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1 Introduction

The effective action of string theory defined on various backgrounds provides information

about perturbative as well as non-perturbative aspects of the theory. Certain terms in

the effective action have been obtained in various cases based on spacetime as well as

worldsheet techniques. This primarily includes maximally supersymmetric string theories

in various dimensions obtained by toroidally compactifying type II string theory. In par-

ticular, BPS interactions in the effective action have been obtained in [1–18] primarily

based on considerations of supersymmetry and U-duality. The weak coupling expansion

of the moduli dependent coefficient functions of the BPS interactions matches results in

string perturbation theory at one loop [19–28]1 as well as at higher loops [34–39], while the

one loop results for non-BPS interactions lead to predictions for U-duality. Thus an intri-

cate interplay between spacetime and worldsheet techniques in maximally supersymmetric

compacifications allows us constrain various terms in the effective action.

However, the effective action in theories with lesser supersymmetry has not been as

well analyzed, which is essentially because of the reduced supersymmetry leading to a more

involved analysis. Theories which preserve sixteen supersymmetries are the simplest to

analyze in this class, and result from various compactifications as well as arising as the world

volume theories of D-branes. Certain terms in the effective action of such theories have been

analyzed, for example, in [40–53] based on diverse spacetime and worldsheet techniques.

Since the low momentum expansion of the superstring amplitudes strongly constrain

the effective action, we shall consider this expansion at one loop in heterotic string the-

ory [54] in ten dimensions. This is among the simplest examples among closed string the-

ories with sixteen supersymmetries where one can perform such an analysis. In particular,

we consider the low momentum expansion of the four graviton, and the two graviton-two

gluon amplitudes in heterotic string theory at one loop in ten dimensions. These amplitudes

are the same in the Spin(32)/Z2 and E8 × E8 theories.

1Also see [29–33] for relevant details regarding calculating various one loop amplitudes.
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For these massless four point scattering amplitudes, the external momenta kµi (i =

1, . . . , 4) satisfy
∑4

i=1 k
µ
i = 0, and the Mandelstam variables are given by

s = −(k1 + k2)2, t = −(k1 + k4)2, u = −(k1 + k3)2 (1.1)

satisfying s+t+u = 0. We shall neglect overall numerical factors for the various amplitudes

which are irrelevant for our purposes.

The leading interactions in the effective action obtained from the low momentum

expansion of the four graviton and the two graviton-two gluon amplitude are schematically

denoted by the R4 and R2F2 terms respectively, where R and F denote the Riemann

curvature and the Yang-Mills field strength respectively. For the four graviton amplitude,

we consider the first subleading contribution given by the D2R4 term, while for the two

graviton-two gluon amplitude we consider the D2R2F2 and the D4R2F2 terms, where

each factor of D schematically stands for an external momenta. Thus we consider all the

interactions upto ten derivatives which result from these string amplitudes.

We first consider the four graviton and the two graviton-two gluon amplitudes at

tree level and perform the low momentum expansion. This yields the various spacetime

structures that arise and also fixes the coefficients at tree level. We next consider these four

point amplitudes at one loop, and perform the low momentum expansion. To obtain the

coefficients of the various terms in the effective action, it amounts to evaluating modular

invariant integrals involving SL(2,Z) covariant modular graph functions over the truncated

fundamental domain of SL(2,Z). While some of the graphs are quite simple for the others

we obtain second order differential equations satisfied by these graphs which allow us

to solve for them, and hence perform these integrals over moduli space. We get these

differential equations by varying the graphs with respect to the Beltrami differential on

the toroidal worldsheet, leading to compact expressions for eigenvalue equations these

graphs satisfy. These Poisson equations have source terms that are determined by the

structure of the graphs. We then extract the coefficients of these interactions at one

loop by integrating modular invariant combinations of these graphs over the truncated

fundamental domain of SL(2,Z). This makes crucial use of the asymptotic expansions

of the various graphs which is performed separately. This generalizes similar analysis

done for the one loop amplitude in type II string theory which only involves SL(2,Z)

invariant graphs [23, 27, 28, 33], and the calculation of the R4, R2F2 coefficients in the

heterotic theory, as well as the anomaly cancelling terms [55–57]. These coefficients in

the heterotic theory involved integrating almost anti-holomorphic integrands with mild

holomorphicity over the truncated fundamental domain of SL(2,Z). This has been done

by directly calculating the amplitude [56, 57], as well as by calculating the elliptic genus [55].

We shall see that the analysis we perform is considerably more involved, given the nature

of the integrands. Hence we determine these interactions at one loop which contribute to

the effective action of heterotic string theory. The various technical details are given in

the appendices.

Compared to the analysis of the interactions in the type II string theory which has

been considered to higher orders in the derivative expansion than what we do for the het-

erotic theory, we see that the analysis is considerably more involved. This is a consequence
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of the reduced supersymmetry the heterotic theory enjoys compared to the type II the-

ory. While we perform the analysis only upto the D2R4 and D4R2F2 interactions in the

low momentum expansion of the four graviton and the two graviton-two gluon amplitude

respectively, our method can be extended to higher orders in the momentum expansion.

It will be interesting to understand the structure of the interactions that follow at higher

orders in the momentum expansion, as well as in cases with lesser supersymmetry. It will

also be very interesting to understand the structure of the low momentum expansion of

these amplitudes at higher loops.

2 The tree level amplitudes in heterotic string theory

To begin with, we consider the low momentum expansion of the tree level amplitudes in het-

erotic string theory [58–62]. At tree level, the amplitudes are the same in the Spin(32)/Z2

and E8 × E8 theories.

2.1 The four graviton amplitude

At tree level, the four graviton amplitude is given by

Atree
4g (ki, ε

(i)) = −e−2φ Γ(−α′s/4)Γ(−α′t/4)Γ(−α′u/4)

Γ(1 + α′s/4)Γ(1 + α′t/4)Γ(1 + α′u/4)

4∏
i=1

ε(i)µiνiK
µ1µ2µ3µ4

×
[
Kν1ν2ν3ν4 − α′stu

16

(
ην1ν2ην3ν4

1 + α′s/4
+
ην1ν4ην2ν3

1 + α′t/4
+
ην1ν3ην2ν4

1 + α′u/4

)
+

α′ut

8(1 + α′s/4)

(
α′

2
kν2

1 k
ν1
2 k

ν4
3 k

ν3
4 − η

ν1ν2kν4
3 k

ν3
4 − η

ν3ν4kν2
1 k

ν1
2

)
+

α′us

8(1 + α′t/4)

(
α′

2
kν4

1 k
ν1
4 k

ν3
2 k

ν2
3 − η

ν1ν4kν3
2 k

ν2
3 − η

ν2ν3kν4
1 k

ν1
4

)
+

α′st

8(1 + α′u/4)

(
α′

2
kν3

1 k
ν1
3 k

ν4
2 k

ν2
4 − η

ν1ν3kν4
2 k

ν2
4 − η

ν2ν4kν3
1 k

ν1
3

)
+
α′s

12

(
kν3

1 k
ν4
2 k

ν1
4 k

ν2
3 +kν4

1 k
ν3
2 k

ν1
3 k

ν2
4 +(kν1

3 k
ν2
3 +kν1

4 k
ν2
4 )(kν3

1 k
ν4
1 +kν3

2 k
ν4
2 )

)
+
α′t

12

(
kν3

1 k
ν2
4 k

ν1
2 k

ν4
3 +kν2

1 k
ν3
4 k

ν1
3 k

ν4
2 +(kν1

2 k
ν4
2 +kν1

3 k
ν4
3 )(kν2

1 k
ν3
1 +kν2

4 k
ν3
4 )

)
+
α′u

12

(
kν2

1 k
ν4
3 k

ν1
4 k

ν3
2 +kν4

1 k
ν2
3 k

ν1
2 k

ν3
4 + (kν2

1 k
ν4
1 +kν2

3 k
ν4
3 )(kν1

2 k
ν3
2 +kν1

4 k
ν3
4 )

)]
,

(2.1)

where ε
(i)
µν (i = 1, · · · , 4) is the polarization tensor for the graviton which carries momentum

ki respectively, and φ is the dilaton.2 Here we have that

Kµ1µ2µ3µ4 =
1

4
(utηµ1µ2ηµ3µ4 + stηµ1µ3ηµ2µ4 + suηµ1µ4ηµ2µ3)

−s
2

(ηµ2µ4kµ1
4 kµ3

2 + ηµ1µ3kµ4
1 kµ2

3 + ηµ2µ3kµ4
2 kµ1

3 + ηµ1µ4kµ2
4 kµ3

1 )

− t
2

(ηµ2µ4kµ1
2 kµ3

4 + ηµ1µ3kµ4
3 kµ2

1 + ηµ1µ2kµ4
2 kµ3

1 + ηµ3µ4kµ1
3 kµ2

4 )

−u
2

(ηµ1µ2kµ4
1 kµ3

2 + ηµ2µ3kµ4
3 kµ1

2 + ηµ1µ4kµ2
1 kµ3

4 + ηµ3µ4kµ2
3 kµ1

4 ) (2.2)

2This will be our convention at one loop as well.
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leading to a manifestly crossing symmetric expression for the amplitude. In fact,

Kµ1µ2µ3µ4 = tµ1ν1µ2ν2µ3ν3µ4ν4
8

4∏
i=1

kiνi (2.3)

where t8 is given by the standard expression. Thus the first term in (2.1) which has two

powers of K is the type II four graviton amplitude, while the rest arise from reduced

supersymmetry.

2.2 The low momentum expansion of the four graviton amplitude

We now perform the low momentum expansion of the four graviton amplitude. We shall

be interested in contact terms in the effective action resulting from terms in the amplitude

having at least eight powers of momenta. Terms with lesser powers of momenta in the

amplitude arise from contributions that result from the supergravity action involving two

derivative terms, as well as the four derivative R2 contact term. These terms do not

receive contributions beyond tree level and hence they are tree level exact. At one loop

n-point amplitudes of massless particles vanish unless n ≥ 4 which follows from a zero

mode analysis and we consider only those interactions that arise from amplitudes which

receive contributions beyond tree level. For the four graviton amplitude at tree level, these

are contact term contributions which involve at least eight powers of momenta, and they

lead to terms in the effective action which we schematically denote as D2kR4 for k ≥ 0.

Along with the R4 contribution which has already been analyzed in the literature, we shall

analyze the D2R4 term at tree level and at one loop. The interactions at higher orders in

the derivative expansion can be analyzed in a similar way.

The various manifestly crossing symmetric spacetime tensors that arise in our analysis

are given in appendix A.

From (2.1), we see that the R4 term is given by

Atree
R4 = e−2φ

4∏
i=1

ε(i)µiνiK
µ1µ2µ3µ4

[
2ζ(3)K −

(
I4,0 +

2

α′
I2;1,0 +

4

α′2
I1;2,0

)]ν1ν2ν3ν4

, (2.4)

while the D2R4 term is given by

Atree
D2R4 = e−2φ

4∏
i=1

ε(i)µiνiK
µ1µ2µ3µ4

[(
I4,1 +

2

α′
I2;2,0 +

4

α′2
I1;3,0

)
−4ζ(3)

α′

(
I2;0,1 +

2

α′
I1;1,1 −

α′

6
(I5,1 + I6,1)

)]ν1ν2ν3ν4

. (2.5)

The various expressions in (2.4) and (2.5) lead to terms in the effective action that

can be written in terms of covariant expressions involving curvature tensors. Here and

elsewhere, we refrain from giving the expressions as they are not relevant for our purposes.

– 4 –



J
H
E
P
1
1
(
2
0
1
7
)
1
3
9

2.3 The two graviton-two gluon amplitude

The two graviton-two gluon amplitude is given by

Atree
2g,2a(ki, ε

(i), e(i)) = −e−2φ Γ(−α′s/4)Γ(−α′t/4)Γ(−α′u/4)

Γ(1 + α′s/4)Γ(1 + α′t/4)Γ(1 + α′u/4)
ε(1)
µ1ν1

ε(2)
µ2ν2

e(3)
aν3
e

(4)
bν4

×Tr(T aT b)Kν1ν2ν3ν4

[
ut

2(1 + α′s/4)

(
α′

2
kµ2

1 kµ1
2 − η

µ1µ2

)
+ tkµ1

3 kµ2
4 + ukµ1

4 kµ2
3

]
(2.6)

where ε
(i)
µiνi (i = 1, 2) is the polarization tensor for the graviton which carries momentum

ki respectively, while e
(i)
aµi (i = 3, 4) is the polarization vector for the gluon which carries

momentum ki respectively. This will also be our convention at one loop as well. The color

trace is in the vector representation of SO(32) in the Spin(32)/Z2 theory and is defined

by TrV (T aT b) = 2δab, and in the adjoint representation of E8 × E8 and is defined by

TrA(T aT b) = 2δab/30 in the E8 × E8 theory.

2.4 The low momentum expansion of the two graviton-two gluon amplitude

We now perform the low momentum expansion of the two graviton-two gluon amplitude,

which leads to contact terms in the effective action with at least six powers of momenta.

Terms with lesser powers of momenta arise from the Einstein-Hilbert, F2 and R2 contri-

butions which do not receive contributions beyond tree level. We denote these terms which

also receive contributions at one loop as D2kR2F2.

We find it useful to define the tensors

Jµ1µ2
1 = kµ2

1 kµ1
2 +

s

2
ηµ1µ2 ,

Jµ1µ2
2 = tkµ1

3 kµ2
4 + ukµ1

4 kµ2
3 −

ut

2
ηµ1µ2 . (2.7)

Thus from (2.6), we see that the R2F2 term is given by

Atree
R2F2 =

4e−2φ

α′
ε(1)
µ1ν1

ε(2)
µ2ν2

e(3)
aν3
e

(4)
bν4
Tr(T aT b)Kν1ν2ν3ν4Jµ1µ2

1 , (2.8)

while the D2R2F2 term is given by

Atree
D2R2F2 = −e−2φε(1)

µ1ν1
ε(2)
µ2ν2

e(3)
aν3
e

(4)
bν4
Tr(T aT b)Kν1ν2ν3ν4

[
sJµ1µ2

1 + 2ζ(3)Jµ1µ2
2

]
, (2.9)

and finally the D4R2F2 term is given by

Atree
D4R2F2 =

α′e−2φ

4
ε(1)
µ1ν1

ε(2)
µ2ν2

e(3)
aν3
e

(4)
bν4
Tr(T aT b)Kν1ν2ν3ν4

(
s2 − 2ζ(3)ut

)
Jµ1µ2

1 . (2.10)

While the R2F2 term has been analyzed in the literature, we shall also analyze the

D2R2F2 and D4R2F2 terms upto one loop, which is the order in the momentum expansion

to which we analyze the four graviton amplitude.

– 5 –
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3 The one loop amplitudes in heterotic string theory

We now consider the four graviton and the two graviton-two gluon amplitudes at one

loop [56–58, 63] in the heterotic theory. Before considering the explicit expressions for

these amplitudes, we briefly go through some generalities relevant for our purposes.

For the one loop amplitudes, we have to integrate the modular invariant integrand

over the fundamental domain of SL(2,Z) parametrized by the complex structure τ of the

torus. This integrand involves an integral over the insertion points of the vertex operators

on the toroidal worldsheet Σ. At one loop, zi (i = 1, · · · , 4) are the positions of insertions

of the four vertex operators on the worldsheet with complex structure τ . Thus d2zi =

d(Rezi)d(Imzi), where

− 1

2
≤ Rezi ≤

1

2
, 0 ≤ Imzi ≤ τ2 (3.1)

for all i. The various amplitudes involve the scalar Green function Ĝij (as well as its

derivatives) between points zi and zj , and so3

Ĝij ≡ Ĝ(zi − zj ; τ). (3.2)

It is given by [19, 55]

Ĝ(z; τ) = −ln

∣∣∣∣θ1(z|τ)

θ′1(0|τ)

∣∣∣∣2 +
2π(Imz)2

τ2

=
1

π

∑
(m,n) 6=(0,0)

τ2

|mτ + n|2
eπ[z̄(mτ+n)−z(mτ̄+n)]/τ2 + 2ln|

√
2πη(τ)|2. (3.3)

The Green function itself enters the amplitude only in the Koba-Nielsen factor and thus the

position independent second term in the second expression in (3.3) cancels using s+t+u =

0. Only the worldsheet derivatives of the Green function arise elsewhere in the amplitudes

which follows from the structure of the vertex operators, and thus the second term in the

second expression in (3.3) can be ignored. Hence we consider the Green function to be

simply given by

G(z; τ) =
1

π

∑
(m,n) 6=(0,0)

τ2

|mτ + n|2
eπ[z̄(mτ+n)−z(mτ̄+n)]/τ2 . (3.4)

Note that G(z; τ) is modular invariant, and single valued as it is doubly periodic. Thus

G(z; τ) = G(z + 1; τ) = G(z + τ ; τ). (3.5)

We denote G(zij ; τ) ≡ Gij for brevity. This structure of the Green function is very useful for

us in the various manipulations. Using its single valuedness, we can integrate ∂zG(z, w) by

parts while integrating over z without picking up boundary terms. Also from the structure

of (3.4) it follows that all one particle reducible diagrams vanish. It also follows that∫
Σ
d2z∂zG(z, w) =

∫
Σ
d2z∂2

zG(z, w) = 0 (3.6)

which proves to be useful.

