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and by mass singularities. In this paper, we consider the top-quark loop contribution to

the subprocess qq̄ → H + g at leading order in αs. We show that the leading power of

1/P 2
T can be expressed in the form of a factorization formula that separates the large scale

PT from the scale of the masses. All the dependence on mt and mH can be factorized

into a distribution amplitude for tt̄ in the Higgs, a distribution amplitude for tt̄ in a real

gluon, and an endpoint contribution. The factorization formula can be used to simplify

calculations of the PT distribution at large PT to next-to-leading order in αs. The results

are readily applied to the qg process via a straightforward analytical continuation.
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1 Introduction

The discovery of the Higgs boson in the year 2012 completed the Standard Model (SM) of

particle physics [1, 2]. Since then, many of the properties of the Higgs have been measured

and compared with the theoretical predictions of the SM. As the experimental precision im-

proves with the collection of more and more data at the Large Hadron Collider (LHC), it is

very important that theoretical uncertainties in the SM predictions are under control. The

most straightforward way to reduce the theoretical uncertainties is to carry out calculations

to higher orders in perturbation theory, and to resum to all orders those terms (usually log-

arithms) that spoil the perturbative expansion in certain kinematic regions. Calculations

to higher orders are increasingly difficult, but they can sometimes be simplified by separat-

ing scales. An important example is the Higgs Effective Field Theory (HEFT), in which

the top quark mass mt is taken to be much larger than all other scales and the top quark

is integrated out of the theory. Using HEFT, the total coss section for Higgs production

has been calculated to next-to-leading order (NLO) in αs [3–5], to next-to-next-to-leading

order (N2LO) [6–8], and finally to the impressive precision of N3LO [9, 10]. The accuracy

has been further improved by the resummation of threshold logarithms [11–16]. HEFT has

also been used to calculate the cross section for Higgs plus one jet to N2LO [17–20] and

the cross section for Higgs plus two or more jets to NLO [21–23].

HEFT breaks down for Higgs produced with large transverse momentum PT of order

mt, because the large momentum transfer resolves the top quark loop that is integrated

out in HEFT. The effect of the top quark mass is only at the percent level for the total

cross section for Higgs production at the LHC, since the Higgs is produced dominantly with

PT � mt [24–29]. However, the effect of the top quark mass is much larger for the Higgs

PT distribution, especially at large PT . The Higgs PT distribution is particularly important

for searches for new physics beyond the SM. For example, new physics that modifies the

top-quark Yukawa coupling and also introduces new heavy colored particles may mimic

the SM in the total cross section for Higgs production, but the deviation from the SM is

manifest in the Higgs PT distribution when PT & 250 GeV [30, 32]. Higgs production at
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large PT has also been applied to the search for new particles in other scenarios beyond the

SM [30–34]. With more data being collected in the present and future runs of the LHC,

the production of Higgs at large PT is a promising channel to search for new physics.

The effect of the top quark mass must be considered in predictions of Higgs production

at large PT . Predictions for the production of Higgs at large PT without final-state top

quarks is only available with full mt dependence at leading order (LO) in αs [35, 36].

At next-to-leading order (NLO), there are real and virtual contributions. The real NLO

contribution, which is the same as H + 2 jets at LO, has been calculated with full mt

dependence [37, 38]. The virtual NLO contribution with full mt dependence is still not

available. There have been efforts to develop approximations that include some effects of

the top quark mass. One approach is to take into account dimension-7 operators in HEFT

(for example, ref. [39]). Another approach is to multiply the LO result with a K-factor

given by the NLO/LO ratio from HEFT (for example, ref. [40]). Numerical studies show

that these approaches improve the accuracy at intermediate PT , but the accuracy becomes

worse at large PT . As a result of the unsystematic treatment of the large PT region, the

uncertainties are out of control, making it impossible to estimate the errors introduced.

A new approach based on factorization was proposed in ref. [41]. At large PT , it is

reasonable to expand the cross section in powers of M2/Q2, where M is a mass scale and

Q is a large kinematic scale. The expansion is straightforward for terms that are analytic

in M2/Q2, but there are also terms that are nonanalytic in M2/Q2, such as logarithms.

Ref. [41] showed how factorization theorems could be used to factor the nonanalytic terms

into fragmentation functions, allowing the expansion in M2/Q2. In ref. [41], this procedure

was illustrated with the subprocess qq̄ → H + tt̄ at LO. The mass scales are M ∼ mH ,mt,

where mH is the Higgs mass, and the kinematic scales are Q ∼ PT ,
√
ŝ, where

√
ŝ is

the center-of-mass energy of the colliding partons. It was shown analytically that the

factorization formula reproduces the full LO result up to corrections of order M2/Q2.

Thus the numerical error decreases rapidly as 1/P 2
T as PT increases, indicating that the

errors are under control.

In addition to better control of the theoretical errors, there are other advantages of

the factorization approach. First, the different energy scales are separated into different

pieces in the factorization formula. Consequently, fewer scales need to be considered in

each piece. For example, in the subprocess qq̄ → H + tt̄ at LO, the hard-scattering cross

sections are free of the mass scales mt and mH , and the fragmentation functions are free of

the kinematic scales PT and
√
ŝ [41]. The calculation of each piece at higher order would

therefore be much simpler. Second, some pieces in the factorization formula may be directly

used in other subprocesses. For example, the fragmentation function for t∗ → H + t is the

same for qq̄ → H + tt̄ and for gg → H + tt̄. Finally, the factorization formula makes it

possible to sum large logarithms to all orders. For example, in the subprocess qq̄ → H+bb̄,

logarithms of m2
b/p

2
T can be summed by solving evolution equations for the fragmentation

functions.

In this work, we demonstrate that the factorization approach can also be used to

simplify calculations of virtual NLO contributions to Higgs production at large PT . We

consider as a specific example the subprocess qq̄ → Hg at LO, which proceeds through
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a top quark loop. We choose the soft scale to be M ∼ mH ,mt and the hard scale to be

Q ∼ PT ,
√
ŝ. We express the leading power in the expansion of the amplitude in powers of

M2/Q2 in the form of a factorization formula in which the scales M and Q are separated.

The factorization formula involves distribution amplitudes for a tt̄ pair in the Higgs and

for a tt̄ pair in a real gluon. Our factorization formula provides an approximation with

errors of order M2/Q2 that go to zero as the kinematic scale Q increases.

The factorization method we present in this paper can be applied to the top-quark loop

contributions in other exclusive Higgs production processes at LO, such as gg → H + g

and gg → H + Z, and to the bottom-quark-loop contributions. The factorization method

can also be extended to NLO, although that will be more challenging. Expressing the

amplitude in the form of a factorization formula may facilitate the resummation of large

logarithms of P 2
T . The method can be applied more generally to exclusive processes for the

production at large PT of other elementary particles besides the Higgs boson.

This paper is organized as follows. In section 2, we introduce the form factor that

determines the cross section for qq̄ → Hg. We define the leading-power (LP) form factor to

be the leading term in the expansion of the form factor in powers of M2/Q2. In section 3,

we calculate the LP form factor in the limit mH = 0 using analytic regularization to

regularize rapidity divergences. In sections 4 and 5, we separate the scales Q and M in

the Higgs collinear and gluon collinear contributions to the LP form factor. Each of these

contributions is expressed as an integral over a relative longitudinal momentum fraction

of the product of a hard form factor that depends on the scale Q and a distribution

amplitude that depends on the scale M . In section 6, we recalculate the LP form factor in

the limit mH = 0 using rapidity regularization, which makes rapidity divergences appear

as ultraviolet divergences. In section 7, we simplify the calculations of the Higgs collinear

and gluon collinear contributions by calculating the hard form factors and the distribution

amplitudes directly from diagrams. Readers who are not interested in the technical details

of factorization can skip sections 3 to 7. In section 8, we renormalize all the ultraviolet

divergences to obtain a finite factorization formula for the LP form factor. We present an

improvement in the factorization formula that includes all dependence on mt that is not

suppressed by m2
H/Q

2, so that the errors are reduced from order m2
t /Q

2 to order m2
H/Q

2.

We show that the improved factorization formula gives a good approximation to the full

form factor whose error decreases to 0 rapidly as PT increases. We discuss the prospects for

extending our approach to NLO in αs in section 9. In the appendix, we calculate a function

that appears in the distribution amplitude for tt̄ in the Higgs using analytic regularization

and using rapidity regularization.

2 Higgs production by qq̄ → H + g

In this section, we define the form factor that determines the cross section for qq̄ → H + g

at leading order in αs. We give the leading power in the expansion of the form factor in

powers of M2/Q2. We also present the schematic form of a factorization formula for the

leading-power form factor.
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Figure 1. Feynman diagrams for qq̄ → H + g at LO.

2.1 Form factor for g∗ → H + g

The reaction qq̄ → H + g proceeds at leading order (LO) in the QCD coupling constant

gs through the two one-loop Feynman diagrams in figure 1. The dominant contribution

comes from the top-quark loop because of the large Yukawa coupling constant yt. The

matrix element for q(p1)q̄(p2)→ H(P ) + g(p3) at LO has the form

M =
gs
2ŝ
T bij v̄2γµu1 T µν(P, p3) ε∗3ν , (2.1)

where T bij is the color factor, v̄2 and u1 are the Dirac spinors for q̄ and q, and ε3 is the

polarization vector for the final-state gluon. The qq̄ invariant mass ŝ = (p1 +p2)2 is also the

invariant mass of the Higgs and the final-state gluon. The amplitude T µν for g∗→H+g is

T µν(P, p3) = ig2
syt

∫
q

Tr
[
(/q + /P +mt)γ

µ(/q − /p3 +mt)γ
ν(/q +mt)

]
− (mt → −mt)

[(q+P )2−m2
t +iε] [q2−m2

t +iε] [(q−p3)2−m2
t +iε]

, (2.2)

where the integration measure is
∫
q =

∫
d4q/(2π)4. A color trace tr(T aT b), which is

diagonal in the color indices of the virtual gluon and the real gluon, has been absorbed

into the prefactor of T µν in eq. (2.1). The explicit Dirac trace in eq. (2.2) comes from the

first diagram in figure 1. Since the only nonzero terms in the trace are proportional to mt

or m3
t , the two diagrams are equal.

The tensor structure of T µν is constrained by the Ward identities (P + p3)µT µν = 0

and p3νT µν = 0 to have the form

T µν(P, p3) = 4mtF(ŝ,m2
t ,m

2
H)

(
gµν − pµ3 (P + p3)ν

P.p3

)
+4mt G(ŝ,m2

t ,m
2
H)

[
P.p3 P

µ − (P.p3 +m2
H)pµ3

]
pν3

(P.p3)2
, (2.3)

where the form factors F and G are dimensionless functions of the qq̄ invariant mass ŝ and

the masses mt and mH . The form factor G does not contribute to the matrix element M
in eq. (2.1), because the tensor it multiplies in eq. (2.3) is orthogonal to the polarization

vector ε∗3ν of the real gluon. The form factor F can be expressed as

F(ŝ,m2
t ,m

2
H) =

1

(D − 2)4mt

(
gµν −

p3µ(P + p3)ν
P.p3

)
T µν(P, p3), (2.4)
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where D = 4 is the number of space-time dimensions. The form factor can be expressed

as an integral over a loop momentum:

F(ŝ,m2
t ,m

2
H) = ig2

syt

∫
q

q2 + 2p3.q + 2P.p3 + 3m2
t − 4(P + p3).q p3.q/P.p3

[(q+P )2−m2
t +iε] [q2−m2

t +iε] [(q−p3)2 −m2
t +iε]

. (2.5)

The square of the matrix element M for qq̄ → H + g summed over spins and colors is

proportional to |F|2:

1

4N2
c

∑
|M|2 =

2(N2
c − 1)g2

sm
2
t

N2
c

t̂2 + û2

ŝ(ŝ−m2
H)2
|F(ŝ,m2

t ,m
2
H)|2, (2.6)

where t̂ and û are Mandelstam variables that satisfy ŝ + t̂ + û = m2
H . The cross section

for qq̄ → H + g at LO was first calculated in refs. [35, 36]. In ref. [42], F is expressed

compactly in terms of the finite parts of simple scalar one-loop integrals.

The matrix elements for g q → H + q and g q̄ → H + q̄ at LO can be expressed in

terms of the same function F as the form factor for qq̄ → H + g, but with the positive

Mandelstam variable ŝ replaced by a negative Mandelstam variable t̂. If the form factor F
for qq̄ → H + g is expressed in terms of the complex variable ŝ + iε, it can be applied to

g q → H + q and g q̄ → H + q̄ by analytic continuation.

2.2 Simple approximations

The form factor F is a function of the three energy scales ŝ1/2, mt, and mH , which sat-

isfy the inequalities mH ≤
√
ŝ and mH < 2mt. Analytic expressions for F are given in

refs. [35, 36]. There are three limits in which the analytic expression for F can be simpli-

fied. One such limit is mH , ŝ
1/2 � mt. In this limit, F can be expanded in powers of ŝ/m2

t

and m2
H/m

2
t . The leading term in the expansion is

FHEFT(ŝ,m2
t ,m

2
H) =

g2
syt

48π2m2
t

(
ŝ−m2

H

)
. (2.7)

This can be derived more directly using Higgs Effective Field Theory (HEFT). The expres-

sion in HEFT for the amplitude T µν defined by eq. (2.1) is

T µν(P, p3) =
g2yt

6π2mt

[
P.p3 g

µν − pµ3 (P + p3)ν
]
. (2.8)

The Lorentz contractions in eq. (2.4) give the form factor in eq. (2.7).

Another limit in which the form factor can be simplified is mH � ŝ1/2,mt. The leading

term in this limit can be obtained by setting mH = 0 in the full form factor. The form

factor reduces to

F(ŝ,m2
t , 0) =

g2
syt

16π2

{
2
ŝ+ 4m2

t

ŝ
arcsin2 z + 4

√
1− z2

z
arcsin z − 6

}
, (2.9)

where z is defined as

z =

√
ŝ+ iε

4m2
t

. (2.10)
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The third limit in which the form factor can be simplified is mH ,mt � ŝ1/2. In this

limit, F can be expanded in powers of m2
t /ŝ and m2

H/ŝ. The expansion can be interpreted

as an expansion around ŝ = ∞ or as an expansion around mt = mH = 0. The expansion

in powers of 1/ŝ is complicated by terms that are not analytic in ŝ, such as log(ŝ/m2
t ).

The expansion in powers of mt and mH is complicated by mass singularities. We define

mass singularities to be terms that either diverge in the limits mt → 0 and mH → 0 or else

depend on the order in which the two limits are taken. The logarithm log(ŝ/m2
t ) is a mass

singularity. Any function of the ratio mH/mt that is not suppressed by a factor of m2
t /ŝ

and m2
H/ŝ is also a mass singularity. We refer to the leading term in the expansion of the

form factor in powers of m2
t /ŝ and m2

H/ŝ as the leading-power (LP) form factor. The LP

form factor can be derived from the full form factor in refs. [35, 36]:

FLP(ŝ,m2
t ,m

2
H) =

g2
syt

16π2

(
−1

2
log2 −ŝ− iε

m2
t

+ 2 log
−ŝ− iε
m2
t

−2 arcsin2 r − 4
√

1− r2

r
arcsin r − 2

)
, (2.11)

where r is the mass ratio defined by

r ≡ mH/(2mt) = 0.36. (2.12)

The mass singularities in eq. (2.11) are the single and double logarithms of ŝ/m2
t , which

diverge as mt → 0, and the functions of r, whose limits as mH → 0 and mt → 0 depend

on the order of the limits. The only term in eq. (2.11) that is not a mass singularity is the

last term −2 inside the parentheses.

In figure 2, we compare the simple approximations described above to the full form

factor F(ŝ,m2
t ,m

2
H) given in refs. [35, 36]. The three approximations are

• the HEFT form factor FHEFT(ŝ,m2
t ,m

2
H) in eq. (2.7), which can be obtained by

taking mt �
√
ŝ,mH in the full form factor,

• the mH = 0 form factor F(ŝ,m2
t , 0) in eq. (2.9), which is obtained by setting mH = 0

in the full form factor,

• the LP form factor FLP(ŝ,m2
t ,m

2
H) in eq. (2.11), which is the leading power in the

expansion in m2
t /ŝ and m2

H/ŝ.

