
J
H
E
P
1
1
(
2
0
1
7
)
1
2
6

Published for SISSA by Springer

Received: September 21, 2017

Accepted: October 9, 2017

Published: November 21, 2017

Quiver theories and formulae for nilpotent orbits of

Exceptional algebras

Amihay Hanany and Rudolph Kalveks

Theoretical Physics Group, The Blackett Laboratory, Imperial College London,

Prince Consort Road, London SW7 2AZ, United Kingdom

E-mail: a.hanany@imperial.ac.uk, rudolph.kalveks09@imperial.ac.uk

Abstract: We treat the topic of the closures of the nilpotent orbits of the Lie algebras of

Exceptional groups through their descriptions as moduli spaces, in terms of Hilbert series

and the highest weight generating functions for their representation content. We extend the

set of known Coulomb branch quiver theory constructions for Exceptional group minimal

nilpotent orbits, or reduced single instanton moduli spaces, to include all orbits of Charac-

teristic Height 2, drawing on extended Dynkin diagrams and the unitary monopole formula.

We also present a representation theoretic formula, based on localisation methods, for the

normal nilpotent orbits of the Lie algebras of any Classical or Exceptional group. We anal-

yse lower dimensioned Exceptional group nilpotent orbits in terms of Hilbert series and the

Highest Weight Generating functions for their decompositions into characters of irreducible

representations and/or Hall Littlewood polynomials. We investigate the relationships be-

tween the moduli spaces describing different nilpotent orbits and propose candidates for

the constructions of some non-normal nilpotent orbits of Exceptional algebras.

Keywords: Global Symmetries, Duality in Gauge Field Theories, Supersymmetric Gauge

Theory, Differential and Algebraic Geometry

ArXiv ePrint: 1709.05818

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP11(2017)126

mailto:a.hanany@imperial.ac.uk
mailto:rudolph.kalveks09@imperial.ac.uk
https://arxiv.org/abs/1709.05818
https://doi.org/10.1007/JHEP11(2017)126


J
H
E
P
1
1
(
2
0
1
7
)
1
2
6

Contents

1 Introduction 1

2 Coulomb branch constructions 3

2.1 Monopole formula 3

2.2 Quivers for Exceptional group nilpotent orbits 6

2.3 Monopole formula evaluation 7

2.4 Monopole formula for F4 22 dimensional nilpotent orbit 10

2.5 Monopole formula for E6 32 dimensional nilpotent orbit 11

3 Localisation constructions 12

3.1 Nilpotent orbit normalisation formula 12

3.2 HWGs from NON formula for Hilbert series 16

3.3 Relationship of NON formula to T ∗(G/H) theory 16

3.4 Classical group orbits from the NON formula 18

3.5 Exceptional group orbits from the NON formula 20

3.5.1 Orbits of G2 21

3.5.2 Orbits of F4 21

3.5.3 Orbits of E6 26

3.5.4 Orbits of E7 and E8 30

4 Discussion and conclusions 51

A Hilbert series transformations 53

B Symmetry factors 54

C Background on nilpotent orbits 54

C.1 Nilpotent elements 54

C.2 SU(2) homomorphisms 56

C.3 Standard triples 58

C.4 Terminology 59

D Exceptional group nilpotent orbits and SU(2) homomorphisms 62

D.1 G2 62

D.2 F4 63

D.3 E6, E7, E8 64

D.4 E7 65

D.5 E8 67

– i –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
6

1 Introduction

The relationships between supersymmetric (“SUSY”) quiver gauge theories and the nilpo-

tent orbits of Classical Lie groups were examined in the companion paper [1] (which elab-

orates on the motivation for these studies). It was shown how (i) any Classical group

nilpotent orbit can be constructed as the moduli space of an N = 2 Higgs branch quiver

theory in 4d, and (ii) any A series nilpotent orbit, or any BCD series near to minimal

nilpotent orbit, can be constructed as the moduli space of an N = 4 Coulomb branch

quiver theory in 2 + 1 dimensions, based on a Dynkin diagram.

In the case of Exceptional groups, the Higgs branch method of constructing nilpotent

orbits is not available since Exceptional groups do not act as matrices on their fundamental

vector spaces. Furthermore, while Coulomb branch quiver theory constructions for minimal

nilpotent orbits have been known for some time [2–4], and while maximal nilpotent orbits

correspond to modified Hall Littlewood polynomials transforming in the singlet representa-

tion of a group G [5], quiver theory constructions for other nilpotent orbits of Exceptional

groups have not been given in the Literature.

The purpose of this note is to examine Coulomb branch quiver theory constructions for

the nilpotent orbits of Exceptional groups, beyond the minimal nilpotent orbit, and also to

develop representation theoretic methods for calculating properties of these moduli spaces.

This in turn facilitates the exploration of the branching relationships between Exceptional

group and Classical nilpotent orbits (and their quiver theories).

As in [1], we approach the topic of Exceptional group nilpotent orbits through their

constructions as moduli spaces, with Hilbert series (“HS”) that can be analysed using the

tools of the Plethystics Program [6, 7]. Each such HS counts holomorphic functions on

the closure of a nilpotent orbit [8]. For brevity, unless the context dictates otherwise, this

paper generally refers to closures of nilpotent orbits simply as “nilpotent orbits”.

We summarise in appendix C, relevant aspects of the theory of nilpotent orbits from the

mathematical literature [9, 10] and give simple algorithms for identifying nilpotent orbits,

by enumerating homomorphisms from SU(2) to G using character maps and selection rules,

and for calculating their dimensions. The character map for a nilpotent orbit of G follows

directly from its Characteristic [9], and we use Characteristics to label nilpotent orbits.

The nilpotent orbits of a group can be organised into a Hasse diagram [11], which displays

their partial ordering, in terms of dimensions and moduli space inclusion relations. We

summarise the standard terminology used for the classification of nilpotent orbits, according

to their properties.

Each nilpotent orbit of G is associated with a set of holomorphic functions transform-

ing in irreps of G. Our approach is to describe these sets in terms of HS. Presented in

refined form, such HS faithfully encode the class function content of nilpotent orbits, up

to isomorphisms. We decompose these HS into their representation content, which can be

described in terms of highest weight generating functions (“HWGs”), based either on the

irreducible representations (“irreps”) of G, or on the modified Hall Littlewood polynomials

(“mHL”) of G. The key transformations are summarised in appendix A. Thus, while the

(closures of the) nilpotent orbits of a Classical or Exceptional group are constructed from its
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Lie algebra g, they can also be referred to by the group G. The reader is referred to [1, 12]

for a fuller exposition of our methods of working with plethystic generating functions and

Weyl integration to decompose HS into their constituent characters or mHL functions.

In section 2, we give Coulomb branch constructions for near to minimal Exceptional

group orbits using the unitary monopole formula. The quivers for these constructions

can be found by a variety of means; either from affine Dynkin diagrams, or from the

canonical data associated with nilpotent orbits via their Characteristics. All these nilpotent

orbits have a Characteristic Height 2. This is similar to the situation for Coulomb branch

constructions of Classical group nilpotent orbits.1

In section 3, we show how normal nilpotent orbits can be constructed using a local-

isation formula, working directly from the group theoretic parameters encoded by their

Characteristics. Our method effectively generalises the expression for the mHL of G, for-

mulated in terms of the roots and Weyl group of G, to an expression for (the normalisation

of) any nilpotent orbit, including non-Richardson orbits.2 We use this Nilpotent Orbit Nor-

malisation (or “NON”) formula to calculate normal nilpotent orbits of many Exceptional

groups, although the high dimensions of their Weyl groups restrict the set of calculations

that is feasible at this time.

Several issues emerge from this analysis of Exceptional groups, relating in particular to

their non-normal nilpotent orbits and some extra root maps from SU(2) homomorphisms,

which appear to give rise to dualities. While the computational challenges hinder a defini-

tive resolution, these issues are discussed in the concluding section, where potential avenues

for future work are identified.

Notation and terminology. We freely use the terminology and concepts of the Plethys-

tics Program, including the Plethystic Exponential (“PE”), its inverse, the Plethystic

Logarithm (“PL”), the Fermionic Plethystic Exponential (“PEF”) and, its inverse, the

Fermionic Plethystic Logarithm(“PFL”). For our purposes:

PE

[
d∑
i=1

Ai, t

]
≡

d∏
i=1

1

(1−Ait)
,

PE

[
−

d∑
i=1

Ai, t

]
≡

d∏
i=1

(1−Ait),

PE

[
d∑
i=1

Ai,−t

]
≡

d∏
i=1

1

(1 +Ait)
,

PE

[
−

d∑
i=1

Ai,−t

]
≡ PEF

[
d∑
i=1

Ai, t

]
≡

d∏
i=1

(1 +Ait),

(1.1)

where Ai are monomials in weight or root coordinates or fugacities. The reader is referred

to [14] or [7] for further detail.

1For the A series only, a wider range of constructions is available via 3d mirror symmetry [2].
2Whilst the mathematical Literature contains schema for normalisations of nilpotent orbits [10, 13],

these lack the explicit Hilbert series grading incorporated in the NON formula.
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Generating Function Notation Definition

Refined HS (Weight coordinates) gGHS(x, t)
∞∑
n=0

an(x)tn

Refined HS (Simple root coordinates) gGHS(z, t)
∞∑
n=0

an(z)tn

Unrefined HS gGHS (t)
∞∑
n=0

ant
n ≡

∞∑
n=0

an(1)tn

HWG (Character) for HS gGHWG(m, t)
∞∑

n1,...,nr=0
an1,...,nr(t) m

n1
1 . . .mnr

r

HWG (mHL) for HS gGHWG(h, t)
∞∑

n1,...,nr=0
an1,...,nr(t)h

n1
1 . . . hnrr

Character gGX (x,m)
∞∑

n1,...,nr=0
[n1, . . . , nr]G(x) mn1

1 . . .mnr
r

(modified) Hall Littlewood gG(m)HL(x, h, t)
∞∑

n1,...,nr=0
(m)HLG[n1,...,nr]

(x, t) hn1
1 . . . hnrr

Table 1. Types of generating function.

We present the characters of a group G either in the generic form XG(xi), or as [irrep]G,

or using Dynkin labels as [n1, . . . , nr]G, where r is the rank of G. We may refer to series,

such as 1 + f + f2 + . . ., by their generating functions 1/ (1− f). We use distinct coordi-

nates/variables to help distinguish the different types of generating function, as indicated

in table 1. These different types of generating function are related and can be considered as

a hierarchy in which the refined HS, HWG, character and mHL generating functions fully

encode the group theoretic information about a moduli space. We typically label unimodu-

lar Cartan subalgebra (“CSA”) coordinates for weights within characters by x ≡ (x1 . . . xr)

and simple root coordinates by z ≡ (z1 . . . zr), dropping subscripts if no ambiguities arise.

The Cartan matrix Aij mediates the canonical relationship between simple root and CSA

coordinates as zi =
∏
j
x
Aij
j and xi =

∏
j
z
A−1

ij

j . We generally label field (or R-charge)

counting variables with t, adding subscripts if necessary.

Finally, we deploy highest weight notation [7], which uses fugacities to track highest

weight Dynkin labels, and describes the structure of a HS in terms of the highest weights

of its constituent irreps. We typically denote such Dynkin label counting variables by

m≡(m1 . . .mr) for representations based on characters, and by h ≡ (h1 . . . hr) for represen-

tations based on (modified) Hall-Littlewood polynomials (m)HLG[n], although we may also

use other letters, where this is helpful. We define these counting variables to have a complex

modulus of less than unity and follow established practice in referring to them as “fugac-

ities”, along with the monomials formed from the products of CSA or root coordinates.

2 Coulomb branch constructions

2.1 Monopole formula

By way of recapitulation, the monopole construction introduced in [15], with an explicit

formula for conformal dimension given in [16] and subsequently refined in [3], provides

a systematic method for the construction of the moduli spaces of the Coulomb branches

– 3 –
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of particular SUSY quiver theories, being N = 4 superconformal gauge theories in 2 + 1

dimensions with 8 supercharges. The Coulomb branches of these theories are HyperKähler

manifolds. The monopole formula draws upon a lattice of charges, often referred to as a

GNO lattice [17], that is applied to a linked system of gauge and flavour nodes defined by

a quiver diagram.

We focus herein on Coulomb branch constructions that are based on quivers with

unitary gauge groups, so it is useful to specialise to a unitary monopole formula, as distinct

from versions that use other gauge groups [5]. In the absence of external flavour charges,

the unitary monopole formula is given by the schema, refined from [3]:

gGHS:Coulomb (z, t) ≡
∑
q

PU(N)
q (t) zJ(q) t∆(q). (2.1)

In (2.1), q is a collective coordinate for the set of U(N) monopole charges of the quiver gauge

nodes (“overall monopole flux”), P
U(N)
q is a combined symmetry factor from the Casimirs

of the U(N) quiver gauge nodes under each monopole flux, z is a collective coordinate for

the simple root fugacities of a group G, and t is an R-charge counting fugacity.