3We suppress the z̄, τ̄ dependence in Ĝ(z, z̄; τ, τ̄) and simply write it as Ĝ(z; τ) for brevity, which is

standard.
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Finally, we have that

∂̄w∂zG(z, w) = πδ2(z − w)− π

τ2
,

∂̄z∂zG(z, w) = −πδ2(z − w) +
π

τ2
(3.7)

which we shall repeatedly use in our analysis.

3.1 The four graviton amplitude

The one loop four graviton amplitude is given by

A1−loop
4g (ki, ε

(i)) =
4∏
i=1

ε(i)µiνiK
µ1µ2µ3µ4

∫
F

d2τ

τ2
2

Ē2
4

η̄24

4∏
i=1

∫
Σ

d2zi

τ2
eDT ν1ν2ν3ν4 , (3.8)

where we have integrated over F , the fundamental domain of SL(2,Z) and d2τ = dτ1dτ2.

Here we have defined

2ζ(2k)E2k(τ) = G2k(τ) (3.9)

for k ≥ 2, where G2k(τ) is the holomorphic Eisenstein series of modular weight 2k de-

fined by4

G2k(τ) =
∑

(m,n) 6=(0,0)

1

(m+ nτ)2k
. (3.11)

Also in the Koba-Nielsen factor, D is defined by

4α′−1D = s(G12 +G34) + t(G14 +G23) + u(G13 +G24). (3.12)

Finally, we consider the manifestly crossing symmetric tensor T µ1µ2µ3µ4 . It depends on

the locations of the insertions zi on the worldsheet, and the complex structure τ , and is

defined by

T µ1µ2µ3µ4 = Aµ1Aµ2Aµ3Aµ4 +
1

2α′

(
ηµ1µ2R12A

µ3Aµ4 + ηµ1µ3R13A
µ2Aµ4

+ηµ1µ4R14A
µ2Aµ3 +ηµ2µ3R23A

µ1Aµ4 +ηµ2µ4R24A
µ1Aµ3 +ηµ3µ4R34A

µ1Aµ2

)
+

1

(2α′)2

(
ηµ1µ2ηµ3µ4R12R34+ηµ1µ3ηµ2µ4R13R24+ηµ1µ4ηµ2µ3R14R23

)
, (3.13)

4A modular form Φ(m,n)(τ, τ̄) of weight (m,n) transforms under SL(2,Z) transformations τ → (aτ +

b)/(cτ + d) where a, b, c, d ∈ Z, ad− bc = 1 as

Φ(m,n)(τ, τ̄)→ (cτ + d)m(cτ̄ + d)nΦ(m,n)(τ, τ̄). (3.10)

– 7 –
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where5

Aµi =
1

4πi

4∑
j=1

kµij ∂̄jGji,

Rij = − 1

4π2
∂̄2
iGij , (3.15)

which involves derivatives of the Green functions.

In the expression for the four graviton amplitude (3.8), the factor of η̄24 in the de-

nominator arises from the left moving oscillator modes, while Ē2
4 in the numerator arises

from the lattice sum while summing over the spin structures after performing the GSO

projection. In the Spin(32)/Z2 theory the sum yields6

1

2

4∑
α=2

θ̄16
α = Ē8, (3.16)

while in the E8 × E8 theory it yields

1

4
(

4∑
α=2

θ̄8
α)2 = Ē2

4 . (3.17)

Both these sums are equal using Ē2
4 = Ē8, hence the four graviton amplitude is the same

in both the theories.

3.2 The two graviton-two gluon amplitude

We next consider the two graviton-two gluon amplitude, which is given by

A1−loop
2g,2a (ki, ε

(i), e(i)) = ε(1)
µ1ν1

ε(2)
µ2ν2

e(3)
aν3
e

(4)
bν4
Tr(T aT b)Kν1ν2ν3ν4

×
∫
F

d2τ

τ2
2

1

η̄24

4∏
i=1

∫
Σ

d2zi

τ2
eD
(

1

2α′
R12η

µ1µ2 +Aµ1Aµ2

)
L̄. (3.18)

The factor of L in the above expression involving the lattice sum is given by complex

conjugating

LSpin(32)/Z2
=

4∑
α=2

θ16
α

[
θα(z34; τ)θ′1(0; τ)

θα(0; τ)θ1(z34; τ)

]2

(3.19)

in the Spin(32)/Z2 theory, and

LE8×E8 = E4

4∑
α=2

θ8
α

[
θα(z34; τ)θ′1(0; τ)

θα(0; τ)θ1(z34; τ)

]2

(3.20)

5Thus, for example,

Aµ1 =
1

4πi
(kµ1

2 ∂̄2G21 + kµ1
3 ∂̄3G31 + kµ1

4 ∂̄4G41) (3.14)

where the term involving kµ1
1 vanishes in (3.15) using transversality on contracting with the polarization

tensor. Hence there is no potential divergence from the coincident Green function. This is, in fact, how

Aµi is defined.
6We denote θα(0, τ) ≡ θα for brevity.
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in the E8 × E8 theory. These somewhat involved expressions can be expressed differently

as we now discuss, which is very useful for our purposes.

The sums involving theta functions in (3.19) and (3.20) can be simplified [56] using

the relation

P(z; τ) = ∂2
zG(z; τ)− Ĝ2(τ) = eα−1(τ) +

[
θα(z; τ)θ′1(0; τ)

θα(0; τ)θ1(z; τ)

]2

, (3.21)

which holds for α = 2, 3, 4. In (3.21), P is the Weierstrass p-function, and eα−1 are defined

in terms of the theta functions by the equations

e1(τ) = 2ζ(2)(θ4
3 + θ4

4),

e2(τ) = 2ζ(2)(θ4
2 − θ4

4),

e3(τ) = −2ζ(2)(θ4
2 + θ4

3). (3.22)

Finally, Ĝ2 is defined by7

Ĝ2(τ) = G2(τ)− π

τ2
, (3.23)

which has holomorphic modular weight 2, where G2 is defined by (3.11). Thus

LSpin(32)/Z2
= 2E4

(
2ζ(2)E6 + (∂2

3G(z34, τ)− Ĝ2)E4

)
(3.24)

on using (3.21),
∑4

α=2 θ
16
α = 2E2

4 , and [56]

4∑
α=2

θ16
α eα−1 = −4ζ(2)E4E6. (3.25)

This is equal to LE8×E8 on using
∑4

α=2 θ
8
α = 2E4 and [57]

4∑
α=2

θ8
αeα−1 = −4ζ(2)E6. (3.26)

Thus the two graviton-two gluon amplitude is the same in both the heterotic string the-

ories [57]. Note that L as expressed in (3.24), involves Green functions rather than theta

functions, which will be very useful for us.

4 The low momentum expansion of the one loop four graviton amplitude

We want to obtain local interactions from the low momentum expansion of the one loop

amplitudes. The one loop amplitude is generically of the form∫
F

d2τ

τ2
2

f(τ, τ̄ ; ki) (4.1)

where f(τ, τ̄ ; ki) is modular invariant. Now (4.1) contains contributions which are analytic

as well as non-analytic in the external momenta. While the former yield local terms in the

7We denote Ĝ2(τ, τ̄) as simply Ĝ2(τ) for brevity, as is standard.
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effective action, the latter yield non-local terms. The non-local terms are obtained from the

boundary of moduli space as τ2 → ∞. Thus to obtain the local contributions, we expand

the integrand in powers of α′ and integrate over the truncated fundamental domain given

by [19, 20]

FL =

{
− 1

2
≤ τ1 ≤

1

2
, |τ | ≥ 1, τ2 ≤ L

}
, (4.2)

and take L → ∞. On the other hand, the non-analytic contribution involves an integral

over RL defined by

RL =

{
− 1

2
≤ τ1 ≤

1

2
, |τ | ≥ 1, τ2 > L

}
, (4.3)

with appropriate integrands depending on the amplitude, leading to contributions which

are non-perturbative in the external momenta. Note that F = FL⊕RL is the fundamental

domain of SL(2,Z).

The analytic contributions are obtained by integrating over the truncated fundamental

domain of SL(2,Z), and the integral yields terms which are finite as well as divergent in this

limit. While the finite contributions yield the desired local terms in the effective action,

the divergences cancel those coming from the integral over RL.

We now perform the low momentum expansion of the four graviton amplitude given

in (3.8). The first non-vanishing term in this expansion has eight powers of external mo-

menta, and terms involving lesser powers of external momenta vanish using elementary

properties of the Green function on performing the integrals over the insertion points of

the vertex operators. The leading R4 contribution has been calculated using the expres-

sion (3.8) in [56].

At every order in the derivative expansion, from the expression (3.13) we obtain con-

tributions from the terms of the form A4, A2R/α′ and R2/α′2 schematically from T . Each

of these contributions must be multiplied by a term involving appropriate powers of the

external momenta that result from expanding the Koba-Nielsen factor eD as a polynomial

in D. We list the details that yield the various contributions below.

Thus on performing the α′ expansion we get that

A1−loop
4g (ki, ε

(i)) =

4∏
i=1

ε(i)µiνiK
µ1µ2µ3µ4

∫
FL

d2τ

τ2
2

Ē2
4

η̄24
X ν1ν2ν3ν4 (4.4)

where X ν1ν2ν3ν4 is given below for the various interactions, and we have integrated over

the truncated fundamental domain.

We now give the various contributions in terms of various modular graph functions

which are summarized in appendix B.

4.1 The R4 term

From the A4eD term, in the integrand we obtain

1

(4π)4
(Q1 +Q2

2)Iν1ν2ν3ν4
4,0 , (4.5)
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while from the A2ReD/α′ term, in the integrand we obtain

2

(4π)4α′

[
(Q1 +Q2

2)I2;1,0 +
α′

2
Q1I3,0

]ν1ν2ν3ν4

. (4.6)

Finally from the R2eD/α′2 term, in the integrand we obtain

1

(8π2)2α′2

[
(Q1 +Q2

2)I1;2,0 − 2Q1I1;0,1

]ν1ν2ν3ν4

. (4.7)

Thus, for the R4 term, the total contribution is given by

X ν1ν2ν3ν4 =
1

(4π)4

[
(Q1 +Q2

2)

(
I4,0 +

2

α′
I2;1,0 +

4

α′2
I1;2,0

)
− 2Q1K

]ν1ν2ν3ν4

. (4.8)

Hence from (2.4) we see that the spacetime structures that arise at tree level and at one

loop are the same.

4.2 The D2R4 term

From the A4eD term, in the integrand we obtain

1

(4π)4

[
2(Q2Q3 −Q5)I4,1 + 2(2Q7 +Q8 −Q6)I5,1 − 2(Q2Q4 +Q5 +Q7)I6,1

]ν1ν2ν3ν4

, (4.9)

while from the A2ReD/α′ term, in the integrand we obtain

1

(8π2)2α′

[
(Q2Q3 −Q5)I2;2,0 + (Q2Q4 +Q5 + 2Q6 − 3Q7 − 2Q8)I2;0,1

−α
′

4
(Q2Q4 +Q5 −Q6 + 3Q7 +Q8)I3,1

]ν1ν2ν3ν4

. (4.10)

Finally from the R2eD/α′2 term, in the integrand we obtain

2

(8π2)2α′2

[
(Q2Q3 −Q5)I1;3,0 + (2Q2Q4 + 2Q5 +Q6 −Q8)I1;1,1

]ν1ν2ν3ν4

. (4.11)

Thus for the D2R4 term, the total contribution is given by

X ν1ν2ν3ν4 =
2

(4π)4
(Q2Q3 −Q5)

(
I4,1 +

2

α′
I2;2,0 +

4

α′2
I1;3,0

)ν1ν2ν3ν4

+
1

(8π2)2α′
(Q2Q4 +Q5 + 2Q6 − 3Q7 − 2Q8)

×
(
I2;0,1 +

2

α′
I1;1,1 −

α′

6
(I5,1 + I6,1)

)ν1ν2ν3ν4

(4.12)

+
2

(4π)4
(Q2Q4 +Q5 −Q6 + 3Q7 +Q8)

(
K̃ +

1

3
(I5,1 − 2I6,1)

)ν1ν2ν3ν4

,

where we have defined

K̃µ1µ2µ3µ4 =
4

α′2
Iµ1µ2µ3µ4

1;1,1 − 1

2
Iµ1µ2µ3µ4

3,1 . (4.13)

Hence from (2.5) we see that a new spacetime structure appears at one loop.
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5 The low momentum expansion of the one loop two graviton-two gluon

amplitude

We next consider the low momentum expansion of the two graviton-two gluon amplitude.

The first non-vanishing term in this expansion has six powers of external momenta, since

terms involving lesser powers of external momenta vanish using elementary properties of

the Green function. This amplitude is given by

A1−loop
2g,2a (ki, ε

(i), e(i)) = ε(1)
µ1ν1

ε(2)
µ2ν2

e(3)
aν3
e

(4)
bν4
Tr(T aT b)Kν1ν2ν3ν4

∫
FL

d2τ

τ2
2

Yµ1µ2

η̄24
. (5.1)

In (5.1), the tensor Yµ1µ2 is given by

Yµ1µ2 = Yµ1µ2
1 + Yµ1µ2

2 , (5.2)

where

Yµ1µ2
1 =

2π2

3
Ē4(Ē6 − ¯̂

E2Ē4)

4∏
i=1

∫
Σ

d2zi

τ2
eD
(
R12η

µ1µ2

2α′
+Aµ1Aµ2

)

Yµ1µ2
2 = −8π2Ē2

4

4∏
i=1

∫
Σ

d2zi

τ2
eDR34

(
R12η

µ1µ2

2α′
+Aµ1Aµ2

)
. (5.3)

We split the total contribution into a sum of two terms as this is useful for our purposes.

To obtain the answer at various orders in the derivative expansion, we have to expand

the Koba-Nielsen factor upto the appropriate order. We now list the contributions to the

terms in the effective action that arise from the two terms in (5.3). The R2F2 term has

been obtained from (5.1) in [56].

5.1 Contribution from Yµ1µ2
1

This contributes

Yµ1µ2
1 = −Q2

24
Ē4(Ē6 − ¯̂

E2Ē4)Jµ1µ2
1 (5.4)

to the R2F2 term, and

Yµ1µ2
1 = −α

′

96
Ē4(Ē6 − ¯̂

E2Ē4)(Q3sJ
µ1µ2
1 − 2Q4J

µ1µ2
2 ) (5.5)

to the D2R2F2 term.

This also contributes

Yµ1µ2
1 = − α′2

3 · 256
Ē4(Ē6 − ¯̂

E2Ē4)
[(
Q9s

2 + (s2 + 2t2 + 2u2)Q2E2

+4utQ10 + 2(s2 − ut)Q11

)
Jµ1µ2

1 + 2Q11sJ
µ1µ2
2

]
(5.6)

to the D4R2F2 term.
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5.2 Contribution from Yµ1µ2
2

While this does not contribute to the R2F2 term, it contributes

Yµ1µ2
2 = − α′

32π2
Ē2

4

(
(Q1 +Q2

2)sJµ1µ2
1 + 2Q1J

µ1µ2
2

)
(5.7)

to the D2R2F2 term, and

Yµ1µ2
2 = − α′2

128π2
Ē2

4

[
2Q2Q3s

2Jµ1µ2
1 + 2Q2Q4(tuJµ1µ2

1 − sJµ1µ2
2 )

−Q5

(
(s2 + t2 + u2)Jµ1µ2

1 + 2sJµ1µ2
2

)
− 6Q7(tuJµ1µ2

1 + sJµ1µ2
2 )

+2(Q6 −Q8)(2utJµ1µ2
1 + sJµ1µ2

2 )
]

= − α′2

64π2
Ē2

4

[(
s2(Q2Q3 −Q5) + ut(Q2Q4 +Q5 + 2Q6 − 3Q7 − 2Q8)

)
Jµ1µ2

1

−s(Q2Q4 +Q5 −Q6 + 3Q7 +Q8)Jµ1µ2
2

]
(5.8)

to the D4R2F2 term. Note the striking equality of the structure of the integrands be-

tween (4.8) and (5.7), and between (4.12) and (5.8) as well.

Thus the total contribution to the R2F2 term is given by (5.4), and to the D2R2F2

term is given by the sum of (5.5) and (5.7). Finally, the total contribution to the D4R2F2

term is given by the sum of (5.6) and (5.8). Note that the two tensors Jµ1µ2
1 and Jµ1µ2

2

which appeared in the amplitudes at tree level appear at one loop as well, and there are

no new tensors that arise.

6 Various equations for the modular graph functions

From the previous analysis, we see that the integrands we need involve modular graph

functions where the links are either Green functions Gij or their antiholomorphic derivatives

∂̄iGij . To evaluate these integrands, we now analyze them in detail.

