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1 Introduction

Black holes have an event horizon through which no particle can escape from its gravity,

even if the particles are photons. Classically, no energy or matter can reach an observer

located outside a black hole. However, in consideration of a quantum effect, a small portion

of energy can be radiated to the outside of the horizon in a black hole spacetime. The

temperature of the black hole is defined from this radiated energy, and the black hole can

be treated as a thermal system having the Hawking temperature [1, 2]. Further, black holes

have an irreducible mass, which is a property that increases for an irreversible process [3–

6]. The irreducible mass is similar to the entropy in a thermal system, and based on this

similarity, the entropy of a black hole is obtained from the irreducible mass. This entropy

is the Bekenstein-Hawking entropy of a black hole [7, 8] and is proportional to the area

of the horizon. Using these two thermal properties, temperature and entropy, the laws of

thermodynamics are constructed for the black hole as a thermal system.

An interesting conjecture called the weak cosmic censorship conjecture has been applied

to the horizon of a black hole, in which the horizon of the black hole should cover its inside

because the singularity of the black hole geometry is located at the center of the black

hole spacetime [9, 10]. This conjecture is inevitable to save the causality of the spacetime

from a naked singularity. Although the conjecture is generally suggested for black holes,

its validity should be tested for each case because there is no general procedure to prove

it. Further, the validity of the conjecture depends on the methods of investigation. For the

Kerr black hole, the conjecture is valid under the addition of a particle [11]. However, the

near-extremal Kerr black hole can be overspun beyond its extremal bound by a particle,

making the conjecture invalid [12]. To resolve this invalidity, the conjecture has been

proven to be valid for the Kerr black hole in consideration of the self-force effect [13–15].

The validity of this conjecture has been tested for the Reissner-Nordström (RN) black

hole with the back-reaction effect [16, 17]. In addition, various investigations have been
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conducted on the conjecture for not only black holes of Einstein’s theory of gravity, but also

anti-de Sitter (AdS), lower-dimensional, and higher-dimensional black holes [18–30]. From

a thermodynamic point of view, the conjecture is quite consistently related to the laws of

thermodynamics. If the entropy of the black hole increases, as ensured by the second law

for an irreversible process, the horizon can cover the inside of a black hole, as the conjecture

suggests. In addition, in the process, the variation of a black hole is consistent with the

first law of thermodynamics under particle absorption [31, 32].

Thermal properties play an important role in AdS spacetime. The gravity theory in

D-dimensional AdS spacetime is associated with the conformal field theory (CFT) defined

on the boundary of the AdS spacetime. This association is called the AdS/CFT corre-

spondence [33–36]. Under this duality, the thermal properties of the AdS black hole are

also found in dual CFT so that CFT is given at a finite temperature [37]. Currently, there

are various applications of AdS/CFT duality. One of the representative applications is the

anti-de Sitter/quantum chromodynamics (AdS/QCD) correspondence [38–41]. Another is

the anti-de Sitter/condensed matter theory (AdS/CMT) correspondence [42, 43]. Because

each solution of black holes is based on various gravity theories, its dual theory and phys-

ical interpretation depend on the black hole considered. Further, the instability of black

holes in perturbation or thermodynamics affects the states of dual CFT. For example,

the charged AdS black hole is mainly related to AdS/CMT applications. In the (2+1)-

dimensional charged AdS black hole, its dual theory is associated with the holographic

superconductor [44–46]. In addition, the Fermi-Luttinger liquid is a model resembling the

dual theory [47, 48].

The cosmological constant is a parameter that plays an important role in determining

the asymptotic topology of a black hole spacetime. In the action of Einstein’s theory of

gravity, the cosmological constant is fixed. Therefore, it is set to a constant value at any

time. Recently, various interesting studies have been conducted on the thermodynamics

of black holes wherein the cosmological constant was set as a dynamic variable and inter-

preted as a pressure. In fact, the cosmological constant was first considered as a dynamic

variable a long time ago [49, 50]. Furthermore, the pressure of the black hole spacetime is

associated with the cosmological constant [51, 52], and its thermal conjugate is found to be

a thermodynamic volume [53, 54]. Under the cosmological constant as a dynamic variable,

the mass of the black hole corresponds to the enthalpy of the black hole system [55]. Owing

to the pressure-volume contribution, the first law of thermodynamics is extended to have

a PV term [56]. This considerably affects the thermal phase of the black hole, and various

phenomena have already been investigated, such as Van der Waals fluids, re-entrant phase

transitions, and holographic heat engines [57–63]. A study on the growth of the horizon

area in the Schwarzschild-de Sitter black hole was recently reported [64].