Each gauge node is associated with adjoint valued fields from the vector multiplet

and the links between nodes correspond to complex scalars from the hypermultiplets of

the SUSY theory. The monopole formula assembles the Coulomb branch of the quiver

theory by projecting monopole charge configurations from the GNO lattice to the root

space lattice of G, under a grading determined by the conformal dimension ∆ (q) of the

monopole flux q.

This conformal dimension (equivalent to R-charge or the spin of an SU(2)R global

symmetry) is found by applying the following general schema [16] to the quiver diagram:

∆ (q) =
1

2

∑
i

∑
ρi∈Ri

|ρi(q)|︸ ︷︷ ︸
contribution of N=4

hyper multiplets

−
∑
α∈Φ+

|α(q)|

︸ ︷︷ ︸
contribution of N=4

vector multiplets

. (2.2)

The positive R-charge contribution in the first term comes from the matter fields that link

adjacent nodes in the quiver diagram. These are bifundamental chiral operators within

the N = 4 hypermultiplets. The second term describes a negative R-charge contribution

from the N = 4 vector multiplets; this arises due to symmetry breaking, whenever the

monopole flux qi over a gauge node i combines a number of different charges. To explicate

the unitary monopole formula, assuming G has rank r:

1. The gauge nodes are indexed by i, where i runs from 1 to r, with each U(Ni) gauge

node carrying a monopole flux qi ≡ (qi,1, . . . , qi,Ni) comprising one or more monopole

charges qi,j . The fluxes are assigned the collective coordinate q ≡ (q1, . . . , qr). The

limits of summation for the monopole charges are∞ ≥ qi,1 ≥ . . . qi,k ≥ . . . qi,Ni ≥ −∞
for i = 1, . . . r.

2. The P
U(N)
q ≡

r∏
i=1

P
U(Ni)
qi symmetry factor equals the product of the symmetry factors

from each gauge node. Each P
U(Ni)
qi encodes the degrees {di,j} of the Casimirs of the

– 4 –
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residual U(Ni) symmetries at each gauge node under its monopole flux qi:

PU(N)
q ≡

∏
i,j

1(
1− tdi,j(q)

) =

r∏
i=1

Ni∏
j=1

λij(qi)∏
k=1

1

1− tk
. (2.3)

See appendix B for some low rank examples.

3. The monopole flux over the gauge nodes is counted by the fugacity z ≡ (z1, . . . , zr).

The monomial zJ(q), which combines the monopole fluxes qi into total charges for

each zi, expands as zJ(q) ≡
r∏
i=1

z

Ni∑
j=1

qi,j

i .

4. A gauge node may also be attached to one or more flavour nodes. In the absence of

external charges, any flavour nodes carry a zero monopole charge.

5. The conformal dimension ∆(q) associated with the monopole flux q (taking external

flavour charges as zero) is given by the explicit formula [3]:

∆(q) =
1

2

r∑
j>i

∑
m,n

|qi,mAij − qj,nAji|︸ ︷︷ ︸
gauge - gauge hypers

+
1

2

∑
j>i

∑
m,n

|qi,mAij |︸ ︷︷ ︸
gauge - flavour hypers

−
r∑
i=1

∑
m>n

|qi,m − qi,n|︸ ︷︷ ︸
gauge vplets

,

(2.4)

where (i) the summations are taken over all the monopole charges in the flux q and

(ii) the linking pattern between nodes is defined by the Aij off-diagonal terms of a

linking matrix, which are only non-zero for linked nodes.

It is remarkable that with a little further specialisation, the unitary monopole for-

mula (2.1), together with (2.3) and (2.4), exactly generates the moduli spaces of certain

class functions over the root lattice of a Classical or Exceptional group. This specialisation

involves basing the gauge nodes of the quiver on the Dynkin diagram of some chosen group

G, taking the z as fugacities for the simple roots of G and extracting the linking factors

Aij from the Cartan matrix for G (extended to incorporate any flavour nodes). Thus, for

theories with simply laced quivers of ADE type, Aij = 0 or −1, for i 6= j.

Various choices are possible for the U(N) charges on the gauge nodes and also for the

number and linking of flavour nodes to gauge nodes, providing that the quiver diagram

remains balanced. As elaborated in [1], the balance of a gauge node (i), introduced in [16],

can be defined as:

Balance
(i)
G = −

∑
j

AijNj , (2.5)

where the sum is effectively taken over the gauge/flavour nodes to which each gauge node

is linked. When all the gauge nodes in a quiver are balanced, ∀i : Balance
(i)
G = 0, the

– 5 –
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conformal dimension ∆(q) of each overall monopole flux takes a non-negative integer value

and this meets the criteria for a good theory [16]. The Coulomb branch moduli spaces

constructed from these balanced quivers yield class functions over the root space of G.

Amongst these balanced quivers there exists a subset of quivers whose Coulomb branches

have moduli spaces that are closures of certain nilpotent orbits. The issue is one of identi-

fying these balanced quivers.

2.2 Quivers for Exceptional group nilpotent orbits

Based on early work in [2], it was shown in [3] how the unitary monopole formula can be

combined with a quiver based on the affine Dynkin diagram of a simply laced group G to

construct the reduced single instanton moduli space (”RSIMS”) or minimal nilpotent orbit

of G, by choosing the U(N) gauge groups to have ranks defined by the Coexter labels of

G. In [4] this program was extended to the RSIMS of non-simply laced BCFG groups,

by working with dual Coexter labels,3 and by dressing the hypermultiplet linking factors

to reflect different root lengths, using off-diagonal elements of the Cartan matrix of G.

In [12] it was shown that quivers based on twisted affine Dynkin diagrams can be used to

construct the moduli spaces of near to minimal nilpotent orbits of Classical groups. One of

the findings herein, is that such a construction based on the twisted affine Dynkin diagram

of F4 yields the next to minimal nilpotent orbit of F4.

The success of the constructions based on affine Dynkin diagrams results from the fact

that the dual Coxeter numbers of an affine Dynkin diagram form a kernel of the affine

Cartan matrix [18] and so satisfy the condition for a zero balance (2.5). Setting one of the

nodes of the affine Dynkin diagram as a flavour node selects the root system of G, but does

not affect the balance of the quiver.

It was also observed in [12] that the Characteristics (or root maps) and weight maps

of nilpotent orbits can be combined to form balanced quivers, by using weight map labels

to define the U(N) ranks of the gauge nodes and Characteristics to define the numbers of

flavours attached to each gauge node. In the case of Classical groups, such quivers associ-

ated to the Characteristics of minimal and near to minimal nilpotent orbits coincide with

those obtained from the affine/twisted affine constructions; additionally, quivers associ-

ated to the Characteristics of some higher dimensioned nilpotent orbits also yield Coulomb

branch moduli spaces that match the nilpotent orbits (constructed, for example, on the

Higgs branch).

In order for such a matching to occur, it is clearly necessary that the dimension of the

nilpotent orbit should match the dimension of the Coulomb branch construction. Now,

the (complex) dimension of a Coulomb branch construction using the unitary monopole

formula is equal to twice the sum of the ranks of the U(N) gauge nodes [19]; this in turn

limits this construction method to those nilpotent orbits whose dimensions are equal to

twice the sums of their weight map labels. We refer to this as the weight map condition.

In these cases, calculations show that the monopole formula yields moduli spaces matching

the nilpotent orbits.

3This distinction is critical for non simply laced groups for which the dual Coxeter labels differ from the

Coxter labels by factors depending on root lengths.
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In [12] it was shown that this approach yields not only the affine constructions, but

also the 12 and 18 dimensional nilpotent orbits of C3 and C4, respectively. We find herein

that the Coulomb branches of quivers based on Characteristics yield, in addition to the

minimal nilpotent orbits of all Exceptional groups and the 22 dimensional (next to minimal)

nilpotent orbit of F4, the 32 dimensional (next to minimal) nilpotent orbit of E6, the 52

(next to minimal) and 54 dimensional nilpotent orbits of E7, and the 92 (next to minimal)

dimensional nilpotent orbit of E8.

An alternative formulation of the condition for the Characteristic of a nilpotent orbit

of G to yield a Coulomb branch quiver for its construction, can be given in terms of the

Characteristic root height [θ] of the highest root θ. This follows from (C.11) by setting the

coefficients ai to the Coxeter labels of G, which express the highest root in terms of simple

roots. The empirical condition4 for a quiver based on the Characteristic of a nilpotent

orbit to yield its Coulomb branch construction is simply that [θ] = 2. We refer to [θ] as

the Characteristic Height.

The balanced quivers for Coulomb branch constructions of Exceptional group nilpotent

orbits are shown in figure 1 and their Hilbert series and HWGs are included within the

tables in the next section. All these constructions obey both the weight map and the

Characteristic Height conditions. For example, the next to minimal nilpotent orbit of F4

has a Characteristic of [0001] and F4 has Coxeter labels of {2, 3, 4, 2}, so [θ] = 2. Also, the

dimension of the Hilbert series of this nilpotent orbit is 22, which equals twice the sum of

the weight map labels {2, 4, 3, 2}.
For higher dimensioned Exceptional group nilpotent orbits, [θ] > 2 and so Coulomb

branch constructions direct from Characteristics are not available. For example, the twisted

affine Dynkin diagram of G2 has [θ] = 3 and so there is no Coulomb branch construction

for the next to minimal 8 dimensional nilpotent orbit of G2.5

2.3 Monopole formula evaluation

Some digression on the mechanics of Hilbert series calculations using the monopole formula

is worthwhile, since these can pose computational challenges. The difficulties result from

the absolute differences between monopole charges within the conformal dimension func-

tion, which require a piecewise treatment of the summation over the gauge nodes. Thus,

while it can be a relatively straightforward matter to find the first few terms of a series

expansion in t of gGHS:Coulomb(z, t), obtaining the rational generating function for the refined

Hilbert series is more delicate.

The approach taken herein to finding these refined Hilbert series involves splitting

the summation (2.1) into a set of summations over hypersurfaces within the lattice, each

defined by limits on the monopole charges q, such that conformal dimension ∆(q) reduces

to a (generally different) linear function of q on each hypersurface. The algebra of these

4Identified by Giulia Ferlito, Imperial College, London.
5As a distinct case, a Coulomb branch construction is known for the 10 dimensional orbit of G2 [19].

This draws on a modification of the Dynkin diagram to include a self-linked gauge node, as in figure 1; the

calculation of ∆(q) uses A2 hypermultiplets and there is no vector multiplet on the self-linked node.

– 7 –
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Figure 1. Exceptional group quivers with characteristic height 2. Round (blue) nodes denote

unitary gauge nodes of the indicated rank. Square (red) nodes denote numbers of flavour nodes.

The Characteristics coincide with the numbers of flavour nodes attached to each gauge node. The

dimension of a Coulomb branch nilpotent orbit construction equals twice the sums of the ranks of

its gauge nodes. Note that the quiver for the G2 10 dimensional nilpotent orbit is not based on its

Characteristic (see discussion).
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hypersurfaces (or sets of lattice points known as monoids) is discussed in [20]. From a

computational viewpoint, there are various aspects to consider:

1. The number of such hypersurfaces is driven by the structure of the hypermultiplets.

If we consider two adjacent gauge nodes with ranks N1 and N2, then the number of

distinct ways of ordering their monopole charges is given by the binomial coefficient
N1+N2!
N1!N2! . Each such ordering defines the limits of a hypersurface on the q lattice over

which the contribution to conformal dimension ∆(q) from the fields linking the two

nodes is a linear function.

2. These hypersurfaces intersect along hypersurfaces of lower dimension (e.g. common

edges between faces, common points between edges, etc.), and it is important to allow

for such intersections, so as to avoid over or under counting of lattice points.

3. Also, the P
U(N)
q symmetry factors require the above calculations to be carried out

for each distinct degeneracy pattern of the ordered monopole charges. For example,

a U(3) gauge node has the 4 possible degeneracy patterns {a, b, c}, {a, a, b},
{a, b, b}, {a, a, a}. Generally, a U(N) gauge node has 2(N−1) such degeneracies, and,

when linked to its adjacent nodes, each degeneracy defines a different hypersurface.

4. In order to minimise the number of hypersurfaces to be evaluated, it can be helpful to

separate the components of the monopole formula according to their node dependence

and to tackle the summations one gauge node at a time.