6.1 Graphs obtained by direct evaluation

It is easy to evaluate graphs where every vertex has coordination number 2 and every link

is given by a Green function. For a graph with s links each given by a Green function, this

gives us

Gs =

s∏
i=1

∫
Σ

d2zi

τ2
G12G23 . . . Gs1 =

∑
(m,n) 6=(0,0)

τ s2
πs|mτ + n|2s

= Es(τ, τ̄), (6.1)

where Es is the SL(2,Z) invariant non-holomorphic Eisenstein series, as depicted for E6 in

figure 1. For later purposes, we note that Es satisfies the Laplace equation

4τ2
2

∂2Es
∂τ∂τ̄

= s(s− 1)Es, (6.2)
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(i) (ii)

Figure 1. The graphs (i) E6 and (ii) R3,2.

and it has the large τ2 expansion given by

Es(τ, τ̄) =
2ζ(2s)

πs
τ s2 +

2Γ(s− 1/2)ζ(2s− 1)

Γ(s)πs−1/2
τ1−s

2

+
4
√
τ2

Γ(s)

∑
m 6=0

|m|s−1/2σ1−2s(m)Ks−1/2(2π|m|τ2)e2πimτ1 , (6.3)

where σα(m) is the divisor function defined by

σα(m) =
∑

d|m,d>0

dα. (6.4)

Next consider the case where every vertex has coordination number 2, but some of

the links are given by the Green function Gij , while the others are given by its antiholo-

morphic derivative ∂̄iGij . For a graph with a total of s links, where p links involve an

antiholomorphic derivative and the remaining s− p links do not, we have that8

Rs,p =

s∏
i=1

∫
Σ

d2zi

τ2
(∂̄2G12∂̄3G23 . . . ∂̄p+1Gp,p+1)Gp+1,p+2 . . . Gs1

=
∑

(m,n) 6=(0,0)

1

(mτ̄ + n)p
× τ s−p2

πs−p|mτ + n|2(s−p) (6.5)

as depicted for R3,2 in figure 1. We have taken the derivatives to be on consecutive links

without loss of generality as all other graphs where the derivatives are not on consecutive

links are related to it by trivial integration by parts. Note that Rs,0 = Gs.
When s = p, we have that

Rs,s =
∑

(m,n) 6=(0,0)

1

(mτ̄ + n)s
. (6.6)

For s > 2, Rs,s is antiholomorphic and Rs,s = Gs(τ). For s = 2, this has to be regularized,

and R2,2 = Ĝ2(τ, τ̄) = G2(τ)− π/τ2. Note that Rs,p is a modular form of weight (0, p).

In fact, Rs,p can be related to Es−p/2 by the action of appropriate number of modular

covariant derivatives. They are defined by

Dm = i

(
∂

∂τ
− im

2τ2

)
, D̄n = −i

(
∂

∂τ̄
+

in

2τ2

)
. (6.7)

8This graph is non-vanishing only if p is an even integer.

– 14 –



J
H
E
P
1
1
(
2
0
1
7
)
1
3
9

Now Dm maps a modular form Φ(m,n) of weight (m,n) to a modular form of weight (m+

2, n), while D̄n maps Φ(m,n) to a modular form of weight (m,n+ 2). We get that

Rs,p = (2π)p/2
Γ(s− p/2)

Γ(s)
D̄p−2 . . . D̄4D̄2D̄0Es−p/2. (6.8)

It is very useful for our purposes to note that Rs,p satisfies the eigenvalue equation

4τ2
2 D̄pD0Rs,p = (s− 1)(s− p)Rs,p. (6.9)

Now using (6.7), we also define the modular covariant derivatives

Dm = τ2Dm, D̄n = τ2D̄n. (6.10)

It follows that Dm maps a modular form Φ(m,n) of weight (m,n) to a modular form of

weight (m+ 1, n− 1), while D̄n maps Φ(m,n) to a modular form of weight (m− 1, n+ 1).

6.1.1 The equations for Q1, Q2, Q4 and Q11

Thus based on the discussion above, we have that

Q1 = 2ζ(4)Ē4, Q2 = 2ζ(2)Ê2, Q4 = πD̄0E2, Q11 =
2π

3
D̄0E3. (6.11)

Thus these graphs are very easily related to simple covariant modular forms.

6.2 Graphs obtained by solving differential equations

The remaining modular graph functions do not belong to the class of graphs we have

discussed above, and we next deduce differential equations satisfied by them. In order to

deduce these equations, rather than analyzing the variations of these graphs with respect

to the complex structure τ , we find it convenient to analyze the variations with respect to

the Beltrami differential. In this way of analyzing deformations of the complex structure,

only the worldsheet metric is deformed, and hence in the modular graph functions we need

to vary only the Green functions and their worldsheet derivatives.

To obtain these variations, we note that for the Beltrami differential µ, the holomorphic

variation δµΨ for any Ψ is given by

δµΨ =
1

π

∫
Σ
d2zµ z

z̄ δzzΨ. (6.12)

On the torus, the Beltrami differential µ z
z̄ = 1, but it leads to non-trivial variations.

We denote the holomorphic and anti-holomorphic infinitesimal variations as δµ and δµ̄
respectively.

On using the known formulae for the variations of the prime form, period matrix and

the Abelian differential in (6.12) [64, 65], the relevant variation of Gij is given by

δµG(z1, z2) = − 1

π

∫
Σ
d2z∂zG(z, z1)∂zG(z, z2), (6.13)
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while the relevant variations of ∂̄iGij are given by9

δµ∂̄z1G(z1, z2) = 0,

δµ̄∂̄z1G(z1, z2) = − 1

π
∂̄z1

∫
Σ
d2z∂̄zG(z, z1)∂̄zG(z, z2). (6.14)

We note that δµ∂̄z1G(z1, z2) = 0 is true only in the bulk of moduli space. It can receive

contributions from the boundary of moduli space which we shall discuss separately.10

We now explain why we find it very convenient to analyze the variation of the complex

structure in terms of variations of the Beltrami differential rather than directly analyzing

variations of τ . This is because of the structure of the modular graph functions that arise

in our analysis. Since the vertices of the graphs are integrated over, every graph only

depends on τ and τ̄ . However, in the explicit calculations to determine the variations, we

have to perform the variations of the Green functions and their derivatives that are the

links of the graphs. These variations are simpler for the Beltrami differentials rather than

the complex structure itself. In fact, we have that

− i
2
δµG(z, 0) = −iτ2D0G(z, 0) + z2

∂G(z, 0)

∂z
,

− i
2
δµ
∂G(z, 0)

∂z
= −iτ2D1

∂G(z, 0)

∂z
+ z2

∂2G(z, 0)

∂z2
(6.15)

leading to involved calculations if variations of τ are directly studied. Note that the varia-

tion with respect to τ arises in a covariant way since it involves Dm, where m depends on

the modular weight of the object on which δµ acts.

Note that graphs in (B.1) that remain to be analyzed are (0, p) modular forms, where

p = 2, 4. Thus since δµ∂̄zG(z, 0) = 0 upto contributions that arise from the boundary of

moduli space, our primary strategy will be to first act with δµ on them, and then with

δµ̄, which will yield an eigenvalue equation we shall shortly discuss. On manipulating the

equations we obtain, this will yield modular covariant second order differential equations

the various graphs satisfy on also including the contributions that arise from the boundary

of moduli space.

We now analyze the action of δµ and δµ̄ on the various modular graph functions that

are relevant for our purposes, where the vertices are integrated over. We first act with δµ
on (0, p) modular forms, which are graphs with p links involving ∂̄G, while the remaining

links involve G. For links involving G, we use the identity

− iδµG(zij) = −2iτ2D0G(zij) + 2

(
Imzi

∂

∂zi
+ Imzj

∂

∂zj

)
G(zij), (6.16)

while for links involving ∂̄G we use the identity

iτ2D0∂̄iG(zij) =

(
Imzi

∂

∂zi
+ Imzj

∂

∂zj

)
∂̄iG(zij), (6.17)

9To deduce the first equation in (6.14), we also use δw̄w̄∂z = πδ2(z − w)∂̄z.
10In fact, this is also true of δµ̄δµ∂̄z1G(z1, z2) = 0.
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which trivially follows from δµ∂̄iG(zij) = 0 and hence is true upto boundary terms. Includ-

ing all the contributions and using momentum conservation at each vertex, all the terms

involving derivatives of zi cancel leading to

δµ = 2D0 (6.18)

on the (0, p) graph.

After acting with δµ on the (0, p) graph, in all the cases we shall encounter, we are left

with graphs having either 2 or 0 ∂̄G links, while the remaining links are all given by G.11

We now have to act on them with δµ̄. If the graph has no links given by ∂̄G and hence

is SL(2,Z) invariant, then simply using the complex conjugate of (6.16) on every link and

momentum conservation at the vertices, we see that

δµ̄ = 2D̄0. (6.19)

Finally if there are q links given by ∂̄G as well, let us consider the action of δµ̄ on the

graph. We use the complex conjugate of (6.16) for the links involving G, and the complex

conjugate of

− iδµ∂iG(zij) = −2iτ2D1∂iG(zij) + 2

(
Imzi

∂

∂zi
+ Imzj

∂

∂zj

)
∂iG(zij) (6.20)

for those involving ∂̄G. Adding the contributions and using momentum conservation at

each vertex, we see that

δµ̄ = 2D̄q. (6.21)

Thus, based on the cases we consider and modular covariance, we obtain the general result

that acting on a modular form of weight (m,n), we have that

δµ = 2Dm, δµ̄ = 2D̄n, (6.22)

simply yielding modular covariant derivatives.

Thus first acting with δµ and then with δµ̄ on the various graphs we get second order

differential equations, with the operator acting on the graphs given by

δµ̄δµ = 4D̄n−1Dm = 4τ2
2 D̄nDm (6.23)

which maps a modular form of weight (m,n) to a modular form of weight (m,n). Hence

this is a modular covariant Laplacian of SL(2,Z). Note that acting on the modular form of

weight (m,n) in the reverse order, one can also define another modular covariant Laplacian

δµδµ̄ = 4Dm−1D̄n = 4τ2
2DmD̄n. (6.24)

They satisfy the simple relation

4(D̄n−1Dm −Dm−1D̄n) = n−m, (6.25)

and hence they commute only when m = n.

11There is also a case where the resulting graph has two links with ∂G on them. The action of δµ̄ on it

can be trivially obtained by complex conjugation of what we have described above.
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This generalizes the analysis for SL(2,Z) invariant graphs. Note that the SL(2,Z)

invariant Laplacian acting on them is given by

∆ = 4D̄−1D0 = 4D−1D̄0 = 4τ2
2

∂2

∂τ ∂̄τ
. (6.26)

Before proceeding, we consider the issue of possible contributions to the differential

equations that arise from factors of δµ∂̄zG(z, w) in the graphs. As we have mentioned above,

such contributions vanish in the bulk of moduli space on simply using (6.14). However,

this manipulation involves using the relation

δuu

(
∂̄zG(z, w)

)
=
π

2
∂uδ

2(z − u) +
π

τ2
∂u

(
G(u,w)−G(u, z)

)
(6.27)

which has a contact term contribution, which can give a non-vanishing answer even though

it leads to a total derivative. These are interpreted as potential contributions coming from

the boundary of moduli space when z and u are coincident.12 In fact, indeed in some of

the cases we consider, there are non-vanishing contributions.

Let us first consider the simplest example where this happens, which captures the main

issue that is central to all the other cases. Consider the graph Q2 which is a weight (0, 2)

modular form given by

Q2 = Ĝ2 =

2∏
i=1

∫
Σ

d2zi

τ2
∂̄1G12∂̄2G12 = lims→0

∑
(m,n) 6=(0,0)

1

(m+ nτ̄)2|m+ nτ |2s
(6.28)

which arises in our analysis. On acting with δµ we see that the entire contribution comes

from the factors of δµ∂̄G in the integrand. However, instead of evaluating it directly this

way, let us evaluate it using the expression given by the lattice sum. Naively on setting

s = 0, it is antiholomorphic and hence δµĜ2 vanishes, leading to an incorrect answer

simply because this is not modular covariant, and one needs to regularize it as in (6.28) to

obtain a modular covariant expression. It is this regularization that breaks antiholomorphy

leading to

δµĜ2 =
π

τ2
(6.29)

which trivially follows from the asymptotic expansion of Ĝ2 given by

Ĝ2(τ, τ̄) = G2(τ)− π

τ2
= 2ζ(2)− π

τ2
+ . . . , (6.30)

where we have ignored terms that are exponentially suppressed as τ2 → ∞ which are

functions only of τ̄ . Thus we see that δµ∂̄G yields non-vanishing contributions for Q2. In

fact, we see that δµĜ2 receives contribution only from the second term in the last equation

in (6.30) which has less transcendentality than the first (we assign zero transcendentality

to τ2 and k to ζ(k)). In fact, in this case, this is the only contribution.

12Such boundary contributions, along with the boundary contributions that arise from τ2 →∞, are part

of the definition of the Deligne-Mumford compactification of the moduli space of Riemann surfaces with

punctures.
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This is the route we take in determining possible contributions to a graph that arise

from factors of δµ∂̄G in the integrand, rather than calculating them directly. We start

with the regularized expression for the graph expressed as a lattice sum and perform the

asymptotic expansion and keep only the terms that are power behaved as τ2 →∞. These

terms separates into two distinct kinds of contributions:

(i) A set of terms that precisely match with those in the asymptotic expansion obtained

by acting with δµ on the graph, and simply setting δµ∂̄G = 0 for all the links. This is

done by directly obtaining the variation of the graph and performing the matching.

(ii) The rest, which gives the non-vanishing contributions that must result from the

variations δµ∂̄G along the various links.

The contribution (i) from δµ acting on the graph yields an SL(2,Z) covariant expression.

Thus we then extend the power behaved terms in (ii) that give additional contributions

to δµ acting on the same graph, to its SL(2,Z) covariant completion to get the complete

answer. For the cases we are interested in, (ii) yields simple expressions which have obvious

SL(2,Z) covariant completions. It will be interesting to obtain these results by directly

computing the δµ variations acting on ∂̄G in the graphs for more general cases. Perhaps

generalizations of the techniques in [66–68] will be useful in evaluating these boundary

contributions.

Thus this leads to the complete equation for δµ acting on any graph Q. Further acting

on it with δµ̄ gives the desired SL(2,Z) covariant Poisson equation of the form

δµ̄δµQ = . . . , (6.31)

where the terms on the right hand side are easily determined.13

For the cases we consider, there are some common features that arise in our analysis

for the contributions from δµ∂̄G to a graph as mentioned above:

(i) These contributions to a graph Q that arise from the boundary of moduli space are

given by very simple SL(2,Z) covariant modular forms. On the other hand, the

remaining contributions to Q satisfy involved SL(2,Z) covariant Poisson equations.

Heuristically this is expected as boundary terms result from regularized expressions

and they receive very few power behaved contributions in the large τ2 expansion,

which have simple SL(2,Z) covariant completions for the cases we consider.

(ii) The asymptotic expansions of these contributions that arise from the boundary of

moduli space have less transcendentality than the terms with maximal transcenden-

tality in the asymptotic expansion of the remaining terms which arise from the bulk

of moduli space.14

13For the cases we consider, δµQ does not yield any graph with ∂G as a link on which the subsequent

action of δµ̄ gives a non-vanishing contribution. For cases where there are such contributions, we have to

evaluate them by taking complex conjugate of the results that follow from the discussion above.
14Note that there also some contributions with reduced transcendentality that arise in the asymptotic

expansion of the remaining terms. These boundary terms are directly determined in our analysis and do

not have to be dealt with separately.
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(iii) Finally, there is a very simple diagnostic to ascertain which graphs receive contribu-

tions from the boundary of moduli space resulting from non-vanishing δµ∂̄G: these

are the only ones which have a factor of (∂̄1G12)2 in the integrand. Heuristically this

is expected, because it is only Ĝ2 which needs regularization, and has (∂̄1G12)2 as

the integrand. Note that Rs,p for s ≥ 3 do not receive such contributions. Thus for

example, δµR3,2 ∼ E2/τ2. It would be interesting to check if this diagnostic works in

all cases.

Hence among the various graphs we consider only Q2, Q3, Q5, Q9 and Q10 receive

such contributions. Thus only for these graphs, we have to determine these boundary

terms separately.

We now obtain modular covariant eigenvalue equations of the Poisson type having

source terms for the various graphs, based on the discussions above. In the equations

below, the vertices in the various graphs are always integrated with measure d2z/τ2. The

relevant asymptotic expansions of the various graphs are described in detail in appendix C.

Let us now summarize the strategy we follow in obtaining the eigenvalue equations in

the analysis below. We first consider δµQ for any graph Q, ignoring contributions of the

form δµ∂̄G, leading to

δµQ = Q̃ (6.32)

where Q̃ is modular covariant. This leads to a modular covariant Poisson equation for Q

on further acting on (6.32) with δµ̄ given by

δµ̄δµQ = δµ̄Q̃. (6.33)

We next match the power behaved terms in the large τ2 expansion of Q obtained from (6.33)

with the exact asymptotic expansion of Q analyzed in appendix C. Note that this also

includes the zero mode of the modular covariant Laplacian. This can lead to extra contri-

butions which modify (6.32) to the exact equation

δµQ = Q̃+ f, (6.34)

where f is modular covariant and includes the contributions from δµ∂̄G acting on Q. This

finally leads to the exact Poisson equation

δµ̄δµQ = δµ̄Q̃+ δµ̄f (6.35)

for the graph Q.

For the various cases we consider, in the process of matching the power behaved terms

in the asymptotic expansions obtained from (6.33) with the exact analysis in the appendix,

the extra terms in Q that lead to f in (6.34) (this includes the zero mode of the Lapla-

cian) can be completed to SL(2,Z) covariant modular forms,15 hence leading to additional

contributions to Q. In the analysis below, we present the exact equations.