In this paper, we prove that the variation in the D-dimensional charged AdS black

hole including four dimensions due to charged particle absorption follows the first law of

thermodynamics in consideration the thermodynamic volume term. Under the variation,

the energy of the particle is considered to contribute to the internal energy of the black

hole, rather than its enthalpy. Further, we investigate the second law of thermodynamics

for this black hole. Because particle absorption is an irreversible process, the entropy of

– 2 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
9

the black hole should increase. It has been already proved that the satisfaction of the first

law of thermodynamics is a necessary condition to ensure satisfaction of the second law

of thermodynamics under particle absorption [31, 32] in the absence of a thermodynamic

volume term. Nevertheless, if the second law of thermodynamics is not valid under the

absorption, it would be the first case where the second law of thermodynamics is violated

when the first law of thermodynamics is satisfied, which would only be observed when

considering the pressure and volume term. The second law of thermodynamics plays an

important role in physical processes such as the collision of black holes [65]. Considering the

thermodynamic volume term, we assume the cosmological constant as a dynamic variable

in the metric of the black hole. Under this assumption, we test the weak cosmic censorship

conjecture under charged particle absorption. Moreover, in the Einstein-Maxwell action,

the cosmological constant is not a dynamic variable; therefore, we cannot test the conjecture

at the level of equations of motion. Thus, our analysis in terms of the particle absorption

is probably the only method to investigate the conjecture from the variation in the black

hole including the pressure and volume term.

This paper is organized as follows. In section 2, the charged AdS black hole is intro-

duced, and the laws of thermodynamics are presented along with the dynamic cosmological

constant. In section 3, we establish the first law of thermodynamics under charged particle

absorption. Further, the second law of thermodynamics is shown to be violated in specific

cases. In section 4, we describe the investigation of the weak cosmic censorship conjecture

for extremal and near-extremal black holes. In section 5, we briefly summarize our results.

2 Thermodynamic volume in charged AdS black hole

The Einstein-Maxwell action with the cosmological constant in the D-dimensional space-

time is given as

S = − 1

16π

∫
dDx
√
−g (R− FµνFµν − 2Λ) , (2.1)

where the spacetime dimensions are denoted as D ≥ 4. The Maxwell field strength Fµν
and electric potential Aµ are

Fµν = ∂µAν − ∂νAµ, A = − Q

rD−3
dt. (2.2)

The equations of motion in eq. (2.1) have a static solution for the charged AdS black hole.

The metric of the black hole is in D-dimensional spacetime

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩD−2, f(r) = 1− 2M

rD−3
+

Q2

r2D−6
+
r2

`2
, (2.3)

where the D − 2-dimensional sphere is analytically expressed as

dΩD−2 =

D−2∑
i=1

 i∏
j=1

sin2 θj−1

 dθ2i , θ0 ≡
π

2
, θD−2 ≡ φ. (2.4)

– 3 –
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The metric components are determined in terms of mass and charge parameters M and Q,

respectively, with the AdS radius ` in eq. (2.3). These parameters are proportional to the

mass Mb, electric charge Qb, and cosmological constant Λ [66].

Mb=
(D−2)ΩD−2

8π
M, Qb=

(D−2)ΩD−2
8π

Q, Λ=−(D−1)(D−2)

2`2
, ΩD−2=

2π
D−1
2

Γ(D−12 )
,

(2.5)

where we set G = 1 and ~ = 1 in all dimensions for simplicity. The thermal properties

can be defined on the horizon rh of the black hole. The Hawking temperature, Bekenstein-

Hawking entropy, and electric potential are given as

Th =
1

2π`2

(
rh −

(D − 3)Q2`2

r2D−5h

+
(D − 3)M`2

rD−2h

)
, Sh =

Ah

4
=

ΩD−2r
D−2
h

4
, Φh =

Q

rD−3h

.

(2.6)

Then, the thermodynamic laws can be constructed for the black hole. Recently, an inter-

esting approach is followed to treat the cosmological constant as a thermodynamic variable.