We set mH = 125 GeV and mt = 175 GeV. The squares of the absolute values of the

form factors are shown as functions of the center-of-mass energy
√
ŝ, which ranges from

the threshold mH for producing the Higgs to 1 TeV. The full form factor |F|2 is zero at

the Higgs threshold mH , and it begins increasing quadratically in
√
ŝ −mH . It increases

sharply as
√
ŝ approaches the tt̄ threshold, where it has a discontinuity in slope. The

discontinuity arises from the onset of an imaginary part of the form factor from producing

t and t̄ on shell. At larger
√
ŝ, |F|2 continues to increase. It increases asymptotically as

log4(ŝ/m2
t ). The HEFT form factor in eq. (2.7) provides a good approximation near the

Higgs threshold, but it breaks down before the tt̄ threshold. The mH = 0 form factor has

– 6 –
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Figure 2. Form factors for qq̄ → H + g as functions of the center-of-mass energy
√
ŝ: the full form

factor |F|2 (solid curve), the HEFT form factor (dashed curve), the mH = 0 form factor (dotted

curve), and the LP form factor (dot-dashed curve). The two vertical lines mark the tt̄ threshold

2mt and the tt̄H threshold 2mt +mH .

the same qualitative behavior as the full form factor. It seems to provide a reasonably good

approximation to the full form factor over the range of
√
ŝ shown in figure 2. The absolute

error in |F(ŝ,m2
t , 0)|2 is largest at the tt̄ threshold, where the percentage error is about

14%. The LP form factor has a completely different qualitative behavior from the full form

factor. It is very large at the Higgs threshold, decreases smoothly to a minimum near the

tt̄H threshold, and then increases monotonically. It must be a good approximation to the

full form factor at very large ŝ, because the error decreases to 0 as ŝ increases. However it

provides a very poor approximation in the range of
√
ŝ shown in figure 2. In section 8.2,

we will find that a simple modification of the LP form factor provides an approximation

that is significantly better than the mH = 0 form factor.

2.3 Leading-power factorization formula

In order to understand the mass singularities in the leading-power form factor in eq. (2.11),

it is necessary to separate the dependence on ŝ from the dependence on the masses mH

and mt. We refer to the kinematic scale Q = ŝ1/2 as the hard scale. We refer to the scale

M provided by the masses mH and mt as the soft scale. We will find that there are four

contributions to the LP form factor:

• direct production of H + g, in which the Higgs H and the real gluon g are produced

by the process g∗ → H + g at the hard scale Q,
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• tt̄ fragmentation into H, in which a nearly collinear tt̄ pair and the real gluon are

created by the process g∗ → tt̄+ g at the hard scale Q, and the Higgs is produced by

the subsequent transition tt̄→ H at the soft scale M ,

• tt̄ fragmentation into g, in which a nearly collinear tt̄ pair and the Higgs are created

by the process g∗ → H + tt̄ at the hard scale Q, and the real gluon is produced by

the subsequent transition tt̄→ g at the soft scale M ,

• endpoint production of H+g, in which a t and t̄ are created by the process g∗ → t+ t̄

at the hard scale Q, and the Higgs and the real gluon are produced by the subsequent

transition tt̄→ H + g at the soft scale M .

In the tt̄ fragmentation processes, the collinear t and t̄ are created with longitudinal mo-

menta that add up to the momentum of the tt̄ pair. We denote the longitudinal momentum

fractions of the t and t̄ by (1+ζ)/2 and (1−ζ)/2, respectively. The range of the momentum

fraction variable ζ is −1 ≤ ζ ≤ +1.

We will show that the separation of the hard scale Q from the soft scale M in the LP

form factor for g∗ → H+g at LO can be expressed in terms of a factorization formula that

has the schematic form

FLP[H + g] = F̃ [H + g] + F̃ [tt̄1V + g]⊗ d[tt̄1V → H]

+F̃ [H + tt̄8T ]⊗ d[tt̄8T → g] + Fendpt[H + g]. (2.13)

The terms on the right side correspond to the four contributions itemized above. The

subscripts on tt̄ indicate the color channel, which can be color-singlet (1) or color-octet

(8), and the Lorentz channel, which can be vector (V ) or tensor (T ). The ⊗ represents

an integral over the momentum fraction variable ζ. The factors represented by F̃ are

hard form factors that depend only on the scale Q. The factors represented by d are

distribution amplitudes that depend only on the scale M . Regularized expressions for the

terms in the factorization formula in eq. (2.13) will be obtained in sections 3, 4, and 5 using

analytic regularization and in sections 6 and 7 using rapidity regularization. Renormalized

expressions for the terms in the factorization formula will be given in section 8.

3 LP form factor using analytic regularization

In this section, we identify the regions of the loop momentum that contribute to the

LP form factor for g∗ → H + g at LO. We calculate the LP form factor using analytic

regularization in conjunction with dimensional regularization to separate the contributions

from the various regions. We set mH = 0 in this section to simplify the calculations.

3.1 Analytic regularization

The form factor F in eq. (2.4) is finite, but we will decompose it into contributions that

have ultraviolet divergences and infrared divergences. The divergences cancel when all the

contributions are added. Some of the divergences can be regularized using dimensional

regularization of the integral in eq. (2.2) with D = 4 − 2ε space-time dimensions. These

– 8 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
7

divergences appear as poles in ε. There are additional infrared divergences called rapidity

divergences that require some other regularization procedure. They can be regularized us-

ing analytic regularization [43], in which the following substitution is applied to appropriate

propagators:
1

p2 −m2 + iε
−→ (eiπν2)δ

(p2 −m2 + iε)1+δ
, (3.1)

where δ is the analytic regularization parameter and ν is an arbitrary momentum scale.

The phase factor eiπδ is introduced to cancel a phase that arises from the Wick rotation of a

loop momentum. The limit δ → 0 should be taken before the limit ε→ 0. The propagators

in eq. (2.2) that produce rapidity divergences and therefore require analytic regularization

are those with momenta q+P and q−p3. If they are regularized with different parameters

δ1 and δ3, the rapidity divergences appear as poles in δ1−δ3. We can regularize the rapidity

divergences by applying analytic regularization to either the propagator with momentum

q + P or the propagator with momentum q − p3 or both. We choose to apply analytic

regularization to both and to also apply analytic regularization with parameter δ2 to the

propagator with momentum q.

The dimensionally and analytically regularized expression for the amplitude for g∗ →
H + g at LO in eq. (2.2) is

T µν(P, p3) = ig2
syt

∫
q

Tr
[
(/q + /P +mt)γ

µ(/q − /p3 +mt)γ
ν(/q +mt)

]
− (mt → −mt)

[(q+P )2−m2
t +iε]1+δ1 [q2−m2

t +iε]1+δ2 [(q−p3)2−m2
t +iε]1+δ3

. (3.2)

The measure of the momentum integral is∫
q
≡ (eiπν2)δ1+δ3+δ2µ2ε (4π)−ε

Γ(1 + ε)

∫
d4−2εq

(2π)4−2ε
. (3.3)

The powers of the analytic regularization scale ν and the dimensional regularization scale

µ ensure that the dimension of the integral is the same as in 4 dimensions. The factor

(4π)−ε/Γ(1 + ε) has been included in the measure in order to simplify the analytic expres-

sions for loop integrals. With this measure, the minimal subtraction of poles in ε from

ultraviolet divergences corresponds to the MS renormalization scheme at one-loop order.

3.2 Leading-power regions

The g∗ → H + g form factor at LO with dimensional regularization and analytic regular-

ization is obtained by contracting the tensor T µν in eq. (3.2) with the tensor in eq. (2.4).

After evaluating the Dirac trace in eq. (3.2), the form factor reduces to

F(ŝ,m2
t ,m

2
H) =

2ig2
syt

D − 2

∫
q

1

[(q+P )2−m2
t +iε]1+δ1 [q2−m2

t +iε]1+δ2 [(q−p3)2 −m2
t +iε]1+δ3

×
(

(5−D)q2−4
(P+p3).q p3.q

P.p3
+ 2(D−3)p3.q + (D−2)P.p3+(D−1)m2

t

)
.

(3.4)

Below we will calculate the LP contribution to the form factor from various regions of

the loop integral over the momentum q using the method of regions [44, 45]. The regions are
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• the hard region, in which qµ is order Q, so q2, P.q, and p3.q are all order Q2,

• the Higgs collinear region, in which p3.q is order Q2, but q2 and P.q are order M2,

• the gluon collinear region, in which P.q is order Q2, but q2 and p3.q are order M2,

• the soft region, in which qµ is order M , so q2 is order M2 but P.q and p3.q are

order MQ.

The contributions to the LP form factor from each of the regions itemized above can

be obtained from the expression in eq. (3.4) by keeping only the leading terms in the

numerator and the leading terms in each of the denominators. Analytic regularization is

Lorentz invariant. This ensures that the only kinematic variable that the contribution to

the LP form factor from each region can depend on is ŝ.

3.3 Hard contribution

The contribution to the LP form factor from the hard region in which qµ is order ŝ1/2 is

FLP
hard(ŝ) =

2ig2
syt

D − 2

∫
q

1

[(q + P̃ )2 + iε] [q2 + iε] [(q − p3)2 + iε]

×

(
(5−D)q2 − 4

(P̃ + p3).q p3.q

P̃ .p3

+ 2(D − 3)p3.q + (D − 2)P̃ .p3

)
. (3.5)

Since there are no divergences as δ1, δ2, and δ3 approach 0 with ε fixed, we have set the

three analytic regularization parameters to 0. The 4-momentum P of the Higgs has been

replaced by a light-like 4-vector P̃ whose 3-vector component is collinear to P and whose

normalization is given by 2P̃ .p3 = ŝ. The hard contribution does not depend on the masses

mt and mH .

The integral in eq. (3.5) can be calculated analytically:

FLP
hard(ŝ) = − g

2
syt

16π2

[
−ŝ− iε
µ2

]−ε (1)−ε(1)−ε
(1)−2ε

(
1

ε2
+

2

ε(1− ε)(1− 2ε)

)
. (3.6)

We have expressed a factor involving gamma functions in a compact form using the

Pochhammer symbol:

(n)z =
Γ(n+ z)

Γ(n)
. (3.7)

The Taylor expansion of the Pochhammer symbol (1)z = Γ(1 + z) can be conveniently

expressed in an exponentiated form:

(1)z = exp

(
−γz +

π2

12
z2 + . . .

)
, (3.8)

where γ is Euler’s constant. This expression makes it easy to expand a combination of

Pochhammer symbols like that in eq. (3.6) in powers of ε, especially if the sum of the

subscripts in the numerator is equal to the sum of the subscripts in the denominator. The

single pole in ε in eq. (3.6) is an ultraviolet divergence and the double pole is an infrared

divergence. The Laurent expansion in ε of the scale-free factor gives

FLP
hard(ŝ) = − g

2
syt

16π2

[
−ŝ− iε
µ2

]−ε( 1

ε2
+

2

ε
+ 6− π2

6

)
. (3.9)
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3.4 Higgs collinear contribution

The contribution to the LP form factor from the Higgs collinear region in which p3.q is

order ŝ but q2 and P.q are order m2
t is

FLP
H coll(ŝ,m

2
t ,m

2
H) =

2ig2
syt

D − 2

∫
q

−4(p3.q)
2/P.p3 + 2(D − 3)p3.q + (D − 2)P.p3

[(q+P )2−m2
t + iε]1+δ1 [q2−m2

t + iε]1+δ2 [−2p3.q + iε]1+δ3
.

(3.10)

If mH 6= 0, the dependence on mH enters through the 4-momentum P of the Higgs, which

satisfies P 2 = m2
H . The Higgs collinear contribution is the only leading-power contribution

that depends on mH . In this section, we simplify it by setting mH = 0.

The integral over the loop momentum in eq. (3.10) can be evaluated analytically:

FLP
H coll(ŝ,m

2
t , 0) =− g

2
syt

16π2

[
µ2

m2
t

]ε [
ν2

m2
t

]δ1+δ2 [−ŝ− iε
ν2

]−δ3 (1)ε+δ1+δ2(1)δ1−δ3
(1)ε(1)δ1(1)δ1+δ2−δ3

× 1

(1− ε)(ε+ δ1 + δ2)

(
1− ε
δ1 − δ3

− 1− 2ε

1 + δ1 + δ2 − δ3

− 2(1 + δ1 − δ3)

(1 + δ1 + δ2 − δ3)(2 + δ1 + δ2 − δ3)

)
. (3.11)

This contribution has an ultraviolet divergence in the form of a pole in ε + δ1 + δ2 and a

rapidity divergence in the form of a pole in δ1 − δ3. The rapidity divergence comes from

the region where p3.q → 0.

3.5 Gluon collinear contribution

The contribution to the LP form factor from the gluon collinear region in which P.q is

order ŝ but q2 and p3.q are order m2
t is

FLP
g coll(ŝ,m

2
t ) = 2ig2

syt

∫
q

P̃ .p3

[2P̃ .q + iε]1+δ1 [q2 −m2
t + iε]1+δ2 [(q − p3)2−m2

t + iε]1+δ3
. (3.12)

The 4-momentum P of the Higgs has been replaced by the light-like 4-vector P̃ . The gluon

collinear contribution does not depend on mH .

The integral over the loop momentum in eq. (3.12) can be evaluated analytically:

FLP
g coll(ŝ,m

2
t ) = − g

2
syt

16π2

[
µ2

m2
t

]ε [
ν2

m2
t

]δ2+δ3 [−ŝ− iε
ν2

]−δ1 (1)ε+δ3+δ2(1)δ3−δ1
(1)ε(1)δ3(1)δ3+δ2−δ1

× 1

(ε+ δ3 + δ2)(δ3 − δ1)
. (3.13)

This contribution has an ultraviolet divergence in the form of a pole in ε + δ3 + δ2 and a

rapidity divergence in the form of a pole in δ1 − δ3. The rapidity divergence comes from

the region where P̃ .q → 0.
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3.6 Soft contribution

The contribution to the LP form factor from the soft region in which qµ is order mt is

FLP
soft(ŝ,m

2
t ) = 2ig2

syt

∫
q

P̃ .p3

[2P̃ .q + iε]1+δ1 [q2 −m2
t + iε]1+δ2 [−2p3.q + iε]1+δ3

. (3.14)

The 4-momentum P of the Higgs has been replaced by the light-like 4-vector P̃ . The soft

contribution does not depend on mH .

The denominators 2P̃ .q and −2p3.q can be combined using Feynman parameters x

and 1− x. The resulting denominator and the second denominator can be combined using

Feynman parameters y and 1 − y. After integrating over q and changing variables to

w = y/(1− y), the soft contribution is

FLP
soft(ŝ,m

2
t ) =

g2
sytŝ

16π2
(ν2)δ1+δ2+δ3(µ2)ε

(1)ε+δ1+δ3+δ2

(1)ε(1)δ1(1)δ3(1)δ2

∫ 1

0
dxxδ3(1− x)δ1

×
∫ ∞

0
dww1+δ1+δ3

[
m2
t − w2x(1− x)ŝ− iε

]−1−ε−δ1−δ3−δ2 . (3.15)

The integral over w can be evaluated analytically. The subsequent integral over x is∫ 1

0
dxx−1+(δ3−δ1)/2(1− x)−1+(δ1−δ3)/2

[
(1− x) + x

]
= 2 (1)(δ3−δ1)/2(1)(δ1−δ3)/2

×
(

1

δ3 − δ1
+

1

δ1 − δ3

)
. (3.16)

We have separated the integral into two terms by inserting a factor of (1 − x) + x into

the integrand. The two terms have poles in δ1 − δ3 that come from the x = 0 and x = 1

endpoints of the integral, respectively. The two terms cancel, so the soft contribution is

zero. If the contributions from the two terms are made explicit, the soft contribution can

be expressed as

FLP
soft(ŝ,m

2
t ) = − g

2
syt

16π2

[
µ2

m2
t

]ε [
ν2

m2
t

](δ1+δ3)/2+δ2 [−ŝ− iε
ν2

]−(δ1+δ3)/2

(1)(δ3−δ1)/2(1)(δ1−δ3)/2

×
(1)(δ1+δ3)/2(1)ε+(δ1+δ3)/2+δ2

(1)ε(1)δ1(1)δ3(1)δ2

1

ε+ 1
2(δ1 + δ3) + δ2

(
1

δ3 − δ1
+

1

δ1 − δ3

)
.

(3.17)

This contribution has an ultraviolet divergence in the form of a pole in ε+ (δ1 + δ3)/2 + δ2

and rapidity divergences in the form of poles in δ1−δ3. Note that the separation of the soft

contribution into two terms with rapidity divergences that cancel is not unique. Another

way to separate the soft contribution into two such terms that does not depend on the choice

of Feynman parameters is to multiply the integrand in eq. (3.14) by [P̃ .q−p3.q]/(P̃ −p3).q.