15This completion is unique, given the power behaved terms in the large τ2 expansion, modular covariance

and the boundary condition that all other subleading contributions are exponentially suppressed as τ2 →∞.

Note that we are neglecting contributions from cusp forms in our analysis.
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6.2.1 The equation for Q3

We first consider the equation for the graph Q3. Varying with respect to the Beltrami

differential µ, we get that

δµQ3 =
2π

τ2
E2 −

π

τ2
, (6.36)

where the second term on the right hand side is a boundary contribution we have fixed

using the asymptotic expansion. Note that each of the contributions is modular covariant.

This further leads to

δµ̄δµQ3 = 4Q4, (6.37)

yielding the differential equation

τ2
2 D̄2D0Q3 = Q4 = πD̄0E2. (6.38)

Now to solve for Q3, we consider the eigenvalue equation satisfied by D̄0Es given by

τ2
2 D̄2D0(D̄0Es) =

s(s− 1)

4
(D̄0Es). (6.39)

Thus (6.38) yields the solution

Q3 = 2πD̄0E2 − 2ζ(2)Ê2, (6.40)

since Ē2 ∼ D̄0E1 is a covariant solution of the homogeneous equation (6.38) having modular

weight (0, 2), and the normalization is fixed by the asymptotic expansion. Thus we have

that

Q3 = 2Q4 −Q2. (6.41)

Hence we see that the boundary contribution to Q3 simply involves Ê2 which is a zero

mode of the covariant Laplacian.

6.2.2 The equation for Q10

We next consider the graph Q10. Proceeding as above, we have that

δµQ10 =
4π

τ2
E3 −

π

τ2
E2, (6.42)

where the second term is a boundary term whose structure is determined by the asymptotic

expansion. This further leads to

δµ̄δµQ10 = 12Q11 − 2Q4, (6.43)

which we rewrite as

τ2
2 D̄2D0Q10 = 3Q11 −

1

2
Q4 = 2πD̄0E3 −

π

2
D̄0E2. (6.44)

On using (6.39) for s = 2 and s = 3, we get the covariant solution

Q10 =
4π

3
D̄0E3 − πD̄0E2. (6.45)
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Thus we obtain the relation

Q10 = 2Q11 −Q4. (6.46)

Note that a contribution proportional to Ê2, the zero mode of the covariant Laplacian

is ruled out based on the asymptotic expansion. Also the boundary term contribution

involves D̄0E2, which is not a zero mode of the Laplacian.

6.2.3 The equation for Q5

We next consider the equation for Q5. We have that

δµQ5 = − π
τ2
Q10 −

π2

τ2
D̄0E2 = −4π2

3τ2
D̄0E3, (6.47)

where the boundary contribution arising from δµ∂̄G is given by −π2D̄0E2/τ2. This has been

chosen such that it cancels a contribution from Q10 based on the asymptotic expansion.

This further leads to

δµ̄δµQ5 = −8R5,4 = −8π2

3
D̄2D̄0E3, (6.48)

where we have used

δµ̄D̄0E3 =
3

2π
δµ̄Q11 =

6τ2

π2
R5,4. (6.49)

Thus we obtain the equation

τ2
2 D̄4D0Q5 = −2π2

3
D̄2D̄0E3. (6.50)

On using the eigenvalue equation

τ2
2 D̄4D0(D̄2D̄0Es) =

(s+ 1)(s− 2)

4
(D̄2D̄0Es), (6.51)

we get the solution

Q5 = −2π2

3
D̄2D̄0E3 +

2π2

3
D̄2D̄0E2, (6.52)

since Ē4 ∼ D̄2D̄0E2 is a covariant solution of the homogeneous equation (6.50) having

modular weight (0, 4), and the constant is fixed based on the asymptotic expansion. Thus

Q5 = −2R5,4 +Q1. (6.53)

Hence the boundary contribution to Q5 arising from δµ∂̄G is proportional to D̄2D̄0E2 which

is a zero mode of the covariant Laplacian.

Thus we see that the graphs Q3, Q10 and Q5 are given by very simple expressions

which solve the eigenvalue equation. The remaining graphs require more involved analysis,

to which we now turn. Of these graphs, Q6, Q7 and Q8 do not receive any boundary

contributions arising from δµ∂̄G contributions.
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6.2.4 The equation for Q6

We next consider the equation for Q6, which gives us16

δµQ6 =
2π

τ2
Q11 +

π

τ2
Q10 −

π

τ2
E2Q2. (6.54)

Now using (6.49), the relations

δµ̄Q4 =
3τ2

π
Q1, δµ̄E2 =

2τ2

π
Q4, (6.55)

and17

δµ̄Q2 = 4πτ2D̄2D̄0E1 =
τ2

π
(5Q1 −Q2

2), (6.59)

we get the eigenvalue equation

τ2
2 D̄4D0Q6 = 4R5,4 −

3

4
Q1 −

1

2
Q2Q4 −

1

4
(5Q1 −Q2

2)E2

=
4π2

3
D̄2D̄0E3 −

3ζ(4)

2
Ē4 −

π3

6
Ê2D̄0E2 −

π4

36
(Ē4 − Ê

2

2)E2

=
4π2

3
D̄2D̄0E3 −

3ζ(4)

2
Ē4 −

π3

6
D̄2(E2Ê2) (6.60)

satisfied by Q6 which is considerably more involved than the earlier ones. However, this

can be simplified using the relation

π

2
D2(E2Ê2) = τ2

2 D̄4D0(R3,2Ê2)− 9ζ(4)

2π2
Ē4 (6.61)

and also (6.51), and we see that (6.60) reduces to

τ2
2 D̄4D0

(
Q6 +

π2

3
R3,2Ê2 −

4π2

3
D̄2D̄0E3

)
= 0, (6.62)

leading to the covariant solution

Q6 = −π
2

3
R3,2Ê2 +

4π2

3
D̄2D̄0E3 + µĒ4, (6.63)

where µ is a constant, which is fixed using the asymptotic expansion (C.70) giving us

µ = −2ζ(4). (6.64)

16Using the various expressions for the asymptotic expansions given in appendix C, it is straightforward

to check (6.54) for the power behaved terms. This provides a non-trivial check of the boundary term

contribution to Q10.
17We have used the regularized expression

E1 = −ln(τ2|η(τ)|4), (6.56)

which leads to

D̄0E1 =
π

6
Ê2. (6.57)

We also use the identity

D̄2Ê2 =
π

6
(Ē4 − Ê

2

2). (6.58)
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Thus we have that

Q6 = −π
2

3
R3,2Ê2 +

4π2

3
D̄2D̄0E3 − 2ζ(4)Ē4

= −Q2Q4 + 4R5,4 −Q1, (6.65)

leading to a simple equation at the end of the analysis.

6.2.5 The equation for Q7

We next consider the equation for Q7, where we obtain

δµQ7 =
π

τ2
Q11 +

π

τ2
Q10 −

π

τ2
E2Q2. (6.66)

Now from (6.54), we have that

δµ(Q6 − 2R5,4) =
π

τ2
Q10 −

π

τ2
E2Q2, (6.67)

while from (6.66), we get that

δµ(Q7 −R5,4) =
π

τ2
Q10 −

π

τ2
E2Q2. (6.68)

Thus modular covariance yields the relation

Q6 = Q7 +R5,4 (6.69)

between the various graph functions. Given the various asymptotic expansions, it is

straightforward to check this equality for the power behaved terms.

6.2.6 The equation for Q8

Proceeding as above, for Q8 we have that

δµQ8 = −2π

τ2
Q11 −

2π

τ2
Q10 +

2π

τ2
E2Q2. (6.70)

Thus from (6.66) and (6.70) we obtain

δµ(2Q7 +Q8) = 0, (6.71)

leading to the simple relation between the graphs

2Q7 +Q8 = 0 (6.72)

based on modular covariance. Again, this relation is easily seen to hold for the power

behaved terms in the asymptotic expansion mentioned in the appendix.
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(i) (ii)

Figure 2. (i) P1 and (ii) P2.

1

2

3

4

Figure 3. The auxiliary diagram A.

6.2.7 The equation for Q9

Finally, we consider the equation for Q9 which gives us

δµQ9 =
2τ2

π
P1 +

2π

τ2
P2 −

3π

τ2
E2 +

2π

τ2
, (6.73)

where the graphs P1 and P2 are defined by

P1 =

3∏
i=1

∫
Σ

d2zi

τ2
(∂̄1G12)2∂1G12∂1G13G23, P2 =

2∏
i=1

∫
Σ

d2zi

τ2
G3

12 = E3 + ζ(3) (6.74)

as depicted in figure 2.

The last two terms in (6.73) have been fixed using the asymptotic expansion. While

the expression for P2 is known [21, 28], we need to express P1 in a way such that it is useful

for our analysis.

To do so, it is very useful for our purposes to introduce an appropriate auxiliary

diagram [27]. This is a diagram which trivially reduces to the diagram we want to evaluate

using (3.7) along with other easily tractable terms, however, on the other hand it can be

evaluated independently leading to a simplified expression. Equating the two results leads

to the desired expression.

For this case, we introduce the auxiliary diagram A defined by

A =

4∏
i=1

∫
Σ

d2zi

τ2
(∂̄1G12)2∂1∂̄3G13∂3G23∂3G34G24 (6.75)

as depicted in figure 3. Evaluating it trivially using (3.7) for the 1− 3 link gives us

A =
π

τ2
P1 −

π

τ2
Q2Q̄4. (6.76)
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On the other hand, moving the ∂ in the 1− 3 link to the left gives us that

A = −π
3

τ3
2

P2 +
2π3

τ3
2

E3. (6.77)

This gives us that

δµQ9 =
4π

τ2
E3 +

2τ2

π
Q2Q̄4 −

3π

τ2
E2 +

2π

τ2
, (6.78)

leading to the eigenvalue equation

τ2
2 D̄2D0Q9 = 3Q11 +

τ2
2

2π2
(5Q1 −Q2

2)Q̄4 +
1

2
Q2E2 −

3

2
Q4

= 2πD̄0E3 +
π3τ2

2

18
(Ē4 − Ê

2

2)D0E2 + ζ(2)Ê2E2 −
3π

2
D̄0E2. (6.79)

Hence manipulating the various terms in (6.79) as before, we get that

τ2
2 D̄2D0

(
Q9 −

4π

3
D̄0E3 + 4πD̄0E2 −

π2

3
Ê2E2

)
= 0, (6.80)

leading to the relation

Q9 =
4π

3
D̄0E3 − 4πD̄0E2 +

π2

3
Ê2E2 + 4ζ(2)Ê2

= 2Q11 − 4Q4 +Q2E2 + 2Q2

= 2Q11 − 2Q3 +Q2E2 (6.81)

on adding a contribution to Q9 given by 4ζ(2)Ê2 on using the asymptotic expansion for Q9.

7 Relations between various modular graph functions

From the above discussion, we see that there are several non-trivial relations between the

different modular graph functions, given by

Q3 = 2Q4 −Q2,

Q10 = 2Q11 −Q4,

Q5 = −2R5,4 +Q1,

Q6 = −Q2Q4 + 4R5,4 −Q1,

Q7 = Q6 −R5,4,

Q8 = −2Q7,

Q9 = 2Q11 − 2Q3 +Q2E2. (7.1)

Thus topologically distinct graphs can be related, which also reduces the number of ele-

ments in the basis of graphs with a fixed modular weight. This is analogous to similar

relations which exist among several SL(2,Z) invariant graphs that arise in the type II the-

ory. However, unlike that analysis, the relations between graphs in heterotic string theory
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Figure 4. A pattern for the boundary terms.

involve modular covariant, rather than modular invariant graphs. We expect a rich struc-

ture of similar relations between topologically distinct graphs for all modular weights that

arise in the low momentum expansion of the string amplitude at all orders in the derivative

expansion. It will be interesting to analyze such modular covariant relations in general.

Note that for the cases we have considered, from (7.1) it follows that all the graphs

can be expressed in terms of a few elementary ones involving Rs,p leading to an enormous

simplification. Clearly this is not true in general, and at higher orders in the derivative

expansion we shall encounter graphs which cannot be expressed in this way. In order

to obtain their contribution to the string amplitude, one has to directly use the Poisson

equations they satisfy to reduce their contribution to boundary integrals over moduli space

upto source terms that have to be separately considered, as in the type II analysis. In fact,

expressing the various integrands as total derivatives is a powerful technique in calculating

the integrals, which we shall heavily use in the analysis below.

Before proceeding, let us consider the equations the graphs Q3, Q10, Q5 and Q9 satisfy

in (7.1), which are the only graphs in the list in (7.1) which have a factor of (∂̄1G12)2 in

the integrand. Apart from the contributions on the right hand side of (7.1) to these graphs

that directly arise in our analysis using the variation of the Beltrami differentials, there

are also boundary contributions to each of these graphs that we fixed using the asymptotic

analysis as discussed earlier, which naively vanish using δµ(∂̄G) = 0. For these graphs, we

see these contributions are given by18

Q3 → −Q2, Q10 → −Q4, Q5 → Q1, Q9 → −2Q3. (7.2)

These contributions suggest a striking pattern that can be summarized by figure 4. That

is, in each of these graphs, to obtain these non-trivial contributions, simply erase the factor

of (∂̄1G12)2 in the integrand, and replace it by −∂̄2
1G12 keeping the rest of the graph intact.

Whether this pattern is more general or not and deriving it if so, will be interesting. It

suggests that these boundary contributions should be determined in general by simple

properties of how the factor of (∂̄1G12)2 is embedded in the integrand of the graph, and is

independent of various details of the rest of the graph.

8 Evaluating the various four point amplitudes

Using the equations satisfied by the various modular graph functions, we shall now per-

form the integrals over the truncated fundamental domain of SL(2,Z) and evaluate the

18For Q9, this actually arises from the sum of (C.107) and (C.108).
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coefficients of the various interactions that arise from the low momentum expansion of the

amplitudes upto ten derivatives. We first consider the four graviton amplitude, and then

the two graviton-two gluon amplitude.

8.1 The four graviton amplitude

To simplify the notation, we define the tensors

Zµ1µ2µ3µ4
1 =

(
I4,0 +

2

α′
I2;1,0 +

4

α′2
I1;2,0

)µ1µ2µ3µ4

,

Zµ1µ2µ3µ4
2 =

(
I4,1 +

2

α′
I2;2,0 +

4

α′2
I1;3,0

)µ1µ2µ3µ4

,

Zµ1µ2µ3µ4
3 =

1

α′

(
I2;0,1 +

2

α′
I1;1,1 −

α′

6
(I5,1 + I6,1)

)µ1µ2µ3µ4

,

Zµ1µ2µ3µ4
4 =

(
K̃ +

1

3
(I5,1 − 2I6,1)

)µ1µ2µ3µ4

. (8.1)

Using the tensors in (8.1) and various relations between the modular graph functions

in (7.1), from (4.4) we obtain the expressions for the R4 term given by

A1−loop
R4 =

1

(4π)4

4∏
i=1

ε(i)µiνiK
µ1µ2µ3µ4

∫
FL

d2τ

τ2
2

Ē2
4

η̄24

[
(Q1 +Q2

2)Z1 − 2Q1K
]ν1ν2ν3ν4

, (8.2)

and the D2R4 term given by

A1−loop
D2R4 =

2

(4π)4

4∏
i=1

ε(i)µiνiK
µ1µ2µ3µ4

∫
FL

d2τ

τ2
2

Ē2
4

η̄24

[(
2Q2Q4 −Q1 −Q2

2 + 2R5,4

)
Z2

−2
(

2Q2Q4 + 2Q1 − 9R5,4

)
Z3 +

(
Q2Q4 +Q1 − 3R5,4

)
Z4

]ν1ν2ν3ν4

. (8.3)

Let us first consider the terms involving Q1 and Q2
2 in the integrand. These are

particular cases of the general integral

I1 =

∫
FL

d2τ

τ2
2

F (τ)Ê
m

2 (8.4)

where F (τ) is a purely holomorphic modular form, which we evaluate in a somewhat

different way from [55], which we very briefly outline.19 From (6.56), we have that

4τ2
2D0D̄0E1 = 1, (8.5)

leading to

I1 = 4

∫
FL
d2τF (τ)Ê

m

2 D0D̄0E1 =
2πi

3(m+ 1)

∫
FL
d2τ

∂

∂τ

(
F (τ)Ê

m+1

2

)
=

π

3(m+ 1)

(
F (τ)Ê

m+1

2

)∣∣∣∣
q̄0

(8.6)

19For our purposes, F (τ) depends on E2k(τ) for k ≥ 2 and η(τ).
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where we have used (6.57) and the antiholomorphicity of F (τ). In the last term, we have

that q = e2πiτ , where the subscript means that we have to keep the coefficient of the q̄0 term

only while expanding the resulting modular form around the cusp τ2 →∞ in non-negative

integer powers of q̄. Here E2k(τ) is given by

E2k(τ) = 1 + c2k

∞∑
n=1

n2k−1qn

1− qn
(8.7)

for k ≥ 1, where

c2k =
(−1)k(2π)2k

Γ(2k)ζ(2k)
. (8.8)

We shall need the values

c2 = −24, c4 = 240, c6 = −504, c8 = 480, c10 = −264. (8.9)

in our analysis. We also need the expression for the Dedekind eta function given by

η(τ) = q1/24
∞∏
n=1

(1− qn). (8.10)

Thus using (8.6) we have that∫
FL

d2τ

τ2
2

Ē2
4Q1

η̄24
= 480πζ(4),

∫
FL

d2τ

τ2
2

Ē2
4Q

2
2

η̄24
= 192πζ(2)2. (8.11)

leading to the expression for the R4 term given by [56]

A1−loop
R4 =

π

24

4∏
i=1

ε(i)µiνiK
µ1µ2µ3µ4(Z1 −K)ν1ν2ν3ν4 . (8.12)

We now focus on the other integrals that are needed in evaluating the D2R4 term. To

start with, we consider the integral

I2 =

∫
FL

d2τ

τ2
2

Ē2
4

η̄24
R5,4. (8.13)

Given the non-holomorphic factor Ē2
4/η̄

24 in the integrand, we would like to act with

the Laplacian 4τ2
2D0D̄p on the other factor in the integrand using its eigenvalue equation,

to easily perform the calculation20 on integrating by parts. However, this does not prove

to be directly useful as

4τ2
2D0D̄pRp+1,p = 0 (8.14)

leading to zero eigenvalue, and ours is a particular case with p = 4. So we proceed to

evaluate the integral somewhat differently.

