zlm (5%84_ + 82552 )}JS @ (3:50)

As a result, Ry transforms as

455 + 520,52 JS)@,
SE

O)>I

0=R = Re=™ Om R
E E — (SE

O4=° + SE85 054 + 10, U" 0= > RE. (3.57)

From (3.52) and (3.57), we certainly obtain the transformation law (3.17).

3.2.2 Invariance of action

Let us first consider the dz-invariance of the first line of Ly in (2.23). If we define
oF = PuopPy, (3.58)

we find that
. 1 — 1 /\
0z (OF V") = (ReE™)0m (OEV) + 5 (amam - ﬁa — SE0s= ) oLV, (3.59)
E

This is the same transformation law as that of $!. Similarly, 0L DTV also has the same
transformation law. Combining these properties with (3.48), we can show that

0= (LY I1a) = Re=™) (L0 Vra ) + 80Z7 (L0 Pra) | (3.60)
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where

L% = fpy {—QiIDPO‘VJ + % (OFVIDPevY — aEDPaVIVJ)} . (3.61)
Recalling (3.20), we find that
o= (JPL(Vl)ayTa) N {(R ™ Jp L} yTa}. (3.62)
Next, consider the second line of Ly. Since the combination
LY = fy (DWVIW;j + %VIDP“W;{ + h.c.) (3.63)

transforms as
0=L? = (ReZ™)0,, LY, (3.64)
we find that

0 (VTL(V2)> = Om (Re émVT) LY + V1 - (ReE™)0,, LY

. (Re é”%L@) . (3.65)
As for the third line of Ly, the combination
T .
LY =, {4 (agvf - zf) (agvj - EJ) ~9 (agvf)*agvf} (3.66)
transforms as
3 A 3 ~=m 7= s2a=a 3
0=L¥) = ReZ2™)9,, LY + Re (am: - @04:5 - S§a5:4> LY. (3.67)

From (3.37) and (3.57), we obtain

Xt 2 Xt l == o075 . —\ &7
o= Re="0,, Re [ —042% + S20524 +i0,,U"0,=™ | =—.  (3.68
<RE> e (RE>+ e(S% 422 + OR0s2™ 1 >RE ( )

Therefore, we find that

Yr @) _ 2m AT (3)
b (2010 = 0 (rezr 2219 )

Finally, consider the last line of Ly7. Combining (3.13), (3.20), (3.56) and (3.68), we
can see that

prUR—J(” Sesis) Z o, (Re Em I fr 08 g 2B S50 (3.70)
B SE RE E
We have used the property (3.19), which also ensures that
X S S
pruR—;Jé )Sz S5 = prufjg ) SE S5 (3.71)

Using the results obtained in this section, we can modify the action in (2.23) so that
it is dz-invariant up to total derivatives. We will provide the modified Lagrangian in
section 5.3.
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4 Covariantization of g

So far, we have concentrated on the d=z-transformation, i.e., a diffeomorphism in the extra
dimensions. In this section, we argue the consistency with its 4D counterpart, i.e., the 4D
N = 1 superconformal transformation. Notice that d,, does not preserve the proper trans-
formation laws for the N/ = 1 superconformal transformation collected in appendix A.2.
Thus we need to introduce the connection superfields ¥, that transform as 6;, ¥%, = —0,, L“
(L* is the N' = 1 superconformal transformation parameter), and covariantize Oy,.

4.1 Chiral superspace

On a chiral superfield, we define the covariant derivative V,, as
_ 1 N2\ L e I e W =2 Ha
Vi = O — ZD Vo Do —io,, DV 0, + ED DYV, |, (4.1)
where w is the Weyl weight. Then, V,,H (H = Hoqq, Heven) transforms as

1 _ 1.
6 (Vi H) = <—4D2LaDa +ioh DYLYY, — 8D2D°‘La> Vo H, (4.2)

at the leading order in W®.'* This is the same law as 67, H. (See (A.6).) Hence, (3.5) is
modified as

Lg) = Hgddg(vE — 2) Heyen — Héveng(vE + 2) Hoaa, (43)
where 1
SE

This is invariant under the §z-transformation up to total derivatives.

Next we consider the d=-transformation. This should commute with the dp-
transformation in order for the chiral property of the N' = 1 chiral superfields to be
preserved. From this requirement, the d=-transformation of ¥, is found to be

5zU% =" (9, 0% — 0, 0%). (4.5)

In fact, we can see that
0r6=Vy = 0=6 V¥, = 0. (4.6)

The transformation law (4.5) is consistent with the component field transformation (B.6)
under the constraint 0,,&% = 0 if we identify the §-component of U,,, as

Vo = 5 (020) , €mp + - - (4.7)

N | .