The resulting Feynman parameter integrals are more difficult to evaluate.
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3.7 LP form factor for massless Higgs

The complete LP form factor is obtained by adding the hard contribution in eq. (3.9), the

Higgs collinear contribution in eq. (3.11), the gluon collinear contribution in eq. (3.13), and

the soft contribution in eq. (3.17) (which is equal to 0). The poles in δ1−δ3 cancel between

the Higgs collinear contribution and the gluon collinear contribution. In the sum of those

contributions, we can take the limit as the analytic regularization parameters approach

zero, and then do a Laurent expansion in ε:

FLP
H coll(ŝ,m

2
t , 0) + FLP

g coll(ŝ,m
2
t ) =

g2
syt

16π2

[
µ2

m2
t

]ε{
1

ε2
− 1

ε

(
log
−ŝ− iε
m2
t

− 2

)
− π2

6

}
. (3.18)

The double and single poles in ε are canceled by the hard contribution in eq. (3.9). The

final result for the LP form factor with mH = 0 is

FLP(ŝ,m2
t , 0) = − g

2
syt

16π2

(
1

2
log2 −ŝ− iε

m2
t

− 2 log
−ŝ− iε
m2
t

+ 6

)
. (3.19)

This agrees with the LP form factor in eq. (2.11) in the limit mH → 0.

3.8 Simple choice of analytic regularization parameters

The contributions to the LP form factor for mH = 0 from the different regions were

calculated using different analytic regularization parameters δ1, δ2, and δ3 for the three

top-quark propagators. The soft contribution is 0 and the poles in δ1 − δ3 cancel between

the Higgs collinear and gluon collinear contributions. The cancellation of these rapidity

divergences can alternatively be regarded as cancellations between collinear contributions

and soft contributions. The pole in δ1− δ3 in the Higgs collinear contribution in eq. (3.11)

is canceled by the first pole in the soft contribution in eq. (3.17). The pole in δ1 − δ3 in

the gluon collinear contribution in eq. (3.13) is canceled by the second pole in the soft

contribution. The poles in δ1− δ3 come from endpoints of Feynman parameter integrals in

which the coefficient of one of the propagators goes to zero. We can exploit this by using

different analytic regularization parameters for the two endpoints.

In each collinear region, it will prove to be convenient to treat the two propagators

whose momenta are nearly collinear symmetrically by using the same analytic regular-

ization parameter for both propagators. The simplest possibility is to set the analytic

regularization parameter for the third propagator equal to 0. In the Higgs collinear contri-

bution and in the first term of the soft contribution, we choose to set δ2 = δ1 and δ3 = 0. In

the gluon collinear contribution and in the second term of the soft contribution, we choose

to set δ2 = δ3 and δ1 = 0. Since each of the resulting terms depends on a single analytic

regularization parameter, it can be simplified by a Laurent expansion in that parameter

followed by a Laurent expansion in ε. The Higgs collinear and gluon collinear contributions

in eqs. (3.11) and (3.13) reduce to

FLP
H coll(ŝ,m

2
t , 0) = − g

2
syt

16π2

[
µ2

m2
t

]ε [
ν2

m2
t

]2δ1 ( 1

εδ1
− 2

ε2
− 2

ε
+
π2

3

)
, (3.20a)

FLP
g coll(ŝ,m

2
t ) = − g

2
syt

16π2

[
µ2

m2
t

]ε [
ν2

m2
t

]2δ3 ( 1

εδ3
− 2

ε2
+
π2

3

)
. (3.20b)
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The soft contribution in eq. (3.17) reduces to

FLP
soft(ŝ,m

2
t ) =

g2
syt

16π2

[
µ2

m2
t

]ε{[
ν2

m2
t

]3δ1/2[−ŝ− iε
ν2

]−δ1/2( 1

εδ1
− 3

2ε2
+
π2

4

)
+ (δ1 → δ3)

}
.

(3.21)

Note that this contribution is no longer 0. The sum of the two collinear contributions in

eqs. (3.20) and the soft contribution in eq. (3.21) agrees with the sum of the two collinear

contributions in eq. (3.18).

4 Factorization of Higgs collinear contribution

In this section, we separate the scales Q and M in the Higgs collinear contribution to the

LP form factor using analytic regularization. The resulting expression has the schematic

form of the tt̄1V term in the factorization formula in eq. (2.13). We keep mH nonzero in

this section, and use the results to complete the calculation of the LP form factor.

4.1 Higgs collinear region

In order to separate the hard scale Q from the soft scale M in the Higgs collinear region, it

is convenient to shift the loop momentum q in eq. (3.2) so that the momenta of the collinear

t and t̄ that form the Higgs are 1
2P + q and 1

2P − q, respectively. For the two diagrams in

figure 1, the appropriate shifts in the loop momentum are q → q − 1
2P and q → −q − 1

2P ,

respectively. The resulting expression for the regularized amplitude for g∗ → H + g is

T µν(P, p3) = ig2
syt

∫
q

(
1[ (

p3 + 1
2P − q

)2 −m2
t + iε

]1+δ3

×
Tr
[
γµ
(
/p3 + 1

2/P − /q −mt

)
γν
(

1
2/P − /q −mt

) (
1
2/P + /q +mt

) ][ (
1
2P − q

)2 −m2
t + iε

]1+δ1[ (1
2P + q

)2 −m2
t + iε

]1+δ1

−(mt → −mt, q → −q)

)
. (4.1)

We have chosen the same analytic regularization parameter δ1 for the propagators with

momenta 1
2P ± q. The measure for the integral over q is therefore given by eq. (3.3) with

δ2 = δ1. The shift in q does not change the power counting in the Higgs collinear region:

p3.q is order Q2, but q2 and P.q are order M2. The hard scale ŝ enters into the integral in

eq. (4.1) only through the denominator that depends on p3 and through the factor in the

trace that depends on p3.

4.2 Fierz decomposition and tensor decomposition

A Fierz identity can be used to express the trace in eq. (4.1) in terms of traces that

involve only the collinear momenta 1
2P ± q and traces that involve p3. A convenient basis

for matrices acting on Dirac spinors in an arbitrarily large even number D of space-time

dimensions is the unit matrix 1, the Dirac matrices γµ, and the completely antisymmetrized
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products γ[µ1γµ2 · · · γµn] of n ≥ 2 Dirac matrices. The Fierz identity for the tensor product

of two unit matrices is particularly simple. The coefficients depend on D only through

an overall multiplicative factor determined by the trace of the unit matrix. If we choose

Tr(1) = 4, the Fierz identity for the tensor product of two unit matrices is

1ij1kl =
1

4

[
1il1kj + (γα)il(γα)kj +

1

2
(σαβ)il(σαβ)kj + . . .

]
, (4.2)

where σαβ = i
2(γαγβ − γβγα). We refer to the three terms shown explicitly as the scalar

(S), vector (V ), and tensor (T ) terms.

The Fierz identity in eq. (4.2) can be used to separate the collinear factors 1
2/P±(/q+mt)

in the trace in eq. (4.1) from the other factors. The only nonzero contributions come from

the 1 ⊗ 1, γα ⊗ γα, and σαβ ⊗ γαβ terms in the Fierz identity. The trace in eq. (4.1) is

decomposed into the sum of products of a hard trace and a collinear trace. We label the

three terms in the sum 1S, 1V , and 1T . The 1 indicates that the collinear t and t̄ that

form the Higgs must be in a color-singlet state. After the contraction of Lorentz indices

in eq. (2.4) that defines the form factor, the only term with a leading-power contribution

from the Higgs collinear region is the 1V term. We therefore drop the 1S and 1T terms.

After using the Fierz identity, the scales Q and M are not yet separated, because

the hard trace and the collinear trace both depend on the relative momentum q of the

virtual t and t̄ that form the Higgs. In the Higgs collinear region, q has a large longitudinal

component along the direction of the Higgs momentum P . Its large components can be

expressed as qλ ≈ 1
2ζP

λ, where ζ ≡ 2q.p3/P.p3. The separation of the scales Q and M can

be facilitated by inserting an integral over ζ into the integral in eq. (4.1):∫ +1

−1
dζ δ(ζ − 2q.p3/P.p3) = 1. (4.3)

Since we wish to keep only the LP terms in the amplitude in eq. (4.1), the 4-momentum

qλ can be replaced by 1
2ζP

λ in the first denominator and in the hard trace. The first

denominator and the hard trace can then be pulled outside the integral over q. The 1V

term from the Fierz transformation reduces to

T µν1V (P, p3) =
ig2
syt
4

∫ +1

−1
dζ

(
Tr
[
γµ
(
/p3 + 1

2(1− ζ)/P −mt

)
γνγα

]
[(1− ζ)P.p3 + iε]1+δ3

− (mt → −mt, ζ → −ζ)

)

×
∫
q

δ(ζ − 2q.p3/P.p3) Tr
[ (

1
2/P − /q −mt

) (
1
2/P + /q +mt

)
γα
][ (

1
2P − q

)2 −m2
t + iε

]1+δ1[ (1
2P + q

)2 −m2
t + iε

]1+δ1
. (4.4)

The integrand of the integral over q is invariant under mt → −mt, q → −q, and ζ → −ζ.

The integral over q in eq. (4.4) defines a Lorentz vector function of P and p3 with index α.

Since the integrand is homogeneous in p3 with degree 0, the leading power is in the term

proportional to Pα. That term can be isolated by replacing γα in the collinear trace by

Pα /p3/P.p3. The factor Pα can then be moved into the hard trace. In the first denominator,

in the hard trace, and in the factor 1/P.p3, P can be replaced by the light-like 4-vector P̃

whose 3-vector component is collinear to P and whose normalization is given by 2P̃ .p3 = ŝ.

– 15 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
7

Since the term proportional to mt in the hard trace is traceless, we can set mt = 0 in the

hard trace. The tensor in eq. (4.4) therefore reduces to

T µν1V (P, p3) =
ig2
syt

4P̃ .p3

∫ +1

−1
dζ

(
Tr
[
γµ
(
/p3 + 1

2(1− ζ)/̃P
)
γν /̃P

]
[(1− ζ)P̃ .p3 + iε]1+δ3

− (ζ → −ζ)

)

×
δ(ζ − 2q.p3/P.p3) Tr

[ (
1
2/P − /q −mt

) (
1
2/P + /q +mt

)
/p3

][ (
1
2P − q

)2 −m2
t + iε

]1+δ1[ (1
2P + q

)2 −m2
t + iε

]1+δ1
. (4.5)

After evaluating the traces, the 1V term in the LP contribution to the tensor reduces to

T µν1V (P, p3) =−4g2
sytmt

P̃ .p3

[
P̃ .p3 + iε

eiπν2

]−δ3∫ +1

−1
dζ

(
P̃ .p3g

µν − (P̃µpν3 + pµ3 P̃
ν)− (1− ζ)P̃µP̃ ν

(1− ζ)1+δ3

−(ζ → −ζ)

)
ζ d(ζ), (4.6)

where the function d(ζ) is

d(ζ) = −i
∫
q

δ(ζ − 2q.p3/P.p3)[ (
1
2P + q

)2 −m2
t + iε

]1+δ1[ (1
2P − q

)2 −m2
t + iε

]1+δ1
. (4.7)

The measure for the integral over q is given by eq. (3.3) with δ2 = δ1 and δ3 = 0. The

integral in eq. (4.7) defines a Lorentz scalar function of P and p3 that is a homogeneous

function of p3 with degree 0. Since a homogeneous function of p3 with degree 0 cannot be

formed from the Lorentz scalars P 2 = m2
H , p2

3 = 0, and P.p3, the integral must actually

be independent of p3. The dimensionless function d(ζ) depends only on ζ and on ratios of

the masses mt and mH and the regularization scales µ and ν.

4.3 Form factor

A factorized expression for the Higgs collinear contribution to the LP form factor in which

the scales Q and M are separated can be obtained by contracting the tensor T µν1V in eq. (4.6)

with the tensor in eq. (2.4):

FLP
H coll(ŝ,m

2
t ,m

2
H) =− g2

syt
D − 2

[
ŝ+ iε

2eiπν2

]−δ3∫ +1

−1
dζ

(
D − 1− ζ
(1− ζ)1+δ3

− D − 1 + ζ

(1 + ζ)1+δ3

)
ζ d(ζ), (4.8)

where d(ζ) is defined by the momentum integral in eq. (4.7). This function is calculated

using analytic regularization in appendix A and is given in eq. (A.4):

d(ζ) =
1

32π2

[
µ2

m2
t

]ε [
ν2

m2
t

]2δ1 (1)ε+2δ1

(1)ε(1)δ1(1)δ1

1

ε+ 2δ1

(
1− ζ2

4

)δ1 [
1−(1−ζ2)r2

]−ε−2δ1 , (4.9)

where r = mH/2mt. The subsequent integral over ζ in eq. (4.8) produces a pole in δ1− δ3.

The scales Q and M are separated in eq. (4.8). All the dependence on ŝ is in the

prefactor factor ŝ−δ3 . All the dependence on mt and mH is in the function d(ζ) in the

integrand. The expression in eq. (4.8) has the schematic form F̃ [tt̄1V + g]⊗ d[tt̄1V → H],

which corresponds to one of the terms in the factorization formula in eq. (2.13). The
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notation tt̄1V represents a collinear tt̄ pair in the color-singlet Lorentz-vector channel. The

symbol ⊗ represents the integral over ζ in eq. (4.8).

The factorized expression for the Higgs collinear contribution to the LP form factor in

eq. (4.8) can be simplified by choosing δ3 = 0. The rapidity divergence is now a pole in δ1.

The contribution to the LP form factor reduces to

FLP
H coll(ŝ,m

2
t ,m

2
H) = −2g2

syt

∫ +1

−1
dζ ζ2 d(ζ)

1− ζ2
. (4.10)

One advantage of this choice of analytic regularization parameters is that the Higgs collinear

contribution no longer depends on ŝ. Another advantage is that the poles in δ1 and ε can

be extracted before the integration over ζ. The result is derived in the appendix and given

in eq. (A.11):

d(ζ)

1− ζ2
=

1

32π2

[
µ2

m2
t

]ε [
ν2

m2
t

]2δ1
{(

1

εδ1
− 2

ε2
+
π2

3

)
δ
(
1− ζ2

)
+

1

ε

1

(1− ζ2)+

−
log
(
1− (1− ζ2)r2

)
1− ζ2

}
. (4.11)

The plus distribution is defined in eq. (A.10).

The integral over ζ in the Higgs collinear contribution in eq. (4.10) can be evaluated

analytically:

FLP
H coll(ŝ,m

2
t ,m

2
H) = − g

2
syt

16π2

[
µ2

m2
t

]ε [
ν2

m2
t

]2δ1
{

1

εδ1
− 2

ε2
− 2

ε
+
π2

3

−
∫ +1

−1
dζ ζ2 log

(
1− (1− ζ2)r2

)
1− ζ2

}
. (4.12)

The remaining integral over ζ is∫ +1

−1
dζ

ζ2

1− ζ2
log
(
1− (1− ζ2)r2

)
= −2 arcsin2 r − 4

√
1− r2

r
arcsin r + 4. (4.13)

The only difference between the mH -dependent Higgs collinear contribution to the LP

form factor in eq. (4.12) and the contribution with mH = 0 in eq. (3.20a) is the terms

from the integral over ζ in eq. (4.13). Adding those terms to the complete LP form factor

with mH = 0 in eq. (3.19), we obtain the complete LP form factor with nonzero mH in

eq. (2.11).

5 Factorization of gluon collinear contribution

In this section, we separate the scales Q and M in the regularized gluon collinear contri-

bution to the LP form factor. The resulting expression has the schematic form of the tt̄8T
term in the factorization formula in eq. (2.13).
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5.1 Gluon collinear region

In order to separate the hard scale Q from the soft scale M in the gluon collinear region, it

is convenient to shift the loop momentum q in eq. (3.2) so that the momenta of the collinear

t and t̄ that form the gluon are 1
2p3 + q and 1

2p3 − q, respectively. For the two diagrams in

figure 1, the appropriate shifts in the loop momentum are q → q+ 1
2p3 and q → −q+ 1

2p3,

respectively. The resulting expression for the regularized amplitude for g∗ → H + g is

T µν(P, p3) = −ig2
syt

∫
q

(
1[ (

P + 1
2p3 + q

)2 −m2
t + iε

]1+δ1

×
Tr
[ (
/P + 1

2/p3 + /q +mt

)
γµ
(

1
2/p3 − /q −mt

)
γν
(

1
2/p3 + /q +mt

) ][ (
1
2p3 − q

)2 −m2
t + iε

]1+δ3[ (1
2p3 + q

)2 −m2
t + iε

]1+δ3

−(mt → −mt, q → −q)
)
. (5.1)

We have chosen the same analytic regularization parameter δ3 for the propagators with

momenta 1
2p3 ± q. The measure for the integral over q is therefore given by eq. (3.3) with

δ2 = δ3. The shift of q does not change the power counting in the gluon collinear region:

P.q is order Q2, but q2 and p3.q are order M2. The hard scale ŝ enters into the integral in

eq. (5.1) only through the denominator that depends on P and through the factor in the

trace that depends on P .