From this point of view, the cosmological constant is not a fixed value. Its actual value

can be obtained from the vacuum expectation value of the theory considered, and it can

vary under a perturbation [54]. Although the variation of the cosmological constant is not

concrete in the Lagrangian theory, the cosmological constant as a thermodynamic variable

shows quite consistent behaviors with other thermodynamic variables [53, 56]. In this ex-

tended thermodynamics, the cosmological constant plays the role of pressure P , and its

conjugate variable is the thermodynamic volume of the black hole Vb. The definitions of

thermodynamic pressure and volume are in D-dimensional AdS spacetime [68]

P = − Λ

8π
=

(D − 1)(D − 2)

16π`2
, Vb =

ΩD−2
D − 1

rD−1h . (2.7)

When we consider the pressure term in the laws of thermodynamics, the key difference is

that the mass is now enthalpy in the first law of thermodynamics [54, 55]. Thus, the first

law of thermodynamics determines the infinitesimal change of the mass of the black hole

as [67, 68]

dMb = ThdSh + ΦhdQ+ VhdP, (2.8)

where Mb plays the role of enthalpy. The enthalpy is related to the internal energy of the

black hole Ub and the PVb term as

Mb = Ub + PVb. (2.9)

Therefore, the variation of the mass causes the rebalancing of not only the horizon and

electric charge, but also the AdS radius in the PVb term. In the following section, we

investigate the change in the black hole under charged particle absorption when the AdS

radius is assumed to be infinitesimally varied because of the absorption.

– 4 –
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3 Thermodynamics with pressure and volume under charged particle

absorption

We assume that the charged AdS black hole is varied when it absorbs a charged particle.

When the black hole absorbs the particle, the conserved quantities of the particle can

perturb both the mass and charge of the black hole, and the AdS radius is affected by these

changes owing to the contribution of thermodynamic pressure and volume. To analyze this

charged particle absorption, we obtain the relation between the conserved quantities of the

particle because the conserved quantities of the black hole are changed as much as those

of the particle. Then, the Hamiltonian of the charged particle under an electric potential

Aµ is given as

H =
1

2
gµν(pµ − qAµ)(pν − qAν), (3.1)

and the Hamiltonian equations are separable under the Hamilton-Jacobi action [69]. The

momentum pµ is obtained in terms of a partial derivative of the Hamilton-Jacobi action

S =
1

2
m2λ− Et+ Lφ+ Sr(r) +

D−3∑
i=1

Sθi(θi), pµ = ∂µS. (3.2)

The Hamilton-Jacobi action describes a particle having a mass m2, and the affine parameter

is λ. The conserved quantities E and L are assumed from the translation symmetries of

the metric in eq. (2.3). Owing to the D-dimensional solution, the black hole includes a

D − 2-dimensional sphere ΩD−2. The angular momentum L is defined as the conserved

quantity from the translation symmetry of the last angle coordinate of ΩD−2. Thus, the

summation in eq. (3.2) runs from i = 1 to D− 3. To solve the Hamilton-Jacobi equations,

we express the inverse metric including a D − 2-dimensional sphere

gµν∂µ∂ν = −f(r)−1(∂t)
2 + f(r)(∂r)

2 + r−2
D−2∑
i=1

 i∏
j=1

sin−2 θj−1

 (∂θi)
2. (3.3)

The Hamilton-Jacobi equation is

−2
∂S

∂λ
= −m2 = −f(r)−1(−E − qAt)2 + f(r)(∂rSr(r))

2 (3.4)

+ r−2
D−3∑
i=1

 i∏
j=1

sin−2 θj−1

 (∂θiSθi(θi))
2 + r−2

D−2∏
j=1

sin−2 θj−1

 (L)2,

which is divided by separate variables, K and Ri.

K = −m2r2 +
r2

f(r)

(
−E +

Qq

rD−3

)2

− r2f(r)(∂rSr(r))
2, R2

i = (∂iSθi(θi))
2 + sin2 θiR

2
i+1,

(3.5)

where two variables are defined as

K = R2
1, L = RD−2. (3.6)
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Then, we can determine entire equations of motion. The radial- and θ-directional equations

are sufficient to obtain the relation between the energy and electric charge of the particle.

The momenta of the particle are

pr ≡ ∂r

∂λ
= f(r)

√
−K +m2r2

r2f(r)
+

1

f(r)2

(
E − Qq

rD−3

)2

, pθ ≡ ∂θ

∂λ
=

1

r2

√
K − sin2 θ1R2

2.