20This will also be the case, for example, in (8.32) where the integrand has an extra factor of Ê2 which

has a mildly holomorphic part as well. We shall evaluate those integrals based on similar ideas.
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Consider the integral

Ĩs,p =

∫
FL

d2τ

τ2
2

Ē12−p
η̄24

Rs,p (8.15)

where s 6= p+ 1. Using

4τ2
2D0D̄pRs,p = s(s− p− 1)Rs,p, (8.16)

we have that

s(s− p− 1)Ĩs,p = 2

∫ 1/2

−1/2
dτ1

Ē12−p
η̄24

D̄pRs,p
∣∣
τ2=L→∞. (8.17)

Defining ε = s− (p + 1) and letting ε → 0, we want to analyze (8.17). The left hand side

yields (p+ 1)εĨp, where

Ĩp =

∫
FL

d2τ

τ2
2

Ē12−p
η̄24

Rp+1,p (8.18)

and hence Ĩ4 = I2, which is the integral we want to evaluate.

Now first let us evaluate the right hand side of (8.17) when s = p + 1, which yields a

contribution proportional to∫ 1/2

−1/2
dτ1

Ē12−pĒp+2

η̄24

∣∣
τ2=L→∞ = 24 + c12−p + cp+2. (8.19)

Now the only possibilities are p = 2, 4, 6, 8, for which 24 + c12−p + cp+2 = 0 on using (8.9),

and hence the right hand side of (8.17) is actually O(ε). Thus taking ε to be very small,

we now evaluate the right hand side of (8.17) to O(ε), noting that the O(1) term cancels.

To do so, we first consider the terms in D̄pRs,p that are independent of τ1. Using (6.8)

and (6.3), we see there are two such contributions given by

Rs,p =
2ζ(2s− p)
πs−p

τ s−p2 +
2(−1)p/2ζ(2s− p− 1)Γ(s− p/2)Γ(s− p/2− 1/2)

πs−p−1/2Γ(s)Γ(s− p)
τ1−s

2 , (8.20)

leading to

D̄pRs,p =
sζ(2s− p)
πs−p

τ
s−(p+1)
2

+
(s− p− 1)(−1)1+p/2ζ(2s− p− 1)Γ(s− p/2)Γ(s− p/2− 1/2)

πs−p−1/2Γ(s)Γ(s− p)τ s2
. (8.21)

In the small ε expansion, ignoring the O(1) contribution, the contribution of the first term

on the right hand side of (8.21) to Ĩp is given by

Ĩp =
2

π
(24 + c12−p)ζ(p+ 2)

[
ln
L

π
+

1

p+ 1
+

2ζ ′(p+ 2)

ζ(p+ 2)

]
, (8.22)

hence leading to a contribution that diverges logarithmically as L → ∞. Such contribu-

tions signal the possible presence of a term that is non-analytic in the external momenta

arising from the integral over RL defined in (4.3) [20]. Schematically it is of the form

a0ln(−α′Ls)D2R4 such that the lnL term cancels between the contributions from FL and

RL. Hence the coefficient a0 is fixed in the process. Thus this leads to a non-analytic term
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in the effective action of the form ln(−α′µs)D2R4 where the scale µ involves contributions

both from FL and RL. However, since

ln(−α′µs)D2R4 = ln(−α′µ′s)D2R4 + ln(µ/µ′)D2R4, (8.23)

we see that changing the scale amounts to mixing the analytic and non-analytic contribu-

tions, and hence it is the total contribution which is invariant. Thus our analysis yields the

total contribution from FL. Note that such a logarithmic contribution also arises in the

type II theory, however the scale of the logarithm is irrelevant as D2R4 = (s+ t+u)R4 = 0

in the type II theory, but not in the heterotic theory due to the different tensor structure.

Next note that the second term on the right hand side of (8.21) has an overall factor

of ε and its contribution to Ĩp is given by

Ĩp =
2(−1)1+p/2(c12−p + 24)ζ(p+ 1)Γ(p/2 + 1/2)Γ(1 + p/2)√

πΓ(2 + p)Lp+1
→ 0 (8.24)

as L→∞. Hence this does not contribute to I3.

Finally, consider the contribution to (8.17) from terms in D̄pRs,p which depend on τ1.

In this analysis, we keep only those terms that are non-vanishing as τ2 → ∞. These are

obtained from the last term on the right hand side of (6.3) on setting

Ks(x)→
√

π

2x
e−x, (8.25)

as subleading contributions vanish, leading to

Es−p/2(τ, τ̄)→ 2

Γ(s− p/2)

∞∑
m=1

ms−p/2−1σ1−2s+p(m)q̄m, (8.26)

which gives us the relevant terms

D̄pRs,p = 2(−1)1+p/2 (2π)p+1

Γ(s)

∞∑
m=1

msσ1−2s+p(m)q̄m (8.27)

in the expression for D̄pRs,p. Thus its contribution to (8.17) is given by

sεĨp = 4(−1)1+p/2 (2π)p+1

Γ(s)

∞∑
m=1

msσ1−2s+p(m)
Ē12−pq̄

m

η̄24

∣∣∣∣
q̄0

. (8.28)

On using
Ē12−pq̄

m

η̄24

∣∣∣∣
q̄0

= δm,1, (8.29)

and ignoring the O(1) term, we get the contribution

Ĩp = 4(−1)p/2(2π)p+1 Γ′(p+ 1)

Γ(p+ 1)Γ(p+ 2)
. (8.30)
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Thus (8.22) and (8.30) yield non-vanishing contribution to Ĩp leading to

I2 = −16π5

15

(
lnπ + γ − 137

60
− 2ζ ′(6)

ζ(6)

)
. (8.31)

Next let us consider the integral

I3 =

∫
FL

d2τ

τ2
2

Ē2
4Ê2

η̄24
R3,2. (8.32)

To evaluate it, we start with the integral

J̃s,p =

∫
FL

d2τ

τ2
2

Ē10−pÊ2

η̄24
Rs,p (8.33)

where s 6= p+ 1. Using (8.16) we have that

s(s− p− 1)J̃s,p = 2

∫ 1/2

−1/2
dτ1

Ē10−pÊ2

η̄24
D̄pRs,p

∣∣
τ2=L→∞ −

6

π

∫
FL

d2τ

τ2
2

Ē10−p
η̄24

D̄pRs,p. (8.34)

Expanding (8.34) for small ε = s− (p+ 1), we see that the left hand side gives (p+ 1)εJ̃p
where

J̃p =

∫
FL

d2τ

τ2
2

Ē10−pÊ2

η̄24
Rp+1,p, (8.35)

and hence J̃2 = I3, which is the integral we want. We now expand the right hand side

of (8.34) for small ε. The O(1) term is proportional to

2Ē10−pĒp+2Ê2

η̄24

∣∣∣∣
q̄0

− 6

π

∫
FL

d2τ

τ2
2

Ē10−pĒp+2

η̄24
(8.36)

which vanishes using (8.6), and hence we consider the O(ε) term.

We first consider the contribution coming from the first term on the right hand side

of (8.34), which is a boundary term. The analysis is very similar to the analysis for Ĩp and

we get a non-vanishing contribution

J̃p =
2c10−pζ(p+ 2)

π

[
1

p+ 1
+

2ζ ′(p+ 2)

ζ(p+ 2)
−lnπ

]
+4(−1)p/2(2π)p+1 Γ′(p+ 1)

Γ(p+ 1)Γ(p+ 2)
. (8.37)

We now consider the contribution from the second term on the right hand side of (8.34) at

O(ε) for which we have to evaluate the integral

J̃0 =

∫
FL

d2τ

τ2
2

Ē10−p
η̄24

D̄pRs,p (8.38)

to O(ε), while ignoring the O(1) term. Now using the identity

4τ2
2D0D̄p+2Rs+1,p+2 = [s(s− p− 1)− (p+ 2)]Rs+1,p+2, (8.39)
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and noting that D̄pRs,p ∼ Rs+1,p+2, we have that

[s(s− p− 1)− (p+ 2)]J̃0 = 2

∫ 1/2

−1/2
dτ1

Ē10−p
η̄24

D̄p+2D̄pRs,p
∣∣
τ2=L→∞ (8.40)

and hence the integral has been reduced purely to a boundary term, which we now evaluate.

Proceeding as before, we see that the only finite contribution as L → ∞ comes from the

τ1 dependent part of D̄p+2D̄pRs,p arising from (8.26) leading to

J̃0 = 4(−1)p/2(2π)p+2ε
Γ′(p+ 1)

(p+ 2)Γ(p+ 1)2
. (8.41)

Thus from (8.37) and (8.41) we get that

I3 = −32π3

3

(
lnπ + γ − 11

6
− 2ζ ′(4)

ζ(4)

)
. (8.42)

As an aside, let us also consider the integral

K1 =

∫
FL

d2τ

τ2
2

Ē2
4

η̄24
(Ē4 − Ê

2

2)E2. (8.43)

This does not arise in our analysis given the very simple equations satisfied by the various

graphs, but we expect integrals of this type to be relevant for higher point amplitudes

where the relevant graphs need not satisfy such simple equations. In fact, as discussed

before, in the cases we are considering, the Poisson equations could be always solved to

obtain elementary relations between the graphs. This is not going to persist for generic

interactions, and we shall have to directly deal with the Poisson equations which will involve

integrating source term contributions over FL. The integral (8.43) is a simple example of

such a case.

Now using

4τ2
2D0D̄0E2 = 2E2, (8.44)

we easily get that

K1 =

∫ 1/2

−1/2
dτ1

Ē2
4

η̄24
(Ē4 − Ê

2

2)D̄0E2

∣∣∣∣
τ2=L→∞

+
6I3

π2
. (8.45)

Thus while the first term is a boundary term, the second term has already been evaluated

above.

Hence let us evaluate the boundary term∫ 1/2

−1/2
dτ1

Ē2
4

η̄24
(Ē4 − Ê

2

2)D̄0E2

∣∣∣∣
τ2=L→∞

(8.46)

that arises in K1. Considering the power behaved contribution to D̄0E2, we see that the

O(τ2) term given by
2ζ(4)

π2
τ2 (8.47)
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combines with the O(1/τ2) term in Ê
2

2 given by

− 6

πτ2
Ē2 (8.48)

to give a finite contribution. There is no contribution from the τ1 dependent terms in D̄0E2,

leading to ∫ 1/2

−1/2
dτ1

Ē2
4

η̄24
(Ē4 − Ê

2

2)D̄0E2

∣∣∣∣
τ2=L→∞

=
12ζ(4)

π3

Ē2
4Ē2

η̄24

∣∣∣∣
q̄0

= 64π, (8.49)

hence leading to

K1 = 64π +
6I3

π2
. (8.50)

Thus adding the various contributions, we see that the contribution to the D2R4 term

from FL is given by

A1−loop
D2R4 =

2

(4π)4

4∏
i=1

ε(i)µiνiK
µ1µ2µ3µ4

[
AZ2 +BZ3 + CZ4

]ν1ν2ν3ν4

, (8.51)

where

A =
4888π5

675
− 416π5

45
(lnπ + γ) +

64π5

3

(
2ζ ′(4)

3ζ(4)
+
ζ ′(6)

5ζ(6)

)
,

B = −2408π5

675
− 224π5

45
(lnπ + γ)− 64π5

(
4ζ ′(4)

9ζ(4)
− 3ζ ′(6)

5ζ(6)

)
,

C =
3068π5

675
− 16π5

45
(lnπ + γ) + 32π5

(
2ζ ′(4)

9ζ(4)
− ζ ′(6)

5ζ(6)

)
. (8.52)

8.2 The two graviton-two gluon amplitude

Next we consider the low momentum expansion of the two graviton-two gluon amplitude.

We define the tensor

Tµ1µ2 = ε(1)
µ1ν1

ε(2)
µ2ν2

e(3)
aν3
e

(4)
bν4
Tr(T aT b)Kν1ν2ν3ν4 (8.53)

to simplify the notation.

Now from (5.1), we obtain the expression for the R2F2 term given by

A1−loop
R2F2 = −ζ(2)

12
Tµ1µ2J

µ1µ2
1

∫
FL

d2τ

τ2
2

Ê2Ē4

η̄24
(Ē6 − Ê2Ē4), (8.54)

while the D2R2F2 term is given by

A1−loop
D2R2F2 = −α

′

32
Tµ1µ2

∫
FL

d2τ

τ2
2

Ē4

η̄24

[(
Q3

3
(Ē6 − Ê2Ē4) +

Ē4

π2
(Q1 +Q2

2)

)
sJµ1µ2

1

−2

(
Q4

3
(Ē6 − Ê2Ē4)− Ē4

π2
Q1

)
Jµ1µ2

2

]
. (8.55)
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Finally the D4R2F2 term given by

A1−loop
D4R2F2 = A1−loop,Y1

D4R2F2 +A1−loop,Y2

D4R2F2 , (8.56)

where

A1−loop,Y1

D4R2F2 = − α′2

3 · 256
Tµ1µ2

∫
FL

d2τ

τ2
2

Ē4(Ē6 − Ê2Ē4)

η̄24

[(
s2(4Q11 − 4Q4 + 4Q2E2 + 2Q2)

−2ut(2Q4 − 3Q11 + 2Q2E2)
)
Jµ1µ2

1 + 2sQ11J
µ1µ2
2

]
,

A1−loop,Y2

D4R2F2 = − α′2

64π2
Tµ1µ2

∫
FL

d2τ

τ2
2

Ē2
4

η̄24

[(
s2(Q2Q3 −Q5)

+ut(Q2Q4 +Q5 + 2Q6 − 3Q7 − 2Q8)
)
Jµ1µ2

1

−s(Q2Q4 +Q5 −Q6 + 3Q7 +Q8)Jµ1µ2
2

]
, (8.57)

where we have also used the expressions for Q9 and Q11 using (7.1).

The coefficient of the R2F2 term in (8.54) is obtained using (8.6), leading to [56]

A1−loop
R2F2 =

4π3

3
Tµ1µ2J

µ1µ2
1 . (8.58)

Again on using (8.6), the relations between the graphs (7.1), and the definitions (8.18)

and (8.32), we obtain the expression for the D2R2F2 term in (8.55) which is given by

A1−loop
D2R2F2 = −α

′

32
Tµ1µ2

[(
1920ζ(4)

π
+

2

3
(Ĩ2 − I3)

)
sJµ1µ2

1

+

(
960ζ(4)

π
− 2

3
(Ĩ2 − I3)

)
Jµ1µ2

2

]
. (8.59)

Now using 2Ĩ2 = −I3, we get that

A1−loop
D2R2F2 = −π

3α′

3
Tµ1µ2

[(
lnπ + γ +

1

6
− 2ζ ′(4)

ζ(4)

)
sJµ1µ2

1

−
(

lnπ + γ − 17

6
− 2ζ ′(4)

ζ(4)

)
Jµ1µ2

2

]
. (8.60)

We now consider the contribution to the D4R2F2 term in (8.56). To start with, we

consider the contribution coming from A1−loop,Y1

D4R2F2 , where we calculate the various integrals

that have already not been calculated.

To begin, we consider the integral

I4 =

∫
FL

d2τ

τ2
2

Ē4(Ē6 − Ê2Ē4)

η̄24
R4,2 (8.61)

since Q11 = R4,2. Using the relation

D̄4Ē4 =
2π

3
(Ē6 − Ê2Ē4) (8.62)
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and noting that D̄8Ē8 = 2Ē4D̄4Ē4, we have that

I4 =
3

4π

∫
FL
d2τ

D̄8Ē8

η̄24
D0D̄2R4,2 (8.63)

where we have also used the eigenvalue equation for R4,2. Thus we have that

I4 =
3

8π

∫ 1/2

−1/2
dτ1

D̄8Ē8

η̄24
D̄2R4,2

∣∣
τ2=L→∞ +

3

π2
I2, (8.64)

where we have used

τ2
2D0D̄8Ē8 = −2Ē8 (8.65)

and

R5,4 =
π

2
D̄2R4,2. (8.66)

We next consider the integral

I5 =

∫
FL

d2τ

τ2
2

Ē4Ê2(Ē6 − Ê2Ē4)

η̄24
E2. (8.67)

Proceeding as above and using the eigenvalue equation for E2, we get that

I5 =
3

4π

∫ 1/2

−1/2
dτ1

(D̄8Ē8)Ê2

η̄24
D̄0E2

∣∣
τ2=L→∞ −

3

π2
(Ĩ2 − 2I3), (8.68)

where we have used the definitions (8.18) and (8.32).