5.2 Fierz decomposition and tensor decomposition

The Fierz identity in eq. (4.2) can be used to separate the collinear factors 1
2/p3 ± (/q +mt)

in the trace in eq. (5.1) from the other factors. The only nonzero contributions come from

the 1 ⊗ 1, γα ⊗ γα, and σαβ ⊗ γαβ terms in the Fierz identity. The trace in eq. (5.1) is

decomposed into the sum of products of a hard trace and a collinear trace. We label the

three terms in the sum 8S, 8V , and 8T . The 8 indicates that the collinear t and t̄ that

form the real gluon must be in a color-octet state. After the contraction of Lorentz indices

in eq. (2.4) that defines the form factor, the only term with a leading-power contribution

from the gluon collinear region is the 8T term. We therefore drop the 8S and 8V terms.

After using the Fierz identity, the scales Q and M are not yet separated, because

the hard trace and the collinear trace both depend on the relative momentum q of the

virtual t and t̄ that form the gluon. In the gluon collinear region, q has a large longitudinal

component along the direction of the gluon momentum p3. Its large components can be

expressed as qλ ≈ 1
2ζp

λ
3 , where ζ = 2q.P̃ /p3.P̃ and P̃ is the light-like 4-vector whose 3-

vector component is collinear to P and whose normalization is given by 2P̃ .p3 = ŝ. The

separation of the scales Q and M can be facilitated by inserting an integral over ζ into the

integral in eq. (5.1): ∫ +1

−1
dζ δ(ζ − 2q.P̃ /p3.P̃ ) = 1. (5.2)

Since we wish to keep only the LP terms in the amplitude in eq. (5.1), the 4-momenta qλ

and P λ can be replaced by 1
2ζp

λ
3 and P̃ λ in the first denominator and in the hard trace.
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These factors can then be pulled outside the integral over q. The 8T term from the Fierz

transformation reduces to

T µν8T (P, p3) =− ig
2
syt
8

∫ +1

−1
dζ

(
Tr
[(
/̃P + 1

2(1 + ζ)/p3 +mt

)
γµσαβ

]
[(1 + ζ)P̃ .p3 + iε]1+δ1

+ (mt → −mt, ζ → −ζ)

)

×
∫
q

δ(ζ − 2q.P̃ /p3.P̃ ) Tr
[ (

1
2/p3 − /q −mt

)
γν
(

1
2/p3 + /q +mt

)
σαβ

][ (
1
2p3 − q

)2 −m2
t + iε

]1+δ3[ (1
2p3 + q

)2 −m2
t + iε

]1+δ3
. (5.3)

The integrand of the integral over q changes sign under mt → −mt, q → −q, and ζ → −ζ.

The integral over q in eq. (5.3) defines a Lorentz tensor function of P̃ and p3 with indices

ν, α, and β. Since the integrand is homogeneous in P̃ with degree 0, the leading power

has the maximum number of indices carried by the 4-vector p3. In particular, one of the

indices α and β must be carried by p3. This can be exploited to reduce the number of free

indices in the hard trace and in the collinear trace. The matrix σαβ in the collinear trace

can be replaced by −(pα3σ
βγ − pβ3σαγ)P̃γ/P̃ .p3. The 4-momentum p3 can be moved to the

hard trace. Since the term proportional to mt in the hard trace is traceless, we can set

mt = 0 in the hard trace. The tensor in eq. (5.3) can therefore be expressed as

T µν8T (P, p3) =
ig2
syt

16P̃ .p3

∫ +1

−1
dζ

(
Tr
[(
/̃P + 1

2(1 + ζ)/p3

)
γµ[/p3, γα]

]
[(1 + ζ)P̃ .p3 + iε]1+δ1

+ (ζ → −ζ)

)
×
∫
q

δ(ζ − 2q.P̃ /p3.P̃ ) Tr
[ (

1
2/p3 − /q −mt

)
γν
(

1
2/p3 + /q +mt

)
[/̃P , γα]

][ (
1
2p3 − q

)2 −m2
t + iε

]1+δ3[ (1
2p3 + q

)2 −m2
t + iε

]1+δ3
. (5.4)

After evaluating the traces, the 8T term in the LP contribution to the tensor reduces to

T µν8T (P, p3) = −2g2
sytmt

P̃ .p3

[
P̃ .p3 + iε

eiπν2

]−δ1 ∫ +1

−1
dζ

(
2P̃ .p3g

µν − 2pµ3 P̃
ν − (1 + ζ)pµ3p

ν
3

(1 + ζ)1+δ1

+(ζ → −ζ)

)
d0(ζ), (5.5)

where the function d0(ζ) is

d0(ζ) = −i
∫
q

δ(ζ − 2q.P̃ /p3.P̃ )[ (
1
2p3 + q

)2 −m2
t + iε

]1+δ3[ (1
2p3 − q

)2 −m2
t + iε

]1+δ3
. (5.6)

The measure for the integral over q in eq. (5.6) is given by eq. (3.3) with δ2 = δ3 and

δ1 = 0. The integral defines a Lorentz scalar function of p3 and P̃ that is a homogeneous

function of P̃ with degree 0. Since such a function cannot be formed from the Lorentz

scalars p2
3 = 0, P̃ 2 = 0, and p3.P̃ , the integral must actually be independent of P̃ . The

dimensionless function d0(ζ) defined by eq. (5.6) depends only on ζ and on ratios of the

mass mt and the regularization scales µ and ν.

5.3 Form factor

A factorized expression for the gluon collinear contribution to the LP form factor in which

the scales Q and M are separated can be obtained by contracting the tensor T µνg coll in
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eq. (5.5) with the tensor in eq. (2.4):

FLP
g coll(ŝ,m

2
t ) = −g2

syt

[
ŝ+ iε

2eiπν2

]−δ1 ∫ +1

−1
dζ

(
1

(1 + ζ)1+δ1
+

1

(1− ζ)1+δ1

)
d0(ζ), (5.7)

where d0(ζ) is defined by the momentum integral in eq. (5.6). This function can be obtained

from the expression for d(ζ) in eq. (4.9) by setting r = 0 and replacing δ1 by δ3:

d0(ζ) =
1

32π2

[
µ2

m2
t

]ε [
ν2

m2
t

]2δ3 (1)ε+2δ3

(1)ε(1)δ3(1)δ3

1

ε+ 2δ3

(
1− ζ2

4

)δ3
. (5.8)

The integral over ζ in eq. (5.7) can be calculated analytically. The subsequent integral

over ζ in eq. (5.7) produces a pole in δ1− δ3. The result agrees with the expression for the

gluon collinear contribution to the LP form factor in eq. (3.13) with δ2 = δ3.

The scales Q and M are separated in eq. (5.7). All the dependence on ŝ is in the

prefactor ŝ−δ1 . All the dependence on mt is in the function d0(ζ) in the integrand. The

expression in eq. (5.7) has the schematic form F̃ [H+tt̄8T ]⊗d[tt̄8T → g], which corresponds

to one of the terms in the factorization formula in eq. (2.13). The notation tt̄8T represents

a collinear tt̄ pair in the color-octet Lorentz-tensor channel. The symbol ⊗ represents the

integral over ζ in eq. (5.3).

The factorized expression for the gluon collinear contribution to the LP form factor in

eq. (5.7) can be simplified by choosing δ1 = 0. The rapidity divergence is now a pole in δ3.

The gluon collinear contribution to the LP form factor reduces to

FLP
g coll(ŝ,m

2
t ) = −2g2

syt

∫ +1

−1
dζ

d0(ζ)

1− ζ2
. (5.9)

One advantage of this choice of analytic regularization parameters is that the gluon collinear

contribution no longer depends on ŝ. Another advantage is that the poles in δ3 and ε can

be extracted before the integration over ζ. The Laurent expansion in δ3 and ε can be

obtained from that of d(ζ)/(1− ζ2) in eq. (4.11) by setting r = 0 and replacing δ1 by δ3:

d0(ζ)

1− ζ2
=

1

32π2

[
µ2

m2
t

]ε [
ν2

m2
t

]2δ3
{(

1

εδ3
− 2

ε2
+
π2

3

)
δ
(
1− ζ2

)
+

1

ε

1

(1− ζ2)+

}
. (5.10)

The plus distribution is defined in eq. (A.10). The integral over ζ in eq. (5.9) can be

evaluated easily. The result agrees with the gluon collinear contribution in eq. (3.20b).

6 LP form factor using rapidity regularization

In this section, we calculate the LP form factor using rapidity regularization in conjunction

with dimensional regularization to separate the contributions from the various regions. We

set mH = 0 in this section to simplify the calculations.
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6.1 Rapidity regularization and zero-bin subtraction

In sections 3, 4, and 5, we used analytic regularization to separate the contributions to the

LP form factor from the various regions. The factorized expressions for the Higgs collinear

and gluon collinear contributions derived in sections 4 and 5 involve an integral over the

relative longitudinal momentum fraction ζ. The rapidity divergences were made explicit in

the integrand by using different analytic regularization parameters in the Higgs collinear

and gluon collinear contributions. A rather arbitrary prescription was used to separate the

soft contribution into two contributions with different regularization parameters in order

to cancel the rapidity divergences in the collinear contributions. It could be very difficult

to extend this prescription to higher orders of perturbation theory.

Analytic regularization has other drawbacks. It violates gauge invariance, which is a

severe complication in proofs of factorization to all orders in perturbation theory [46]. This

problem is especially serious in QCD, because soft contributions can be nonperturbative.

While the process we consider here is completely perturbative, the violation of gauge in-

varince could complicate the extension of our calculation to NLO. Another disadvantage

of analytic regularization is that rapidity divergences appear naturally as infrared diver-

gences. This makes it difficult to interpret the cancellation of rapidity divergences as a

renormalization procedure.

In this section, we separate the contributions to the LP form factor from the various

regions using an alternative regularization method for rapidity divergences called rapidity

regularization. Rapidity regularization in conjunction with zero-bin subtraction was in-

troduced as a method for regularizing rapidity divergences by Manohar and Stewart [47].

Rapidity regularization separates the contributions from collinear and soft regions by ex-

plicitly breaking the boost invariance. Zero-bin subtractions of collinear contributions are

required to avoid double counting of soft contributions. With rapidity regularization, the

rapidity divergence from each region is an ultraviolet divergence. This allows the cancella-

tion of rapidity divergences to be implemented as a renormalization procedure.

In order to specify the rapidity regularization factors, it is convenient to introduce

light-like vectors n and n̄ such that the only components of Pµ and pµ3 that are of order Q

are P.n and p3.n̄. We choose the normalizations of n and n̄ so that n.n̄ = 2, which implies

P.n p3.n̄ = ŝ. Dimensional regularization is used to separate the hard contribution from

the sum of the remaining contributions. The integration measure of the loop momentum

can be expressed as ∫
q
≡
∫
d(q.n)d(q.n̄)

8π2

∫
q⊥

, (6.1)

where the measure of the dimensionally regularized transverse momentum integral is∫
q⊥

≡ µ2ε (4π)−ε

Γ(1 + ε)

∫
d2−2εq⊥
(2π)2−2ε

. (6.2)

We can use the 4-vectors n and n̄ to define regions of q. In the n collinear region, q.n̄ is

order Q, q2 is order M2, and q.n is order M2/Q. In the n̄ collinear region, q.n is order

Q, q2 is order M2, and q.n̄ is order M2/Q. In the soft region, q.n̄, q.n, and q⊥ are all

order M .
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With rapidity regularization, different regularization factors are used in different re-

gions. The specific forms of the regularization factors required for our problem were used

in ref. [48] and described more explicitly in ref. [49]. The regularization factors in each of

the regions of q are

n collinear:
(
|q.n|/ν+

)−η
, (6.3a)

n̄ collinear:
(
|q.n̄|/ν−

)−η
, (6.3b)

soft:
(
|q.(n− n̄)|/ν

)−η
. (6.3c)

where η is the regularization parameter and ν+, ν−, and ν are regularization scales. The

term |q.(n − n̄)| in the soft factor reduces to |q.n| in the n collinear region and to |q.n̄|
in the n̄ collinear region, so the essential difference between the three factors in eq. (6.3)

is in the regularization scales. They are constrained by an equation that depends on the

application. In most previous cases, the equation was either ν+ν− = ν2 or ν+ν− = −ν2.

6.2 Hard contribution

In the hard region of the loop momentum q, all its components of q are order
√
ŝ. The

hard contribution to the LP form factor is given by the integral in eq. (3.5). There are

no rapidity divergences from this region, so there is no need for rapidity regularization.

The analytic result is given in eq. (3.6). A Laurent expansion in ε gives the final result

in eq. (3.9).

6.3 Higgs collinear contribution

In the Higgs collinear region of the loop momentum q, p3.q is order Q2 but q2 and P̃ .q are

order M2. The Higgs collinear contribution to the LP form factor with rapidity regular-

ization but before any zero-bin subtractions is

FLP
H coll,reg =

2ig2
syt

D − 2

∫
q

−4(p3.q)
2/P̃ .p3 + 2(D − 3)p3.q + (D − 2)P̃ .p3

[(q + P̃ )2 −m2
t + iε] [q2 −m2

t + iε] [−2p3.q + iε]

×
[
|q.n|
ν1

]−η[ |(q + P̃ ).n|
ν1

]−η
. (6.4)

The measure for the integral over q is given in eq. (6.1). Since we set mH = 0 in this section,

we have replaced the 4-momentum P of the Higgs by the light-like 4-vector P̃ whose 3-vector

component is collinear to P and whose normalization is given by 2P̃ .p3 = ŝ. The rapidity

divergence from the denominator −2p3.q is regularized by multiplying the integrand by the

factor in eq. (6.3a) with the regularization scale ν+ replaced by ν1. In order to maintain

the symmetry between the two denominators with momenta q and q + P̃ , we have also

multiplied the integrand by that same factor with q replaced by q + P̃ .

The only component of p3 that is order Q is p3.n̄. The leading-power contribution to

eq. (6.4) can therefore be simplified by replacing p3.P̃ by p3.n̄ P̃ .n/2 and p3.q by p3.n̄ q.n/2.

The factors of p3.n̄ then cancel in eq. (6.4), and it is evident that the only physical scales

in the integral are mt and P̃ .n. The integral over q.n̄ can be evaluated by contours. The

integral over q.n produces an infrared pole in the rapidity regularization parameter η. The
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dimensionally regularized integral over q⊥ produces an ultraviolet pole in ε. The analytic

result from integrating over q is

FLP
H coll,reg =

g2
syt

16π2

[
µ2

m2
t

]ε [
P̃ .n

ν1

]−2η 1

ε

(1)−η(1)−η
(1)−2η

(
1

ηir
+

2

1− 2η

)
. (6.5)

The subscript ir on the pole in η indicates that the divergence has an infrared origin.

Because the Higgs collinear region has an overlap with the soft region, the integral in

eq. (6.4) requires a zero-bin subtraction. The subtraction integral is

FLP
H coll,zbs = 2ig2

syt

∫
q

P̃ .p3

[2P̃ .q + iε] [q2 −m2
t + iε] [−2p3.q + iε]

[
|q.n|
ν1

]−η[ |(q + P̃ ).n|
ν1

]−η
.

(6.6)

The denominator with momentum q + P̃ in eq. (6.4) has been replaced by its soft limit.

The integral over q.n̄ can be evaluated by contours. The integral over q.n gives an infrared

divergence and an ultraviolet divergence, both of which are regularized by the parameter

η. The dimensionally regularized integral over q⊥ produces an ultraviolet pole in ε. The

analytic result for the integral over q is

FLP
H coll,zbs =

g2
syt

16π2

[
µ2

m2
t

]ε [
P̃ .n

ν1

]−2η 1

ε

{
1

ηir

(1)−η(1)−η
(1)−2η

− 1

2ηuv

(1)−η(1)2η

(1)η

}
. (6.7)

The subscripts ir and uv indicate the origins of the divergences.

The complete contribution to the LP form factor from the Higgs collinear region is

obtained by subtracting eq. (6.7) from eq. (6.5). The infrared poles in η cancel, leaving an

ultraviolet pole. After a Laurent expansion in η, the Higgs collinear contribution reduces to

FLP
H coll(m

2
t , P̃ .n) =

g2
syt

16π2

[
µ2

m2
t

]ε
1

ε

(
1

2ηuv
− log

P̃ .n

ν1
+ 2

)
. (6.8)

It depends logarithmically on P̃ .n.

6.4 Gluon collinear contribution

In the gluon collinear region of the loop momentum q, P̃ .q is order Q2 but q2 and p3.q are

order M2. The gluon collinear contribution to the LP form factor with rapidity regular-

ization before any zero-bin subtraction is

FLP
g coll,reg = 2ig2

syt

∫
q

P̃ .p3

[2P̃ .q + iε] [q2 −m2
t + iε] [(q − p3)2 −m2

t + iε]

×
[
|q.n̄|
ν3

]−η[ |(q − p3).n̄|
ν3

]−η
. (6.9)

The measure for the integral over q is given in eq. (6.1). The rapidity divergence from the

denominator 2P̃ .q is regularized by multiplying the integrand by the factor in eq. (6.3b)

with the regularization scale ν− replaced by ν3. In order to maintain the symmetry between
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the two denominators with momenta q and q − p3, we have also multiplied the integrand

by that same factor with q replaced by q − p3.