(3.7)

We attempt to determine the variation in the black hole when it absorbs a charged particle.

The particle is supposed to be absorbed by the black hole when it passes through the outer

horizon rh because the conserved quantities of the particle are not distinguishable anymore

from those of the black hole at that moment by an observer outside of the horizon. By

removing the separate variable K in eq. (3.7), we obtain the relation between the conserved

quantities and momenta for a given radial location r. Then, at the outer horizon rh, the

conserved quantities of the particle are assimilated into those of the black hole. At the

limit of the outer horizon, the energy relation between conserved quantities and momenta

is obtained as

E =
Q

rD−3h

q + |pr|, (3.8)

in which various dependencies between variables are reduced to this simple relation. A

positive sign is required in front of the |pr| term. The particle enters the black hole in the

positive flow of time. At this moment, the energy of the particle should be defined as a

positive value so that the signs of E and |pr| are both positive [3, 4]. Note that we consider

the energy dependent on the electric potential term. However, the potential is independent

of the flow of time and only related to the interaction between the particle and black hole.

Thus, the total value of energy under the sum of the potential is not important, and we

simply choose the positive sign for |pr|.
By absorbing the charged particle, the black hole is varied by as much as the variation

in the particle, assuming no loss of conserved quantities in this process. This is supported

by the change in the black hole following the first law of thermodynamics. The charge in

the particle q is coincident to the change of the charge of the black hole dQb. Because

the energy of the particle is only given as q and |pr| at the horizon in eq. (3.8), we must

find a thermodynamic potential of which the variables also change by q and |pr|. If we

assume that the energy of the particle changes the internal energy of the black hole, the

internal energy is expressed as Ub(Qb, Sb, Vb), and its variation is given as dQb, dSb, and

dVb. Fortunately, these variables will be expressed in terms of those of the particle. The

energy and electric charge of the particle are

E = dUb = d(Mb − PVb), q = dQb. (3.9)

Then, the energy relation in eq. (3.8) is rewritten as

dUb =
Q

rD−3h

dQb + |pr|. (3.10)

Thus, the charged particle changes the black hole by as much as (dUb, dQb), and the change

in the black hole volume induces a change in its conjugate variable, pressure. Under the
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charged particle absorption, the changed variables are (dMb, dQb, d`). The other variables

depend on these. To rewrite eq. (3.10) to the first law of thermodynamics, we need to find

dSh changed by the absorption. Under the variation,

dSh =
1

4
(D − 2)ΩD−2r

D−3
h drh, (3.11)

where the change of the outer horizon drh should be rewritten as independent variables such

as (q, |pr|) of the particle. The particle absorption varies the function f(r), and its change

is the reason for the moved outer horizon rh + drh. The infinitesimally small movement of

the outer horizon drh satisfies

dfh =
∂fh
∂Mb

dMb +
∂fh
∂Qb

dQb +
∂fh
∂`

d`+
∂fh
∂rh

drh = 0, fh = f(Mb, Qb, `, rh), (3.12)

with

∂fh
∂Mb

= − 16π

(D − 2)ΩD−2r
D−3
h

,
∂fh
∂Qb

=
16πQ

(D − 2)ΩD−2r
2D−6
h

, (3.13)

∂fh
∂`

= −
2r2h
`3
,

∂fh
∂rh

= −(2D − 6)Q2

r2D−5h

+
2(D − 3)M

rD−2h

+
2rh
`2
.

In addition, the energy relation in eq. (3.10) is rewritten in terms of the enthalpy

dMb − d(PVh) =
8πQb

(D − 2)ΩD−2rD−3
dQb + |pr|. (3.14)

By combining eqs. (3.12) and (3.14), we can remove the d` term. Then, interestingly,

except for the |pr| and drh variables, the others are removed. The change of the outer

horizon becomes

drh =
16πr4h`

2|pr|
ΩD−2(D − 2)(D − 3)(rD+2

h − 2Mr3h`
2 + 2rDh `

2)
, (3.15)

which implies that the change of the outer horizon is proportional to the radial momentum.