Again, as an aside we also consider the integral

K2 =

∫
FL
d2τ

Ē4(Ē6 − Ê2Ē4)

η̄24
(Ē4 − Ê

2

2)D0E2 =
9

2π2

∫
FL
d2τ

(D̄8Ē8)(D̄2Ē2)

η̄24
D0E2, (8.69)

which is not needed for our analysis, but is useful to analyze keeping generic amplitudes

in mind. Proceeding as before, we get that

K2 =
9

4π2

∫ 1/2

−1/2
dτ1

(D̄8Ē8)(D̄2Ê2)

η̄24
E2

∣∣
τ2=L→∞ +

3

2π
(K1 + 2I5) (8.70)

on using (8.43) and (8.67).

Hence to obtain the expression for A1−loop,Y1

D4R2F 2 and K2, we have to calculate the remain-

ing boundary contributions in (8.64), (8.68) and (8.70) using the asymptotic expansions.

Proceeding as before, we get that∫ 1/2

−1/2
dτ1

D̄8Ē8

η̄24
D̄2R4,2

∣∣
τ2=L→∞ =

16ζ(6)

π2

Ē8

η̄24

∣∣∣∣
q̄0

=
128π4

15
,

∫ 1/2

−1/2
dτ1

(D̄8Ē8)Ê2

η̄24
D̄0E2

∣∣
τ2=L→∞ =

8ζ(4)

π2

Ē4(2Ē2Ē4 − Ē6)

η̄24

∣∣∣∣
q̄0

=
320π2

3
,

∫ 1/2

−1/2
dτ1

(D̄8Ē8)(D̄2Ê2)

η̄24
E2

∣∣
τ2=L→∞ =

4ζ(4)

π2

Ē4(3Ē2Ē4 − Ē6)

η̄24

∣∣∣∣
q̄0

=
224π2

3
, (8.71)

on only keeping finite terms as L→∞.
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These integrals involving D̄2R4,2, D̄0E2 and E2 do not receive contributions from the

τ1 dependent part of these modular forms, given the structure of the other factor in the

integrands. Thus using the various relations, we have that

I4 = −16π3

5

(
lnπ + γ − 197

60
− 2ζ ′(6)

ζ(6)

)
,

I5 = −80π

(
lnπ + γ − 17

6
− 2ζ ′(4)

ζ(4)

)
(8.72)

which are relevant for calculating A1−loop,Y1

D4R2F 2 . Thus we get that

A1−loop,Y1

D4R2F 2 = − α′2

3 · 256
Tµ1µ2

[
(A′s2 +B′ut)Jµ1µ2

1 + C ′sJµ1µ2
2

]
, (8.73)

where

A′ =
118256π3

225
− 2752π3

15
(lnπ + γ) +

1024π3

3

(
ζ ′(4)

ζ(4)
+

3ζ ′(6)

40ζ(6)

)
,

B′ = −27416π3

225
+

352π3

15
(lnπ + γ)− 256π3

3

(
ζ ′(4)

ζ(4)
− 9ζ ′(6)

20ζ(6)

)
,

C ′ = −32π3

5

(
lnπ + γ − 197

60
− 2ζ ′(6)

ζ(6)

)
. (8.74)

Finally, we need to calculate A1−loop,Y2

D4R2F 2 in (8.56). This is obtained in a straightforward

manner following the discussion in section 5.2, given the equality of the various integrals

that arise in this case and the D2R4 amplitude, leading to

A1−loop,Y2

D4R2F 2 = − α′2

128π2
Tµ1µ2

[
(2As2 +But)Jµ1µ2

1 − 2CsJµ1µ2
2

]
, (8.75)

where A,B and C are given by (8.52).

9 Some modular graph functions at higher order in the momentum ex-

pansion

This method of analyzing modular graph functions generalizes to all orders in the α′ expan-

sion. However, the technical details get more involved as the graphs get more complicated.

Though we have not done a detailed analysis for the graphs that arise for interactions with

twelve derivatives, we present some elementary results for illustrative purposes.

Among the several graphs that arise at this order in the derivative expansion, consider

the graphs Q12, Q13 and Q14 given in figure 5. As usual, the vertices are integrated with

measure d2z/τ2. For the sake of brevity, we write down the equations satisfied by the

action of δµ on these graphs pictorially, where the analysis is done along the lines of that

done before, and then the action of δµ̄δµ on every graph can be easily obtained. None of

these graphs have a factor of (∂̄1G12)2 in the integrand, and hence we do not expect any

non-vanishing contributions from δµ∂̄G.
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(i) (ii) (iii)

Figure 5. (i) Q12, (ii) Q13 and (iii) Q14.

δµ

π

2 2 2

Figure 6. The equation for δµQ12.

δ µ

π

1
2

Figure 7. The equation for δµQ13.

δ µ

π

2 8

8 4 2

2 4 
2
2

π

Figure 8. The equation for δµQ14.
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(i) (ii)

Figure 9. The graphs (i)S1 and (ii)S2.

(i) (ii)

Figure 10. The graphs (i)S3 and (ii)S4.

(i)

(ii)

Figure 11. (i) the equal graphs, and (ii) the auxiliary graph.

The equations for δµQ12, δµQ13 and δµQ14 are given by figures 6, 7 and 8 respectively,

where we have suppressed a factor of 1/τ2 for each term on the right hand side for brevity.21

While the equations for δµQ12 and δµQ13 are straightforward, the equation for δµQ14

involves simplifying the graphs S1 and S2 given in figure 9. To do so, we introduce the

auxiliary graphs S3 and S4 respectively given in figure 10.

In fact, there are also some simple relations between graphs of distinct topologies.

They are obtained by starting with appropriate auxiliary graphs and generalize the analysis

of [27] for modular invariant graphs. One such relation is given by (i) in figure 11, which is

obtained by starting with the auxiliary graph (ii), and evaluating it in two different ways.

Another such relation is given by (i) in figure 12, which is obtained by starting with the

auxiliary graph (ii). Note that in these auxiliary graphs, there is a link of the form ∂̄2G.

21In the last term on the right hand side of δµQ14, we have suppressed a factor of τ2 instead.
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(i)

(ii)

Figure 12. (i) the equal graphs, and (ii) the auxiliary graph.
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A Various crossing symmetric combinations

To denote the various spacetime structures that arise in our analysis of the four graviton

amplitude at tree level and at one loop, we introduce the manifestly crossing symmetric

combinations given below.

The tensor involving two factors of ηµν is given by

Iµ1µ2µ3µ4
1;m,n =

(
α′s

4

)m(α′2ut
16

)n
ηµ1µ2ηµ3µ4 +

(
α′t

4

)m(α′2su
16

)n
ηµ1µ4ηµ2µ3

+

(
α′u

4

)m(α′2st
16

)n
ηµ1µ3ηµ2µ4 . (A.1)

The two tensors involving one factor of ηµν are

Iµ1µ2µ3µ4
2;m,n =

(
α′s

4

)m(α′2ut
16

)n
(ηµ1µ2kµ4

3 kµ3
4 + ηµ3µ4kµ2

1 kµ1
2 )

+

(
α′t

4

)m(α′2su
16

)n
(ηµ1µ4kµ3

2 kµ2
3 + ηµ2µ3kµ4

1 kµ1
4 )

+

(
α′u

4

)m(α′2st
16

)n
(ηµ1µ3kµ4

2 kµ2
4 + ηµ2µ4kµ3

1 kµ1
3 ),

Iµ1µ2µ3µ4
3,n =

(
α′s

4

)n[
ηµ1µ2(tkµ3

1 kµ4
2 + ukµ4

1 kµ3
2 ) + ηµ3µ4(tkµ1

3 kµ2
4 + ukµ3

3 kµ1
4 )

]
+

(
α′t

4

)n[
ηµ1µ4(skµ3

1 kµ2
4 + ukµ2

1 kµ3
4 ) + ηµ2µ3(skµ4

2 kµ1
3 + ukµ1

2 kµ4
3 )

]
+

(
α′u

4

)n[
ηµ1µ3(skµ4

1 kµ2
3 + tkµ2

1 kµ4
3 ) + ηµ2µ4(skµ3

2 kµ1
4 + tkµ1

2 kµ3
4 )

]
.

(A.2)
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1 1 12 2 2

i ii iii

Figure 13. (i) ∂2G12 = −∂1G12, (ii) ∂̄2G12 = −∂̄1G12 and (iii) ∂1∂̄2G12.

Finally, the three tensors involving no factors of ηµν are

Iµ1µ2µ3µ4
4,n =

(
α′s

4

)n
kµ2

1 kµ1
2 kµ4

3 kµ3
4 +

(
α′t

4

)n
kµ4

1 kµ1
4 kµ3

2 kµ2
3 +

(
α′u

4

)n
kµ3

1 kµ1
3 kµ4

2 kµ2
4 ,

Iµ1µ2µ3µ4
5,n =

(
α′s

4

)n
(kν3

1 k
ν4
2 k

ν1
4 k

ν2
3 + kν4

1 k
ν3
2 k

ν1
3 k

ν2
4 )

+

(
α′t

4

)n
(kν3

1 k
ν2
4 k

ν1
2 k

ν4
3 + kν2

1 k
ν3
4 k

ν1
3 k

ν4
2 )

+

(
α′u

4

)n
(kν2

1 k
ν4
3 k

ν1
4 k

ν3
2 + kν4

1 k
ν2
3 k

ν1
2 k

ν3
4 ),

Iµ1µ2µ3µ4
6,n =

(
α′s

4

)n
(kν1

3 k
ν2
3 + kν1

4 k
ν2
4 )(kν3

1 k
ν4
1 + kν3

2 k
ν4
2 )

+

(
α′t

4

)n
(kν1

2 k
ν4
2 + kν1

3 k
ν4
3 )(kν2

1 k
ν3
1 + kν2

4 k
ν3
4 )

+

(
α′u

4

)n
(kν2

1 k
ν4
1 + kν2

3 k
ν4
3 )(kν1

2 k
ν3
2 + kν1

4 k
ν3
4 ), (A.3)

which repeatedly arise in our analysis.

Thus note that

Kµ1µ2µ3µ4 =
4

α′2
Iµ1µ2µ3µ4

1;0,1 − 1

2
Iµ1µ2µ3µ4

3,0 . (A.4)

B The various modular graph functions

In the main text, various modular graph functions arise which we summarize below. They

are SL(2,Z) covariant expressions which are functions of the complex structure of the

torus. The vertices of these graphs are the locations of the vertex operators on the toroidal

worldsheet which are integrated with measure d2z/τ2, while the links are either given by

Green functions or their derivatives. These arise while performing the derivative expansion

of the one loop amplitude. The graphs we need to consider for our analysis have either two

of four factors of ∂̄G, and hence are modular forms of weight (0, 2) of (0, 4) respectively.

We find it very convenient for our analysis to denote the graphs diagrammatically.

In the various graphs, black links stand for the Green function. On the other hand, the

notations for links having holomorphic and antiholomorphic derivatives acting on the Green

function are given in figure 13, along with the notation for a link having a single Green

function having both these derivatives.

For our purposes, the relevant graphs are those that appear in the amplitude that

yield terms with upto ten derivatives in the effective action, and are given in figure 14. Of
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(i)
(ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

(x) (xi)

Figure 14. The graphs (i) Q1, (ii) Q2, (iii) Q3, (iv) Q4, (v) Q5, (vi) Q6, (vii) Q7, (viii) Q8, (ix)

Q9, (x) Q10 and (xi) Q11.

them, the graphs Q2, Q3, Q4, Q9, Q10 and Q11 have two links involving ∂̄G while the rest

involve G, and hence are weight (0, 2) modular forms. The remaining graphs Q1, Q5, Q6,

Q7 and Q8 have four links involving ∂̄G while the rest involve G, and hence are weight

(0, 4) modular forms. These combine with other modular covariant expressions to yield

modular invariant integrands which have to be integrated over the truncated fundamental

domain of SL(2,Z) to give us coefficients of appropriate terms in the effective action.

The relevant graphs are

Q1 =

4∏
i=1

∫
Σ

d2zi

τ2
∂̄2G12∂̄3G23∂̄4G34∂̄1G14, Q2 =

2∏
i=1

∫
Σ

d2zi

τ2
∂̄1G12∂̄2G12,

Q3 =
2∏
i=1

∫
Σ

d2zi

τ2
G12∂̄1G12∂̄2G12, Q4 =

3∏
i=1

∫
Σ

d2zi

τ2
∂̄2G12∂̄3G23G13,

Q5 =

4∏
i=1

∫
Σ

d2zi

τ2
∂̄1G12∂̄2G12∂̄3G23G34∂̄4G14,

Q6 =

4∏
i=1

∫
Σ

d2zi

τ2
G12∂̄2G12∂̄3G23∂̄4G34∂̄1G14, (B.1)
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as well as

Q7 =
4∏
i=1

∫
Σ

d2zi

τ2
∂̄2G12∂̄3G23∂̄4G34G14∂̄2G24,

Q8 =

4∏
i=1

∫
Σ

d2zi

τ2
∂̄2G12∂̄3G23∂̄4G34∂̄1G14G24, Q9 =

2∏
i=1

∫
Σ

d2zi

τ2
G2

12∂̄1G12∂̄2G12,

Q10 =

3∏
i=1

∫
Σ

d2zi

τ2
G13G23∂̄1G12∂̄2G12, Q11 =

4∏
i=1

∫
Σ

d2zi

τ2
∂̄2G12∂̄3G23G34G14,

(B.2)

as depicted in figure 14.

C Asymptotic expansions of the various modular graph functions

In the main text, the asymptotic expansions of the various graphs provide a useful check not

only of the structure of the differential equations but they also provide data to determine

the boundary terms. The asymptotic expansion as well provides necessary boundary data

in order to calculate the integrals. In our analysis, we shall consider the terms that are

independent of τ1 and power behaved in τ2 in the large τ2 expansion. In general, such

expansions lead to powerful constraints in analyzing the graphs [20, 21, 69] using various

techniques.

For our analysis, we shall obtain the terms in the asymptotic expansion by setting

various subsets of the lattice momenta to zero, and performing Poisson resummation over

some of the appropriate remaining lattice momenta. On setting the dual winding momenta

to zero, we shall obtain the necessary terms in the series. The various powers of τ2 that

arise are determined by the set of lattice momenta that are set to zero. This method (which

has been used in the type II theory [20]) gives a clear intuitive picture of the source of origin

of the various terms, apart from being tractable enough to implement for the graphs we

are interested in.

In our analysis, we shall make use of the asymptotic expansions

Es(τ, τ̄) =
2ζ(2s)

πs
τ s2 +

2ζ(2s− 1)Γ(s− 1/2)

πs−1/2Γ(s)
τ1−s

2 + . . . ,

G2k(τ) = 2ζ(2s) + . . . , (C.1)

for k ≥ 2 in the large τ2 limit, and

Ĝ2(τ, τ̄) = 2ζ(2)− π

τ2
+ . . . , (C.2)

where the terms we have neglected are exponentially suppressed in τ2 and also depend on

τ1. We now consider the asymptotic expansions of the various graphs needed in the main

text, focussing on only those terms that are power behaved in the large τ2 expansion.
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C.1 Asymptotic expansions of Q3 and Q10

From (B.1), we have that

Q3 = −
′∑ τ2

π(m1 + n1τ̄)(m2 + n2τ̄)|m3 + n3τ |2
,

Q10 = −
′∑ τ2

2

π2(m1 + n1τ̄)(m2 + n2τ̄)|m3 + n3τ |4
, (C.3)

where the sum is over the integers mi, ni satisfying the constraints

(mi, ni) 6= (0, 0), i = 1, 2, 3,
∑
i

mi =
∑
i

ni = 0. (C.4)

In our analysis, we extract the contributions that are power behaved in τ2 by setting

ni = 0 in the sums for appropriate i, which determines the τ2 dependence. In the discussions

below, we mention which of the ni are set to zero, while it is implied that the others take

only non-zero values.