The only component of P̃ that is order Q is P̃ .n. The leading-power contribution to

eq. (6.9) can therefore be simplified by replacing P̃ .p3 by P̃ .n p3.n̄/2 and P̃ .q by P̃ .n q.n̄/2.

The factors of P̃ .n then cancel in eq. (6.9), and it is evident that the only physical scales

in the integral are mt and p3.n̄. The integral over q.n can be evaluated by contours.

The integral over q.n̄ produces an infrared pole in η. The integral over q⊥ produces an

ultraviolet pole in ε. The analytic result for the integral over q is

FLP
g coll,reg =

g2
syt

16π2

[
µ2

m2
t

]ε [
p3.n̄

ν3

]−2η 1

ε ηir

(1)−η(1)−η
(1)−2η

. (6.10)

The subscript ir on the pole in η indicates that the divergence has an infrared origin.

Because the gluon collinear region has an overlap with the soft region, the integral in

eq. (6.9) requires a zero-bin subtraction. The subtraction integral is

FLP
g coll,zbs = 2ig2

syt

∫
q

P̃ .p3

[2P̃ .q + iε] [q2 −m2
t + iε] [−2p3.q + iε]

[
|q.n̄|
ν3

]−η[ |(q − p3).n̄|
ν3

]−η
.

(6.11)

The denominator with momentum q−p3 in eq. (6.9) has been replaced by its soft limit. The

integral over q.n can be evaluated by contours. The integral over q.n̄ produces an infrared

pole in η and an ultraviolet pole in η. The integral over q⊥ produces an ultraviolet pole in

ε. The analytic result for the integral over q is

FLP
g coll,zbs =

g2
syt

16π2

[
µ2

m2
t

]ε [
p3.n̄

ν3

]−2η 1

ε

{
1

ηir

(1)−η(1)−η
(1)−2η

− 1

2ηuv

(1)−η(1)2η

(1)η

}
. (6.12)

The subscripts ir and uv indicate the origins of the divergences.

The complete contribution to the LP form factor from the gluon collinear region is

obtained by subtracting eq. (6.12) from eq. (6.10). The infrared poles in η cancel, leaving an

ultraviolet pole. After a Laurent expansion in η, the gluon collinear contribution reduces to

FLP
g coll(m

2
t , p3.n̄) =

g2
syt

16π2

[
µ2

m2
t

]ε
1

ε

(
1

2ηuv
− log

p3.n̄

ν3

)
. (6.13)

It depends logarithmically on p3.n̄.

6.5 Soft contribution

In the soft region of the loop momentum q, all the components of q are order mt. The soft

contribution to the LP form factor with rapidity regularization is

FLP
soft = 2ig2

syt

∫
q

P̃ .p3

[2P̃ .q + iε] [q2 −m2
t + iε] [−2p3.q + iε]

[
|q.(n− n̄)|

ν

]−2η

. (6.14)

The 4-momentum P of the Higgs has been replaced by the light-like 4-vector P̃ . The ra-

pidity divergences from the two denominators 2P̃ .q and −2p3.q have been regularized by
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multiplying the integrand by two identical copies of the factor in eq. (6.3c). The integral

over q in eq. (6.14) includes a Higgs collinear region in which q.n̄ is small and a gluon

collinear region in which q.n is small. In the Higgs collinear region, the soft regularization

factor is proportional to |q.n|−2η. It has the same form as the Higgs collinear regulariza-

tion factor in eq. (6.4) in the ultraviolet limit. Thus the ultraviolet divergences from the

Higgs collinear region in eq. (6.14) cancel against ultraviolet divergences from the zero-bin

subtraction for the Higgs collinear contribution in eq. (6.6). In the gluon collinear region,

the soft regularization factor is proportional to |q.n̄|−2η. It has the same form as the gluon

collinear regularization factor in eq. (6.9) in the ultraviolet limit. Thus the ultraviolet di-

vergences from the gluon collinear region in eq. (6.14) cancel against ultraviolet divergences

from the zero-bin subtraction for the gluon collinear contribution in eq. (6.11).

The integral over q in eq. (6.14) gives ultraviolet poles in η and in ε+ η:

FLP
soft = − g

2
syt

16π2

[
µ2

m2
t

]ε [
ν

2mt

]2η (1
2)−η(1)ε+η

(1)ε

1

ηuv(ε+ η)
. (6.15)

After a Laurent expansion in η, the soft contribution reduces to

FLP
soft(m

2
t ) = − g

2
syt

16π2

[
µ2

m2
t

]ε(
1

ε ηuv
− 1

ε2
+

1

ε
log

ν2

m2
t

+
π2

6

)
. (6.16)

It depends logarithmically on mt.

6.6 LP form factor

In the sum of the Higgs collinear contribution in eq. (6.8), the gluon collinear contribution

in eq. (6.13), and the soft contribution in eq. (6.16), the ultraviolet poles in η cancel. The

only divergences that remain are double and single poles in ε:

FLP
H coll + FLP

g coll + FLP
soft =

g2
syt

16π2

[
µ2

m2
t

]ε{
1

ε2
− 1

ε

(
log

P̃ .n p3.n̄

ν1 ν3
+ log

ν2

m2
t

− 2

)
− π2

6

}
.

(6.17)

Comparing with the sum of the Higgs collinear contribution and the gluon collinear con-

tribution using analytic regularization in eq. (3.18), we see that they agree provided the

rapidity regularization scales satisfy

ν1 ν3 = e+iπ ν2. (6.18)

We obtained this nontrivial constraint on the rapidity regularization scales by comparing

with the result from analytic regularization. It would be preferable to derive it more

directly within the framework of rapidity regularization.

The complete LP form factor with rapidity regularization is obtained by adding the

hard contribution in eq. (3.9) to the sum of the Higgs collinear, gluon collinear, and soft

contributions in eq. (6.17). The double and single poles in ε are canceled. The final result

for the LP form factor with mH = 0 agrees with the result in eq. (3.19).

– 25 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
7

7 Hard form factors and distribution amplitudes

In this section, we calculate the factors in the Higgs collinear and gluon collinear contri-

butions to the LP form factor in a way that involves only the single scale Q or M . The

factors involving the hard scale Q are form factors for tt̄1V + g and H + tt̄8T . The factors

involving the soft scale M are distribution amplitudes for a tt̄ pair in the Higgs and for a tt̄

pair in a real gluon. We use rapidity regularization to define the distribution amplitudes.

At the end of this section, we discuss the relation between our distribution amplitudes and

double-parton fragmentation functions, which were recently introduced for heavy quarko-

nium production, and the relation between our distribution amplitudes and those used for

exclusive processes.

7.1 Hard form factor for tt̄1V + g

In section 5, the scales Q and M in the Higgs collinear contribution to the LP form factor

were separated by expressing it as an integral over the relative longitudinal momentum

fraction ζ:

FLP
H coll =

∫ +1

−1
dζ F̃tt̄1V +g(ζ) dtt̄1V→H(ζ). (7.1)

The integrand is the product of a hard form factor F̃tt̄1V +g for producing a gluon and a

collinear tt̄ pair in the color-singlet Lorentz-vector (1V ) channel and a distribution ampli-

tude dtt̄1V→H for a tt̄ pair in the Higgs. The hard form factor depends only on the scale Q.

The distribution amplitude depends on the scale M . With rapidity regularization, it also

depends logarithmically on P.n.

The amplitude T µa,νb for g∗ → tt̄ + g is given by the sum of the two diagrams in

figure 3. Since we only want the leading power, we can set the top-quark mass equal to

zero. The amplitude for a virtual gluon with Lorentz index µ and color index a to produce

a real gluon with momentum p3, Lorentz index ν, and color index b and a color-singlet t

and t̄ pair with collinear momenta 1
2(1 + ζ)P̃ and 1

2(1− ζ)P̃ is

T µa,νb(P, p3) = g2
s

tr(T aT b)√
Nc

(
Tr
[
γµ
(
/p3 + 1

2(1− ζ)/̃P
)
γν v ū

]
(1− ζ)P̃ .p3

−
Tr
[
γν
(
/p3 + 1

2(1 + ζ)/̃P
)
γµ v ū

]
(1 + ζ)P̃ .p3

)
, (7.2)

where ū and v are the Dirac spinors for the t and t̄. The factor 1/
√
Nc, where Nc is the

number of quark colors, comes from projecting the tt̄ pair into a color-singlet state. The

color trace tr(T aT b) can be absorbed into the prefactor of T µν in eq. (2.1). The tt̄ pair

can be projected onto the Lorentz-vector channel by replacing the spinor product v ū by

/̃P . The 1V contribution to the tensor amplitude in eq. (7.2) is

T µν1V (P, p3) = − 4g2
s√
Nc

(
P̃ .p3g

µν − (P̃µpν3 + pµ3 P̃
ν)− (1− ζ)P̃µP̃ ν

(1− ζ)P̃ .p3

− (ζ → −ζ)

)
. (7.3)
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Figure 3. Feynman diagrams for the tensor amplitude T µν for g∗ → tt̄+ g at LO.

The hard form factor for g∗ → tt̄1V + g can be obtained by contracting the tensor T µν1V

in eq. (7.3) with the tensor in eq. (2.4), with P replaced by P̃ . We choose to move a factor

1/(1−ζ2) to the distribution amplitude to allow the poles in the regularization parameters

to be made explicit. A canceling factor 1 − ζ2 must appear in the hard form factor. We

also choose to move the factor 1/mt from eq. (2.4) and the factor 1/
√
Nc from eq. (7.3)

to the distribution amplitude to simplify the expressions for the hard form factor and the

distribution amplitude. The resulting expression for the hard form factor is

F̃tt̄1V +g(ζ) = − g2
s

D − 2
(1− ζ2)

(
D − 1− ζ

1− ζ
− D − 1 + ζ

1 + ζ

)
. (7.4)

We have given the contributions from the two diagrams separately. The dependence on D

cancels in their sum.

7.2 Distribution amplitude for tt̄1V → H

The soft factor in the expression for the Higgs collinear contribution to the LP form factor

in eq. (7.1) is the distribution amplitude for tt̄1V → H. The distribution amplitude is a

function of the relative longitudinal momentum fraction ζ that describes how the longi-

tudinal momentum of the Higgs is distributed between a virtual t and a virtual t̄. It can

be calculated by using ingredients from the Feynman rules for double-parton fragmenta-

tion functions in ref. [50]. A fragmentation function can be expressed as the sum of cut

diagrams that are products of an amplitude and the complex conjugate of an amplitude.

The amplitude for tt̄ fragmentation into a specific final state is the amplitude for that final

state to be produced by sources that create the t and the t̄ in a specified color and Lorentz

channel with relative longitudinal momentum fraction ζ. The sources are the endpoints of

eikonal lines that extend to future infinity. The Feynman rule for the sources is the product

of a color matrix, a Dirac matrix, and a delta function. The Feynman rule for sources that

create the t and t̄ in the 1V channel with momenta p and p̄ is

1√
Nc

/n

4(p+ p̄).n
δ
(
ζ − (p− p̄).n/(p+ p̄).n

)
, (7.5)

where n is the light-like 4-vector that defines the longitudinal direction.

The leading-order diagram for the distribution amplitude for a tt̄ pair in the Higgs

is shown in figure 4. The diagram has a factor of −1 for the closed fermion loop. The
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Figure 4. Feynman diagram for the distribution amplitude for tt̄1V → H at LO.

expression for the distribution amplitude is

i
√
Nc yt

4P.n

∫
q

δ(ζ − 2q.n/P.n) Tr
[(

1
2/P − /q −mt

)(
1
2/P + /q +mt

)
/n
][(

1
2P − q

)2 −m2
t + iε

] [(
1
2P + q

)2 −m2
t + iε

] =
√
Nc ytmt ζ d(ζ), (7.6)

where the function d(ζ) is

d(ζ) = −i
∫
q

δ(ζ − 2q.n/P.n)[(
1
2P + q

)2 −m2
t + iε

] [(
1
2P − q

)2 −m2
t + iε

] . (7.7)

In eqs. (7.6) and (7.7), we have suppressed rapidity regularization factors and zero-bin sub-

tractions for the integral over the loop momentum q. Multiplying by the factors 1/(
√
Ncmt)

and 1/(1 − ζ2) that were removed from the form factor for g∗ → tt̄1V + g in eq. (7.4), we

obtain the distribution amplitude

dtt̄1V→H(ζ) = yt ζ
d(ζ)

1− ζ2
. (7.8)

The function d(ζ) is calculated with rapidity regularization and with appropriate zero-bin

subtractions in appendix A.3. The function d(ζ)/(1 − ζ2) is given in eq. (A.19), with the

ultraviolet poles in the regularization parameters ε and η made explicit. The regularized

distribution amplitude is

dtt̄1V→H(ζ) =
yt

32π2

[
µ2

m2
t

]ε [
P.n

ν1

]−2η 1

ε

{
− 1

2ηuv
δ(1− ζ2) +

1

(1− ζ2)+

}
×ζ
[
1− (1− ζ2)r2 − iε

]−ε
. (7.9)

We have set the rapidity regularization scale to ν1.

7.3 Hard form factor for H + tt̄8T

In section 5, the scales Q and M in the gluon collinear contribution to the LP form factor

were separated by expressing it as an integral over the momentum fraction variable ζ:

FLP
g coll =

∫ +1

−1
dζ F̃H+tt̄8T (ζ) dtt̄8T→g(ζ). (7.10)
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Figure 5. Feynman diagrams for the tensor amplitude T µa,b for g∗ → H + tt̄ at LO.

The integrand is the product of the hard form factor F̃H+tt̄8T for producing a Higgs and a

collinear tt̄ pair in the color-octet Lorentz-tensor (8T ) channel and the distribution ampli-

tude dtt̄8T→g for a tt̄ pair in a real gluon. The hard form factor depends only on the scale

Q. The distribution amplitude depends on the scale M . With rapidity regularization, it

also depends logarithmically on p3.n̄.

The amplitude T µa,b for g∗ → H + tt̄ is given by the sum of the two diagrams in

figure 5. Since we only want the leading power, we can set the top quark mass equal to

zero. The amplitude for a virtual gluon with Lorentz index µ and color index a to produce

a Higgs with momentum P̃ and a color-octet tt̄ pair with collinear momenta 1
2(1 + ζ)p3

and 1
2(1− ζ)p3 and color index b is

T µa,b(P, p3) = gsyt

(√
2 tr(T aT b)

)(Tr
[(
/̃P + 1

2(1 + ζ)/p3

)
γµ v ū

]
(1 + ζ)P̃ .p3

−
Tr
[
γµ
(
/̃P + 1

2(1− ζ)/p3

)
v ū
]

(1− ζ)P̃ .p3

)
, (7.11)

where ū and v are the Dirac spinors for the t and t̄. The factor of
√

2 comes from projecting

the tt̄ pair onto a color-octet state. The tt̄ pair can be projected onto the Lorentz-tensor

channel with a Lorentz index ν by replacing the spinor product v ū by /p3γ
ν
⊥, where γν⊥ are

Dirac matrices that are perpendicular to specified light-like 4-vectors n and n̄. They can

be expressed as γν⊥ = gνα⊥ γα, where the perpendicular metric tensor is

g⊥αβ = gαβ −
nαn̄β + n̄αnβ

n.n̄
. (7.12)

The color trace tr(T aT b) can be absorbed into the prefactor of T µν in eq. (2.1). The 8T

contribution to the vector amplitude T µ in eq. (7.11) defines the tensor amplitude

T µν8T (P, p3) = −4
√

2gsytg
µν
⊥

(
1

1 + ζ
+

1

1− ζ

)
. (7.13)

The hard form factor for g∗ → H + tt̄8T can be obtained by contracting the tensor

T µν8T in eq. (7.13) with the tensor in eq. (2.4), with P replaced by P̃ . We choose to move

a factor 1/(1 − ζ2) to the distribution amplitude to allow the poles in the regularization
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parameters to be made explicit. A canceling factor 1 − ζ2 must appear in the hard form

factor. We also choose to move the factor 1/mt from eq. (2.4) and the factor
√

2 from

eq. (7.13) to the distribution amplitude to simplify the expressions for the hard form factor

and the distribution amplitude. The resulting expression for the hard form factor is

F̃H+tt̄8T (ζ) = −gsyt(1− ζ2)

(
1

1 + ζ
+

1

1− ζ

)
. (7.14)

We have given the contributions from the two diagrams separately.