5. There is a choice to make in the order of evaluation of the nodes. In the case of non-

simply laced quivers, it can be simpler to carry out the summations over the short

roots first in order to keep the limits of summation as integer variables (rather than

ceiling or floor functions). In the case of DE quivers, it can be simpler to calculate

the central node last.

6. The number of hypersurfaces to be evaluated for each gauge node is compounded

by the different possible positions of the zero charge of the flavour node relative to

the gauge node monopole charges. This requires the use of piecewise conditional

functions, unless this is avoidable by leaving the summation over a single gauge node

attached to the flavour node until last.

7. For ADE groups it may be possible to shift the zero charge of the flavour node onto

one of the gauge nodes (for example the lowest monopole charge of the central node

of a DE quiver diagram), as discussed in [12, 19]. Such a shift may make it possible

to use the symmetries of the quiver diagram to reduce the number of calculations

and/or to minimise the compounding of the number of hypersurfaces resulting from

the zero charge of the flavour node.

Examples, including minimal nilpotent orbits of Exceptional groups, have been presented

in [1, 3, 4, 12]. We complement these by providing some details of the calculations of the

next to minimal nilpotent orbits of F4 and E6.
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2.4 Monopole formula for F4 22 dimensional nilpotent orbit

The Coulomb branch construction for the 22 dimensional (next to minimal) nilpotent orbit

of F4 is based on the twisted affine Cartan matrix and dual Coxeter labels:

z1 2 −1 0 0 −1 2

z2 −1 2 −2 0 0 4

z3 0 −1 2 −1 0 3

z4 0 0 −1 2 0 2

z0 −1 0 0 0 2 1

, (2.6)

where the extra root has the fugacity z0 and the dual Coxeter labels have been expressed

as a column vector.

In the case of g
F4[0001]
HS:Coulomb(z, t), the most effective approach found was to calculate the

nodes in the order (4) → (3) → (2) → (1), using a piecewise logic to keep track of the

position of the zero flavour charge amongst the gauge node monopole charges.

Thus, by combining (2.1), (2.3) and (2.4), and by expanding components, the monopole

formula can be rearranged into the sequence of sums over gauge nodes:

g
F4[0001]
HS:Coulomb(z, t) =

∑
∞≥q11≥q1,2≥−∞

PU(2)
q1 (t) z1

q1,1+q1,2 t∆1(q) g[2](q1, z, t),

where

g[2](q1, z, t) =
∑

∞≥q2,1≥q2,2≥q2,3≥q2,4≥−∞
PU(4)
q2 (t) z2

q2,1+q2,2+q2,3+q2,4 t∆2(q) g[3](q2, z, t),

where

g[3](q2, z, t) =
∑

∞≥q3,1≥q3,2≥q3,3≥−∞
PU(3)
q3 (t) z3

q3,1+q3,2+q3,3 t∆3(q) g[4](q3, z, t),

where

g[4](q3, z, t) =
∑

∞≥q41≥q4,2≥−∞
PU(2)
q4 (t) z4

q4,1+q4,2 t∆4(q),

(2.7)

and the components of conformal dimension are given by:

∆1 (q) = − |q1,1 − q1,2| ,

∆2 (q) =
1

2

 2∑
i=1

4∑
j=1

|q1,i − q2,j |

−∑
i<j

|q2,i − q2,j |,

∆3 (q) =
1

2

 4∑
i=1

3∑
j=1

|2q2,i − q3,j |

−∑
i<j

|q3,i − q3,j |,

∆4 (q) =
1

2

 3∑
i=1

2∑
j=1

|q3,i − q4,j |+
2∑
i=1

|q4,i|

− |q4,1 − q4,2| .

(2.8)

– 10 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
6

It should be noted that the g[j](q, z, t) are piecewise functions that take different values

according to the position of the zero flavour charge relative to the monopole charges within

the fluxes q. For example, g[2](q1, z, t) is a different function in the three cases {q1,1 ≥
q1,2 ≥ 0, q1,1 ≥ 0 ≥ q1,2, 0 ≥ q1,1 ≥ q1,2}.

The Hilbert series for g
F4[0001]
HS:Coulomb(z, t) and its Highest Weight Generating functions

are included in tables 6 and 8 in the next section, along with some further commentary.

2.5 Monopole formula for E6 32 dimensional nilpotent orbit

The Coulomb branch construction of the refined HS for the 32 dimensional (next to min-

imal) orbit of E6 uses the quiver based on its Characteristic, as shown in figure 1. The

most effective approach found was to calculate the central node last, using a piecewise logic

to keep track of the position of the zero flavour charge amongst the gauge node monopole

charges and making use of the outer automorphism symmetry of the diagram.

By combining (2.1), (2.3) and (2.4), and by expanding, the monopole formula:

g
E6[100010]
HS:Coulomb(z, t) =

∑
q

PU(N)
q (t) zJ(q) t∆(q), (2.9)

can be rearranged into the sequence of sums over gauge nodes:

g
E6[100010]
HS:Coulomb(z, t) =

∑
∞≥q3,1≥q3,2≥q3,3≥q3,4≥−∞

PU(4)
q3 (t) z3

q3,1+q3,2+q3,3+q3,4 t∆3 g[2](q3, z, t)

× g[4](q3, z, t) g
[6](q3, z, t),

where

g[2](q3, z, t) =
∑

∞≥q2,1≥q2,2≥q2,3≥−∞
PU(3)
q2 (t) z2

q2,1+q2,2+q2,3 t∆2 g[1](q2, z, t),

where

g[1](q2, z, t) =
∑

∞≥q11≥q1,2≥−∞
PU(2)
q1 (t) z1

q1,1+q1,2 t∆1 ,

and

g[6](q3, z, t) =
∑

∞≥q6,1≥q6,2≥−∞
PU(2)
q6 (t) z2

q6,1+q6,2 t∆6 ,

and

g[4](q3, z, t) = g[2](q3, z, t)
∣∣∣
{z1→z5,z2→z4}

,

(2.10)
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and the components of conformal dimension are given by:

∆1 (q) =
1

2

 2∑
i=1

3∑
j=1

|q1,i − q2,j |+
2∑
i=1

|q1,i|

− |q1,1 − q1,2|,

∆2 (q) =
1

2

 3∑
i=1

4∑
j=1

|q2,i − q3,j |

−∑
i<j

|q2,i − q2,j |,

∆3 (q) = −
∑
i<j

|q3,i − q3,j |,

∆6 (q) =
1

2

 4∑
i=1

2∑
j=1

|q3,i − q6,j |

−∑
i<j

|q6,i − q6,j |.

(2.11)

Once again, g[2](q3, z, t) and g[1](q2, z, t) are piecewise functions that take different

values according to the position of the zero flavour charge relative to the monopole charges

within the fluxes. The Hilbert series for g
E6[100010]
HS:Coulomb(z, t) and its Highest Weight Generating

function are included in tables 12 and 17 in the next section, along with some further

commentary.

While a similar approach to obtaining the refined Hilbert series of the Coulomb

branches of the quivers for the next to minimal nilpotent orbits of E7 and E8 is in prin-

ciple feasible, the number of hypersurfaces involved leads to a considerable computational

burden, and the calculation of these refined Hilbert series can be more practical using

localisation methods, as discussed in the next section.

3 Localisation constructions

3.1 Nilpotent orbit normalisation formula

We continue by presenting a formula for the normalisation of (the closure of) a nilpotent

orbit g
G[ρ]
NON , which can in principle be restricted to yield a formula for the nilpotent orbit

g
G[ρ]
NO itself. We refer to this as the Nilpotent Orbit Normalisation (“NON”) formula; it

is given in (3.5). It is defined by the fixed points under the Weyl group, of plethystic

functions, which are parameterised by subsets of roots and background charges, over the

root space of G.

By way of motivation, a more general localisation formula, which is an extension of

a localisation formula for generalised Hall Littlewood functions of SU(N) [21], and from

which many relevant generating functions emerge as special instances, is given by:

gGHS (x, t, [n]) ≡
∑

w∈WG/H

w ·

x[n]
∏

α∈Φ̃+
G/H
⊆Φ+

G/H

1

1− zαt
∏

β∈Φ+
G/H

1

1− z−β

 . (3.1)

As usual, x represents the weight space fugacities and z = xA represents the root space

fugacities of some Lie group G, with Dynkin labels [n] and positive root space Φ+
G. The

– 12 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
6

group H, with positive root space Φ+
H , is a semi-simple regular subgroup of G, such that

the quotient G/H contains the positive roots Φ+
G/H=Φ+

G 	 Φ+
H , and Φ̃+

G/H is some subset

of Φ+
G/H (specific to the instance). The summation is over the action of representative

elements w of the cosets WG/H , which act as x → w · x and z(x) → z(w · x). A key

requirement of the construction is that the summand should be invariant under WH . Since

Φ+
G/H is WH invariant by construction, this requires that x[n] and Φ̃+

G/H should each be

WH invariant.

The family of plethystic functions to which the NON formula belongs includes the

Weyl character formula and the modified Hall Littlewood formula. We can note some

special cases of (3.1):

1. H = ∅, t = 0 recovers the Weyl character formula [18] for the character of an irrep

with Dynkin label [n]:

χG[n] (x) =
∑
w∈WG

w ·

x[n]
∏
β∈Φ+

G

1

1− z−β

. (3.2)

2. H = ∅, Φ̃+
G/H = Φ+

G recovers the formula for the modified Hall Littlewood polynomials

of G with Dynkin label [n]:

mHLG[n] (x, t) =
∑
w∈WG

w ·

x[n]
∏
β∈Φ+

G

1

(1− zβt) (1− z−β)

. (3.3)

3. H = G0, [n] = [0], Φ̃+
G/H = {θ}, where G0 is the stability group of the (highest weight

Dynkin labels of the) highest root θ, recovers a character generating function for a

RSIMS [12]:6

gGHS:RSIMS (x, t) =
∑

w∈WG/G0

w ·

 1

1− zθt
∏

β∈Φ+
G/G0

1

1− z−β

. (3.4)

It is a key finding of this study that, with appropriate choice of parameters, the locali-

sation formula (3.1) can be adapted to yield a formula for the normalisation of a nilpotent

orbit. Considerations motivated by the above special cases, along with explicit check-

ing versus Higgs/Coulomb branch calculations, identify a Nilpotent Orbit Normalisation

formula that appears common to all normal nilpotent orbits.

Basic NON formula. The parameters of the basic NON formula are fixed directly

from the Characteristic of a nilpotent orbit via a simple algorithm. The formula follows

6The G0 stability group of θ is used in an equivalent manner in [22, 23], where the RSIMS generating

function is implemented as a sum over long roots.
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from (3.1), by precise choices of H and Φ̃, and by setting [n] to [0] - this selects the singlet

from a family of charged functions associated with a given nilpotent orbit:

g
G[ρ]
HS:NON (x, t) ≡

∑
w∈WG/G0

w ·

 ∏
α∈Φ̃+

G/G0

1

1− zαt
∏

β∈Φ+
G/G0

1

1− z−β

, (3.5)

where Φ̃+
G/G0

≡ Φ+
G/G0

	Φ
[1]
G , as elaborated below. In cases where the nilpotent orbit is

normal, g
G[ρ]
NO = g

G[ρ]
NON . In cases where the nilpotent orbit is non-normal, g

G[ρ]
NO can be found

by restricting g
G[ρ]
NON to the nilpotent cone N :7

g
G[ρ]
HS:NO (x, t) = g

G[ρ]
HS:NON (x, t)

∣∣∣
N
. (3.6)

The SU(2) homomorphism ρ (see appendices C and D) induces a grading of the root

system of G. Adapting notation introduced in [9], we define the following subsets of roots,

under a grading by their Characteristic root height (C.11):

Φ
[k]
G ≡

{
α ∈ Φ+

G : [α] = k
}
, (3.7)

and then we define the following unions of these subsets:

Φ+
G =

⋃
k≥0

Φ
[k]
G ; Φ+

G/G0
=
⋃
k≥1

Φ
[k]
G ; Φ̃+

G/G0
=
⋃
k≥2

Φ
[k]
G . (3.8)

Each SU(2) homomorphism selects a subset Φ̃+
G/G0

of positive roots for symmetrisation

with t within the NON formula. This subset invariably includes the highest root θ, plus

some system of positive roots connected to the highest root in the Hasse diagram (for

roots). The excluded roots include those of G0, which is the subgroup of G for which

k = 0, along with any in Φ
[1]
G .