Then, V,,H transforms as

1- 1,
o= (Vi H) = V, (6=H) — ZD2 (6=V% D, H) — 3 (D*D*6=,0) H
= E"V,, (Vi H) + Vi Z"V, H + V,, (X=H), (4.8)

1411 this paper, we consider the superconformal transformations at the linearized order in ¥¢,.
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where
1

X: =

=~ =

(vmam + —V4E5 + S§V5E4> : (4.9)
We have used that
Von (Vo H) = Vo (Vi H) — iD? (T — 9,12 ) Do H}
—% [D?D (0 Ve — 0 Upma) Y H + O(T2). (4.10)
As a result, the d=-transformation of (4.3) becomes total derivatives.
b=Liy) = Vi (Z"Li7)

= O (5’”L§{1)) - %DQD“ (\IfmaEng)) . (4.11)

Note that Lg ) has the Weyl weight 3.

4.2 Full superspace
In the full superspace, V,, in (4.1) is modified as

~ 1_ 1_. _ w+n - _
Vin = O — (4D2\II%DQ + §D“\II%DdDa + 5 DQRUDO‘RUllllma>
1 o= ~¢ , l aza s W—N_ 9517 T &
~Ru (3 D*WmaD® + 5DV}, Do D + — = D*Ryy' DaRu ¥y, | (4.12)

where n is the chiral weight (i.e., the U(1)4 charge), and the operator Ry is defined by
RoXm = X — 20U (0pXom — 0 X)) + O(U?). (4.13)

Then, from the relation:

- - - 1_ 1_. _
Vi Ve = Vo Vi — {41)2 (O TS — 9, %) Dy, + im (O TS — 9,0 ) Ds D,
+w;;"D2Da (O Tna — O Uma) + h.c.} FOWU™),  (4.14)

and the transformation law:
o= (P'Vh) ="V, (P; V), (4.15)
we find that
0z { Vi (PFV!) } = 2V, { Vo (PFV!) } + ViE"V (PFVT) + O(U™),  (4.16)
which leads to

o={ Vi (P7'V) } ==V, { Ve (P;'V) } (4.17)
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where 1
Vg = —V4— SgVs. (4.18)
SE

Therefore, LS)O‘ in (3.61) and Lg’) in (3.66) are modified as
a A 1

LY = fuy {—221D7’°‘V" +5 (VEVIDTeV Y — VEDPQVIVJ)} :

R A Py oPy I
— f1y 4(VEV —2) (VEV S )—2(VEV) VEVIL, (4.19)

where

VE =PuVeP;. (4.20)

Besides, the d=-transformations (3.13), (3.14) and (3.35) are modified as

— ] —— —\ .
0=5p = (Re "V Sg+ = <V4 — V535 + §V4E5 — S%V5E4) SE,
E

A ~ N 1 — 1] —— fg——\
o=H = (Re Em)VZH + 1 (VmEm 5’2 V425 + S]%V5E4> H,
E
~ ~ ~ 1 — 1 —— fog———\
0=3" = (ReE™)V, 2! + o (vmzm — 2 V4= - S%V5E4> 1,
2 5%
5=Vl = (ReZ™)Re (VI V'),
6ETTQ = EmvaTaa

0=Vrm = (ReE™Re (VE Vi) + (Re VEE") Vi,

0=Xr =V (EME7), (4.21)
where
VD =PuVu Pt VmEr =Py (VinE"). (4.22)
5 Rotations that mix 4D and extra dimensions

Here we consider the Lorentz transformations that mix 4D and the extra dimensions. In
order to simplify the discussion, we treat the “off-diagonal” superfields U™ and U9, at the
linearized level in this section. Then, the corresponding superfield transformation laws are

given by
4 N 5
5NU”:0, 5NU = Re ? 5 5NU = —Re (NSE),
E
5N‘7E = 2‘71/21m8]3 (N‘N/E%/Q) , ONSE =0,
N
oNTY = —%Dalm (NSg), oNTE = —@DQI (S >
E
5NH0dd = _ZDZ (NV1/2 7VHeven> ) 5NHeven = ZDQ (NVEl/QeVI_{Odd> ;
SyV!=Tm {N (9gV' —257)}, onS! = —2D? (VeD*ND.V!),  (5.1)
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where Vi = VgRg, and the transformation parameter N is a complex general superfield
whose 86-component is

) VIS

= (Hot0) ()\Hé — G) 4, (5.2)

5.1 Invariance in hyper sector

The invariance of the action under the dy-transformation is less manifest than the 6;- and
the d=-transformations because the cancellation between the fd49— and the [d?0-integrals
occurs in the dy-transformation. Here, we show the invariance in the hyper sector to
illustrate such cancellation.

From (5.1), the hatted superfields transform as

S Hoa = 5 (NOp + NOg) Hoga — 5 D* (NVR 2™ Hoven)

~

5N H even —

N = N .