This originates from the balance between eqs. (3.12) and (3.14). Further, since dP terms

are all removed because of the balance, the change of the outer horizon in eq. (3.15) gives an

identical result in an isobaric process. Again, the particle does not carry a corresponding

charge to change the pressure term, leading to the identical result even if we consider

variations to all dynamic variables. Therefore, under the energy relation, the variations of

entropy and thermodynamic volume of the black hole are obtained as

dSh =
4πrD+1

h `2|pr|
(D − 3)(rD+2

h − 2Mr3h`
2 + 2rDh `

2)
, (3.16)

dVh =
16πrD+1

h `2|pr|
(D − 2)(D − 3)(rD+2

h − 2Mr3h`
2 + 2rDh `

2)
.

Incorporating eqs. (2.6), (2.7), and (3.16), the energy relation of eq. (3.10) becomes the

first law of thermodynamics

dUh = ΦhdQb + ThdSh − PdVh. (3.17)

– 7 –
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(a) Q−M diagram for D = 4.
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(b) Q−M diagram for D = 5.
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(c) Q−M diagram for D = 6.

Figure 1. dSh in Q−M diagrams with ` = 1.

Because the mass of the black hole is already defined as the enthalpy of the black hole, the

internal energy can be exchanged with the enthalpy by the Legendre transformation. So,

dMb = ThdSh + ΦhdQ+ VhdP. (3.18)

Thus, we prove the coincidence between the variation of the D-dimensional charged black

hole and the first law of thermodynamics under the charged particle absorption.

The second law of thermodynamics predicts the increase of entropy of the black hole

for an irreversible process. As the charged particle absorption is an irreversible process, the

entropy becomes greater than that before the absorption. The validity of this statement

is easily checked by the sign of dSh in eq. (3.16). Moreover, we obtain the violation of the

second law of thermodynamics in parameter ranges. Specifically, the denominator of dSh
has a negative value for the extremal black hole. So,

rD+2
h − 2Mr3h`

2 + 2rDh `
2 = −

(D − 1)rD+2
h

(D − 3)
< 0, (3.19)

which means that the entropy of the black hole decreases at least for the extremal case

for all dimensions, D ≥ 4. Therefore, the second law of thermodynamics is violated under

the consideration of the PVb term for the charged particle absorption. This behavior

is interesting and observable only with the PVb term in the first law of thermodynamics.

Note that, without the PV term, the second law of thermodynamics is always ensured when

the first law of thermodynamics is satisfied [31]. Using dSh in eq. (3.16), we investigate

parameter ranges within which this violation occurs. The area of the violation depends on

the spacetime dimensions. The parameter space (Q,M) is limited because of the extremal

condition for D-dimensional black holes in figure 1. As already shown in eq. (3.19), the

decrease of entropy appears in ranges close to those of extremal black holes. In figure 1

(a), (b), and (c), we show parameter spaces of higher-dimensional black holes from four

to six dimensions. These diagrams are similar, showing that the violation still exists in

any dimension. This also implies that the entropy needs a correction term to resolve the

violation when we consider thermodynamic pressure and volume.

– 8 –
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4 Weak cosmic censorship conjecture with pressure and volume

In consideration of thermodynamic volume, the charged particle absorption can reproduce

the first law of thermodynamics in terms of enthalpy. However, although particle absorption

is an irreversible process, we find the violation of the second law of thermodynamics in the

process, and the entropy of the black hole decreases for extremal and near-extremal black

holes. Without the PVb term, the second law of thermodynamics is satisfied to validate

the weak cosmic censorship conjecture under the absorption. Thus, owing to the violation

of the second law with the PVb term, we can expect that the cosmic censorship is affected

by this term [32].

As the violation of the second law of thermodynamics occurs in extremal and near-

extremal black holes, the changes in extremal and near-extremal black holes are very dif-

ferent from those in non-extremal ones. This change can be estimated from a behavior of

the function f(r) ≡ f(Mb, Qb, `, r) in the metric of eq. (2.3). The function f(Mb, Qb, `, r)

of the black hole has only one minimum point rmin, which satisfies

f(Mb, Qb, `, r)|r=rmin ≡ fmin = δ ≤ 0, ∂rf(Mb, Qb, `, r)|r=rmin ≡ f ′min = 0, (4.1)

with

(∂r)
2f(Mb, Qb, `, r)|r=rmin > 0. (4.2)