The Weyl denominator identity,
∑

w∈WH

∏
β∈Φ+

H

1
1−z−β = 1, which follows from (3.2), per-

mits rearrangement of (3.5) into the equivalent form:

g
G[ρ]
HS:NON (x, t) =

∑
w∈WG

w ·

 ∏
α∈Φ̃+

G/G0

1

1− zαt
∏
β∈Φ+

G

1

1− z−β

. (3.9)

For computational purposes, (3.5) is often simpler, involving smaller denominator terms

and fewer Weyl group reflections.8

We can easily check that the NON formula matches known results for canonical types

of nilpotent orbit. In particular, choosing a Characteristic of [22 . . . 2] entails that both Φ
[0]
G

and Φ
[1]
G are empty and so (3.5) reduces to (3.3), corresponding to mHLG[0], the maximal

nilpotent orbit of G. Also, it is straightforward to check that the Characteristic of a

minimal nilpotent orbit leads to Φ
[2]
G containing just the highest root, so that Φ̃+

G/G0
= {θ}

and (3.9) reduces to (3.4).

7For Classical groups, this restriction is achievable with the Higgs branch formula; for Exceptional

groups, its analytical implementation can be a non-trivial exercise, as will be discussed later.
8The simplification of (3.9) to the quotient group construction in (3.5) requires that Φ

[1]
G be invariant

under WG0 . This appears to be the case for all Characteristics derived from SU(2) homomorphisms of G.
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NON formula: even and Richardson orbits. In the case of an even orbit, whose

Characteristic contains only the labels 0 and 2, Φ
[1]
G = ∅ and the NON formula simplifies:

g
G[ρ]
NON(even) (x, t) =

∑
w∈WG/G0

w ·

 ∏
α∈Φ+

G/G0

1

(1− zαt) (1− z−α)

. (3.10)

All Richardson nilpotent orbits can in principle be treated within this category. If the

Richardson orbit is even, its H ≡ G0 subgroup follows directly from the zeros of the

Characteristic of G. If the Richardson orbit is not even, an H subgroup embedding still

exists, even if its identity cannot be read directly from the Characteristic.

NON formula: induced orbits. A different and important rearrangement can be

made to the NON formula to induce a given nilpotent orbit (or its normalisation) from

the nilpotent orbit of a subgroup, whenever its Characteristic contains at least one 2.

Essentially, we define a G/H/G0 quotient group structure, by taking H as the semi-simple

subgroup defined by the Dynkin diagram of G that remains after any nodes corresponding

to 2 in the Characteristic have been eliminated. As a result, the Characteristic for the

nilpotent orbit in H contains only 0 and 1.

Starting from (3.5), we set G/G0 → G/H ⊗ H/G0, so that Φ
[1]
G falls within ΦH .

We obtain:

g
G[ρ]
HS:NON (x, t) =

∑
w∈WG/G0

w ·

 ∏
α∈Φ̃+

G/G0

1

1− zαt
∏

β∈Φ+
G/G0

1

1− z−β


=

∑
w∈WG/H

w ·

gH[ρ]
HS:NON (x, t)

∏
α∈Φ+

G/H

1

(1− zαt) (1− z−α)

,
(3.11)

where

g
H[ρ]
HS:NON (x, t) =

∑
WH/G0

w ·

 ∏
γ∈Φ̃+

H/G0

1

1− zγt
∏

δ∈Φ+
H/G0

1

1− z−δ

. (3.12)

Since (3.12) takes the same form as (3.5), the nilpotent orbit (or its normalisation)

g
G[ρ]
NON is shown to be induced from the nilpotent orbit (or its normalisation) g

H[ρ]
NON . One

feature of the induction method (3.11) is that it opens the door to hybrid constructions in

which an Exceptional orbit can be induced from a Classical orbit that has been calculated

using the Higgs branch formula. For example, a candidate for g
F4[1012]
Induced can be induced in

this manner from the non-normal g
B3[101]
Higgs , which we write as:

g
F4[1012]
Induced (x, t) = g

F4[0002]
HS:NON (x, t)

[
g
B3[101]
Higgs (x, t)

]
. (3.13)

The fugacity maps between the weight space x coordinates of G and H can be obtained

by equating the respective simple root fugacities z that are involved in the branching.9

9When carrying out induction calculations it is important to equate root space (not weight space)

fugacities of G and H.

– 15 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
6

Charged NON formula. Finally, it is helpful to generalise version (3.9) of the NON

formula to deal with root systems that are modulated by background charges, as in (3.1).

Define the charged NON formula:

g
G[ρ]
HS:NON (x, t)

[
x[n]
]
≡
∑
w∈WG

w ·

x[n]
∏

α∈Φ̃+
G/G0

1

1− zαt
∏
β∈Φ+

G

1

1− z−β

, (3.14)

where x[n] is a weight given by the CSA coordinates x and Dynkin labels [n]. Note that, in

order to permit general Dynkin labels, the quotient group WG/G0
structure is not generally

available.10

The charged functions (3.14) constitute an orthogonal basis (under an appropriate

measure) only in special cases. Specifically, t → 0 yields the Weyl Character formula

and Φ
[0]
G = ∅ = Φ

[1]
G yields charged functions of the maximal nilpotent orbit, which equal

the modified Hall Littlewood functions. Unfortunately, the charged functions associated

to a nilpotent orbit do not generally constitute an orthogonal basis. This limits their

utility, although they can be used to provide a description of relations between non-normal

nilpotent orbits and their normalisations, as discussed below.

3.2 HWGs from NON formula for Hilbert series

A refined Hilbert series gGHS(x, t) from the NON formula (or from a Coulomb branch or

other construction) can be transformed in various ways, as discussed in [1, 7, 12]. The

HS can be unrefined as gGHS(1, t), or converted in a faithful transformation either to a

character HWG, or to an orthogonal mHL HWG, by using Weyl integration to project it

onto a character generating function:

g
G[ρ]
HWG:NON (m, t) =

∮
G

dµG−
r∏
i=1

1

1−mi/xi
g
G[ρ]
HS:NON (x, t) ,

g̃
G[ρ]
HWG:NON (h, t) =

∮
G

dµG−
∏
α∈Φ+

(1− zαt)
r∏
i=1

1

1− hi/xi
g
G[ρ]
HS:NON (x, t) .

(3.15)

Note that g̃
G[ρ]
HWG:NON (h, t) needs to be glued to the 1/vG[n](t) normalisation factors via a

further transformation, as discussed in [1], to obtain g
G[ρ]
HWG:NON (h, t).

3.3 Relationship of NON formula to T ∗(G/H) theory

It is instructive to relate the NON formula to a result that appears in [24] for the Highest

Weight Generating function of the representation content of a T ∗(G/H) theory. This

moduli space selects a subset of the representations of G from within a generating function

for the characters of G, by gauging a reductive subgroup H:

gT
∗(G/H) (m) ≡

∮
H

dµH(y) gGχ (y,m), (3.16)

10A quotient group structure can be introduced only to the extent that the Weyl group symmetries of

[n] permit.
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where gGχ (y,m) is the character generating function for G and dµH(y) is the Haar mea-

sure for H. It can be shown that gT
∗(G/H) (m) emerges as a special case from the HWG

g
G[even]
HWG:NON (m, t), as follows.

First, we define a Levi subgroup of G, H ≡ G0⊗U(1)rank[G]−rank[G0], such that H and G

have the same rank. This allows us to establish a diffeomorphism between the weight space

coordinates x of G and y of H. We then transform the refined Hilbert series g
G[even]
HS:NON (x, t),

calculated from (3.10), to an HWG by projection onto a character generating function for G:

g
G[even]
HWG:NON (m, t) =

∮
G

dµG (x) gGχ (x∗,m) g
G[even]
HS:NON (x, t) . (3.17)

The Haar measure dµG (x) for G can be factorised to separate off the Haar measure dµH (x)

of the H subgroup:

dµG (x) =
1

|WG|

rank[G]∏
i=1

dxi
xi

 ∏
α∈ΦG

(1− zα)


=

1

|WG0 |

rank[G]∏
i=1

dxi
xi

 ∏
β∈ΦG0

(
1− zβ

) |WG0 |
|WG|

 ∏
α∈Φ

G/G0

(1− zα)


= dµH (x)

|WG0 |
|WG|

 ∏
α∈Φ

G/G0

(1− zα)

 .

(3.18)

Under the fugacity simplification t→ 1, (3.10) reduces to:

g
G[even]
HS:NON (x, 1) =

∑
w∈WG/G0

w ·

 ∏
α∈Φ+

G/G0

1

(1− zα) (1− z−α)


=

∑
w∈WG/G0

w ·

 ∏
α∈Φ

G/G0

1

(1− zα)

 .

(3.19)

Inserting (3.18) and (3.19) into (3.17), we obtain:

g
G[even]
HWG:NON (m, 1) =

∮
dµH (x) gGχ (x∗,m)

|WG0 |
|WG|

∏
α∈Φ

G/G0

(1− zα)

×
∑

w∈WG/G0

w ·

 ∏
α∈Φ

G/G0

1

(1− zα)


=

∮
dµH (x) gGχ (x∗,m)

|WG0 |
|WG|

|WG|
|WG0 |

=

∮
H

dµH (y) gGχ (y,m)

= gT
∗(G/H) (m) ,

(3.20)
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where we have replaced one (redundant) Weyl group summation
∑

w∈WG/G0

by |WG|
|WG0 |

, and

transformed the conjugate x∗ coordinates ofG to the y coordinates ofH. Thus, gT
∗(G/H)(m)

is a specialisation to t = 1 of g
G[even]
HWG:NON (m, t).

3.4 Classical group orbits from the NON formula

The Classical group moduli spaces obtained from the NON formula (3.5) all have palin-

dromic Hilbert series and are similar in this regard to the Coulomb branch constructions

from the unitary monopole formula. For a Classical group nilpotent orbit that is normal, as

defined in appendix C, the NON formula yields the same moduli space as its Higgs branch

construction, or, where available, Coulomb branch construction.11 For a non-normal orbit,

the NON formula yields a moduli space that is either (i) a normal component, or (ii) a

normalisation of the nilpotent orbit.

The cases that require discussion are the non-normal nilpotent orbits [11]. The number

of these increases with rank; their Characteristics, up to rank 5, are listed in appendix C and

the moduli spaces obtained from the NON formula are summarised, up to rank 4, in table 2.

In the case of theD2r spinor pairs of nilpotent orbits, discussed in [1], theNON formula

gives the individual palindromic spinor moduli spaces, according to the Characteristic

chosen. Examples in table 2 include D2[20], D4[0020] and D4[0220]. The moduli spaces of

the conjugate spinors have identical unrefined Hilbert series and their HWGs are related by

the exchange of spinor fugacities. These spinor moduli spaces are the normal components of

the non-normal nilpotent orbits, constructed on the Higgs branch, which are their unions:

g
D2r[...20]I/II
Higgs = g

D2r[...02]I/II
Higgs = g

D2r[...20]
NON + g

D2r[...02]
NON − gD2r[...20]∩D2r[...02]}

NON . (3.21)

Also, for spinor pair orbits of Characteristic Height 2, the HS from the NON formula

match those obtained from Coulomb branch constructions.

For all the other non-normal nilpotent Classical group orbits, the NON formula yields

a normalisation. Examples in table 2 include B3[101], B4[2101] and C4[0200]. In each case

the (non-normal) Higgs branch construction can be recovered from the normalisation by

excluding those elements that fall outside the nilpotent cone N . Thus:

g
B3[101]
Higgs = g

B3[101]
NON − gB3[200]

NON [x1t] ,

g
B4[2101]
Higgs = g

B4[2101]
NON − gB4[2200]

NON

[
x1t

2
]
,

g
C4[0200]
Higgs = g

C4[0200]
NON − gC4[0002]

NON

[
x4t

2
]
.

(3.22)

The elements of the moduli spaces in (3.22) that fall outside the nilpotent cone can be

described by the charged NON formula (3.14). The nilpotent orbit upon which each of

these charged moduli spaces is built is related to its parent orbit by the A2r−1 ∪ A2r−1

Kraft-Procesi degeneration and lies beneath the parent orbit in the Hasse diagram.

It can be seen from table 2, that g
D4[0020]
NON and g

B3[101]
Higgs have the same unrefined Hilbert

series. This is an example of a branching relationship between two nilpotent orbits.

11These are tabulated up to rank 4 in [1].
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Importantly, the equality between the normal Classical group nilpotent orbits con-

structed on Higgs or Coulomb branches and the moduli spaces obtained from the NON

formula, justifies the use of the NON formula to construct Exceptional group nilpotent

orbits. Also, the relationship between non-normal Classical group orbits and their normal-

isations, or normal components, obtained from the NON formula, provides some insight

into the relationships between non-normal orbits and their normalisations.

3.5 Exceptional group orbits from the NON formula

The construction of Exceptional group nilpotent orbits poses a number of challenges.