' (NOg + NOg) Hoven + 1D2 (NVa/%eY Hoaa) (5.3)

After some straightforward calculations, we can see that Lg ) in (4.3) and Lg ) in (3.15)

transform as
i
owLyy) = =2 D? 2NV { H34d (9 + ) Hoaa + Hiyend (9 — ) Hoven } (5.4)
+N Vé/2(OESE) (HO q ddﬂodd + evendHeven)

1~ _ .
+5 VDN (H;dddDaHeven HY, . dDoHoaq — 2DV H dddHeven)],

and
on (—2V6" " L) = 1 [an T2 L HE (deV (96 + B) Hoa + Hiyende™ (95 = 5) Hoven }
—ONV*(OuSp) (Hlggde" Hota + Hiyeude VHeven)
+P2 {thdJeVDQ (Nf/l/ 2e—VHeven>
Hlyende™V D? (NV3 eV Hoaa) }] (5.5)

up to total derivatives. We have dropped the U™- and the ¥ -dependent terms in the
right-hand-sides. The last line in § NL%2 ) can be rewritten as

A= VP Hgqde’ D* (NP6 Hosen ) = Heyeude ™V D? (NV%eY Hoaa ) |
= 2D°N (ﬁngaﬁe - ﬁngaﬁo) +N (ﬁngQHe - HngZﬁo) , (5.6)

where
Hy=Vi?eVHoaq, He=Vp'?¢™V Hoven. (5.7)

This can also be rewritten as

A=N (ﬁgCiDZﬁo - chiD?ﬁe) , (5.8)
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up to total derivatives. Therefore, we obtain
A= DN (ﬁodDaﬁe - ﬁ;JDafIO)

= VgDON (HgddciDaHeven HY. dDoHoqq — 2DV H, dchHeven) . (5.9)
We should also note that

on [Jp| = OU™), (5.10)

since |Jp| =1+ O((U™)?).
Making use of these, we can show that

SnLy = 5N{ /d49 1Jp| Ve PP + </d29 Ly +h.c.>} —0, (5.11)

up to total derivatives. We have used the relation [d?0 = —%DQ in the d?6-integration.

5.2 Kinetic terms for U™ and ¥,

Now we consider the kinetic terms for the gravitational superfields, which originate from
the 6D Weyl multiplet. Among {U*, U™, VS Vg, Sg}, only Vi and Sg have nonvanishing
background values. Here, we treat the superfields {U#, U™, ¥% } and the fluctuation parts
of Vg and Sk at the linearized order, and neglect terms beyond quadratic in them. As
shown in appendix A, the kinetic term for U*, Eg =1 is given by (A.12). There is an
additional term that involves the “off-diagonal” component superfields U™ and U, .

We define the covariant derivatives of U* as

VUH = 8, U" — %o (D*W2 — D*VL) (5.12)

where of. = (e,/')ot,. This has the Weyl weight 0, and is invariant under the §-
transformation. In order to construct the dy-invariant term, we redefine the above co-

variant derivatives as

Re S
ViUH = V4U“+VE{(ImS§3) ot -t ; EO“UE’}
E
~ Im
VsU" = VsU" + VE{ SE@“U5 ZRGQSEa#U‘*} (5.13)
|Si|* S
where O = (e,/*)(e,”)n?"9,. Then, the combination:
Cg = fV4U‘u SEV5U”
SE
~ ~ orU®
_ Lo - SeVsU" —iVi [ Seo"U* + (5.14)
SE SE
is 7- and d-invariant at the linearized order.
6.CE=0U™), OnCE=OU™,D*Vi, D*Sg). (5.15)
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Using this combination, we can construct the following dr- and Jy-invariant Lagrangian

term.

Lo = [d*0 aClCr,, 5.16
EYLp

where a is a real constant. The invariance of the action under the d=-transformation
determines a. Restoring the U¥-dependence (see appendix A.3), the 6D Lagrangian should
have the form of

_ 1 . _
E:L!EV1+LC+/d49 <1+1253a [Da, Ds U“>Q+ </d20W+h.c.>, (5.17)

where 2 and W are real and holomorphic functions respectively, whose explicit forms will
be given in section 5.3. Recall that 6= = 0,, <Re émQ) from the results in section 3.
Then, we have

1

6=L = d=Lc + / ‘o <125;}a [Da, D4 U“) O (ReE™Q) + -+ -

Q :
4 — oy —_m
= 0=Lc — /d 0 —12c‘)mU“aﬁ [Da, D] ReE™ + - -

Q
= 6=Lc — /d49 gamU“Imé?uEm 4+ (5.18)
where we have dropped total derivatives, and also dropped the fluctuation part of Q.19
Here, since
1
6=Ch = iV (SEIm or=t ¢ 5 m aﬂa5> 4o (5.19)
E

where the ellipses are of O(U*, U™, V,,, D*Vg, D*SE), we can see that

d=Le = /d49 a {8EU“ CiVi <SE1ma =4 Silma 55> } +he + -
E

gE 95U Im 8ME5> T

= — /d49 2aViIm (§E84Uulma =t
SE E

= / d*0 2aVe Rgd, UMM 9, 2™ 4 - - - . (5.20)