The minimum value of the function f(Mb, Qb, `, r) is δ, and δ = 0 for an extremal black

hole. In addition, the inner and outer horizons are located around the minimum point. We

explicitly denote variables (Mb, Qb, `) changed by the absorption. The conserved quantities

of the particle infinitesimally change variables into (Mb + dMb, Qb + dQb, ` + d`). Then,

owing to these changes, the locations of the minimum point and outer horizon are both

infinitesimally shifted to rmin → rmin + drmin and rh → rh + drh, respectively. Under these

changes, the configuration of the black hole after the absorption can be expected from

a change of the minimum value of the function dfmin. Then, the moved minimum point

satisfies

∂rf(Mb + dMb, Qb + dQb, `+ d`, r)|r=rmin+drmin
= f ′min + df ′min = 0, (4.3)

which is in terms of variables with partial derivatives

df ′min =
∂f ′min

∂Mb
dMb +

∂f ′min

∂Qb
dQb +

∂f ′min

∂`
d`+

∂f ′min

∂rmin
drmin = 0, (4.4)

with

∂f ′min

∂Mb
=

16(D − 3)π

(D − 2)ΩD−2r
D−2
min

,
∂f ′min

∂Qb
= − 16(2D − 6)πQ

(D − 2)ΩD−2r
2D−5
min

,
∂f ′min

∂`
= −4rmin

`3
. (4.5)

The value of the minimum at rmin + drmin becomes

f(Mb+dMb,Qb+dQb,`+d`,r)|r=rmin+drmin
=fmin+dfmin (4.6)

=δ+

(
∂fmin

∂Mb
dMb+

∂fmin

∂Qb
dQb+

∂fmin

∂`
d`

)
,

– 9 –
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(a) (Q,M, `) surface satisfying δ = 0.
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(b) Q−M lines in the ` = 1 slice for values of δ.

Figure 2. (Q,M, `) surface and Q−M diagram.

where we use f ′min = 0 in eq. (4.1). Then, we can obtain (dMb, d`) in terms of the particle

charges (q, |pr|) under particle absorption. Owing to the location of the absorption, the

outer horizon, the value of the minimum is obtained under (rmin, rh). However, this is too

complex to analyze and express. Instead, we can impose the following condition for the

near-extremal black hole

δ → δε, rh → rmin + ε. (4.7)

The outer horizon of the near-extremal black hole is located slightly to the right of the

minimum point, and the minimum value is a very small negative value. This is given as

|δε|, ε� 1. For the near-extremal black hole, the shifted minimum value is

fmin + dfmin =

(
δε +

32πr5min(−1− (D − 2)r1−2Dmin (−Q2r3min +MrDmin)`2)|pr|
ΩD−2(D − 3)(D − 2)(rD+2

min − 2Mr3min`
2 + 2rDmin`

2)

)
+O(ε),

(4.8)

where we have skipped the first order of ε. To simplify this expansion, if we remove the

Q2 term by using f ′min = 0, the expression becomes

fmin + dfmin = δε +O(ε2). (4.9)

The first order of ε is also removed, and the minimum value of the extremal black hole is

fmin + dfmin = 0, δε = 0, ε = 0. (4.10)

Therefore, extremal and near-extremal black holes stay at their minimum, because of which

their phases cannot be changed, even if they are charged or discharged by the charged

particle absorption. This result is quite different from that in cases without the PVb
term, where an extremal black hole is easily broken down into a non-extremal one by the

absorption. Because the minimum value of the extremal black hole does not change, the

varied extremal black hole can stay on the δ = 0 surface, as shown in figure 2 (a). Further,

from eq. (3.19), to decrease the entropy, the extremal black hole should be contracted under

the particle absorption in figure 2 (b). On the plane of (Q,M, `), the phase of the extremal
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black hole moves three-dimensionally because the AdS radius is changed by the absorption.

However, as shown in the M −Q diagram of figure 2 (b), the extremal black hole stays on

the extremal line. The value of δ of the near-extremal black hole is also invariant under

the absorption.