Firstly, Exceptional groups do not act in a similar manner to SL(n,R/C) rotation ma-

trices on their fundamental vector spaces, so the Higgs branch method is not available [11].

This limits the construction methods to those based on the Coulomb branch or NON for-

mulae. These in turn have their own limitations; the unitary monopole formula only works

for minimal and near minimal orbits; and the NON formula yields the normalisation of a

nilpotent orbit, which only equals the orbit if it is normal. Finally, the high dimensions of

the Weyl groups of the E series entail that explicit calculations, using the methods devel-

oped during this study, are not always feasible in terms of computing memory and/or time.

In principle, however, those Exceptional group Characteristics for which the NON

formula does yield nilpotent orbits can be identified by verifying that the moduli spaces

are entirely contained within the nilpotent cone N , which is known for every group. Such

results can be cross-checked for completeness by comparison with the known non-normal

orbits listed in appendix C. Moreover, even without a systematic formula for calculating

the non-normal Exceptional group orbits, it is often possible to find candidates on a case by

case basis, by restricting their normalisations to exclude charged nilpotent orbits of lower

dimension, as will be shown. The findings presented below are derived from a combination

of established results, full HS and HWG calculations, and inferences based on unrefined

HS expansions, checked to the highest order practicable.

In this study, Exceptional group nilpotent orbits are labelled by their Characteristics

for various reasons. Firstly, a Characteristic provides the structure and parameters of the

Coulomb branch and NON formulae. Secondly, while a Characteristic provides a clear and

unambiguous specification of a nilpotent element X, the same is not true of the various

alternative labelling methods based on sub-groups, developed, inter alia, by Dynkin [9],

Bala-Carter [25, 26], Hesselink [27]. Amongst these, the method that is closest to the use

of Characteristics is given by Hesselink, who identifies the semi-simple subgroup G0 under

which a nilpotent element X is invariant; this labelling method works for most Richardson

orbits, but is not sufficiently general to embrace other types.

As is clear from the discussion on the variants of the NON formula in section 3.1, there

is often a choice to be made as to whether an orbit is calculated directly from the roots of

G, or induced from an orbit of a subgroup H, using (3.11). Either choice leads to the same

refined HS under the NON formula, but the induction method permits the incorporation,

for example, of a non-normal nilpotent orbit of H calculated on the Higgs branch.

The following sub-sections analyse the nilpotent orbits of Exceptional groups, starting

from the Characteristics of SU(2) homomorphisms, classifying the type of each orbit, giving
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its constructions, calculating, where practicable, unrefined HS, character HWGs and mHL

HWGs, and identifying whether the moduli spaces are nilpotent orbits or normalisations

of non-normal orbits. For G2, F4 and E6, nilpotent orbit Hasse diagrams are drawn, based

on moduli space inclusion relations.

3.5.1 Orbits of G2

Table 3 classifies the 5 nilpotent orbits of G2 and gives their unrefined HS. Table 4 gives

the character and mHL HWGs, calculated from the refined HS. To comment on the vari-

ous orbits:

[10]: 6 dimensional nilpotent orbit. This is the minimal nilpotent orbit and is both rigid

and normal. It can be calculated either from a Coulomb branch quiver theory built

on the affine Dynkin diagram, as discussed in section 2, or from the NON formula.

Both its HS and character HWG are palindromic.

[01]: 8 dimensional nilpotent orbit. This next to minimal orbit is rigid, but not normal. It

has Characteristic Height 3 and does not have a Coulomb branch construction. The

NON formula yields a normalisation. The non-normal orbit is found by excluding

from this normalisation a subspace expressed in terms of the charged NON formula

for the minimal nilpotent orbit:

g
G2[01]
NO = g

G2[01]
NON − g

G2[10]
NON [x2t] . (3.23)

[20]: 10 dimensional nilpotent orbit. The sub-regular nilpotent orbit is distinguished

and has an invariant subgroup G0 = A1. It can be calculated from the NON for-

mula (3.10). Both its HS and character HWG are palindromic.

[22]: 12 dimensional nilpotent orbit. The maximal nilpotent orbit is distinguished. It

can be calculated from the NON formula. Both its HS and character HWG are

palindromic, in the latter case with degree m1
3m2

5t18.

The normalisation g
G2[01]
NON has the same unrefined Hilbert series (up to t counting conven-

tions) as g
B3[010]
Higgs , as tabulated in [1], and can be obtained from this using a character map

that folds the B3 vector and spinor together [28].

It can easily be checked, both from the unrefined HS and the character HWGs, that

these nilpotent orbits satisfy the expected inclusion relations g
G2[00]
NO ⊂ g

G2[10]
NO ⊂ g

G2[01]
NO ⊂

g
G2[20]
NO ⊂ g

G2[22]
NO , providing that the non-normal 8 dimensional nilpotent orbit is used.

These inclusion relations are graphed in the Hasse diagram in figure 2.

3.5.2 Orbits of F4

The 16 nilpotent orbits of F4 are described in tables 6 to 9, which give their classification,

constructions, unrefined HS and, where practicable, character HWGs and modified Hall

Littlewood HWGs. Tables 10 and 11 contain similar information for the normalisations of

the non-normal orbits. Many orbits have distinctive features:
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Characteristic Type Construction Dim. Hilbert Series

[00] Even Trivial 0 1

[10] Rigid

g
G2[10]
Coulomb

or

g
G2[10]
NON

6
(1+t)(1+7t+t2)

(1−t)6

[01] Rigid, Non-normal g
G2[01]
NON − g

G2[10]
NON [x2t] 8 1+6t+20t2+43t3−7t4−7t5

(1−t)8

[20] Distinguished g
G2[20]
NON 10

(1+t)(1+3t+6t2+3t3+t4)
(1−t)10

[22] Distinguished g
G2[22]
NON 12

(1−t2)(1−t6)
(1−t)14

[01] Rigid, Normalisation g
G2[01]
NON 8 1+13t+28t2+13t3+t4

(1−t)8

Table 3. G2 orbit constructions and Hilbert series. Both the non-normal 8 dimensional nilpotent

orbit and its normalisation are shown.

Characteristic Character HWG mHL HWG

[00] 1

1−h1t+h2
3t2−h1

2t3−h2t
3

+h1h2t
3−h2

4t3+h1h2t
4−h2

3t4

+h1h2
3t4−h1

3t5+h1h2
3t5

−h2
5t5+h1

2h2
2t6

[10] 1
1−m1t

1− h2
2t2 − h2t

3 + h1h2t
3

+h1h2t
4 − h2

3t4

[01] 1−m2
6t6

(1−m1t)(1−m2
2t2)(1−m2

3t3)
1− h2t

3 − h1
2t4 + h1h2

2t5

[20] 1+m1m2
3t5

(1−m1t)(1−m2
2t2)(1−m2

3t3)(1−m1
2t4)

1− h2t
3

[22]



1−m2t2−m1t4+m2
2t4

+m1m2t5+m1m2
3t5+m1m2t6+m1m2

2t6

+m1m2t7−m1m2
2t7−m1m2

4t7

+m1
2t8−m1m2

2t8−m1m2
3t8−m1m2

4t8

−m1m2
2t9−m1

2m2
3t9

−m1
2m2t10−m1

2m2
2t10−m1

2m2
3t10+m1m2

5t10

−m1
2m2t11−m1

2m2
3t11+m1

2m2
4t11

+m1
2m2

3t12+m1
2m2

4t12+m1
2m2

2t13+m1
2m2

4t13

+m1
3m2

3t14−m1
2m2

5t14−m1
3m2

4t16+m1
3m2

5t18


 (1−m1t)

(
1−m2t2

)(
1−m2

2t2
)(

1−m2t3
)

×
(
1−m2

3t3
)(

1−m1t4
)(

1−m1
2t4
)(

1−m1t5
) 

1

[01]

(Normalisation)

1
(1−m1t)(1−m2t)

1 + h2t− h2
2t2 − h1t

3

−h2t
3 + h1h2t

4

Table 4. G2 orbits and HWGs. Both the non-normal 8 dimensional nilpotent orbit and its

normalisation are shown.
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Figure 2. G2 nilpotent orbit Hasse diagram. The diagram is derived from Hilbert series inclusion

relations, with the yellow node indicating a non-normal nilpotent orbit.

[1000] and [0001]: 16 dimensional minimal and 22 dimensional next to minimal nilpotent

orbits. These orbits are rigid and have the invariant subgroups C3 and B3, respec-

tively. Their Hilbert series can be calculated either (i) from the Coulomb branch of

a quiver theory built, as described in section 2, on the affine or twisted affine Dynkin

diagram of F4 (as shown in figure 1) or (ii) from the NON formula (3.5). Their HS

and character HWGs are palindromic.

[0100]: 28 dimensional nilpotent orbit. This orbit is rigid and has the invariant subgroup

A1⊗A2. Its Hilbert series can be calculated either from the NON formula, or as the

intersection of the two 30 dimensional orbits. Both the HS and character HWG are

palindromic.

[2000]: 30 dimensional nilpotent orbit. This orbit is even, has the invariant subgroup C3,

and is normal. Its Hilbert series can be calculated from the NON formula. Both the

HS and character HWG are palindromic.

[0002]: 30 dimensional nilpotent orbit. This orbit is even, has the invariant subgroup B3,

and is non-normal. The NON formula yields a normalisation. The candidate for the

non-normal orbit is found by excluding from this normalisation a subspace expressed

in terms of the charged NON formula for the 28 dimensional orbit:

g
F4[0002]
NO = g

F4[0002]
NON − gF4[0100]

NON

[
x4t

2
]
, (3.24)

with notation as per (3.14). Both the HS and character HWG are non-palindromic.

[0010]: 34 dimensional nilpotent orbit. This orbit is rigid and has the invariant subgroup

A2 ⊗A1. It can be calculated from the NON formula. The HS and character HWG

(omitted) are palindromic.

[2001]: 36 dimensional nilpotent orbit. This orbit is non-rigid, has the invariant subgroup

B2
∼= C2, and is non-normal. Its normalisation can be calculated from the NON

formula. The candidate for the non-normal nilpotent orbit is found by excluding
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from its normalisation a subspace expressed by applying the charged NON formula

to the 34 dimensional orbit:

g
F4[2001]
NO = g

F4[2001]
NON − gF4[0010]

NON

[
x1t

3
]
. (3.25)

The HS is non-palindromic.

[0101]: 36 dimensional nilpotent orbit. This orbit is rigid, has the invariant subgroup

A1 ⊗ A1, and is non-normal. Its normalisation can be calculated from the NON

formula. The candidate for the non-normal nilpotent orbit is found by excluding

from its normalisation a subspace expressed by applying the charged NON formula

to the 34 dimensional orbit:

g
F4[0101]
NO = g

F4[0101]
NON − gF4[0010]

NON

[
x4t

2
]
. (3.26)

Note the difference in charges between (3.26) and (3.25). The HS is non-palindromic.

[1010]: 38 dimensional nilpotent orbit. This orbit is non-rigid, has the invariant subgroup

A1 ⊗ A1, and is non-normal. Its normalisation is found from the NON formula.

The candidate for the non-normal nilpotent orbit is found by excluding from this

normalisation a subspace expressed in terms of charged NON formulae for the two

36 dimensional orbits:

g
F4[1010]
NO = g

F4[1010]
NON − gF4[2001]

NON

[
x1t

3 + x4t
2
]

− gF4[0101]
NON

[
x3x4t

6
]
.

(3.27)

Its HS is non-palindromic.

[1012]: 42 dimensional nilpotent orbit. This orbit is Richardson, has the invariant sub-

group A1, and is non-normal. Its normalisation can be calculated from the NON

formula. Possible candidates for the non-normal nilpotent orbit can be found either

(i) by excluding from its normalisation a subspace expressed in terms of the charged

NON formula for the 40 dimensional orbit g
F4[0200]
NO , or (ii) by induction (using (3.11)

from g
B3[101]
Higgs :

g
F4[1012]
NO = g

F4[1012]
NON − gF4[0200]

NON

[
x4t

2 + x3t
6
]
,

g
F4[1012]
Induced = g

F4[0002]
NON

[
g
B3[101]
Higgs

]
.

(3.28)

The former is taken as the candidate for the non-normal orbit g
F4[1012]
NO , on the grounds

that it is consistent with the restriction method detailed below, and that it includes

[0200], as in the standard Hasse diagram. Its HS is non-palindromic.