Therefore, from the d=z-invariance of the action, we find

a= <6V§RE > : (5.21)

5.3 6D SUGRA Lagrangian

Here we summarize our results. The 6D SUGRA Lagrangian is expressed as

1 . _
L= [d* Lg+ / a0 (1 + 754" [Da, Dal U“) Quyr + ( /d29 L+ h.c.> . (5.22)

5The superconformal gauge-fixing condition Q|s—o = —3Mgp must be imposed in order to obtain the
Poincaré SUGRA. (Mgp is the 6D Planck mass.)
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where

QHVT 1 " 2 1 2 2 échu
~U*D*D*D 54% [Da, Da) U*)™ — R
{8U U+48( [ 1U")™ = (8,U") +2<VERE>
1 1~ .y _ ny
Ch = opU" — 3 ga{S(Dawg—Da\yg)—SE (Da\yg—Da\Izg‘)}
5
—ZVEaM <SEU4 v )
SE

Quve = 2| Jp |V1/2R1/2L(2)+(J L yTa+hc>+VTL§,2)

X X
+ =217+ (JPTL$) + h.c.) , (5.23)
E

Ry

and

Lg) = Héddd(vE - )Heven - Hevend (VE + Z) Hoda,

L(2) = ﬁfdddevﬁodd + evende Heven,

L = fp, {—QEIDPQVJ +5 (VEVIDPay7 - VEDPO‘VIVJ)} ,
2 = f1, <Dmv1wg + %VIDPQW&] + h.c.) :
LY = f1y {4 (VEV! - EI)T (VEV7 -$7) -2 (vgvf)*vng} ,
= frsJ QSE RIS (5.24)
E

The covariant derivatives Vg, Vg and Vﬁ are defined in section 4, and the field strengths
are given by

- 1

Wl = —Z(DP)ZDEVI +OU*, U™,
1
Xr = ;Im (D”*Yrq)
SE 1
« = -5 « « - v S V T o
Yr 25 W4 WT5 (SE 4+ OSE 5> T
Vr = Re (VZEVT5 - Vj VT4) + JPET + jpi]T, (5.25)

~—

and Jp, Ry and Jg are defined in (3.18), (3.53) and (3.54), respectively.
We have revived the UH-dependence. Thus, for a chiral superfield &, ® should be

understood as
d(zM,0,0) = (=M +iUM(0,0),0,0). (5.26)

The Ut-dependence of WL is given by (A.10).
The real superfield Vg is expressed as

(5.27)
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and the chiral superfield Y, is subject to the constraint:

1

5 Wria — SEWtsa + VEY 10 = 0. (5.28)
E

Note that this contains U$, (m = 4,5). This constraint indicates that either ¥§ or ¥¢ is
a dependent superfield, i.e., it can be expressed in terms of the other superfields.

6 Dimensional reduction to 5D

We consider the situation that the two extra dimensions are compactified on a torus, i.e.,
™ € [0,L;,]. We take the coordinates so that L,, = O(1). Since the “off-diagonal”
components of the sechsbein do not have nonvanishing background values, the line element
along the extra dimensions is expressed as

m n

ds® = (eie,t + epe,))da™da™ = |(Ep)dz™|?. (6.1)

Hence, the ratio of the sizes of the two extra dimensions is parameterized by the background

value of Sg because
[{Ex|
|(E5)]

Therefore, the limit that the sixth (fifth) dimension shrinks to zero corresponds to the

[(Se)I” =

(6.2)

limit |Sg| — oo (|Sg| — 0). Since the extra dimensions are compactified, there are mass
gaps between the zero-modes and the KK excited modes. For the latter, 9,, gives O(1)
factors because we have taken L,, as O(1). When |Sg| — oo (|Sg| — 0), terms involving
05 (04) in Vg grow infinitely large and drop out of the path integral. So we can neglect
such terms because only the contributions from the zero-modes survive. In such a case, we
should drop the covariant derivative Vs (V4) in order to maintain the 4D diffeomorphism
invariance. As a result, we can replace Vg with S—IEV4 (=SgVs) in this limit.

Let us consider the limit |Sg| — oo as an example.!® In this case, we can neglect
the z5-dependence of the superfields, and the only extra-dimensional coordinate is y = z*.

Thus Py is understood as the operator that shifts y as y — y + iU

6.1 Hyper sector

First, we consider the hyper sector. The covariant derivative Vg becomes

1
_— (D)

Ve = oV,
vib) = 9, -

y
1- _
D? (¥ Do) = 5 DD, (6.3)
where W = ¥§. Thus, Lg) in (5.24) becomes

o Yy even even odd

L - gODg (v(5D> - 2(5]3)) HED) _ gDt g (vng) + 2(5]3)) J2pSnd (6.4)

The procedure in the limit |Sg| — 0 is similar if we use the relation (3.71).
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where

HOD = s VP H 00, HOD) = S P Hypew, 20D = g3l (6.5)
As for the full superspace part, we obtain
el Ve P RPLE = 1, VP2 (A5 AV AR + AERN AV AER)) . (6.6)
where
Jy=1+i0,U%, VPP = Vi Re|Sg[%. (6.7)

The integrands (6.4) and (6.6) agree with those in ref. [19] at the linearized order in U*.