5 Summary

We have investigated variations in the charged AdS black hole under charged particle

absorption by considering the pressure as a cosmological constant. It is known that the

thermal conjugate of pressure is the volume of the black hole inside of the horizon. However,

because the cosmological constant is not a variable in the action and equations of motion,

the dynamical effect is not easy to predict with the pressure term. To elucidate the effect of

the pressure and volume terms, we consider an infinitesimal variation in the black hole by

a charged particle. This is probably the only way to demonstrate the effect of an external

particle without using the equations of motion. Then, when the particle is absorbed into

the black hole, the conserved quantities of the black hole vary by as much as the conserved

quantities of the charged particle. The change in the black hole exactly corresponds to

the first law of thermodynamics in terms of enthalpy. However, the second law of ther-

modynamics is violated for extremal and near-extremal black holes, in which the entropy

decreases under the absorption. This implies that, at least, the entropy of the black hole

needs a correction, which should not be proportional to the outer horizon. The violation of

the second law of thermodynamics can be related to the weak cosmic censorship conjecture,

which is related to the stability of the horizon. The stability can be shown from the change

of the minimum value of the function f(M,Q, `, r) under the absorption. Interestingly, the

variation of the minimum value is quite different from that in the case without the pres-

sure term. The minimum value of the function f(M,Q, `, r) is not changed for extremal

and near-extremal black holes under the absorption. This implies that extremal or near-

extremal black holes stay as they are after the absorption of an external particle. Thus, even

if extremal or near-extremal black holes are charged or discharged by the absorption, they

maintain their extremality or near-extremality. This result cannot be seen in charged par-

ticle absorption without the thermodynamic pressure and volume term. In addition, owing

to the maintenance of its minimum value, the extremal black hole cannot be overcharged in

the process. This ensures the stability of the horizon under the charged particle absorption.
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[23] K. Düztaş, Overspinning BTZ black holes with test particles and fields, Phys. Rev. D 94

(2016) 124031 [arXiv:1701.07241] [INSPIRE].

[24] J. Sorce and R.M. Wald, Gedanken experiments to destroy a black hole II: Kerr-Newman

black holes cannot be over-charged or over-spun, Phys. Rev. D 96 (2017) 104014

[arXiv:1707.05862] [INSPIRE].

[25] S. Gao and Y. Zhang, Destroying extremal Kerr-Newman black holes with test particles,

Phys. Rev. D 87 (2013) 044028 [arXiv:1211.2631] [INSPIRE].

[26] J.V. Rocha, R. Santarelli and T. Delsate, Collapsing rotating shells in Myers-Perry-AdS5

spacetime: a perturbative approach, Phys. Rev. D 89 (2014) 104006 [arXiv:1402.4161]

[INSPIRE].

[27] J.V. Rocha and R. Santarelli, Flowing along the edge: spinning up black holes in AdS

spacetimes with test particles, Phys. Rev. D 89 (2014) 064065 [arXiv:1402.4840] [INSPIRE].

[28] B. McInnes and Y.C. Ong, A note on physical mass and the thermodynamics of AdS-Kerr

black holes, JCAP 11 (2015) 004 [arXiv:1506.01248] [INSPIRE].

[29] J.V. Rocha and V. Cardoso, Gravitational perturbation of the BTZ black hole induced by test

particles and weak cosmic censorship in AdS spacetime, Phys. Rev. D 83 (2011) 104037

[arXiv:1102.4352] [INSPIRE].

[30] B. Gwak, Stability of horizon in warped AdS black hole via particle absorption,

arXiv:1707.09128 [INSPIRE].

[31] B. Gwak and B.-H. Lee, Cosmic censorship of rotating anti-de Sitter black hole, JCAP 02

(2016) 015 [arXiv:1509.06691] [INSPIRE].

[32] B. Gwak, Cosmic censorship conjecture in Kerr-Sen black hole, Phys. Rev. D 95 (2017)

124050 [arXiv:1611.09640] [INSPIRE].

[33] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[34] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[35] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[36] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories,

string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

[37] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

[38] J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry

breaking and pions in nonsupersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004)

066007 [hep-th/0306018] [INSPIRE].

[39] M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of

large-Nc QCD, JHEP 05 (2004) 041 [hep-th/0311270] [INSPIRE].