For all the expressions involving Q3, . . . , Q9 the leading contribution at large τ2 is given

by setting all ni = 0. For Q3 we get

− π

τ2
Qasymp

3 =
′∑ 1

m1m2(m1 +m2)2
= 2W (1, 1, 2)− 4W (2, 1, 1), (C.5)

while for Q10 we get

− π2

τ2
2

Qasymp
10 =

′∑ 1

m1m2(m1 +m2)4
= 2W (1, 1, 4)− 4W (4, 1, 1). (C.6)

In (C.5) and (C.6), the sum is over integers m1,m2 satisfying the constraints

mi 6= 0, m1 +m2 6= 0. (C.7)

Here we make use of the expression for the Tornheim sum or the Witten zeta function

W (α1, α2, β) defined by22

W (α1, α2, β) =

∞∑
m,n=1

1

mα1nα2(m+ n)β

=
∑

r+s=α1+α2;r,s>0

[(
r − 1

α1 − 1

)
+

(
r − 1

α2 − 1

)]
ζ(β + r, s). (C.9)

Thus

Qasymp
3 =

4τ2

π

(
ζ(3, 1) + ζ(2, 2)

)
=

4ζ(4)

π
τ2,

Qasymp
10 =

4τ2
2

π2

(
ζ(5, 1) + ζ(2, 4) + ζ(4, 2) + ζ(3, 3)

)
=

4ζ(6)

π2
τ2

2 , (C.10)

22The multi zeta value is defined by

ζ(s1, . . . , sr) =
∑

n1>n2>...>nr≥1

1

ns11 n
s2
2 . . . nsrr

. (C.8)
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on using the relations

4ζ(3, 1) =
4

3
ζ(2, 2) = ζ(4), 4ζ(5, 1) = 3ζ(6)− 2ζ(3)2,

ζ(2, 4) = −ζ(3)2 +
25

12
ζ(6), ζ(4, 2) = ζ(3)2 − 4

3
ζ(6), 2ζ(3, 3) = ζ(3)2 − ζ(6)

(C.11)

between multi zeta values and Riemann zeta functions.

We would now like to obtain the subleading contributions in the large τ2 expansion in

a systematic way. To perform these asymptotic expansions, we consider the general sum

given by

Q = −
′∑ (m1 + n1τ)(m2 + n2τ)τ s32

πs3 |m1 + n1τ |2s1 |m2 + n2τ |2s2 |m3 + n3τ |2s3
. (C.12)

Thus Q3 corresponds to the case where s1 = s2 = s3 = 1, while Q10 corresponds to the case

where s1 = s2 = 1, s3 = 2. While the leading contributions are given by (C.10), for our

cases the first subleading contribution is obtained from the sector n3 = 0. On relabelling

the indices, this is given by

πs3Qasymp =
∑

m1 6=0,n2 6=0,m2

τ s32 (m2 + n2τ)((m1 +m2) + n2τ)

m2s3
1 |m2 + n2τ |2s1 |(m1 +m2) + n2τ |2s2

. (C.13)

To extract the asymptotic behaviour, we perform a Poisson resummation on m2 on using

the integral representation

1

|z|2s
=

1

Γ(s)

∫ ∞
0

dλλs−1e−|z|
2λ (C.14)

for the two denominators. Thus λ is the Schwinger parameter denoting the proper time

for the propagator involving the lattice momenta. Naming the integer that is summed over

after Poisson resummation as m̂2 (thus is it the winding momentum label), we see that the

only τ1 dependence appears as a phase e2πim̂2n2τ1 . Hence to consider the τ1 independent

terms, we set m̂2 = 0, leading to

πs3Qasymp =
∑

m1 6=0,n2 6=0

π1/2τ s32

m2s3
1 Γ(s1)Γ(s2)

∫ ∞
0

dλdρ
λs1−1ρs2−1

√
λ+ ρ

×
[

1

2(λ+ ρ)
− λρm2

1

(λ+ ρ)2
− n2

2τ
2
2

]
e−n

2
2τ

2
2 (λ+ρ)−m2

1λρ/(λ+ρ). (C.15)

We have dropped the purely imaginary term iτ2m1n2(λ− ρ)/(λ+ ρ) in the bracket in the

integrand as it is odd in m1 as well as n2 (it also vanishes on setting s1 = s2 which we shall

eventually take) and hence it vanishes. Thus the expression is manifestly real.

To obtain a systematic asymptotic expansion, we now define

σ = λ+ ρ, ω =
λ

σ
, 0 ≤ ω ≤ 1. (C.16)
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On further substituting x = n2
2τ

2
2σ, we get that

πs3Qasymp =
4π1/2

Γ(s1)Γ(s2)
τ1+s3−2s1−2s2

2

∑
m1>0,n2>0

1

m2s3
1 n2s1+2s2−1

2

∫ ∞
0

dxxs1+s2−3/2

×
∫ 1

0
dωωs1−1(1− ω)s2−1

[
n2

2τ
2
2

(
1

2x
−1

)
−ω(1−ω)m2

1

]
e−x−ω(1−ω)m2

1x/n
2
2τ

2
2 .

(C.17)

Let us now consider the leading term in the asymptotic expansion. To obtain this, we

set the term in the exponential e−ω(1−ω)m2
1x/n

2
2τ

2
2 equal to one. Thus to leading order we

have that

πs3Qasymp =
4π1/2

Γ(s1 + s2)
τ3+s3−2s1−2s2

2 ζ(2s3)ζ(2s1 + 2s2 − 3)

×
∫ ∞

0
dxxs1+s2−3/2

(
1

2x
− 1

)
e−x. (C.18)

The x integral yields

(2− s1 − s2)Γ(s1 + s2 − 3/2). (C.19)

We now see why it is very useful and important for us to start with arbitrary s1 and s2.

For s1 = s2 = 1, the second zeta function in (C.18) diverges, while the multiplicative factor

in (C.19) vanishes. Thus we take s1 = s2 = 1 + ε, and take the limit ε→ 0.23 In this limit

(2− s1 − s2)ζ(2s1 + 2s2 − 3)→ −1/2 (C.21)

giving us a finite answer.24 Thus at leading order in this sector we get that

Qasymp
3 = −2ζ(2), Qasymp

10 = −2ζ(4)

π
τ2. (C.23)

Note that unlike the leading order expressions in (C.10), this contribution arises from a

regularized expression, and has transcendentality one less than what would be naively

expected. This is because 0ζ(1) yields a constant of vanishing transcendentality on taking

the limit, while ζ(1) formally has transcendentality one. We interpret such contributions

as coming from the boundary of moduli space in the differential equation, as discussed in

the main text.

23Alternatively, we use the identity

ζ(2s1 + 2s2 − 3)(2− s1 − s2)Γ(s1 + s2 − 3/2) = π2s1+2s2−7/2ζ(4− 2s1 − 2s2)Γ(3− s1 − s2) (C.20)

which gives a finite value.
24In fact, this is exactly how Ĝ2 is defined by

Ĝ2 = lims→0

∑
(m,n) 6=(0,0)

1

(m+ nτ)2|m+ nτ |2s . (C.22)

The regularization introduces the non-holomorphicity.
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It is very useful for our purposes to have an alternative representation for Qasymp. To

do so, we use a different representation for (C.15) when m̂2 = 0 given by (generalizing the

analysis in [20])

πs3Qasymp =
∑

m1 6=0,n2 6=0

τ s32

m2s3
1

∫ ∞
−∞

dµ
(µ+ in2τ2)(µ+m1 + in2τ2)

|µ+ in2τ2|2s1 |µ+m1 + in2τ2|2s2
. (C.24)

The equality easily follows by introducing Schwinger parameters λ and ρ for the two prop-

agators in (C.24) with powers 2s1 and 2s2 respectively, using (C.14) and integrating over

µ. Let us set s1 = s2 = s and consider the limit s→ 1. Thus we have that

πs3Qasymp = 4
∑

m1>0,n2>0

τ3+s3−4s
2

m2s3
1 n4s−3

2

I(s; a), (C.25)

where

I(s; a) = I(s;−a) =

∫ ∞
−∞

dν
ν(ν + a)− 1

(ν2 + 1)s[(ν + a)2 + 1]s
, (C.26)

a = m1/n2τ2. We note that I(1; a) = 0 for all a, and thus we can write25

I(s; a) = (s− 1)Î(s; a). (C.28)

Now the leading contribution in the large τ2 limit is obtained by setting I(s; a) = I(s; 0)

in (C.25) which leads to (C.23) as before. This contribution arose from regularizing

the product of a vanishing integral and a divergent sum over the integer n2 to yield a

finite number.

What about a possible contribution from a potential divergence from the sum over

the integer m1? We now heuristically argue that this can lead to a contribution that is

subleading in the large τ2 expansion.

For Q3, this can yield a term of the form 1/τ2. Thus in this sector

Qasymp
3 = −2ζ(2) +

c0

τ2
. (C.29)

To show the possible existence of the term involving c0, it is very convenient to consider

∂Qasymp
3

∂τ2
= − c0

τ2
2

(C.30)

simply because c0 is obtained as the leading contribution in (C.30). From (C.25), we

have that

π
∂Qasymp

3

∂τ2
=

16(1− s)
τ2

∑
m1>0,n2>0

τ
4(1−s)
2

m2
1n

4s−3
2

I(s; a)− 4

τ2
2

∑
m1>0,n2>0

τ
4(1−s)
2

m1n
4s−2
2

∂I(s; a)

∂a
. (C.31)

25This can also be directly seen on using

I(s; a) = 2
√
π(1− s)Γ(2s− 3/2)

Γ2(s)

∫ 1

0

dx
xs−1(1− x)s−1

[1 + a2x(1− x)]2s−3/2
(C.27)

on introducing the Feynman parameter x and performing the ν integral.
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The contribution from the first term vanishes as s→ 1, as the sum involves Qasymp
3 which

is finite on regularization. On the other hand, the second term which has a prefactor of

O(1/τ2
2 ) can yield a potentially non-vanishing contribution. This happens on evaluating

∂I(s; a)/∂a at a = 0. This yields an integral over ν which trivially vanishes for arbitrary

s. However, the sum over m1 then formally yields ζ(1) which diverges. Thus only such

a contribution can yield a non-vanishing result on regularizing, giving us (C.29). Rather

than obtaining this coefficient by a direct computation, we shall later argue for its value

using modular covariance.

Note that unlike the constant term in (C.29) whose regularization only depended on

s1 and s2, the regularization of the second term also depends on s3. While the vanishing

of the integral involving ∂I(s; a)/∂a evaluated at a = 0 is trivial, what is non-trivial is the

divergence arising from the sum over m1 which is dictated by the value of s3. The product

of these two contributions can lead to a finite answer.

In fact, proceeding similarly we get that

Qasymp
10 = −2ζ(4)

π
τ2 +

c1

τ2
2

, (C.32)

where we start by considering
∂2Qasymp

10

∂τ2
2

=
6c1

τ4
2

. (C.33)

Thus this heuristic argument shows that the potential non-vanishing subleading contribu-

tion is obtained simply by Taylor expanding I(s; a) around a = 0 to the appropriate power

determined by s3, and then by regularizing the product of a trivially vanishing integral and

a divergent sum.

Next we consider the further subleading contribution where n1 = 0 in (C.12) (n2 = 0

gives the same result since s1 = s2). The total contribution from these two cases is given by

πs3Qasymp = −2
∑

m1 6=0,n2 6=0

τ s32

m2s1−1
1

∫ ∞
−∞

dµ
(µ+ in2τ2)

|µ+ in2τ2|2s2 |µ+m1 + in2τ2|2s3

= −4
∑

m1 6=0,n2>0

τ s32

m2s1−1
1 (n2τ2)2(s2+s3)−2

∫ ∞
−∞

dν
ν

(ν2 + 1)s2 [(ν + a)2 + 1]s3
,

(C.34)

where we have Poisson resummed over the momenta m2 and set the winding mode m̂2 = 0.

Thus for Q3 we have that

Qasymp
3 = 4τ2

∑
m 6=0,n>0

1

nτ2(m2 + 4n2τ2
2 )
, (C.35)

while for Q10 we have that

Qasymp
10 =

2τ2
2

π

∑
m 6=0,n>0

m2 + 8n2τ2
2

n3τ3
2 (m2 + 4n2τ2

2 )2
. (C.36)
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To evaluate (C.35) and (C.36), we first perform the sum over m by simplifying the sum-

mands using partial fractions and using∑
m∈Z

1

m+ z
= πcotπz. (C.37)

Thus, we have that

Qasymp
3 = 4τ2

∑
n>0

1

nτ2

(
− 1

4n2τ2
2

+
π

2nτ2
coth2πnτ2

)
= −ζ(3)

τ2
2

+
2πζ(2)

τ2
. (C.38)

where we have ignored terms that are exponentially suppressed at large τ2. Similarly,

Qasymp
10 = −ζ(5)

πτ3
2

+
3ζ(4)

2τ2
2

. (C.39)

Finally, the remaining contribution comes from n1 6= 0, n2 6= 0, n1 + n2 6= 0. Poisson

resumming over m1 and m2, we set the winding modes m̂1 = 0 and m̂2 = 0, leading to26

Qasymp
3 = −τ2

π

′∑∫ ∞
−∞

dµ1

∫ ∞
−∞

dµ2
(µ1 + in1τ2)(µ2 + in2τ2)

|µ1 + in1τ2|2|µ2 + in2τ2|2|µ1 + µ2 + i(n1 + n2)τ2|2
,

(C.40)

where the sum is over integers ni satisfying

n1 6= 0, n2 6= 0, n1 + n2 6= 0. (C.41)

Defining µi = |ni|νiτ2, we get that

Qasymp
3 = − 1

πτ2

′∑∫ ∞
−∞

dν1

∫ ∞
−∞

dν2
(ν1 + isgn(n1))(ν2 + isgn(n2))

(ν2
1 + 1)(ν2

2 + 1)[(|n1|ν1 + |n2|ν2)2 + (n1 + n2)2]
,

(C.42)

where the sign function sgn(n) = ±1 if n ≷ 0. Performing the integrals, we get that

Qasymp
3 =

π

τ2

′∑ 1 + sgn(n1)sgn(n2)

|n1 + n2|(|n1|+ |n2|+ |n1 + n2|)
=

2π

τ2

∞∑
m=1

∞∑
n=1

1

(m+ n)2

=
2π

τ2

∞∑
n=1

n− 1

n2
= −2π

τ2
ζ(2) +

c̃0

τ2
, (C.43)

where in the final expression we also have a formally divergent term of O(1/τ2) which has

transcendentality less than 3, which has to be appropriately regularized by starting with

arbitrary si.

Proceeding similarly, we get that

Qasymp
10 =

1

2τ2
2

′∑ (1 + sgn(n1)sgn(n2))(|n1|+ |n2|+ 2|n1 + n2|)
|n1 + n2|3(|n1|+ |n2|+ |n1 + n2|)2

=
3

2τ2
2

∞∑
m=1

∞∑
n=1

1

(m+ n)4
=

3

2τ2
2

(
ζ(3)− ζ(4)

)
. (C.44)

26For this choice of ni, the sector with m̂1n1 + m̂2n2 = 0, with m̂1 6= 0, m̂2 6= 0 is also independent of

τ1. However these terms are exponentially suppressed in τ2.
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Note that the terms involving ζ(2) and ζ(4) in (C.43) and (C.44) cancel terms in (C.38)

and (C.39) respectively. This is crucial for the consistency of the differential equations

deduced in the main text.

Thus adding all the contributions, we get that

Qasymp
3 =

(
4ζ(4)

π
τ2 −

ζ(3)

τ2
2

)
− 2ζ(2) +

c0 + c̃0

τ2
,

Qasymp
10 =

(
4ζ(6)

π2
τ2

2 −
ζ(5)

πτ3
2

)
− 2ζ(4)

π
τ2 +

3ζ(3) + 2c1

2τ2
2

. (C.45)

In each case, the terms in parentheses have uniform transcendentality, which is more than

that for the other terms that we have determined. We interpret these terms having lesser

transcendentality, as boundary terms. For these contributions, given the τ2 dependence and

the leading terms, we write down the exact power behaved τ2 dependent terms based on

modular covariant expressions, which also fixes the undetermined constants. This gives us

Qasymp
3 =

(
4ζ(4)

π
τ2 −

ζ(3)

τ2
2

)
− 2ζ(2)

(
1− 3

πτ2

)
,

Qasymp
10 =

(
4ζ(6)

π2
τ2

2 −
ζ(5)

πτ3
2

)
− π

(
2ζ(4)

π2
τ2 −

ζ(3)

2πτ2
2

)
, (C.46)

which have SL(2,Z) covariant completions given by

Q3 = 2πD̄0E2 − 2ζ(2)Ê2,

Q10 =
4π

3
D̄0E3 − πD̄0E2. (C.47)

Thus we have that

c0 + c̃0 = π. (C.48)

Note that for the power behaved terms, we have obtained the answer for the boundary

terms which need regularization based on the asymptotics and modular covariance, and

have not explicitly determined all the coefficients. This is also true for the later graphs we

analyze. A general understanding of such regularized contributions will be quite useful.

Now there is a good reason why we separately covariantized the two sets of contri-

butions in (C.46) to obtain SL(2,Z) covariant expressions. This is simply because (C.47)

agrees with (6.40) and (6.45). While for the first term on the right hand side of each equa-

tion this is a non-trivial consistency check of the eigenvalue equation, for the boundary

contributions the asymptotic behavior is then used as an input in δµQ which has been

covariantized.

We now consider the asymptotic expansions of the other graphs. A lot of the primary

arguments follows the analysis done above, hence we give only the results in such cases

and skip the details. Also in the various sectors, the dual winding number shall always

be set to zero for the momentum that is Poisson resummed, which is very similar to the

above analysis.
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C.2 Asymptotic expansion of Q5

From (B.1), we have that

Q5 =

′∑ τ2

π(m1 + n1τ̄)(m2 + n2τ̄)(m3 + n3τ̄)2|m3 + n3τ |2
, (C.49)

where the sum is over integers mi, satisfying (C.4). The leading contribution, obtained by

setting all ni = 0, is given by

π

τ2
Qasymp

5 =

′∑ 1

m1m2(m1 +m2)4
= 2W (1, 1, 4)− 4W (4, 1, 1) (C.50)

where mi satisfies (C.7), leading to

Qasymp
5 = −4ζ(6)

π
τ2. (C.51)

To consider the subleading contributions, as before we start with

Q̂ =

′∑ (m1 + n1τ)(m2 + n2τ)(m3 + n3τ)2τ s32

πs3 |m1 + n1τ |2s1 |m2 + n2τ |2s2 |m3 + n3τ |2s3+4
. (C.52)

The first subleading contribution is given by n3 = 0 and needs to be regularized as s1 =

s2 = s→ 1. The analysis is exactly along the lines of what we did for Q3 and Q10 leading to

Qasymp
5 = 2ζ(4) +

c2

τ3
2

(C.53)

where c2 shall be determined later using modular covariance. Once again this is interpreted

as a contribution coming from the boundary of moduli space.