6.2 Vector-tensor sector
Next consider the vector-tensor sector. Noting that

oYVt = pyosP;tv?!
= a4V’ — 10, U™ 0 V! + (—0)?0,U™0,, U0, V! +

1 A
4 I I_ 4
"ovl=—— 9,V 6.8
— Z Z84U A 1 T 84U4 4 Jy 3 ( )
the covariant derivative Vg becomes

1

VE — Tvg@”’ +O(T,U%Y), (6.9)

y~PE

where
w + n

1~ a 1 MO, T e}
VDT = g, — (4D2quDa + 5 DUy DsDa + D?*D*¥y, + h.c. ) +O(V,U").

(6.10)
Therefore, we obtain

Ls/l)a s gJ { 22(5D)ID73(1VJ 1 (v( )PvaPavJ V?S‘SD)PD,PQVIVJ)} .

B 2J
(6.11)
The field strengths Yr, and V1 become
Yra = SEWrs4 + SEV5 T4
— SEWg;,
Vp — VT = yEPIPYT _ (in<5D)T + h.c.) O, U, (U?), (6.12)
where
1._
W = Wi = —ZDzDaVT,
VT = Vi, SOPT = _3p (6.13)
Thus, we obtain R
X1 V7 VT|SE|2 (6.14)

R7E = VERE — VE(‘5D) )
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and

vy, (J Yo e )
f (L gepypyr 6D ' 1 gDy D)
.(5D) 1 |§E|2 Jy Y Jy Y

2y gevirgepi |y
Jy|SE‘2

T
= V7, (6.15)

up to O(¥, U4, (U*)?), where
VI = VPPV - (1,560 ). (6.16)

We have used the limit of J ) 1/Jy + O((U%?).
As a result, the Lagrangian in the vector-tensor sector becomes

[ X
Lyt = /d49 { (FoL Pra +hc) +VrLY + R—;L( )+ <J7>REL( )+ h.c.) }

49 [fu {_QJy2(5D)IDPaVJ

1 5D)Py/I nPay,J SD)P nPay, Iy,J AT
57 (VEPPVID ey wERP pPey Iy ) LW
Y

N ' 2
Ff VT (DPRVIW 4 LV IDPaRs e, ) + 2 yryiy
2 )

= (— /d29 Cp 1 SEDIWIWE +h.c.>

0777 I (0% 7 (6% I J MK
+/d49 {{}T (v V7 —9,pvIV7) W§+h.c.}
/d49 20{”3 VIVIYE, (6.17)

up to O(¥,U4, (U*)?), where the indices I,.J, K run over T,1,2,---, and the completely
symmetric constant tensor Cfjg is defined as Crjr = fr; and the other components are
zero. This agrees with the 5D result in ref. [19] at the linearized order in ¥jf and U 4 At
the last step in (6.17), we have used the relation

J1s { (v(SD)PVID’PaVJ V(5D)79D79aVIVJ> Ws
'y Y “

+ (VEPPYTDPyT - GEDIP pPayTYT) Wilk 4 he.

_ 2f1y

(5DYP1/I nPat T _ —(5D)YP yPat I T\ s
i (Vy VIDPeyT — yEPIP pPay Ty )Wa+h.c., (6.18)

which can be shown in the same way as appendix D in ref. [38].
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6.3 Gravitational sector

Finally, we consider the gravitational sector. Since Cf; in (5.14) becomes

1 1 1 _ .
Ch — —V4UF = o {awﬂ — ol (D*U§ — D*UY) + Vi(Im Sﬁ)aﬂU‘*} . (6.19)

SE & 9 ad
we find that
CiCr,  COPmP) (6.20)
D), ’ '
2(VeRe) (PP
where 1
cEDm = g, i — 500 (DYWe — D*UE) — VPP orut, (6.21)

This agrees with the kinetic term for U* and Y in ref. [19].

Finally, we give a comment on the independence of VFEE)D) defined in (6.7). Notice
that Sg disappears in the 5D action, and Y1, appears only through Xt in Vg after the
dimensional reduction. (The Yp-dependence of V1, disappears as shown in (6.12).) Thus,
although Vg in the 6D SUGRA action is not an independent degree of freedom (see (5.27)),
Vém) is independent in the 5D SUGRA action. Namely, the degrees of freedom of Sy and
YT, are converted into that of Vé5D).