– 13 –

https://doi.org/10.1088/0264-9381/33/17/175002
https://arxiv.org/abs/1601.06809
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,33,175002%22
https://doi.org/10.1088/0264-9381/33/19/195007
https://arxiv.org/abs/1604.06465
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,33,195007%22
https://doi.org/10.1103/PhysRevD.94.124031
https://doi.org/10.1103/PhysRevD.94.124031
https://arxiv.org/abs/1701.07241
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D94,124031%22
https://doi.org/10.1103/PhysRevD.96.104014
https://arxiv.org/abs/1707.05862
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.05862
https://doi.org/10.1103/PhysRevD.87.044028
https://arxiv.org/abs/1211.2631
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D87,044028%22
https://doi.org/10.1103/PhysRevD.89.104006
https://arxiv.org/abs/1402.4161
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D89,104006%22
https://doi.org/10.1103/PhysRevD.89.064065
https://arxiv.org/abs/1402.4840
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D89,064065%22
https://doi.org/10.1088/1475-7516/2015/11/004
https://arxiv.org/abs/1506.01248
https://inspirehep.net/search?p=find+J+%22JCAP,1511,004%22
https://doi.org/10.1103/PhysRevD.83.104037
https://arxiv.org/abs/1102.4352
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D83,104037%22
https://arxiv.org/abs/1707.09128
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.09128
https://doi.org/10.1088/1475-7516/2016/02/015
https://doi.org/10.1088/1475-7516/2016/02/015
https://arxiv.org/abs/1509.06691
https://inspirehep.net/search?p=find+J+%22JCAP,1602,015%22
https://doi.org/10.1103/PhysRevD.95.124050
https://doi.org/10.1103/PhysRevD.95.124050
https://arxiv.org/abs/1611.09640
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D95,124050%22
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+J+%22Adv.Theor.Math.Phys.,2,231%22
https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B428,105%22
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/search?p=find+J+%22Adv.Theor.Math.Phys.,2,253%22
https://doi.org/10.1016/S0370-1573(99)00083-6
https://arxiv.org/abs/hep-th/9905111
https://inspirehep.net/search?p=find+J+%22Phys.Rept.,323,183%22
https://arxiv.org/abs/hep-th/9803131
https://inspirehep.net/search?p=find+J+%22Adv.Theor.Math.Phys.,2,505%22
https://doi.org/10.1103/PhysRevD.69.066007
https://doi.org/10.1103/PhysRevD.69.066007
https://arxiv.org/abs/hep-th/0306018
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D69,066007%22
https://doi.org/10.1088/1126-6708/2004/05/041
https://arxiv.org/abs/hep-th/0311270
https://inspirehep.net/search?p=find+J+%22JHEP,0405,041%22


J
H
E
P
1
1
(
2
0
1
7
)
1
2
9

[40] T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114

(2005) 1083 [hep-th/0507073] [INSPIRE].

[41] J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons,

Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

[42] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys.

Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

[43] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12

(2008) 015 [arXiv:0810.1563] [INSPIRE].

[44] K. Jensen, Chiral anomalies and AdS/CMT in two dimensions, JHEP 01 (2011) 109

[arXiv:1012.4831] [INSPIRE].

[45] T. Andrade, J.I. Jottar and R.G. Leigh, Boundary conditions and unitarity: the

Maxwell-Chern-Simons system in AdS3/CFT2, JHEP 05 (2012) 071 [arXiv:1111.5054]

[INSPIRE].

[46] H.-C. Chang, M. Fujita and M. Kaminski, From Maxwell-Chern-Simons theory in AdS3

towards hydrodynamics in 1 + 1 dimensions, JHEP 10 (2014) 118 [arXiv:1403.5263]

[INSPIRE].

[47] L.-Y. Hung and A. Sinha, Holographic quantum liquids in 1 + 1 dimensions, JHEP 01 (2010)

114 [arXiv:0909.3526] [INSPIRE].

[48] R.A. Davison, M. Goykhman and A. Parnachev, AdS/CFT and Landau Fermi liquids, JHEP

07 (2014) 109 [arXiv:1312.0463] [INSPIRE].

[49] C. Teitelboim, The cosmological constant as a thermodynamic black hole parameter, Phys.

Lett. B 158 (1985) 293 [INSPIRE].

[50] J.D. Brown and C. Teitelboim, Neutralization of the cosmological constant by membrane

creation, Nucl. Phys. B 297 (1988) 787 [INSPIRE].

[51] M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black

holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022]

[INSPIRE].

[52] T. Padmanabhan, Classical and quantum thermodynamics of horizons in spherically

symmetric space-times, Class. Quant. Grav. 19 (2002) 5387 [gr-qc/0204019] [INSPIRE].

[53] B.P. Dolan, The cosmological constant and the black hole equation of state, Class. Quant.

Grav. 28 (2011) 125020 [arXiv:1008.5023] [INSPIRE].
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