The contributions from n1 = 0 and n2 = 0 are the same, and they together give

Qasymp
5 = τ2

∑
m 6=0,n>0

1

n3τ3
2 (m2 + 4n2τ2

2 )
= −ζ(5)

4τ4
2

+
πζ(4)

2τ3
2

(C.54)

where we have dropped terms that are exponentially suppressed at large τ2 as before, which

we continue to do later as well.

From the sector (C.41) we get that

Qasymp
5 =

π

4τ3
2

′∑ (1 + sgn(n1)sgn(n2))|n1|
|n1 + n2|5(|n1|+ |n2|+ |n1 + n2|)3

f(|n1|, |n2|, |n1 + n2|), (C.55)

where

f(|n1|, |n2|, |n1 + n2|) = −9|n1 + n2|3 + 9|n1 + n2|(|n1|+ |n2|)2

+5(|n1|+ |n2|)|n1 + n2|2 + 3(|n1|+ |n2|)3. (C.56)

Thus

Qasymp
5 =

πζ(3)

2τ3
2

− πζ(4)

2τ3
2

(C.57)

from this sector.
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Adding all the contributions, we get that

Qasymp
5 = −

(
4ζ(6)

π
τ2 +

ζ(5)

4τ4
2

)
+ 2ζ(4) +

πζ(3) + 2c2

2τ3
2

. (C.58)

This naturally leads us to the asymptotic expansion

Qasymp
5 = −

(
4ζ(6)

π
τ2 +

ζ(5)

4τ4
2

)
+ 2ζ(4), (C.59)

which has an SL(2,Z) covariant completion given by

Q5 = −2π2

3
D̄2D̄0E3 +

2π2

3
D̄2D̄0E2, (C.60)

in agreement with the structure obtained in (6.52).

We next consider the graphs Q6, Q7 and Q8 which do not require any regularization in

performing their asymptotic expansions. For these graphs for the sake of brevity, we simply

mention which ni is vanishing in a certain sector without mentioning which mi is Poisson

resummed (and hence which m̂i vanishes), as this is very much like the analysis before.

C.3 Asymptotic expansion of Q6

From (B.1) we start with Q6, which is given by

Q6 = −
′∑ τ2

π(m1 + n1τ̄)|m2 + n2τ |2(m3 + n3τ̄)3
, (C.61)

where the sum is over integers mi, satisfying (C.4). The leading contribution, obtained by

setting all ni = 0, is given by

π

τ2
Qasymp

6 =

′∑ 1

m1m2
2(m1 +m2)3

= 2
(
W (1, 2, 3) +W (2, 3, 1)−W (3, 1, 2)

)
(C.62)

where mi satisfies (C.7), leading to

Qasymp
6 =

ζ(6)

π
τ2. (C.63)

When n3 = 0, we get that

Qasymp
6 = 2τ2

∑
m 6=0,n>0

1

nτ2m2(m2 + 4n2τ2
2 )

=
ζ(2)ζ(3)

τ2
2

− πζ(4)

4τ3
2

+
ζ(5)

8τ4
2

, (C.64)

while when n2 = 0, we have that

Qasymp
6 = 0. (C.65)

Finally, when n1 = 0, we get that

Qasymp
6 = 2τ2

∑
m 6=0,n>0

m2 − 12n2τ2
2

nτ2(m2 + 4n2τ2
2 )3

=
3ζ(5)

8τ4
2

− πζ(4)

4τ3
2

. (C.66)
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Thus we get that

Qasymp
6 =

ζ(6)

π
τ2 +

ζ(2)ζ(3)

τ2
2

− πζ(4)

2τ3
2

+
ζ(5)

2τ4
2

, (C.67)

apart from the contribution from the (C.41) sector. Instead of performing this calcula-

tion, we can fix it simply by demanding consistency with (6.54), which yields that this

contribution is equal to

− π

2τ3
2

(
ζ(3)− ζ(4)

)
, (C.68)

leading to27

Qasymp
6 =

ζ(6)

π
τ2 +

ζ(2)ζ(3)

τ2
2

− πζ(3)

2τ3
2

+
ζ(5)

2τ4
2

. (C.70)

Note that the term πζ(4)/2τ3
2 cancels in (C.67) on adding it to (C.68), while the term

−πζ(3)/2τ3
2 remains in the sum, which has transcendentality less than the other terms.

The origin of this boundary term is the presence of Q2Q4 in (6.65). This also happens in

the analysis for Q7 and Q8 below.

C.4 Asymptotic expansion of Q7

From (B.1), we have that

Q7 =
′∑ τ2

π(m1 + n1τ̄)|m1 + n1τ |2(m2 + n2τ̄)(m3 + n3τ̄)2
, (C.71)

where the sum is over integers mi, satisfying (C.4). The leading contribution, obtained by

setting all ni = 0, is given by

π

τ2
Qasymp

7 =

′∑ 1

m3
1m2(m1 +m2)2

= −2
(
W (1, 2, 3) +W (2, 3, 1)−W (3, 1, 2)

)
(C.72)

where mi satisfies (C.7), leading to

Qasymp
7 = −ζ(6)

π
τ2. (C.73)

When n3 = 0, we get that

Qasymp
7 = 2τ2

∑
m 6=0,n>0

1

nτ2m2(m2 + 4n2τ2
2 )

=
ζ(2)ζ(3)

τ2
2

− πζ(4)

4τ3
2

+
ζ(5)

8τ4
2

, (C.74)

and when n2 = 0, we have that

Qasymp
7 = −4τ2

∑
m 6=0,n>0

1

nτ2(m2 + 4n2τ2
2 )2

=
ζ(5)

4τ4
2

− πζ(4)

4τ3
2

. (C.75)

27In fact, direct calculation of this contribution yields

Qasymp
6 = − π

τ3
2

′∑ (1 + sgn(n1)sgn(n2))

|n1 + n2|(|n1|+ |n2|+ |n1 + n2|)3
= − π

2τ3
2

(
ζ(3)− ζ(4)

)
(C.69)

in precise agreement with (C.68).
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Finally when n1 = 0, we have that

Qasymp
7 = 0. (C.76)

Thus we get that

Qasymp
7 = −ζ(6)

π
τ2 +

ζ(2)ζ(3)

τ2
2

− πζ(4)

2τ3
2

+
3ζ(5)

8τ4
2

, (C.77)

apart from the contribution from the (C.41) sector. Instead of performing this calculation,

once again we fix it simply by demanding consistency with (6.66), which yields that this

contribution is equal to

− π

2τ3
2

(
ζ(3)− ζ(4)

)
, (C.78)

leading to

Qasymp
7 = −ζ(6)

π
τ2 +

ζ(2)ζ(3)

τ2
2

− πζ(3)

2τ3
2

+
3ζ(5)

8τ4
2

. (C.79)

C.5 Asymptotic expansion of Q8

From (B.1), we have that

Q8 =
′∑ τ2

π(m1 + n1τ̄)2|m2 + n2τ |2(m3 + n3τ̄)2
, (C.80)

where the sum is over integers mi, satisfying (C.4). The leading contribution, obtained by

setting all ni = 0, is given by

π

τ2
Qasymp

8 =

′∑ 1

m2
1m

2
2(m1 +m2)2

= 6 W (2, 2, 2) (C.81)

where mi satisfies (C.7), leading to

Qasymp
8 =

2ζ(6)

π
τ2, (C.82)

while when n3 = 0 (as well as n1 = 0), we get that

Qasymp
8 = 4τ2

∑
m 6=0,n>0

m2 − 4n2τ2
2

m2nτ2(m2 + 4n2τ2
2 )2

= −2ζ(2)ζ(3)

τ2
2

− 3ζ(5)

4τ4
2

+
πζ(4)

τ3
2

(C.83)

on adding the two contributions. Finally when n2 = 0, we have that

Qasymp
8 = 0. (C.84)

Thus we have that

Qasymp
8 =

2ζ(6)

π
τ2 −

2ζ(2)ζ(3)

τ2
2

− 3ζ(5)

4τ4
2

+
πζ(4)

τ3
2

, (C.85)

apart from the contribution from the (C.41) sector. This can be easily determined by using

Q8 = −2Q7 as deduced in the main text, hence leading to the contribution
π

τ3
2

(
ζ(3)− ζ(4)

)
(C.86)

from this sector, leading to

Qasymp
8 =

2ζ(6)

π
τ2 −

2ζ(2)ζ(3)

τ2
2

− 3ζ(5)

4τ4
2

+
πζ(3)

τ3
2

. (C.87)
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C.6 Asymptotic expansion of Q9

Finally from (B.1) we consider the asymptotic expansion of Q9, which is given by

Q9 = −
′∑ τ2

2

π2(m1 + n1τ̄)(m2 + n2τ̄)|m3 + n3τ |2|m4 + n4τ |2
, (C.88)

where the sum is over integers mi satisfying

(mi, ni) 6= (0, 0), i = 1, 2, 3, 4,
∑
i

mi =
∑
i

ni = 0. (C.89)

The leading contribution at large τ2 is obtained by setting all ni = 0 in (C.88). This

gives us

Qasymp
9 =

4τ2
2

π2

[
ζ(2)ζ(4)−2ζ(2)

(
W (1, 1, 2)−2W (2, 1, 1)

)
+3
(
W (1, 1, 4)−2W (4, 1, 1)

)]
=

11ζ(6)

π2
τ2

2 . (C.90)

The contribution from the n3 = n4 = 0 sector is given by

Qasymp
9 =

2τ2
2

π2

∑
n1>0,m3 6=0,m4 6=0

τ3−4s
2

m2
3m

2
4n

4s−3
1

I(s, ã) (C.91)

in the limit s→ 1, where I(s, ã) is defined by (C.26) and

ã =
m3 +m4

n1τ2
. (C.92)

In obtaining (C.91) we have Poisson resummed over m1 and set m̂1 = 0. Thus

Qasymp
9 = −10ζ(4)

π
τ2 (C.93)

at leading order, on regularizing the expression. The subleading contributions can be

heuristically argued as before, and yield

Qasymp
9 = −10ζ(4)

π
τ2 + c3 +

c4

τ2
(C.94)

in this sector. Essentially, c3 arises from the divergence in the sum over m3 (and also

separately from m4) obtained from a term linear in ã in expanding I(s, ã), while c4/τ2 is

obtained from a simultaneous divergence in the sums over m3 and m4 obtained from m3m4

in expanding I(s, ã) to quadratic order in ã. As before, these potential contributions

can arise by regularizing the product of a vanishing integral and a divergent sum. Now

from (C.31) we directly see that

c3 =
4ζ(2)

π
c0 (C.95)

which shall be useful later.
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Next we consider the contribution from the n1 = n2 = 0 sector which is given by28

Qasymp
9 = −4τ2

π

∑
n3>0,m1 6=0,m2 6=0

1

m1m2n3[(m1 +m2)2 + 4n2
3τ

2
2 ]

=
πζ(3)

τ2
− ζ(4)

τ2
2

+
ζ(5)

2πτ3
2

. (C.96)

Also there are four equal contributions from the (n1, n3) = (0, 0), (n1, n4) = (0, 0),

(n2, n3) = (0, 0) and (n2, n4) = (0, 0) sectors. The total contribution is given by29

Qasymp
9 =

8τ2

π

∑
n2>0,m1 6=0,m3 6=0

m1 +m3

m1m2
3n2[(m1 +m3)2 + 4n2

2τ
2
2 ]

= 8ζ(2)2 − 8πζ(3)

3τ2
+

3ζ(4)

τ2
2

− 3ζ(5)

2πτ3
2

. (C.97)

In both the expressions (C.96) and (C.97), we have dropped terms that are exponen-

tially suppressed in the large τ2 expansion.

The contributions from the n3 = 0 and n4 = 0 sectors are equal. Hence the total

contribution is30

Qasymp
9 = 2

′∑ (1 + sgn(n1)sgn(n2))(|n1|+ |n2|+ |n1 + n2|)
m2

3|n1 + n2|[(|n1|+ |n2|+ |n1 + n2|)2 +m2
3/τ

2
2 ]

= −8ζ(2)2 + c̃3 −
2π

τ2

(
ζ(2)− ζ(3)

)
+

1

τ2
2

(
ζ(3)− ζ(4)

)
, (C.98)

where the sum in the first line is over the integers (C.41) and m3 6= 0, and we have

dropped exponentially suppressed terms. We also have a formally divergent constant term

of transcendentality less than 4 which needs regularization. Now from (C.43) we again

directly see that

c̃3 =
4ζ(2)

π
c̃0 (C.99)

which we shall use later.

The contributions from the n1 = 0 and n2 = 0 sectors are equal, and for n1 = 0 we

Poisson resummed over m2, m3 and set m̂2 = m̂3 = 0. On relabelling variables, the total

contribution is

Qasymp
9 =

2π

τ2

′∑ 1

|n1||n1 + n2|(|n1|+ |n2|+ |n1 + n2|)

− 2

τ2
2

′∑ 1

|n1||n1 + n2|(|n1|+ |n2|+ |n1 + n2|)2
, (C.100)

where the sum is over the integers satisfying (C.41) and we have neglected exponentially

suppressed contributions. This gives31

Qasymp
9 =

8πζ(3)

τ2
− ζ(4)

τ2
2

. (C.101)

28We have Poisson resummed over m3 and set m̂3 = 0.
29For (n1, n3) = (0, 0), we have Poisson resummed over m2 and set m̂2 = 0.
30For n3 = 0, we have Poisson resummed over m1, m2 and set m̂1 = m̂2 = 0.
31Apart from some of the relations in (C.11), we also use the relation ζ(2, 1) = ζ(3).
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Finally we consider the contribution from the sector where

n1 6= 0, n2 6= 0, n3 6= 0, n1 + n2 + n3 6= 0. (C.102)

Poisson resumming over m1,m2,m3, and setting m̂1 = m̂2 = m̂3 = 0, this contribution

gives32

Qasymp
9 =

π

τ2

′∑ 1 + sgn(n1)sgn(n2)

|n3||n1 + n2 + n3|(|n1|+ |n2|+ |n3|+ |n1 + n2 + n3|)

=
1

τ2
[c̃4 − 8πζ(3)], (C.103)

where the sum is over (C.102), and we also have a formally divergent contribution of order

1/τ2 having transcendentality less than 4. This has to be regularized, and will add to the

coefficient c4 in (C.94).

Thus adding the various contributions, we get that

Qasymp
9 =

11ζ(6)

π2
τ2

2 +
πζ(3)

3τ2
− ζ(5)

πτ3
2

−10ζ(4)

π
τ2 +

ζ(3)

τ2
2

+ c3 + c̃3 +
c4 + c̃4

τ2
, (C.104)

where we have also absorbed a term of the form πζ(2)/τ2 in (c4 + c̃4)/τ2. We simply rewrite

this expression as

Qasymp
9 =

(
11ζ(6)

π2
τ2

2 +
πζ(3)

3τ2
− ζ(5)

πτ3
2

− 4ζ(4)

π
τ2 −

ζ(3)

2τ2
2

)
−3π

(
2ζ(4)

π2
τ2 −

ζ(3)

2πτ2
2

)
+ 4ζ(2) +

c4 + c̃4

τ2
(C.105)

on using (C.48). The terms in the first line of (C.105) precisely agree with what we obtain

from δµQ9 in the main text, on ignoring all contributions arising from δµ∂̄G. Note that

while the first three terms have transcendentality 4, the last two have transcendentality 3.

They arise from the term of the form 1/τ2 in Q2 in the factor involving Q2Q̄4 in (6.78).

These boundary terms of reduced transcendentality are already included in our analysis,

and contributions coming from δµ∂̄G add more such terms. These terms are given in the

second line of (C.105). Thus based on the asymptotic expansion and modular covariance,

we are led to the expansion

Qasymp
9 =

(
11ζ(6)

π2
τ2

2 +
πζ(3)

3τ2
− ζ(5)

πτ3
2

− 4ζ(4)

π
τ2 −

ζ(3)

2τ2
2

)
−3π

(
2ζ(4)

π2
τ2 −

ζ(3)

2πτ2
2

)
+ 4ζ(2)

(
1− 3

πτ2

)
. (C.106)

Note that the terms in the first line can be completed SL(2,Z) covariantly to give

4π

3
D̄0E3 − πD̄0E2 +

π2

3
Ê2E2, (C.107)

32The contribution from
∑
i m̂ini = 0, mi 6= 0 is also independent of τ1, however these terms are

exponentially suppressed in τ2.
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while the terms in the second line give

− 3πD̄0E2 + 4ζ(2)Ê2. (C.108)
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