7.4 Distribution amplitude for tt̄8T → g

The collinear factor in the expression for the gluon collinear contribution to the LP form

factor in eq. (7.10) is the distribution amplitude for tt̄8V → g. The distribution amplitude

is a function of the relative longitudinal momentum fraction ζ that describes how the

longitudinal momentum of the real gluon is distributed between a virtual t and a virtual t̄. It

can be calculated from the diagram in figure 6 by using ingredients from the Feynman rules

for double-parton fragmentation functions in ref. [50]. The amplitude for tt̄ fragmentation

into a specific final state is the amplitude for that final state to be produced by sources that

create the t and the t̄ in a specified color and Lorentz channel with relative longitudinal

momentum fraction ζ. The sources are the endpoints of eikonal lines that extend to future

infinity. The Feynman rule for the sources is the product of a color matrix, a Dirac matrix,

and a delta function. The Feynman rule for sources that create the t and t̄ in the 8T

channel with momenta p and p̄ is

√
2T a

/̄nγµ⊥
4(p+ p̄).n̄

δ
(
ζ − (p− p̄).n̄/(p+ p̄).n̄

)
, (7.15)

where n̄ is the light-like 4-vector that defines the longitudinal direction, γµ⊥ = gµα⊥ γα, and

the metric tensor g⊥µβ is defined in eq. (7.12).

The leading-order diagram for the distribution amplitude for a tt̄ pair in a real gluon

is shown in figure 6. The diagram has a factor of −1 for the closed fermion loop. The

amplitude for the source to produce a real gluon with polarization vector ε3 and color index

a is

− i
√

2 gs
4p3.n̄

tr(T aT b) ε∗3ν

∫
q

δ(ζ − 2q.n̄/p3.n̄) Tr
[(

1
2/p3 − /q −mt

)
γν
(

1
2/p3 + /q +mt

)
/̄nγµ⊥

][(
1
2p3 + q

)2 −m2
t + iε

] [(
1
2p3 − q

)2 −m2
t + iε

]
=
gsmt√

2
δab(−gµν⊥ )ε∗3ν d0(ζ),

(7.16)

where the function d0(ζ) is

d0(ζ) = −i
∫
q

δ(ζ − 2q.n̄/p3.n̄)[(
1
2p3 + q

)2 −m2
t + iε

] [(
1
2p3 − q

)2 −m2
t + iε

] . (7.17)

In eqs. (7.16) and (7.17), we have suppressed rapidity regularization factors and zero-bin

subtractions in the integral over the loop momentum q. We can identify the distribution
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Figure 6. Feynman diagram for the distribution amplitude for tt̄8T → g at LO.

amplitude for a real gluon with transverse polarization vector in the same direction as

the source and with the same color index as the source as the coefficient of δab(−gµν⊥ )ε∗3ν .

Multiplying by the factors
√

2/mt and 1/(1− ζ2) that were removed from the form factor

for g∗ → H + tt̄8T , we obtain the distribution amplitude

dtt̄8T→g(ζ) = gs
d0(ζ)

1− ζ2
. (7.18)

The function d0(ζ)/(1− ζ2) with rapidity regularization can be obtained from the function

d(ζ)/(1− ζ2) in eq. (A.19) by setting r = 0 and replacing P.n with p3.n̄. The regularized

distribution amplitude, with the ultraviolet poles in the regularization parameters ε and η

made explicit, is

dtt̄8T→g(ζ) =
gs

32π2

[
µ2

m2
t

]ε [
p3.n̄

ν3

]−2η 1

ε

{
− 1

2ηuv
δ(1− ζ2) +

1

(1− ζ2)+

}
. (7.19)

We have set the rapidity regularization scale to ν3.

7.5 Relation to double-parton fragmentation functions

Our factorization framework for the exclusive production of Higgs was inspired by recent

progress in the QCD factorization of heavy quarkonium. We proceed to describe the con-

nection between our distribution amplitude for tt̄ → H and double-parton fragmentation

functions for Higgs production. Factorization formulas for inclusive Higgs production with

large transverse momentum PT in the Standard Model can be deduced from the correspond-

ing factorization formulas for inclusive hadron production in QCD [41]. For an inclusive

cross section dσ/dP 2
T , the leading power is 1/P 4

T and the next-to-leading power is 1/P 6
T .

For inclusive hadron production, the leading power comes from a mechanism called frag-

mentation: the production of a parton with larger transverse momentum followed by the

decay of the virtual parton into states that include the hadron. For inclusive Higgs pro-

duction with a top quark, the leading power contribution to the differential cross section

can be expressed in the form of the leading-power (LP) factorization formula:

dσ̃H+t+X(PT ) +

∫ 1

0
dz dσ̃t+X(PT /z)Dt→H(z), (7.20)

where dσ̃H+t+X is the inclusive hard-scattering cross section for producing H with trans-

verse momentum PT and dσ̃t+X is the inclusive hard-scattering cross section for producing
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t with larger transverse momentum PT /z. The integral is over the fraction z of the longitu-

dinal momentum of t carried by H. The fragmentation function Dt→H(z) is the probability

distribution for z from the decay of the virtual t into states that include H. The LP factor-

ization formula in eq. (7.20) separates the large scale PT , which appears only in dσ̃H+t+X

and dσ̃t+X , from the smaller scale M of the masses mt and mH , which appear only in

Dt→H . The first term in eq. (7.20) corresponds to the direct production of H at short

distances. This has no analog in the LP factorization formula for QCD: a color-singlet

hadron cannot be produced directly at short distances at leading power.

A significant step forward in QCD factorization was the extension of the factorization

formula to the next-to-leading power in 1/P 2
T for the case of heavy quarkonium. The next-

to-leading power (NLP) factorization formula was proven by Kang, Qiu, and Sterman using

a diagrammatic analysis [51] and derived by Fleming, Leibovich, Mehen, and Rothstein

using Soft Collinear Effective Theory [52]. There are contributions at NLP that come from

expanding the hard-scattering cross sections dσ̃ to first order in M2/P 2
T , but there are addi-

tional contributions that come from a new mechanism called double-parton fragmentation :

the production of a heavy quark and antiquark with a larger total transverse momentum

followed by the decay of the virtual quark-antiquark pair into states that include the heavy

quarkonium. For inclusive Higgs production, the tt̄ fragmentation contribution to the NLP

factorization formula has the form∫ 1

0
dz

∫ +1

−1
dζ

∫ +1

−1
dζ ′ dσ̃tt̄+X(PT /z, ζ, ζ

′)Dtt̄→H(z, ζ, ζ ′), (7.21)

where dσ̃tt̄+X is the inclusive hard-scattering cross section for producing tt̄ with total

transverse momentum PT /z. The integrals are over the fraction z of the total longitudinal

momentum of tt̄ carried by H, the relative longitudinal momentum fraction ζ of the t and

t̄ in the amplitude, and the relative longitudinal momentum fraction ζ ′ of the t and t̄ in

the complex conjugate of the amplitude. For given ζ and ζ ′, the fragmentation function

Dt→H(z, ζ, ζ ′) is the distribution in z from the decay of the virtual tt̄ pair into states that

include H. The term in eq. (7.21) in the NLP factorization formula separates the large

scale PT , which appears only in dσ̃tt̄+X , from the smaller scale M of the masses, which

appear only in Dtt̄→H .

The production of Higgs at large PT with no final-state top quark has contributions

from the LP factorization formula in eq. (7.20) beginning at NLO in αs. At LO in αs,

the leading power in 1/P 2
T comes from the NLP factorization formula in eq. (7.21). At

this order, the fragmentation process is the annihilation of the virtual tt̄ pair into a Higgs

only. The entire longitudinal momentum of the tt̄ pair is carried by the Higgs, so the

fragmentation function has a factor of δ(1− z). The fragmentation function at LO is

Dtt̄1V→H(z, ζ, ζ ′) = Ncm
2
t

[
(1− ζ2) dtt̄1V→H(ζ)

][
(1− ζ ′2) dtt̄1V→H(ζ ′)

]∗
δ(1− z), (7.22)

where dtt̄1V→H(ζ) is the regularized distribution amplitude in eq. (7.9). A renormalized

fragmentation function can be obtained by the minimal subtraction of the poles in η

and in ε.
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7.6 Relation to distribution amplitudes for exclusive processes

For an exclusive process in QCD in which hadrons are scattered with a large momentum

transfer Q, the matrix element can be expressed as a factorization formula in which the hard

scale Q is separated from the soft hadronic scale Λ [53]. The hard factor is an amplitude

for the hard-scattering of collinear constituents of each of the hadrons. The soft factor for

each hadron is a distribution amplitude that gives the amplitude for the constituents of the

hadron to have specified longitudinal momentum fractions. In the case of a qq̄ meson with

large momentum p, the distribution amplitude φ(x) is the amplitude for its constituents

to be q and q̄ with momenta xp and (1− x)p. The longitudinal momentum fraction x has

the range 0 ≤ x ≤ 1. The distribution amplitude of the meson can be defined in terms of

its light-front wavefunction ψ(x,k⊥) in the light-front gauge [53]:

φ(x) =

∫
d2k⊥
(2π)2

ψ(x,k⊥). (7.23)

The distribution amplitude for tt̄1V → H in our factorization formula can be inter-

preted as the conventional distribution amplitude for exclusive processes involving the tt̄

component of the Higgs up to a normalization factor and a factor of 1 − ζ2:

dtt̄1V→H(ζ) =
√
Ncmt (1− ζ2)φ

(
x =

1

2
(1 + ζ)

)
. (7.24)

We have defined the distribution amplitude diagrammatically as the amplitude for produc-

ing the Higgs only from t and t̄ sources with the Feynman rule in eq. (7.5) and with eikonal

lines extending to future infinity. This definition could be expressed formally as the ma-

trix element of local operators multiplied by Wilson lines. Since the t and t̄ created by the

sources are in a color-singlet state and the Higgs is a color singlet, the product of the Wilson

lines at future infinity must also be color singlet. The product of the color-triplet Wilson

line and the color-antitriplet Wilson line therefore behaves like a trivial color-singlet Wilson

line as the time approaches future infinity. This ensures that the distribution amplitude is

gauge invariant.

The distribution amplitude for tt̄8T → g in our factorization formula can be inter-

preted as a distribution amplitude for exclusive processes involving the tt̄ component of

a real gluon. The light-front wavefunction for t and t̄ in a real gluon with polarization

vector ε perpendicular to n and n̄ has a term of the form ψ(x,k⊥) k⊥.ε⊥. The 8T distri-

bution amplitude can be expressed as an integral of ψ(x,k⊥) over k⊥ analogous to that in

eq. (7.23). We have defined the distribution amplitude diagrammatically as the amplitude

for producing the gluon only from t and t̄ sources with the Feynman rule in eq. (7.15)

and with eikonal lines extending to future infinity. This definition could be expressed for-

mally as the matrix element of local operators multiplied by Wilson lines. The product

of the color-triplet Wilson line and the color-antitriplet Wilson line behaves like a color-

octet Wilson line as the time approaches future infinity. The distribution amplitude is not

gauge invariant. However, as long as the same gauge is used to calculate each piece in

the factorization formula in eq. (2.13), the gauge dependence will cancel after all pieces

are added.
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8 Renormalized factorization formula

The divergences in the contributions to the LP form factor from the hard, Higgs collinear,

gluon collinear, and soft regions cancel between the different regions. In this section, we

define renormalized contributions to the LP form factor by the minimal subtraction of the

poles from dimensional regularization and from the regularization of rapidity divergences.

This renormalization procedure is equivalent to canceling the divergences by moving the

divergent terms between different regions. The renormalized contribution from each region

depends on the renormalization scheme, but the sum over all regions is scheme independent.

The renormalized contributions are combined into a renormalized factorization formula for

the LP form factor in which there are no divergences.

8.1 LP form factor

The regularized factorization formula for the LP form factor was given in a schematic

form in eq. (2.13). The poles in η and ε cancel between the four terms. A renormalized

factorization formula in which each of the terms is separately finite can be obtained by

applying minimal subtraction to each of the divergent pieces. The explicit form of the

renormalized factorization formula for the LP form factor is

FLP(ŝ,m2
t ,m

2
H) = F̃H+g(ŝ) +

∫ +1

−1
dζ F̃tt̄1V +g(ζ) dtt̄1V→H(ζ;m2

t ,m
2
H , P.n)

+

∫ +1

−1
dζ F̃H+tt̄8T (ζ) dtt̄8T→g(ζ;m2

t , p3.n̄) + Fendpt(m
2
t ). (8.1)

All the dependences on physical scales are indicated explicitly by the arguments in eq. (8.1).

Each of the individual pieces in the factorization formula is given below.

The regularized hard contribution to the LP form factor is given in eq. (3.9). We define

the renormalized contribution from direct production of H + g by minimal subtraction of

the poles in ε:

F̃H+g(ŝ) =
g2
syt

16π2

(
−1

2
log2 −ŝ− iε

µ2
+ 2 log

−ŝ− iε
µ2

+
π2

6
− 6

)
. (8.2)

With the measure of the dimensionally regularized momentum integral defined in eq. (6.1),

the minimal subtraction of the poles in ε corresponds to the modified minimal subtraction

(MS) renormalization scheme. The renormalized hard contribution depends logarithmi-

cally on ŝ.

The Higgs collinear contribution to the LP form factor is given by the integral over

the momentum fraction variable ζ in eq. (7.1). The hard form factor for g∗ → tt̄1V + g is

given in eq. (7.4). It reduces to

F̃tt̄1V +g(ζ) = −2g2
sζ. (8.3)

The distribution amplitude with rapidity regularization is given in eq. (7.9). We define a

renormalized distribution amplitude by minimal subtraction of the ultraviolet poles in η
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and in ε:

dtt̄1V→H(ζ) =
yt

32π2
ζ

[
log

µ2

m2
t

(
log

P.n

ν1
δ(1− ζ2) +

1

(1− ζ2)+

)
−

log
(
1− (1− ζ2)r2

)
1− ζ2

]
.

(8.4)

This distribution amplitude depends logarithmically on mt and on P.n.

The gluon collinear contribution to the LP form factor is given by the integral over the

momentum fraction variable ζ in eq. (7.10). The form factor for g∗ → H + tt̄8T is given in

eq. (7.14). It reduces to

F̃H+tt̄8T (ζ) = −2gsyt. (8.5)

The distribution amplitude with rapidity regularization is given in eq. (7.19). We define

a renormalized distribution amplitude by minimal subtraction of the ultraviolet poles in η

and in ε:

dtt̄8T→g(ζ) =
gs

32π2
log

µ2

m2
t

(
log

p3.n̄

ν3
δ(1− ζ2) +

1

(1− ζ2)+

)
. (8.6)

This distribution amplitude depends logarithmically on mt and on p3.n̄.

The soft contribution to the LP form factor using rapidity regularization is given in

eq. (6.16). We define the renormalized endpoint contribution by minimal subtraction of

the ultraviolet poles in η and in ε:

Fendpt(m
2
t ) =

g2
syt

16π2

(
1

2
log2 µ

2

m2
t

− log
µ2

m2
t

log
ν2

m2
t

− π2

6

)
. (8.7)

The endpoint contribution depends logarithmically on mt.

The integrals over ζ in the factorization formula in eq. (8.1) are∫ +1

−1
dζ F̃tt̄1V +g(ζ) dtt̄1V→H(ζ) =

g2
syt

16π2

(
− log

µ2

m2
t

log
P.n

ν1
+ 2 log

µ2

m2
t

−2 arcsin2 r − 4
√

1− r2

r
arcsin r + 4

)
, (8.8a)∫ +1

−1
dζ F̃H+tt̄8T (ζ) dtt̄8T→g(ζ) =

g2
syt

16π2

(
− log

µ2

m2
t

log
p3.n̄

ν3

)
. (8.8b)

The logarithms of P.n and p3.n̄ in these two terms combine to give a logarithm of ŝ. The last

three terms in the factorization formula in eq. (8.1) depend on the rapidity regularization

scales ν1, ν3, and ν. The dependence on these scales cancels upon using the relation

between ν1, ν3, and ν in eq. (6.18). All four terms in eq. (8.1) depend on the dimensional

regularization scale µ. The dependence cancels when all the terms are added. The sum of

the four terms in eq. (8.1) reproduces the LP form factor in eq. (2.11).

8.2 Improved mass dependence

The LP form factor is an approximation to the full form factor with errors of order m2
t /Q

2

and m2
H/Q

2. It is relatively easy to modify the renormalized factorization formula in
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eq. (8.1) to decrease the errors to order m2
H/Q

2. Since the top quark mass threshold 2mt

is significantly larger than mH , one may be able to improve the accuracy by keeping the

leading terms of an expansion in m2
H/Q

2 without expanding in m2
t /Q

2. This will not change

the parametric dependence of the error, which still decreases as 1/Q2. However, since the

ratio r = mH/(2mt) satisfies r2 ≈ 0.13, one might hope for an order-of-magnitude decrease

in the numerical size of the error. For the subprocess qq̄ → Htt̄ considered in ref. [41], this

hope was not realized. The error in the leading power in m2
H/Q

2 had the opposite sign as

the error in the leading power in M2/Q2 but approximately the same magnitude. We will

show below that for the subprocess qq̄ → Hg, there is in fact a significant decrease in the

numerical size of the error.