[0200], [0202], [2202] and [2222]: 40 dimensional, 44 dimensional, 46 dimensional sub-

regular, and 48 dimensional maximal nilpotent orbits. These orbits are distinguished

and contain the invariant subgroups A1⊗A2, A1⊗A1, A1 and ∅, respectively. They

are found from the NON formula. Their HS are palindromic.
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The above list excludes the moduli space defined by the SU(2) homomorphism which

has the root map [2002]. Detailed calculation of Hilbert series shows that g
F4[2002]
NON is not

a nilpotent orbit, but is an extension of the distinguished g
F4[0200]
NO , and can be described

using the charged NON formula:

g
F4[2002]
NON = g

F4[0200]
NO

[
1 + x1t

3 + x4t
2
]
. (3.29)

It is necessary to make some caveats in relation to the non-normal orbits. Firstly, the

method of finding the charged NON formula descriptions that restrict their normalisations

to N is partly empirical, guided by unrefined HS and character HWGs, where known.

The restricted NON method used for F4 has been (i) to fix the moduli space inclusion

relations below a non-normal orbit using its normalisation and (ii) to exclude from the

normalisation a subspace containing one (or sometimes more) charged normalisations of

orbits lying immediately below in the Hasse diagram, such that the resulting non-normal

moduli space lies within the nilpotent cone. This method is consistent with the Higgs

branch constructions of non-normal Classical orbits studied in 3.4 and has been sufficient

to specify candidates for the non-normal orbits of F4.

Secondly, since the charged NON formula does not generally yield an orthogonal basis,

there may be alternative charged NON formula descriptions of the non-normal orbits that

give the same result.

Finally, it has only proved possible to calculate character HWGs and to use their Taylor

series expansions to check the irrep inclusion relations explicitly up to the 34 dimensional

nilpotent orbit; for the 36 dimensional and 38 dimensional non-normal orbits, in particular,

the analysis has been largely dimensional in nature and therefore should not be taken

as definitive.

It is interesting to compare the inclusion relations obtained from this analysis of moduli

spaces with the standard Hasse diagrams of nilpotent orbits in the mathematical Litera-

ture [10, 29, 30], which are based on earlier work in [31]. Figure 3 compares the Hasse

diagram defined by the inclusion relations amongst the Hilbert series of nilpotent orbits

gF4
NO to the standard Hasse diagram.

Unlike the case of Classical group nilpotent orbits, where there is an exact correspon-

dence between the Hasse diagrams (omitted) based upon Hilbert series inclusion relations

and the standard diagrams [10, 11], there is a discrepancy involving the linking pattern

between F4[2000] and F4[0010], where the restricted NON method yields an inclusion

relationship that is absent in the standard diagram.

One possibility could be that the subtle distinction between normal and non-normal

orbits has not been consistently treated in the analyses in the Literature upon which the

standard Hasse diagrams are based. In this context, it is worth noting that g
F4[0010]
NO does

not include g
F4[2000]
NON , which is the normalisation of g

F4[2000]
NO .

The nilpotent orbits of F4 include some special orbits, as defined in appendix C. These

are summarised in table 5, along with their duals under the Spaltenstein map.
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Figure 3. F4 nilpotent orbit Hasse diagram. The left hand diagram is derived from Hilbert

series and HWG inclusion relations. The right hand diagram is taken from the mathematical

Literature [29, 30]. Yellow nodes indicate non-normal nilpotent orbits.

Spaltenstein Dual Orbits

[0000]⇔ [2222]

[0001]⇔ [2202]

[0100]⇔ [0202]

[0002]⇔ [1012]

[2000]⇔ [2200]

[0200]⇔ [0200]

Table 5. F4 special nilpotent orbits.

The special orbit [0200] is self dual. The non-normal orbits [0002] and [1012] are special

and dual to each other. The other non-normal orbits [2001], [0101] and [1010] are not spe-

cial. It appears that the symmetries of the left hand Hasse diagram based on Hilbert series

and HWG inclusion relations are a better fit for the symmetries of the Spaltenstein map.

3.5.3 Orbits of E6

The 21 nilpotent orbits of E6 are described in tables 12 to 14, which give their classifi-

cation, constructions and unrefined HS. Table 15 contains the same information for the

normalisations of the non-normal nilpotent orbits. Table 16 analyses the three extra root

maps that were identified in appendix C.

Unlike F4, it has not proved practicable to resolve many Hilbert series into HWGs,

other than for near minimal and maximal orbits, so much of the analysis is based upon

unrefined HS. In table 17, the character HWGs and mHL HWGs are given for those orbits

where it has been possible to complete the calculations.
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Characteristic Type Construction Dim. Unrefined HS

[0000] Even g
F4[0000]
NON 0 1

[1000] Rigid
g
F4[1000]
Coulomb

or

g
F4[1000]
NON

16

 1+36t+341t2+1208t3+1820t4

+1208t5+341t6+36t7+t8


(1−t)16

[0001] Rigid
g
F4[0001]
Coulomb

or

g
F4[0001]
NON

22

 1+29t+435t2+2948t3+8998t4+12969t5

+8998t6+2948t7+435t8+29t9+t10


(1−t)22(1+t)−1

[0100] Rigid g
F4[0100]
NON 28

(
1+9t+19t2+9t3+t4

)
×
(

1+13t+118t2+455t3+716t4

+455t5+118t6+13t7+t8

)
(1−t)28(1+t)−2

[2000] Even g
F4[2000]
NON 30

 1+21t+231t2+1498t3+6219t4+16834t5

+30420t6+36972t7+. . .palindrome . . .+t14


(1−t)30(1+t)−1

[0002]
Even

Non-normal
g
F4[0002]
NON −gF4[0100]

NON

[
x4t2

]
30


1+22t+252t2+1729t3+6988t4+18300t5

+40835t6+92700t7+166252t8+177698t9+83654t10

−16141t11−38932t12−19256t13−4581t14−545t15−26t16


(1−t)30

[0010] Rigid g
F4[0100]
NON 34

 1+17t+153t2+969t3+4495t4+15022t5

+35477t6+59244t7+70204t8+. . .palindrome . . .+t16


(1−t)34(1+t)−1

[2001]
Non-rigid

Non-normal
g
F4[2001]
NON −gF4[0010]

NON

[
x1t3

]
36


1+15t+120t2+680t3+2710t4+7001t5+10981t6

+16728t7+51374t8+123121t9+151421t10+76671t11

−13927t12−37160t13−19312t14−5053t15−712t16−51t17


(1−t)36(1+t)−1

[0101]
Rigid

Non-normal
g
F4[0101]
NON −gF4[0010]

NON

[
x4t2

]
36


1+14t+106t2+574t3+2460t4+8752t5+25497t6

+57619t7+91602t8+93161t9+52381t10+8699t11

−7915t12−5991t13−1936t14−324t15−25t16


(1−t)36(1+t)−2

Table 6. F4 orbit constructions and Hilbert series (A).

The normal and non-normal orbits exactly match those listed in [32] (see appendix C).

The tables contain candidates for the constructions of the non-normal orbits. These have

been obtained by restricting their normalisations to the nilpotent cone N through the

subtraction of sub-spaces, similar to the method used for gG2
NO and gF4

NO. Much of the

analysis is, however, based on unrefined Hilbert series and should not be taken as definitive.

The picture that emerges can be summarised:

[000001] and [100010]: 22 dimensional minimal and 32 dimensional next to minimal nilpo-

tent orbits. These orbits have the invariant subgroups A5 and D4 respectively. The

orbits can be calculated either (i) from the Coulomb branch of a quiver theory built

on the affine Dynkin diagram or Characteristic, or (ii) from the NON formula. The

HS and character HWGs are palindromic, and the latter are freely generated.

[001000] and [000002]: 40 and 42 dimensional nilpotent orbits. These orbits have the

invariant subgroups A2 ⊗ A2 ⊗ A1 and A5, respectively. The orbits are calculated

from the NON formula. The HS and character HWGs are palindromic, and the

latter are freely generated or complete intersections.
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Characteristic Type Construction Dim. Unrefined HS

[1010]
Non-rigid

Non-normal

g
F4[1010]
NON

−gF4[0101]
NON

[
x3x4t6

]
−gF4[2001]

NON

[
x1t3+x4t2

]
38



1+13t+91t2+455t3+1794t4+5824t5

+14859t6+25830t7+36686t8+103415t9+274079t10

+418078t11+194377t12−202566t13−231712t14

−8813t15+52245t16+16746t17−455t18

−92t19+170t20+40t21−t22


(1−t)38(1+t)−1

[0200] Distinguished g
F4[0200]
NON 40

 1+10t+56t2+230t3+745t4+1946t5+4112t6

+7028t7+9692t8+10782t9+. . .palindrome . . .+t18


(1−t)40(1+t)−2

[2200] Even g
F4[2200]
NON 42

 1+7t+29t2+91t3+213t4+397t5

+591t6+657t7+. . .palindrome . . .+t14


(1−t)43(1+t)−2(1−t6)−1

[1012]
Richardson

Non-normal

g
F4[1012]
NON

−gF4[0200]
NON

[
x3t6+x4t2

] 42


1+8t+37t2+128t3+367t4+920t5+2082t6

+4292t7+8091t8+13973t9+21078t10+26327t11

+22895t12+10177t13−2954t14−6994t15−4858t16

−1680t17−291t18+t19


(1−t)42(1+t)−2

[0202] Distinguished g
F4[0202]
NON 44

 1+5t+16t2+41t3+91t4+182t5

+336t6+530t7+723t8+830t9+. . .palindrome . . .+t18


(1−t)45(1+t)−2(1−t3)−1

[2202] Distinguished g
F4[2202]
NON 46

 1+3t+6t2+10t3+16t4+24t5+34t6+46t7

+ . . .palindrome . . .+t14


(1−t)49(1−t2)−1(1−t4)−1(1−t6)−1

[2222] Distinguished g
F4[2222]
NON 48

(1−t2)(1−t6)(1−t8)(1−t12)

(1−t)52

Table 7. F4 orbit constructions and Hilbert series (B).

[100011], [200020], [100012], [010101] and [200022]: 46, 48, 52, 56 and 60 dimensional

nilpotent orbits. These orbits have the invariant subgroups A3, D4, A3, A3
1 and A3

respectively. The orbits are non-normal and candidates for the orbits are found by

excluding sub-spaces, as shown in the tables, from their normalisations obtained from

the NON formula. The Hilbert series are non-palindromic.

The remaining orbits are normal, with palindromic Hilbert series. The decompositions

into mHL functions are shown for the 66 dimensional orbit upwards.

The Hasse diagram based on the inclusion relationships between unrefined Hilbert

series is compared in figure 4 with the standard diagram in the mathematical

Literature [29, 30].

The two diagrams are broadly consistent. Some of the extra links appearing in the

left hand diagram might disappear if the moduli space calculations could be repeated with

refined (rather than unrefined) Hilbert series, or with character HWGs. However, the left

hand diagram does not have a link (i.e. inclusion relation) between the non-normal [200022]

and the normal [110111]; considering that unrefined Hilbert series cannot miss an inclusion

relation, this may indicate an anomaly in the standard diagram; alternatively, there may

be other restrictions of the normalisation of [200022] that should be considered.
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Figure 4. E6 nilpotent orbit Hasse diagram. The left hand diagram is indicative, being partly

derived from unrefined Hilbert series, with arrows indicating inclusion relations and yellow nodes

indicating non-normal nilpotent orbits. The right hand diagram is taken from the mathematical

Literature.

Turning to the three extra root maps, whose unrefined HS are set out in table 16: two

of these maps, [111110] and [020202], have identical refined Hilbert series to the nilpotent

orbits with Characteristics [110111] and [202020], respectively; these provide examples of

dualities, with different SU(2) homomorphisms generating the same nilpotent orbit. The

third map, [110110], is non-normal, containing elements outside the nilpotent cone; it can

be restricted to the nilpotent cone, by excluding a subspace defined by the charged NON

formula, whereupon it appears to be an extension of [002000], the distinguished nilpotent

orbit of the same dimension:

g
E6[110110]
NON = g

E6[002000]
NON

[
1 + x6t

3 + x3t
6
]
. (3.30)
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The Weyl group of E6 has 25 irreps and conjugacy classes. In [33], the 21 nilpotent or-

bits are identified as these conjugacy classes, modulo some actions of the symmetric groups

S2 or S3. Two of the three extra root maps, [110110] and [020202], appear to correspond

to other members of these conjugacy classes; however, these are only identified in [33] by

Bala Carter labels, so the correspondence with root maps or Characteristics is unclear.

3.5.4 Orbits of E7 and E8

A comparable analysis for the 45 nilpotent orbits of E7 and the 70 orbits of E8 poses

computational challenges and it is only possible to present a partial picture. Tables 18

to 31 set out those Hilbert series and HWGs that have been calculated, along with details

of the constructions. Unrefined HS for normal nilpotent orbits of E7 and E8 are shown in

tables 18 to 23 and 28 to 29; the normalisations of the 10 non-normal nilpotent orbits of

E7 are shown in tables 24 and 25; the 8 extra root maps of E7 are analysed in tables 26

and 27; and some HWGs for near minimal and near maximal orbits of E7 and E8 are shown

in tables 30 and 31, respectively.