7 Summary

In this paper, we have completed the N/ = 1 superfield description of 6D SUGRA. Specifi-
cally, we have clarified the dependence of the action on the N/ = 1 superfields that contain
the “off-diagonal” components of the sechsbein e, e#ﬁ, which were missing in our previous
work [38]. These superfields are necessary for the invariance of the action under the full
6D diffeomorphisms and the Lorentz transformations in the A/ = 1 superfield description.
The corresponding superfields U and ¥ play roles of the gauge fields for those transfor-
mations. Although they do not have zero-modes in many extra-dimensional models, they
can give significant effects on 4D effective theory when they are integrated out, as in the
case of 5D SUGRA [17, 18].

Our results are collected in section 5.3. The superfields U™ and ¥, appear in the
action in a nontrivial manner, but the resultant action is consistent with the 6D diffeomor-
phisms, 6D Lorentz transformations and the transformation laws of the component fields.
Besides, it reduces to the known 5D SUGRA action in ref. [19]. These properties ensure
the reliability of our result.

In this paper, U7, are treated at the linearized level. This is because we have adopted
the linearized 4D SUGRA formulation [14, 41, 42] to describe the 4D part of the 6D Weyl
multiplet. In order to treat W9, at full order, we need to use the complete conformal
superspace formulation [13], which is technically more complicated.

Our 6D SUGRA description is useful to construct or analyze various setups for the
braneworld models that contain lower-dimensional branes or the orbifold fixed points. Be-
sides, it is also powerful for the systematic derivation of 4D effective action that keeps the
N = 1 superspace structure.
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We have focused on the case of the Abelian gauge group, for simplicity. In order to ex-
tend our result to the non-Abelian case, we need to include an additional term, which is the
SUGRA counterpart of (3.9) in ref. [1] or (2.23) in ref. [2], to ensure the gauge invariance.

We will discuss these issues in a subsequent paper.
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A N =1 SUGRA couplings

In this section, we summarize the result of ref. [14], and show how to obtain the couplings
to the ' = 1 SUGRA multiplet. This corresponds to the modification of the 4D linearized
SUGRA [41, 42] to make the relation to the superconformal formulation in refs. [10]-[12]
clearer. Before the gauge fixing of the extraneous symmetry, the action has the N’ = 1 su-
perconformal symmetry that consists of the invariance under the translation P, SUSY Q,
the local Lorentz transformation M, the dilatation D, the automorphism U(1) 4, the con-
formal boost K, and the conformal SUSY S. In ref. [14], we expressed this formulation in
the language of the superfields at the linearized order in (the fluctuation part of) the grav-
itational fields. In this appendix, we neglect terms beyond this order, and the background
spacetime is assumed to be 4D Minkowski spacetime.

A.1 Definition of superfields

The independent fields in the Weyl multiplet are the vierbein ef, the gravitino 1, the
U(1) 4-gauge field A,, and the D-gauge field b,. Among them, b, does not play any
essential role, and can be set to zero, which corresponds to the K-gauge fixing.

The vierbein e,” is divided into the background (e,”) and the fluctuation e, as

e, = ) (6, +¢,), (A.1)

where (e,”) = 6,” by our assumption.!” Then we can form the following real superfield.
U = (6020) <e£”>éy“ + z'9_2<eg") (90353#@) — i92<eg"> (9_6'30'3@!_12)
1 0 voT ~
+10292 (BAF — MPTO,E,,) . (A.2)

We have included (e,”) in the above expression in order to make the counting of the Weyl
weight clear. This superfield has the Weyl weight 0.
We construct a chiral superfield from a (superconformal) chiral multiplet [¢, xo, F] as

@ = (1+5€) (6+0x+06F),
£ = el —2if0tp,, (A.3)

where w denotes the Weyl weight (i.e., the D charge) of this multiplet.

"We need not discriminate the curved indices p from the flat one p for €,” whose Weyl weight is 0.
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We also construct a real (unconstrained) superfield from a real general multi-

plet [C, Ca,’i’-[,Bu,/\a,D]18 as
V= {1+ 2 €+ {C+iC 0~ 6*H — F*H — (6529)B,
= 6 - M

__ _ 1 .-
+i02(ON) — 02 (ON) + 202921)’} ,

(A.4)
where
, __ w
Bu = Bu - Cd’u - Cw# - §CAI“
Xo = ha =5 (070u0) , = (05" ), By = 5 (0),, Aus
1
D =D_ ig;wa“@yc 4+, (A'5)

and o', = (e,/')o%,.

A.2 Superconformal transformation

With the above definitions of the superfields, the (linearized) superconformal transforma-
tions are expressed as'?