In the factorization formula for the LP form factor in eq. (8.1), the hard form factors

are independent of the masses mt and mH . It is not essential that the hard form factors

be independent of mt and mH , but they must be infrared safe, which means that they can

not have any mass singularities. One can include the top quark mass dependence by taking

the hard scale to be Q ∼ PT ,
√
ŝ and the soft scale to be M ∼ mH , but allowing mt to be

an arbitrary scale that could be order M or order Q or an intermediate scale. Since mt

could be order Q, the form factor cannot be expanded in powers of m2
t /ŝ. Since mt could

be order M , the form factor cannot be expanded in powers of m2
H/m

2
t . The leading term

in an expansion of the form factor in powers of m2
H/Q

2 has an error of order m2
H/Q

2. We

denote this approximation to the form factor by FLPH(ŝ,m2
t ,m

2
H). We will show that it

can be expressed in the same form as the factorization formula in eq. (8.1), with the only

change being in the hard form factor F̃H+g(ŝ). The modified hard form factor depends on

mt and we denote it by F̃ (t)
H+g(ŝ,m

2
t ).

Using the schematic factorization formula in eq. (2.13), the hard form factor F̃H+g(ŝ)

can be expressed as

F̃ [H + g] = FLP[H + g]− F̃ [tt̄1V + g]⊗ d[tt̄1V → H]

−F̃ [H + tt̄8T ]⊗ d[tt̄8T → g]−Fendpt[H + g]. (8.9)

Since the left side is independent of mt and mH , we can take the simultaneous limits mt → 0

and mH → 0 on the right side. All the mass singularities must cancel on the right side to

make these simultaneous limits well defined. The mass singularities also cancel between

the LP form factor FLP and the full form factor F , which has the complete dependence on

mt and mH . We can therefore replace FLP inside the limits by F . The resulting expression

for the hard form factor is

F̃ [H + g] =
[
F [H + g]− F̃ [tt̄1V + g]⊗ d[tt̄1V → H]

−F̃ [H + tt̄8T ]⊗ d[tt̄8T → g]−Fendpt[H + g]
]
mt→0
mH→0

. (8.10)

We define the mt-dependent hard form factor F̃ (t)[H + g] simply by removing the limit
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mt → 0 from the right side of eq. (8.10):

F̃ (t)[H + g] ≡
[
F [H + g]− F̃ [tt̄1V + g]⊗ d[tt̄1V → H]

−F̃ [H + tt̄8T ]⊗ d[tt̄8T → g]−Fendpt[H + g]
]
mH=0

. (8.11)

The only terms on the right side that depend on mH are the full form factor F and the

distribution amplitude for tt̄1V → H. We define the LPH form factor by replacing the

hard form factor F̃ [H + g] in the schematic factorization formula in eq. (2.13) by the

mt-dependent hard form factor F̃ (t)[H + g] in eq. (8.11):

FLPH [H + g] ≡ F̃ (t)[H + g] + F̃ [tt̄1V + g]⊗ d[tt̄1V → H]

+F̃ [H + tt̄8T ]⊗ d[tt̄8T → g] + Fendpt[H + g]. (8.12)

We proceed to show that the errors in the LPH form factor defined by eq. (8.12)

are order m2
H/ŝ. The difference between the LPH form factor and the LP form factor

in eq. (2.13) is F̃ (t)[H + g] − F̃ [H + g], which is order m2
t /ŝ. Since the error in the LP

form factor decreases as 1/ŝ, the error in the LPH form factor also decreases as 1/ŝ. By

inserting the expression for F̃ (t)[H + g] in eq. (8.11) into the expression for FLPH [H + g]

in eq. (8.12), we find that the difference between the LPH form factor and the full form

factor can be expressed as

FLPH [H + g]−F [H + g] =
(
F [H + g]

∣∣
mH=0

−F [H + g]
)

+F̃ [tt̄1V + g]⊗
(
d[tt̄1V → H]− d[tt̄1V → H]

∣∣
mH=0

)
. (8.13)

Both terms on the right side are 0 for mH = 0, so the left side must be proportional to

m2
H . Thus the error in the LPH form factor is order m2

H/ŝ.

The expression for the mt-dependent hard form factor F̃ (t) in eq. (8.11) seems to require

calculating the full form factor F and then taking the limit mH → 0. If this were true, the

LPH form factor would have no calculational advantage over the full form factor. It would

require a calculation involving all three scales ŝ, mt, and mH . However the mt-dependent

hard form factor can be calculated more easily by not taking the limit mH → 0, but instead

setting mH = 0 from the beginning. The two terms on the right side of eq. (8.11) that

depend on mH are finite if mH = 0. Thus F̃ (t) can be obtained by calculations that involve

only the two scales ŝ and mt. For some other processes, such as double-Higgs production

through a virtual Higgs, the limit mH → 0 in the equation analogous to eq. (8.11) produces

additional infrared divergences. The calculation can still be carried out with fewer scales

by setting mH = 0 from the beginning and using dimensional regularization to regularize

the additional infrared divergences. After the subtractions analogous to those in eq. (8.11),

these additional infrared divergence must cancel.

In the schematic expression for the mt-dependent hard form factor F̃ (t) in eq. (8.11),

the first term on the right side is the mH = 0 form factor, which is given in eq. (2.9). The

three subtraction terms in eq. (8.11) are the Higgs collinear contribution with mH = 0,

the gluon collinear contribution, and the soft contribution. The sum of the three regular-

ized contributions using rapidity regularization is given in eq. (6.17). Thus the regularized
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mt-dependent hard form factor is the difference between eqs. (2.9) and (6.17). The renor-

malized mt-dependent hard form factor can be defined by the minimal subtraction of the

poles in ε:

F̃ (t)
H+g(ŝ,m

2
t ) =

g2
syt

16π2

{
2
ŝ+ 4m2

t

ŝ
arcsin2 z + 4

√
1− z2

z
arcsin z

−1

2
log2 µ

2

m2
t

+ log
µ2

m2
t

(
log
−s− iε
m2
t

− 2

)
+
π2

6
− 6

}
, (8.14)

where z = [(ŝ+ iε)/4m2
t ]

1/2.

The explicit form of the factorization formula for the LPH form factor in eq. (8.1) is

FLPH(ŝ,m2
t ,m

2
H) ≡ F̃ (t)

H+g(ŝ,m
2
t ) +

∫ +1

−1
dζ F̃tt̄1V +g(ζ) dtt̄1V→H(ζ;m2

t ,m
2
H , P.n)

+

∫ +1

−1
dζ F̃H+tt̄8T (ζ) dtt̄8T→g(ζ;m2

t , p3.n̄) + Fendpt(m
2
t ). (8.15)

This can be expressed as the sum of the LP form factor in eq. (2.11) and the difference

between the hard form factors F̃ (t)
H+g in eq. (8.14) and F̃H+g in eq. (8.2). The explicit result

for the LPH form factor is

FLPH(ŝ,m2
t ,m

2
H) =

g2
syt

16π2

{
2
ŝ+ 4m2

t

ŝ
arcsin2 z + 4

√
1− z2

z
arcsin z

−2 arcsin2 r − 4
√

1− r2

r
arcsin r − 2

}
, (8.16)

where z = [(ŝ+ iε)/4m2
t ]

1/2.

8.3 Comparison with full form factor

In figure 7, we compare three approximations to the form factor for qq̄ → H + g at LO.

The full form factor F(ŝ,m2
t ,m

2
H) is given in refs. [35, 36]. The approximations are

• the mH = 0 form factor F(ŝ,m2
t , 0) in eq. (2.9), which is obtained by setting mH = 0

in the full form factor,

• the LP form factor FLP(ŝ,m2
t ,m

2
H) in eq. (2.11), which is leading power in m2

t /ŝ

and m2
H/ŝ,

• the LPH form factor FLPH(ŝ,m2
t ,m

2
H) in eq. (8.16), which is leading power in

m2
H/ŝ only.

We set mH = 125 GeV and mt = 175 GeV. The squares of the absolute values of the

form factors are shown as functions of the center-of-mass energy
√
ŝ, which ranges from

the threshold mH for producing the Higgs to 1 TeV. The mH = 0 form factor and the

LPH form factor have the same qualitative behavior as the full form factor. The LPH

form factor seems to provide a little better approximation to the full form factor than the
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Figure 7. Form factors for qq̄ → H + g as functions of the center-of-mass energy
√
ŝ: the full form

factor |F|2 (solid curve), the mH = 0 form factor (dotted curve), the LP form factor (dot-dashed

curve), and the LPH form factor (dashed curve). The two vertical lines mark the tt̄ threshold 2mt

and the tt̄H threshold 2mt +mH .

mH = 0 form factor. At the tt̄ threshold, the percentage errors in the absolute squares

of the form factors are about 8% for |FLPH |2 and about 14% for |FmH=0|2. The error in

|FmH=0|2 becomes smaller than the error in |FLPH |2 when
√
ŝ increases above 0.8 TeV.

The smaller error is fortuitous because it becomes larger above 2.5 GeV, as we will explain

shortly. The LP form factor has a completely different qualitative behavior from the full

form factor and it provides a very poor approximation in the range of
√
ŝ shown in figure 7.

In figure 8, we compare the percentage errors in the three approximations to the full

form factor. The percentage error in the absolute square of a form factor is defined as the

difference from |F|2 divided by |F|2. The percentage errors are shown as functions of the

center-of-mass energy
√
ŝ, which ranges from mH to 100mH . The right panel of figure 8

shows that the error in |FmH=0|2 changes sign near 1.8 TeV. It becomes larger than the

error in |FLPH |2 above 2.5 TeV. That there is a range of ŝ in which the error in |FmH=0|2

is smaller than the error in |FLPH |2 is just a fortuitous consequence of the change in sign

of the error in |FmH=0|2. The right panel of figure 8 shows that the percentage error in

|FmH=0|2 decreases to a minimum of −0.49% at
√
ŝ = 4.8 TeV, and then approaches zero

very slowly. The reason for the slow approach to 0 is that the absolute error is a constant

at large ŝ, while the full form factor |F|2 increases as log4(ŝ/m2
t ) when ŝ is large. The

right panel of figure 8 shows that both FLP and FLPH approach the full form factor at

large
√
ŝ, which is expected since their errors decrease as 1/ŝ. However, FLPH approaches

the full form factor much more rapidly. The percentage error in |FLPH |2 drops to 5% at√
ŝ ∼ 0.68 TeV. The percentage error in |FLP|2 drops to 5% at

√
ŝ ∼ 2.9 TeV.
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Figure 8. Percentage errors in form factors for qq̄ → H + g as functions of the center-of-mass

energy
√
ŝ: the mH = 0 form factor (dotted curve), the LP form factor (dot-dashed curve), and the

LPH form factor (dashed curve). The ranges of
√
ŝ are from mH to 10mH on a linear scale (left

panel) and from 10mH to 100mH on a log scale (right panel). The two vertical lines mark the tt̄

threshold 2mt and the tt̄H threshold 2mt +mH .

Figures 7 and 8 seem to indicate that the mH = 0 form factor is almost as good an

approximation as the LPH form factor. Since it is significantly easier to calculate the

mH = 0 form factor, one might question whether the additional effort is worthwhile. It is

important to emphasize that the error in the mH = 0 form factor approaches a constant

at large
√
ŝ:

F(ŝ,m2
t , 0)−F(ŝ,m2

t ,m
2
H) −→ g2

syt
16π2

{
2 arcsin2 r +

4
√

1− r2

r
arcsin r − 4

}
. (8.17)

This absolute error is order r2, which is approximately 0.13. The percentage error at large√
ŝ in the right panel of figure 8 is about 0.5%. The reason this is so small is that the full

form factor in the denominator of the percentage error increases as log2(ŝ/m2
t ).

There may be other processes for which the error of order r2 from the mH = 0 approx-

imation is disastrous. One such case is when there is interference between amplitudes that

makes the differential cross section small. Bear in mind that the most important motivation

for accurate calculations of Higgs production at large transverse momentum is the search

for new physics beyond the standard model. An error of order r2 could overwhelm a small

signal for new physics. Moreover, there are terms dropped in the mH = 0 approximation,

such as (m2
H/m

2
t ) log(ŝ/m2

t ), that depend on kinematic variables. Dropping such terms

may change the shape of the differential cross section. Finally there are processes, such

as double-Higgs production through a virtual Higgs, in which the mH = 0 approximation
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gives a divergent cross section. The LPH approximation is much more reliable, because

the absolute error of order m2
H/ŝ approaches zero rapidly as ŝ increases. Even when multi-

plied with powers of logarithms, such as (m2
H/ŝ) log(ŝ/m2

t ), the power suppression is strong

enough to make the omitted terms small at large ŝ. The LPH approximation can even be

applied to cross sections that diverge in the mH → 0 limit, such as double-Higgs production

through a virtual Higgs.

9 Summary and outlook

In this work, we applied factorization methods developed for exclusive production of

hadrons in QCD to high-energy exclusive production of the Higgs boson. This factorization

approach can also be applied to high-energy exclusive production of other elementary par-

ticles, such as the weak gauge bosons W± and Z0. The formalism for exclusive production

of hadrons in QCD is well developed. It can be readily generalized to high-energy exclusive

production of an elementary particle, but there are important differences. One difference

is that the elementary particle can be produced directly by hard interactions, but there is

no analogous contribution to the exclusive production of a hadron. Another difference is

that all the pieces in the factorization formula for the high-energy exclusive production of

an elementary particle are perturbatively calculable. As a result, an all-order proof of a

factorization formula is not essential in order to apply it to the exclusive production of an

elementary particle. In this sense, the factorization formalism is simpler than for exclusive

production of hadrons in QCD.

We applied factorization to Higgs production at large transverse momentum through a

top-quark loop. Production of the Higgs at large PT is complicated by the multiple energy

scales: the hard kinematic scales PT , ŝ
1/2 ∼ Q and the soft mass scales mt,mH ∼ M .

Factorization can be used to separate the scales M and Q and expand in powers of M2/Q2.

To illustrate the factorization approach, we applied it to the subprocess qq̄ → Hg at LO

in αs and at the leading power in M2/Q2. The matrix element for this subprocess is

determined by the form factor F(ŝ,m2
t ,m

2
H) defined in eq. (2.4). We defined the leading-

power (LP) form factor FLP as the leading terms in the expansion of F in powers of M2/ŝ.

A factorization formula for the LP form factor in which the scales Q and M are separated

is given schematically in eq. (2.13). The explicit renormalized form of the factorization

formula is given in eq. (8.1). We also defined the LPH form factor FLPH as the leading

terms in the expansion of F in powers of m2
H/ŝ, keeping all dependence on mt that is not

suppressed by m2
H/ŝ. The goal of this paper was to obtain these approximations to the

full form factor through diagrammatic calculations that each involves fewer scales than the

calculation of the full form factor.

The LP form factor can be calculated using the method of regions. The relevant re-

gions and the corresponding contributions to the LP form factor were labeled hard, Higgs

collinear, gluon collinear, and soft. The method of regions introduces rapidity divergences

in addition to the infrared and ultraviolet divergences that can be regularized by dimen-

sional regularization. We regularized the rapidity divergences using analytic regularization

in section 3 and using rapidity regularization in section 6. With analytic regularization,

– 41 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
7

the rapidity divergences appear naturally as infrared divergences. With rapidity regular-

ization, the rapidity divergences appear naturally as ultraviolet divergences after zero-bin

subtractions. With analytic regularization, the only kinematic variable the contribution

from each region can depend on is ŝ. With rapidity regularization, the Higgs collinear con-

tribution depends logarithmically on P.n, where P is the momentum of the Higgs, and the

gluon collinear contribution depends logarithmically on p3.n̄, where p3 is the momentum

of the gluon. These logarithms combine to give a logarithm of ŝ. One complication of

rapidity regularization is that it requires a constraint on the rapidity regularization scales

in the various regions that is given in eq. (6.18). This constraint was derived by comparing

with results using analytic regularization. It would be preferable to deduce this constraint

directly using only rapidity regularization.

The factorization formula given schematically in eq. (2.13) separates the hard scales

Q and the soft scales M . The hard contribution to the LP form factor depends only

on the hard scale Q. It can be regularized with dimensional regularization only, and it

is given in eq. (3.9). With rapidity regularization, the soft contribution to the LP form

factor depends only on the scale M and it is given in eq. (6.16). The Higgs collinear and

gluon collinear contributions depend on both the hard scale Q and the soft scale M . In

sections 5 and section 4, we separated the scales Q and M in the Higgs collinear and gluon

collinear contributions. Each collinear contribution can be factorized into the integral of

the product of a hard form factor and a distribution amplitude. In section 7, we showed

how the hard form factors and the distribution amplitudes could be obtained through

separate diagrammatic calculations. In the Higgs collinear contribution, the hard form

factor for tt̄1V + g is given in eq. (7.4), and the distribution amplitude for tt̄1V → H with

rapidity regularization is given in eq. (7.8). In the gluon collinear contribution, the hard

form factor for H + tt̄8T is given in eq. (7.14), and the distribution amplitude for tt̄8T → g

with rapidity regularization is given in eq. (7.18).