The pattern is similar to that for E6. The near-minimal orbits are normal with palin-

dromic Hilbert series and have character HWGs that are freely generated or complete

intersections. All these orbits can be constructed using the NON formula. The minimal

and next to minimal orbits (and the next to next to minimal E7 orbit) also have Coulomb

branch constructions. In all the cases calculated, the normal orbits are consistent with the

established classification, as described in appendix C.

The mHL HWGs for the sub-regular orbits of E7 and E8 have been inferred from a

result in [34], which invites the conjecture that the sub-regular orbit of any group has a

mHL HWG given by 1−hφtht(φ), where φ is the irrep whose highest weight is the shortest

dominant root of G, and ht (φ) counts the number of simple roots within φ.12 This is

consistent with the mHL HWGs for the sub-regular orbits of other Exceptional groups

and Classical groups [1].

The 8 extra root maps of E7 include further examples of dualities, with at least three

giving copies of nilpotent orbits: E7[2020000] and E7[0110100] are normal, with their

unrefined HS matching E7[0200200] and E7[0020000], respectively; E7[2000002] appears to

be non-normal, with its unrefined HS matching E7[0100011]. Amongst the others, four

generate extensions that do not match either the orbits or their normalisations, and one

remains to be calculated.

The Weyl group of E7 has 60 irreps and conjugacy classes. In [33], the 45 nilpotent

orbits are identified as these conjugacy classes, modulo some actions of the symmetric

groups S2 or S3. Six of the eight extra root maps, appear to correspond to other members

of these conjugacy classes; however, these are only identified in [33] by Bala Carter labels,

so their root maps or Characteristics are unclear.

The Weyl group of E8 has 112 irreps and conjugacy classes. In [33], the 70 nilpotent

orbits are identified as these conjugacy classes, modulo some actions of the symmetric

groups S2, S3 or S5. It can be anticipated that most of the 39 extra root maps of E8

correspond to other members of these conjugacy classes.

12For ADE groups this is the Coxeter number.
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Characteristic Character HWG mHL HWG

[1010] . . .

1− h4t
4 − h1t

5 − h1
2t6 + h3t

7 + h3t
8 + h1h3t

8+

h3
2t8 − h4t

8 + h3t
9 − h4

2t9 − h3h4
2t9 + h1h3t

10−
h2h3t

10 − h1h4t
10 − h2h4t

10 − h1h3h4t
10 + h3t

11+

h1
2h3t

11 + h3
2t11 − h1h4t

11 − h2h4t
11 − h1h3h4t

11+

h3
2h4t

11 + h2h4
2t11 + h1h4

3t11 + h2t
12 − h2

2t12+

h1
2h3t

12 + h2h3t
12 − h1

2h4
2t12 + h2h4

2t12+

h1h4
3t12 − h3h4

3t12 + h1
2h2t

13 + h2h3t
13−

h1h3
2t13 − h1h2h4t

13 + h2h3h4t
13 − h3

2h4t
13−

h1
2h4

2t13 − h2h4
2t13 + h2

2t14 − h3
3t14−

h1h2h4t
14 − h1

2h3h4t
14 + h2h3h4t

14 − h2h4
2t14+

h1h3h4
2t14 − h2h4

3t14 + h1h3
2t15 − h1

2h3h4t
15+

h1h3h4
2t15 + h3

2h4
2t15 + h1

2h4
3t15 + h1h2h3t

16−
h2h3h4t

16 − h1h2h4
2t17

[0200] . . .
1− h4t4 − h1t5 + h3t

7 + h3t
8 − h4t8 + h3t

9 − h42t9−
h1h4t

10 + h3t
11 − h1h4t11 + h2t

12

[2200] . . . 1− h4t4 + h3t
8 − h4t8 − h42t9 + h3t

11

[1012] . . .
1− h1t7 − h4t8 − h12t10 + h3t

11 + h1h4
2t13+

h1h3t
14 − h2h4t15

[0202] . . . 1− h1t7 − h4t8 + h3t
11

[2202] . . . 1− h4t8

[2222] . . . 1

Table 9. F4 orbits and HWGs (B). An mHL HWG of 1 denotes mHLF4

[0000](t).

Characteristic Type Construction Dim. Unrefined HS

[0002]
Even

Normalisation
g
F4[0002]
NON 30

 1+21t+257t2+2018t3+9573t4+28261t5

+53781t6+66651t7+. . .palindrome . . .+t14


(1−t)30(1+t)−1

[2001]
Non-rigid

Normalisation
g
F4[2001]
NON 36

 1+14t+106t2+626t3+2811t4+9363t5

+21662t6+35663t7+41812t8+. . .palindrome . . .+t16


(1−t)36(1+t)−2

[0101]
Rigid

Normalisation
g
F4[0101]
NON 36

 1+14t+132t2+912t3+4528t4+15655t5

+37940t6+64575t7+77161t8+. . .palindrome . . .+t16


(1−t)36(1+t)−2

[1010]
Non-rigid

Normalisation
g
F4[1010]
NON 38

 1+13t+117t2+819t3+4121t4+15171t5

+41431t6+84642t7+129597t8+149240t9+. . .palindrome . . .+t18


(1−t)38(1+t)−1

[2002]
Even

Cover
g
F4[2002]
NON 40

 1+10t+82t2+516t3+2408t4+8255t5

+21525t6+42408t7+63690t8+72742t9+. . .palindrome . . .+t18


(1−t)40(1+t)−2

[1012]
Richardson

Normalisation
g
F4[1012]
NON 42

 1+7t+55t2+247t3+811t4+1840t5

+3061t6+3556t7+. . .palindrome . . .+t14


(1−t)42(1+t)−3(1−t2)(1−t6)−1

Table 10. F4 nilpotent orbit normalisations and Hilbert series. In addition to the normalisations

of non-normal nilpotent orbits, the extension F4[2002] is shown (see text).
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P
1
1
(
2
0
1
7
)
1
2
6

Characteristic Character HWG mHL HWG

[0002]
1 +m3m4t4 (1−m1t)(1−m4t2)(1−m4

2t2)

×(1−m2t3)(1−m3t3)(1−m3
2t4)

 not shown

[2001] . . .

1 + h1t3 − h4t4 − h42t4 − h1t5 − h3t5 + h1h3t7+

h1h4t7 + h3h4t7 + h3t8 − h4t8 + h1h4t8 − h2h4t8+

h3h4t8 − h1h42t8 + h3t9 − h1h3t9 + h1h4t9−
h2h4t9 − h42t9 + h3h4

2t9 − h43t9 − h2t10−
h1h3t10 + h3

2t10 − h1h4t10 − h2h4t10 + h3h4
2t10−

h4
4t10 + h1h2t11 + h3t11 − h1h3t11 + h3

2t11−
h1h4t11 + h1

2h4t11 + h2t12 + h2h4t12 − h1h3h4t12+

h1h4
2t12 − h1h2t13 − h1h3h4t13 + h1h4

3t13

[0101] . . .

1 + h4t2 − h4t4 − h42t4 − 2h1t5 − h3t5 − h1h4t5−
h3t6 + h3h4t6 + 2h2t7 + h3t7 + h1h4t7 + 2h3h4t7+

h4
2t7 − h43t7 + h2t8 + h3t8 − h4t8 + h1h4t8−

h1h4
2t8 − h12t9 + h2t9 + h3t9 − 2h1h3t9 + h1h4t9−
h2h4t9 − h3h4t9 − h42t9 − h1h42t9 − h2t10−
2h1h3t10 − h1h4t10 + h1

2h4t10 − h3h4t10+

h3h4
2t10 + h1h2t11 + h3t11 + h3

2t11 − h1h4t11+

h1
2h4t11 + h2h4t11 − h3h4t11 + h3h4

2t11 + h2t12+

2h2h4t12 − h1h3h4t12 − h1h2t13 + h1h3t13−
2h1h3h4t13 + h2h3t14 − h1h3h4t14

[1010] . . .

1 + h4t2 + h1t3 − h4t4 − h42t4 − 2h1t5 − 2h3t5−
h3t6 + h1h4t7 + h3h4t7 + h4

2t7 + h2t8 + h3t8−
h4t8 + 2h1h4t8 + h3h4t8 − h12t9 + h2t9 + h3t9−
h1h3t9 + 2h1h4t9 − h42t9 − h43t9 − 2h2t10−

h1h3t10 − h1h4t10 − h2h4t10 − h3h4t10 + h3t11−
h1h3t11 + h3

2t11 − h1h4t11 + h1
2h4t11 − h3h4t11+

h2t12 + h2h4t12 + h1h4
2t12 − h1h2t13 + h1h3t13

[2002] . . .

1 + h4t2 + h1t3 − h4t4 − 2h1t5 − 2h3t5 − h3t6 − h2t7+

h4
2t7 + h2t8 + h3t8 − h4t8 + 2h1h4t8 + h3h4t8−

h1
2t9 + h2t9 + h3t9 + 2h1h4t9 + h3h4t9 − h42t9−
h4

3t9 − 2h2t10 − h1h4t10 − h3h4t10 + h3t11−
h1h3t11 − h1h4t11 − h3h4t11 + h2t12 + h1h4

2t12+

h1h3t13

[1012] . . . 1 + h4t2 − h1t5 − h3t5 − h1t7 + h2t8−
h4t8 − h12t9 + h2t11 + h3t11

Table 11. F4 nilpotent orbit normalisations and HWGs. In addition to the normalisations of

non-normal nilpotent orbits, the extension F4[2002] is shown (see text).
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Characteristic Type Construction Dim. Unrefined HS

[110111] Richardson g
E6[110111]
NON 62


1+12t+80t2+389t3+1536t4+5133t5

+14863t6+37773t7+84597t8+166302t9+284667t10

+421063t11+534371t12+579012t13+. . .palindrome . . .+t26


(1−t)66(1−t2)−3(1−t3)−1

[210121] Non-rigid g
E6[210121]
NON 64


1+10t+56t2+232t3+791t4+2343t5

+6228t6+15100t7+33650t8+69224t9+129347t10

+213929t11+298121t12+335808t13+. . .palindrome . . .+t26


(1−t)68(1−t2)−2(1−t3)−2

[110112] Richardson g
E6[110112]
NON 64


1+11t+67t2+298t3+1079t4+3366t5

+9362t6+23671t7+54328t8+112202t9+205531t10

+330265t11+463957t12+568853t13+608454t14+568853t15

+ . . .palindrome . . .+t28


(1−t)67(1−t2)−2(1−t3)−1

[202020] Distinguished g
E6[202020]
NON 66


1+7t+30t2+100t3+283t4+710t5

+1623t6+3364t7+6314t8+10710t9+16269t10

+22197t11+26940t12+28824t13+. . .palindrome . . .+t26


(1−t)71(1−t2)−3(1−t3)−2

[202022] Even g
E6[202022]
NON 68


1+6t+22t2+62t3+149t4+319t5

+626t6+1146t7+1905t8+2883t9+3941t10

+4824t11+5087t12+. . .palindrome . . .+t24


(1−t)72(1−t2)−2(1−t4)−1(1−t6)−1

[220222] Distinguished g
E6[220222]
NON 70

 1+3t+6t2+11t3+19t4+30t5+45t6+65t7

+90t8+120t9+156t10+. . .palindrome . . .+t20


(1−t)75(1−t2)−1(1−t3)−1(1−t4)−1(1−t5)−1(1−t6)−1

[222222] Distinguished g
E6[222222]
NON 72

(1−t2)(1−t5)(1−t6)(1−t8)(1−t9)(1−t12)

(1−t)78

Table 14. E6 orbit constructions and Hilbert series (C).
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Characteristic Type Construction Dim. Unrefined HS

[100011]
Non-rigid

Normalisation
g
E6[100011]
NON 46


1+31t+574t2+7145t3+62466t4+395953t5

+1854418t6+6493660t7+17124491t8+34156960t9

+51650252t10+59277910t11+. . .palindrome . . .+t22


(1−t)46(1+t)−1

[200020]
Even

Normalisation
g
E6[200020]
NON 48


1+27t+457t2+5059t3+38341t4+205456t5

+794669t6+2248381t7+4698986t8+7296802t9

+8446562t10+. . .palindrome . . .+t20


(1−t)51(1−t2)−2(1−t3)−1

[100012]
Richardson

Normalisation
g
E6[100012]
NON 52


1+24t+301t2+2702t3+18916t4+105743t5+472131t6

+1677965t7+4733104t8+10579022t9+18750304t10

+26396098t11+29577416t12+. . .palindrome . . .+t24


(1−t)52(1+t)−2

[010101]
Non-rigid

Normalisation
g
E6[010101]
NON 56


1+20t+211t2+1638t3+10469t4+56733t5+260036t6

+993325t7+3125563t8+8036658t9+16802409t10

+28491536t11+39129101t12+43499048t13

+ . . .palindrome . . .+t26


(1−t)56(1+t)−2

[200022]
Even

Normalisation
g
E6[200022]
NON 60


1+16t+136t2+894t3+5046t4+24136t5

+96384t6+318938t7+873668t8+1984329t9+3747603t10

+5898185t11+7743629t12+8479209t13+7743629t14

+ . . .palindrome . . .+t26


(1−t)60(1+t)−2(1+t2)−1

Table 15. E6 nilpotent orbit normalisations and Hilbert series.