1 n& T o T
o UM = *5023(17 L* — D*L%),
1_2 « S VA a6 e W =9 ~a
o ® = —ZD LDy + it DL 8M—ED DL, | ®
_ pe (L“DQ(IMFEDO‘LO@),
4 3
172 « i 0L a7 o W =9 ~a
oLV = —ZD L Da+§aadD LY9, — ﬂD DL, +h.c. |V, (A.6)

where the transformation parameter L% is an unconstrained complex spinor superfield.
The components of L denoted as

_ . 1
¢" = —Re (ioh,DL)|,_, €a = —-D*Ly|
4 0=0

1 _ 1. -
A = —=Re {(aw)cf DaD2L5} , op = Re ( =DD?L, :

2 6=0 4 0=0

1 - 1 -
94 =1Im (—6DO‘D2LQ> , Na = —3—2D2D2La , (A7)
0=0 =0

represent the transformation parameters for P, Q, M, D, U(1), and S, respectively.
As we can see from (A.6), U* transforms nonlinearly, and thus it corresponds to the
gauge (super)field for the dp-transformation. We should also note that this superfield
transformation preserves the chirality condition: Dg® = 0.

"®A complex scalar H is 1(H + iK) in the notation of ref. [12].
19We take the metric convention and the definitions of the spinor derivatives of ref. [40], which are different
from those in ref. [14].
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A.3 Invariant action

For a given global SUSY Lagrangian:

Lonatter = /d40 Q®,V) + [/dQH {W(cb) - if(@)wawa} + h.c.] , (A.8)

where () is a real function, W and f are holomorphic functions, and W, = —iDQDaV, we

can make it invariant under the dz-transformation by inserting U in the following way.

L= /d49 (1 + ;El) Q(®y,V) + [/dzﬁ {W((I)) - if(@)WﬁWUa} + h.c} . (A9)

where

1 e 2 PeTet v\ =0
E, = 100 [Da, Ds] U*, 7, = (e,)a,,
Oy = (1+4iU"9,)
1. 1 ¥ _ .
Wia = =D (DaV + DU, [Dﬁ, Dﬁ-] V- zU“@MDaV> . (A.10)

Here, the operation of (1 4 iU*d,) on ® is understood as the embedding of the chiral
multiplet into a general multiplet. The modified field strength superfield Wy, is invariant
under the gauge transformation:

V=V + (1+iU"9,) A+ (1 —iU"9,) A, (A.11)
where A is a chiral superfield.

The kinetic term for U is given by?°
_ Q) (1 _ 1
L=t = /d40 <3> {SU“DQDQDQUM + gEf — (8MU“)2} , (A.12)

where the Weyl weight of U, = (eug> <e,,1)7]BIU” is —2.
Using the above insertion of U, the N' = 1 (linearized) SUGRA Lagrangian is obtained

by choosing

Q — _3’(1)((2]0111’ e—K(‘I)U,V)/S,
W = (2°") Wsucra (@), (A.13)
where ®°™P is the compensator chiral superfield, ® is the physical chiral superfield, the

real function K (®y, V') is the Kéhler potential, and the holomorphic function Wgugra (P)
is the superpotential.

20The D-gauge-fixing condition that leads to the canonically normalized Einstein-Hilbert term is given
by Q|g=0 = —3 in the unit of the Planck mass.
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B Diffeomorphism of component fields

Under the diffeomorphism, the coordinates and the fields transform as

(5§eMﬂ = {LBLQME—FaMfLeLﬂ,

Sepft = Mool

5 ALy = Non AL + oM AL,
seo = Moy,

6¢Bun = 201 Bun + Om& By + OnE By, -, (B.1)

where the transformation parameters ¢M (z) are real functions. The 6D diffeomorphism &g
can be divided into the 4D part (5§1) with £, and the extra-dimensional part (5§2) with £™.
In this section, we focus on the 5§2)—transf0rmations of the component fields of the /' =1

superfields.

B.1 Weyl multiplet

From the second equation in (B.1), F,, = et + iey> transforms as

08 B = 0" Epy + €0 B, (B.2)

which leads to

L

1
5P Sp| = €™ 0 SE| + 5 <a4§4 ~ 06" + o ’8455 - s%ya5§4> Sgl,
E

1
ﬁ&&&ﬁwwmww@+@Mmﬁ¢@é+%@éym&% (B:3)
E
where Sg| = \/E4/Es.
Here we impose the constraint:?!
Ol = B, (gNe NH) —0. (B.4)

Then the “off-diagonal” components ens transform as

Scen = ENONem + OmEN ey

= Noven — EVOmey. (B.5)
Namely, its 5§2)—transf0rmation is

<5§2)emﬁ =& <8nemﬁ — 8menﬁ> . (B.6)

21 This constraint preserves the values of enr under the 4D diffeomorphism, but we do not take a gauge
in which they are fixed to zero.
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Since

5geMN = —eML ((5£€L£> eBN
= Popey) —epy 0peN = P ope,) — oue”, (B.7)
we obtain
5§2)eum = —0,™ + f”@ne&m. (B.8)

. 4 5 5 4
Besides, e(? = e, €5~ — e, e transforms as

(5§2)e(2) =0On (ﬁme(2)> . (B.9)

Hence, it follows that

(2)2
@y — s@ [ _€
% Vel = o <|E4E5\>

2¢(2) 52 (2) (2)2
5 e o o (2)
= — Re s E4E50 ELE
- 1 -
= £"0,,Vi| + Re <amgm - 5—2‘6455 — s§|ag,§4> Vil (B.10)
B

where VE = VERE.