In the schematic factorization formula in eq. (2.13), the pieces that have poles in the

regularization parameters are the hard form factor F̃ [H + g], the distribution amplitude

for d[tt̄1V → H], the distribution amplitude for d[tt̄8T → g], and the endpoint form factor

Fendpt[H + g]. The poles in the dimensional regularization parameter ε and the rapidity

regularization parameter η cancel in the sum of all four terms in the factorization formula.

Given the cancellation of the poles, they can alternatively be eliminated by subtractions

applied to each of the divergent pieces of the factorization formula. Minimal subtraction

of the poles in η and the poles in ε was used to define the finite pieces in the renormalized

factorization formula in eq. (8.1). The hard form factor F̃H+g is given in eq. (8.2). The

distribution amplitudes for tt̄1V → H and tt̄8T → g are given in eqs. (8.4) and (8.6). The

endpoint form factor Fendpt is given in eq. (8.7). With rapidity regularization, the poles in

η are ultraviolet divergences. The subtraction of the poles in each of the regularized pieces

of the factorization formula can therefore be interpreted as a renormalization procedure.

It could be expressed in terms of the renormalization of an operator in an effective field

theory that resembles soft collinear effective field theory in QCD. We made no attempt to

develop the effective-field-theory formalism.
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The LP form factor FLP is a good approximation to the full form factor only at ex-

tremely large ŝ. The error is of order M2/ŝ, where M ∼ mt,mH , so the error decreases

to 0 as ŝ increases. As shown in figure 8, the rapid decrease in the error in |FLP|2 does

not begin until
√
ŝ is well above the tt̄H threshold. The percentage error does not de-

crease to less than 5% until
√
ŝ > 3 TeV. Thus the LP form factor has no practical use at

LHC energies. The LPH form factor FLPH was obtained by a simple modification of the

factorization formula that requires additional calculations with mH = 0. Thus it can also

be obtained through calculations that involve fewer scales than the full form factor. The

error in |FLPH |2 is order m2
H/ŝ. As shown in figure 8, the LPH form factor has the same

qualitative behavior as the full form factor. The percentage error is only 8% already at the

tt̄ threshold 0.35 TeV, and it decreases to less than 5% at 0.7 TeV.

For mathematical simplicity, we illustrated our factorization approach by applying

it to the subprocess qq̄ → Hg, whose amplitude can be expressed in terms of a form

factor F that is a function of a single Mandelstam variable ŝ. The form factors for the

subprocesses g q → H + q and g q̄ → H + q̄ are given by the same function F with ŝ + iε

analytically continued to a negative Mandelstam variable t̂. The factorization formula

involves a resolved-gluon amplitude for g → tt̄ instead of the distribution amplitude for

tt̄ → g. Our factorization method can be applied straightforwardly to other subprocesses

at LO, such as gg → H + g and gg → H + Z. The amplitudes for these processes depend

on both ŝ and PT . In the region of large PT ∼
√
ŝ, the dependence on P 2

T /ŝ ∼ 1 must be

reproduced by the factorization formula. This has been proved to be the case to all orders

for quarkonium production [51, 52], and the proof can be adapted to our Higgs production

process. The factorization formulas will be more complicated, because the amplitudes have

more complicated tensor structures and because there are more collinear and soft regions.

Our factorization approach can be extended to NLO in αs. There may be unantic-

ipated complications, such as contributions from Glauber regions. The success of QCD

factorization gives us confidence that any complications that arise can be overcome. The

NLO calculation of the form factor for qq̄ → H + g would require calculating each of the

pieces in the factorization formula in eq. (8.1) to NLO. The NLO calculations of the hard

form factors F̃H+g, F̃tt̄1V +g, and F̃H+tt̄8T require straightforward perturbative QCD calcu-

lations with massless quarks. The NLO calculation of the endpoint form factor Fendpt will

be more complicated, because it is the product of a soft factor and the hard form factor

F̃t+t̄ for producing t + t̄, which has nontrivial dependence on the scale Q at NLO. The

NLO calculation of the distribution amplitudes for tt̄1V → H and for tt̄8T → g may be

the most challenging steps in the NLO calculation of the LP form factor. At NLO, there

may be additional terms in the factorization formula associated with other double-parton

channels, such as tt̄1S , tt̄1T , tt̄8S , and tt̄8V . These additional terms would require only LO

calculations.

One advantage of the factorization approach is that it is in principle systematically

improvable. HEFT can be used to systematically improve predictions for Higgs production

at PT < 2mt by including operators of dimension 7 and higher in the HEFT Lagrangian.

The factorization approach could in principle be used to systematically improve predictions

for Higgs production at large PT by including higher powers in the expansion in M2/Q2.
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The straightforward factorization methods used to obtain the LP form factor provide im-

provements for PT > 2mt. The improvement used to obtain the LPH form factor expand

the region of validity to PT > mH . There is an overlap region of PT between mH and 2mt

where HEFT and the LPH factorization approach both apply. By combining these two

approaches, we should be able to obtain systematically improved approximations to the

PT distribution over the entire range of pT .

We derived our factorization formula diagrammatically. It could be derived more for-

mally using effective field theory methods analogous to those used in soft collinear effective

field theory in QCD. The individual pieces in the factorization formula could all be ex-

pressed in terms of matrix elements of operators in the effective field theory. These formal

definitions could be useful in the calculation of the form factor to higher orders in αs. They

would also facilitate the all-order resummation of potentially large logarithms by solving

renormalization group equations. The LP and LPH form factors for qq̄ → H + g involve

single and double logarithms of ŝ/m2
t . The resummation of these logarithms is not im-

portant at the LHC, but it could be necessary at a future 100 TeV proton-proton collider.

The resummation of logarithms of ŝ/m2
b could be important for Higgs production through

a bottom quark loop at the LHC.
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A Calculations of distribution amplitude

In this appendix, we calculate the function d(ζ) that appears in the distribution amplitude

for tt̄1V → H using analytic regularization and using rapidity regularization. We also

give expressions for d(ζ)/(1 − ζ2) in which the poles in the regularization parameters are

explicit.

A.1 Analytic regularization

The function d(ζ) is defined using analytic regularization in eq. (4.7):

d(ζ) = −i
∫
q

δ(ζ − 2q.n/P.n)

[(1
2P + q)2 −m2

t + iε]1+δ1 [(1
2P − q)2 −m2

t + iε]1+δ1
, (A.1)

where P is the 4-momentum of the Higgs, n is an arbitrary light-like four-vector, and δ1

is the analytic regularization parameter. The measure for the integral over q is given by

eq. (3.3) with δ2 = δ1 and δ3 = 0.
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To calculate the integral in eq. (A.1), we begin by combining the denominators using

a Feynman parameter:

d(ζ) =
Γ(2 + 2δ1)

Γ2(1 + δ1)

∫ 1

0
dxxδ1 (1− x)δ1 (−i)

∫
q

δ(ζ − 2q.n/P.n)

[q2 + (2x− 1)P.q −m2
t +m2

H/4 + iε]2+2δ1
.

(A.2)

After the shift q → q − (x− 1
2)P in the loop momentum, this reduces to

d(ζ) =
Γ(2 + 2δ1)

Γ2(1 + δ1)

∫ 1

0
dxxδ1 (1− x)δ1 (−i)

∫
q

δ(ζ − 1 + 2x− 2q.n/P.n)

[q2 −m2
t + x(1− x)m2

H + iε]2+2δ1
. (A.3)

We will show below that we can set q.n = 0 in the argument of the delta function, after

which the delta function can be pulled outside the momentum integral. The momentum

integral can then be evaluated analytically. Finally the delta function can be used to

evaluate the integral over x. The result is

d(ζ) =
1

32π2

[
µ2

m2
t

]ε [
ν2

m2
t

]2δ1 (1)ε+2δ1

(1)ε(1)δ1(1)δ1

1

ε+ 2δ1

(
1− ζ2

4

)δ1[
1− (1− ζ2)(r2 + iε)

]−ε−2δ1 ,

(A.4)

where r = mH/2mt. There is an implied constraint −1 ≤ ζ ≤ +1 that comes from the

integral over x.

We now verify that we can set q.n = 0 in the argument of the delta function in eq. (A.3).

This is a special case of the more general identity∫
q

f(q.n)

[q2 −M2 + iε]p
= f(0)

∫
q

1

[q2 −M2 + iε]p
. (A.5)

It is convenient to use light-cone variables q+, q−, and q⊥ for the 4-momentum q, where

q.n = q+. The integral over q− has the form∫
dq−

f(q+)

[q+q− − q2
⊥ −M2 + iε]p

= A(q⊥) f(0) δ(q+), (A.6)

where A(q⊥) is a function of q⊥. If q+ 6= 0, the integral over q− on the left side can be

shown to vanish by closing the integration contour in a half-plane that is determined by

ε and depends on the sign of q+. If q+ = 0, the integral over q− is infinite, because the

integrand does not depend on q−. The integral is actually proportional to a delta function

of q+, as indicated on the right side of eq. (A.6). Thus the factor of f(q+) on the left side of

eq. (A.6) can be pulled outside the integral as a prefactor f(0). The coefficient A(q⊥) can

then be determined by setting f(q+) = 1 in eq. (A.6) and integrating both sides over q+:

A(q⊥) =

∫
dq+

∫
dq−

1

[q+q− − q2
⊥ −M2 + iε]p

. (A.7)

Integrating both sides of eq. (A.6) over q+, inserting the expression for A(q⊥) in eq. (A.7),

and then integrating both sides of the equation over q⊥ gives the identity in eq. (A.5).
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A.2 Explicit poles in the regularization parameters

If the function d(ζ) in eq. (A.4) is divided by 1 − ζ2, the poles in the regularization

parameters δ1 and ε can be made explicit. The function d(ζ) in eq. (A.4) has a factor

of [(1− ζ2)/4]δ1 . To make the poles explicit, we use the expansion

1

1− ζ2

(
1− ζ2

4

)δ1
=

1

δ1

(1)δ1(1)δ1
(1)2δ1

δ
(
1− ζ2

)
+

1

(1− ζ2)+

+δ1

(
log(1− ζ2)− 2 log 2

1− ζ2

)
+

+O(δ2
1). (A.8)

The distributions in ζ on the right side of eq. (A.8) can be defined by specifying the

integral of the product of the distribution and a smooth function f(ζ) over the closed

interval −1 ≤ ζ ≤ +1. The Dirac delta function can be defined by∫ +1

−1
dζ δ

(
1− ζ2

)
f(ζ) ≡ f(1) + f(−1)

2
. (A.9)

The integral is 0 if f(ζ) is an odd function of ζ. The plus distributions are defined by∫ +1

−1
dζ g(ζ)+ f(ζ) ≡

∫ +1

−1
dζ g(ζ)

f(ζ) + f(−ζ)− f(1)− f(−1)

2
. (A.10)

The integral is 0 if f(ζ) is a constant or an odd function of ζ. All the higher order terms

in the Laurent expansion in eq. (A.8) are plus distributions. The prefactor of the Dirac

delta function in eq. (A.8) can be verified by integrating both sides of the equation over ζ

and using the fact that the integrals of the plus distributions are 0.

After dividing the function d(ζ) in eq. (A.4) by 1− ζ2, the expansion in eq. (A.8) can

be inserted. The Laurent expansion in δ1 followed by the Laurent expansion in ε gives

d(ζ)

1− ζ2
=

1

32π2

[
µ2

m2
t

]ε [
ν2

m2
t

]2δ1
{(

1

εδ1
− 2

ε2
+
π2

3

)
δ
(
1− ζ2

)
+

1

ε

1

(1− ζ2)+

−
log
(
1− (1− ζ2)r2

)
1− ζ2

}
. (A.11)

In the last term inside the braces in eq. (A.11), the distribution 1/(1 − ζ2)+ has been

replaced by the function 1/(1− ζ2), because the logarithm vanishes when ζ2 = 1.

A.3 Rapidity regularization

The function d(ζ) with rapidity regularization is defined by the integral over q in eq. (7.7),

with the integrand multiplied by appropriate regularization factors and with zero-bin sub-

tractions. The rapidity regularization factor is the product of two factors like that in

eq. (6.3a) with q replaced by 1
2P + q and with q replaced by 1

2P − q. The zero-bin sub-

tractions remove contributions from the region where 1
2P + q is soft and the region where

1
2P − q is soft. It is convenient to divide d(ζ) by 1 − ζ2 in order to facilitate the explicit

extraction of the poles in the regularization parameter η.
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In the collinear region, P.n and q.n are order Q, but q2, P.q, and P 2 are order M2.

The integral over the entire collinear region before any zero-bin subtractions is[
d(ζ)

1− ζ2

]
coll

=
−i

1− ζ2

∫
q

δ(ζ − 2q.n/P.n)

[(1
2P + q)2 −m2

t + iε] [(1
2P − q)2 −m2

t + iε]

×
[∣∣(1

2P + q).n
∣∣

ν

]−η[∣∣(1
2P − q).n

∣∣
ν

]−η
. (A.12)

The measure for the integral over q is given in eq. (6.1). The integral over q in eq. (A.12)

can be evaluated analytically:[
d(ζ)

1− ζ2

]
coll

=
1

32π2ε

[
µ2

m2
t

]ε [
P.n

ν

]−2η 1

1− ζ2

(
1− ζ2

4

)−η [
1− (1− ζ2)r2 − iε

]−ε
. (A.13)

The infrared pole in η can be made explicit by using a Laurent expansion like that in

eq. (A.8):[
d(ζ)

1− ζ2

]
coll

=
1

32π2

[
µ2

m2
t

]ε [
P.n

ν

]−2η 1

ε

{
− 1

ηir
δ(1− ζ2) +

1

(1− ζ2)+

}
×
[
1− (1− ζ2)r2 − iε

]−ε
. (A.14)

Two zero-bin subtractions are required to remove the contributions from the soft re-

gions. To calculate the zero-bin subtractions, it is convenient to pull the factor 1/(1− ζ2)

inside the integral, expressing it as a function of q.n:

−i
1− ζ2

∫
q

δ(ζ − 2q.n/P.n)

[(1
2P + q)2 −m2

t + iε] [(1
2P − q)2 −m2

t + iε]

= −i
∫
q

1

1− (2q.n/P.n)2

δ(ζ − 2q.n/P.n)

[(1
2P + q)2 −m2

t + iε] [(1
2P − q)2 −m2

t + iε]
. (A.15)

The zero-bin subtraction for the region where 1
2P + q is soft can be obtained from the

right side of eq. (A.12) with the modification in eq. (A.15) by first making the substitution

q → k − 1
2P and then making soft approximations for k:[

d(ζ)

1− ζ2

]
zbs,+

= − i
4
δ(1 + ζ)

∫
k

P.n/k.n

[k2 −m2
t + iε] [−2k.P + iε]

[∣∣k.n∣∣
ν

]−η[∣∣(P − k).n
∣∣

ν

]−η
.

(A.16)

The delta function of 1+ζ comes from making a soft approximation in the argument of the

delta function in eq. (A.15). The factor of P.n/k.n comes from the factor of 1 + 2q.n/P.n

in the denominator in eq. (A.15). The integral can be evaluated analytically:[
d(ζ)

1− ζ2

]
zbs,+

=
1

64π2ε
δ(1 + ζ)

[
µ2

m2
t

]ε [
P.n

ν

]−2η {
− 1

ηir

(1)−η(1)−η
(1)−2η

+
1

2ηuv

(1)−η(1)2η

(1)η

}
.

(A.17)
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The zero-bin subtraction for the region where 1
2P − q is soft can be evaluated in a similar

way, and the only difference is in the argument of the delta function:[
d(ζ)

1− ζ2

]
zbs,−

=
1

64π2ε
δ(1− ζ)

[
µ2

m2
t

]ε [
P.n

ν

]−2η {
− 1

ηir

(1)−η(1)−η
(1)−2η

+
1

2ηuv

(1)−η(1)2η

(1)η

}
.

(A.18)

The complete expression for the function d(ζ)/(1 − ζ2) with rapidity regularization

is obtained by subtracting the zero-bin subtractions in eqs. (A.17) and (A.18) from the

integral over the entire collinear region in eq. (A.14). The infrared poles in η cancel,

leaving only ultraviolet poles. The net result of the zero-bin subtractions is to replace the

infrared pole 1/ηir in eq. (A.14) by the ultraviolet pole 1/(2ηuv). Our final result for the

regularized function is

d(ζ)

1− ζ2
=

1

32π2

[
µ2

m2
t

]ε [
P.n

ν

]−2η 1

ε

{
− 1

2ηuv
δ(1− ζ2) +

1

(1− ζ2)+

}
×
[
1− (1− ζ2)r2 − iε

]−ε
. (A.19)
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