B.2 Hypermultiplet

Combining the third equation in (B.1) with the second equation in (B.3), we obtain the
transformation of H4| = (E,E5)"/4¢4 as
1

(2) r7A| _ om A 1 m
6@ HA| = ¢m0, 1 |+4<8m§ t g

e + 5%10554) HA|. (B.11)

B.3 Vector multiplet
Combining the fourth equation in (B.1) with (B.7), we can show that
2 2 n
oAl =60 (eENA{V) = "9, AL (B.12)
As for the extra-dimensional components, we see that

@)y _ & Lo ) <@ L @) g (2) 41
L
Szl

= M9, Nl + % <3m§m — 048 — S%Ws&) >, (B.13)

where X[ = L (S5 AL — Sg|AL).
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B.4 Tensor multiplet

From the last equation in (B.1) and (B.7), we have

0 By = €0, By
6(2)Bﬁm = gnanBﬁm + 8m£nBﬁna

5?)345 = £"0,Bys + 04" Bas + 0567 Bys = 0y, (€"Bus)
0 By = "0, Bs. (B.14)

C Lorentz transformations of component fields

In this section we see the Lorentz transformations of the component fields of the superfields.
C.1 Weyl multiplet

The sechsbein e ME transforms as

ey = Npenr (C.1)

where the transformation parameters )\ML are real, and An; = —ALn 22 In the following,
we focus on the transformations by )\ﬁﬂ, which mix 4D and the extra dimensions.
First, note that

OB = 0 (et +ie,0) = (M, + 07, ) et
©

= — ()\&4 + i)\ﬁé> €m ,
5)\6(2) = 5)\1111 (E_'4E5)

— _Im { (Aﬂé - z')\@) <E5e4ﬁ _ E4e5ﬁ> }

— —e® Cingg) VBB  JEs e JEL w
e Re{()wl ZA@) paE) x( E4e4 E5€5 . (C.2)

Since these are proportional to emﬁ, we can see that

5 — O(en ) et
W =0, o | g | = Ol (C.3)

These are consistent with the first and the fourth transformations in (5.1) if we choose the
lowest component of N as zero, N| = 0.

22The flat indices M, N, - - - are raised and lowered by 72X and nasn, respectively.
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In the following, we neglect the “off-diagonal” components e, and e,* in the right-
hand sides. Then we can see that

i p ‘n o2 o "
) 4 5
= Re {(2) ()\f + Mf) ((34* + 264*> }
B . VE4E5 Ey

which are consistent with the second and the third transformations in (5.1). Besides, since
i i
I { ()\Hg + Z)\ﬁé) (e + zemé)}

ie(2) , Epn

we obtain

j je(2) E.E E
i _ e . 445 4
Oy <2€4u> = Im {()\#4 z)\ﬁé) PaE) X 7E5 } ,

j je(2) ELE E
v __ e . 4Lv5 Ls
Y <2€5u> = Im {()\#4 z)\ﬁé) PRERS i } ; (C.6)

which are consistent with the transformations in the third line of (5.1).

C.2 Hypermultiplet

Since
A
o5

W (E55/\E4 + E4(5)\E5) = 0(67#)7 (C?)
5

Ox {(E4E5)1/4 ¢§} =

the transformations in the fourth line of (5.1) are consistent with the component transfor-
mations. (Recall that we have chosen the lowest component of N as zero.)
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C.3 Vector multiplet

We can also see that the last two transformations in (5.1) are consistent with the -
transformations of the component fields because

&Ai = AfAé =N (et Al +e,°AL) + A 2 (e5 Al + e5° Al (C.8)
1 5 4 4
= A,&@ (65 Ai e, AI) + )\u5 e (—65144[1 + 64*Aé)

1
= @ {Aﬁélm (E5A4 - E4A£) — )\HQRQ (E5Ai — E4Aé)}

1
= Re {w(z) (Aﬁé - Mﬁé) (EsAL — E4Ag)}

VEE; i E E
_zlm{QM4 z)\,,ﬁ) (42) 2<,/EiA4 ’/E:AI>}
) v %AI— %AI =4 —&(AI—F'AI) (C.9)
Me\WVES  VES ) [ T 2vEE TR '

©)
R R AN BN ANy |
- (A +in) Ap
1 @ T
== j '
T (Aﬁé + 2)\@) A
i e(22 VEJE
- 2|E4E; { (AHUM@) e (4
; (2)2 VEE T
-ty e _; Vsl Iu
=2 EuEs| {(A”‘* Mﬁé) i } < AT
and ] .
—éDQ <‘7ED°‘NDQVI) - —% x Vig| x Ay, x AT, (C.10)
where A, denotes the 00-component of N, i.e.,
VE4E5
AE = ()\#4 Z)\#E)) W (Cll)
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