Characteristic Type Construction Dim. Unrefined HS

[110110]
Cover

g
E6[110110]
NON 58


1+17t+155t2+1159t3+7570t4+41208t5

+186890t6+699308t7+2146085t8+5383228t9+11015451t10

+18374964t11+24976338t12+27669872t13+24976338t14

+ . . .palindrome . . .+t26


(1−t)58(1+t)−3

[111110]
Richardson

Dual
g
E6[111110]
NON 62


1+12t+80t2+389t3+1536t4+5133t5

+14863t6+37773t7+84597t8+166302t9+284667t10

+421063t11+534371t12+579012t13+. . .palindrome . . .+t26


(1−t)66(1−t2)−3(1−t3)−1

[020202]
Distinguished

Dual
g
E6[020202]
NON 66


1+7t+30t2+100t3+283t4+710t5

+1623t6+3364t7+6314t8+10710t9+16269t10

+22197t11+26940t12+28824t13+. . .palindrome . . .+t26


(1−t)71(1−t2)−3(1−t3)−2

Table 16. E6 extra moduli spaces and Hilbert series. These moduli spaces are associated with

SU(2) homomorphisms but do not represent additional nilpotent orbits (see text).
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Characteristic Character HWG mHL HWG

[000000] 1 . . .

[000001] 1
1−m6t

. . .

[100010] 1
(1−m6t)(1−m1m5t2)

. . .

[001000] 1
(1−m6t)(1−m1m5t2)(1−m3t3)(1−m2m4t4)

. . .

[000002] 1+m3m6t5

(1−m6t)(1−m1m5t2)(1−m3t3)(1−m6
2t4)(1−m2m4t4)(1−m3

2t6)
. . .

. . . . . . . . .

[202020] . . .
1−h6t

7−h6t
8−h6t

11+

h1h5t
11+h1h5t

12+h1h5t
13−h3t

16

[202022] . . . 1−h6t
8−h6t

11+h1h5t
13

[220222] . . . 1−h6t
11

[222222] . . . 1

Table 17. E6 orbits and HWGs. An mHL HWG of 1 denotes mHLE6

[000000](t). Orbits in the centre

of the Hasse diagram remain to be calculated.
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Characteristic Type Construction Dim. Unrefined HS

[0000000] Even g
E7[0000000]
NON 0 1

[1000000] Rigid
g
E7[1000000]
Coulomb

or

g
E7[1000000]
NON

34


1+98t+3312t2+53305t3+468612t4

+2421286t5+7664780t6+15203076t7+19086400t8

+ . . .palindrome . . .+t16


(1−t)34(1+t)−1

[0000100] Rigid
g
E7[0000100]
Coulomb

or

g
E7[0000100]
NON

52


1+79t+3161t2+75291t3+1158376t4

+12099785t5+88650725t6+465895118t7+1783653576t8

+5026645901t9+10497603729t10+16309233956t11+18885794304t12

+ . . .palindrome . . .+t24


(1−t)52(1+t)−2

[0000020] Even
g
E7[0000020]
Coulomb

or

g
E7[0000020]
NON

54


1+76t+2928t2+67583t3+1012266t4

+10332067t5+74214232t6+383547072t7+1448282149t8

+4037523484t9+8366120760t10+12936087566t11+14955872444t12

+ . . .palindrome . . .+t24


(1−t)54(1+t)−3

[0100000] Rigid g
E7[0100000]
NON 64



1+69t+2414t2+55623t3+919520t4+11342968t5+106958600t6

+784535006t7+4537123626t8+20910056245t9+77451415678t10

+232139956863t11+566045584244t12+1127581533400t13

+1840753744695t14+2467945228350t15+2720953919604t16

+ . . .palindrome . . .+t32


(1−t)64

[2000000] Even g
E7[2000000]
NON 66



1+66t+2211t2+48653t3+769406t4+9115701t5+82935951t6

+589544021t7+3317603364t8+14933718295t9+54217280987t10

+159809769683t11+384450581989t12+757911779139t13

+1228177330314t14+1639405203212t15+1804825398942t16

+ . . .palindrome . . .+t32


(1−t)66(1+t)−1

[0000011] Rigid g
E7[0000011]
NON 70



1+60t+1832t2+37940t3+590418t4+7183420t5+69289970t6

+532384159t7+3266437503t8+16043947731t9+63267289791t10

+200890430458t11+515036877963t12+1068616936078t13

+1797599354636t14+2454711103950t15+2723124368404t16

+ . . .palindrome . . .+t32


(1−t)70(1+t)−3

Table 18. E7 orbit constructions and Hilbert series (A).
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Characteristic Type Construction Dim. Unrefined HS

[1000100] Non-rigid g
E7[1000100]
NON 76



1+55t+1541t2+29315t3+424272t4+4952595t5

+47877722t6+386190616t7+2596530729t8+14510866523t9

+67296385685t10+259002809519t11+828279369291t12

+2205076546265t13+4896965388648t14+9088788793591t15

+14120229879183t16+18383918865257t17+20072546522168t18

+ . . .palindrome . . .+t36


(1−t)76(1+t)−2

[0010000] Rigid g
E7[0010000]
NON 82



1+48t+1178t2+19696t3+250716t4+2565971t5

+21762497t6+155518280t7+944204003t8+4887315987t9

+21592275087t10+81450603000t11+262392783373t12

+722133713475t13+1698619550612t14+3416812201696t15

+5880606714062t16+8663598664204t17+10929523033749t18

+11809319976778t19+. . .palindrome . . .+t38


(1−t)82(1+t)−3

[0000002] Even g
E7[0000002]
NON 84



1+45t+1038t2+16350t3+196152t4+1888083t5+

14993188t6+99820004t7+562706250t8+2702760610t9+

11106249929t10+39151678087t11+118627422888t12+

309366846442t13+695134757350t14+1346841349931t15+

2251533783397t16+3248988761423t17+4048166195313t18+

4355986374750t19+. . .palindrome . . .+t38


(1−t)84(1+t)−4

[0000200] Even g
E7[0000200]
NON 84



1+47t+1129t2+18471t3+231429t4+2357290t5+

20161290t6+147126015t7+921831949t8+4966553008t9+

23009208438t10+91673050291t11+314317403484t12+

928489331649t13+2366228206771t14+5209496539692t15+

9920162607040t16+16355180626673t17+23363121371124t18+

28931405790760t19+31067160767506t20+. . .palindrome . . .+t40


(1−t)84(1+t)−2

[2000100]
Non-rigid

Non-normal
? 84 . . .

[2000020]
Even

Non-normal
? 86 . . .

Table 19. E7 orbit constructions and Hilbert series (B).

– 40 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
6

Characteristic Type Construction Dim. Unrefined HS

[0100100] Rigid g
E7[0100100]
NON 90



1+40t+822t2+11560t3+125053t4+1107492t5+

8324729t6+54205995t7+308921360t8+1547294387t9+

6817553073t10+26416129223t11+89960249299t12+

269160204736t13+707461384957t14+1633679518004t15+

3315057850714t16+5912586107207t17+9270875065762t18+

12781960001328t19+15497517399838t20+16525204589536t21

+ . . .palindrome . . .+t42


(1−t)90(1+t)−3

[1010000]
Rigid

Non-normal
? 92 . . .

[0200000] Even g
E7[0200000]
NON 94



1+36t+668t2+8508t3+83586t4+673392t5+

4607032t6+27312586t7+141941392t8+650985986t9+

2645699417t10+9554923437t11+30727827270t12+

88136822566t13+225764838482t14+516956432313t15+

1058929210661t16+1941429840126t17+3186932272113t18+

4685112655122t19+6169119469044t20+7276373148733t21+

7687953729238t22+. . .palindrome . . .+t44


(1−t)94(1+t)−3

[1001010]
Non-rigid

Non-normal
? 94 . . .

[2200000]
Even

g
E7[2200000]
NON 96



1+33t+563t2+6611t3+60030t4+447623t5+

2833362t6+15497108t7+73908939t8+308781681t9+

1133005339t10+3657592128t11+10402882911t12+

26099373954t13+57818269950t14+113192145007t15+

195958590574t16+300141740919t17+406880376207t18+

488318218464t19+518927857452t20+. . .palindrome . . .+t40


(1−t)100(1−t2)−3(1−t6)−1

[0100011]
Richardson

Non-normal
? 96 . . .

[0010100]
Non-rigid

Non-normal
? 98 . . .

Table 20. E7 orbit constructions and Hilbert series (C).
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[0002000]
Even

g
E7[0002000]
NON 100



1+29t+438t2+4582t3+37271t4+250862t5+

1450141t6+7367761t7+33375509t8+135968656t9+

500664993t10+1670928197t11+5061667873t12+

13926555453t13+34810610044t14+79050125417t15+

163069587001t16+305534193394t17+519874019101t18+

803213777947t19+1126718360132t20+1434898159505t21+

1658939075660t22+1741143029810t23+. . .palindrome . . .+t46


(1−t)100(1+t)−4

[2000200]
Even

Non-normal
? 100 . . .

[2000220]
Even

Non-normal
? 102 . . .

[2100011]
Non-rigid

g
E7[2100011]
NON 102



1+28t+408t2+4116t3+32280t4+209580t5+

1171719t6+5794499t7+25834071t8+105236571t9+

395177977t10+1374921878t11+4440514461t12+

13302464973t13+36864118261t14+94136235017t15+

220539780742t16+471978064553t17+919131363037t18+

1623431344293t19+2593892844620t20+3741627500468t21+

4865497692158t22+5698077622856t23+6006501802258t24

+ . . .palindrome . . .+t48


(1−t)102(1+t)−3

[1010100] Richardson g
E7[1010100]
NON 104



1+27t+379t2+3681t3+27784t4+173459t5+930518t6

+4398690t7+18647529t8+71800205t9+253451882t10

+825944836t11+2497351881t12+7028854183t13

+18440277693t14+45077002396t15+102476397815t16

+216029662181t17+420887182105t18+755319761316t19

+1244815205429t20+1879314008730t21+2593939349101t22

+3268552500629t23+3756276826771t24+3934763086966t25

+ . . .palindrome . . .+t50


(1−t)104(1+t)−2

[0020000] Even g
E7[0020000]
NON 106



1+22t+254t2+2048t3+12949t4+68223t5+310470t6

+1248798t7+4509005t8+14770398t9+44209400t10

+121447827t11+306952315t12+714370802t13+1530391654t14

+3014498298t15+5450883816t16+9031969079t17

+13689807076t18+18950786410t19+23928392089t20

+27532705839t21+28852797782t22+. . .palindrome . . .+t44


(1−t)111(1−t2)−2(1−t4)−1(1−t3)−2

Table 21. E7 orbit constructions and Hilbert series (D).
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[2010100] Richardson g
E7[2010100]
NON 106



1+23t+278t2+2347t3+15528t4+85677t5+409818t6

+1744604t7+6733298t8+23872838t9+78471083t10

+240598830t11+690346420t12+1854303338t13

+4651709274t14+10851525702t15+23419398905t16

+46527253037t17+84742390056t18+141081479581t19

+214295496214t20+296699661744t21+374312393511t22

+430286790879t23+450739862708t24+. . .palindrome . . .+t48


(1−t)110(1−t2)−3(1−t3)−1

[2002000] Even g
E7[2002000]
NON 108



1+20t+213t2+1601t3+9511t4+47457t5+206535t6

+804110t7+2849798t8+9301048t9+28157657t10

+79371845t11+208613748t12+511155245t13+1166404057t14

+2475221676t15+4877328017t16+8910423434t17

+15071159308t18+23570050287t19+34043293243t20

+45364765295t21+55726054790t22+63063271014t23

+65720671708t24+. . .palindrome . . .+t48


(1−t)113(1−t2)−4(1−t3)−1

[1010200] Non-rigid g
E7[1010200]
NON 108



1+22t+254t2+2047t3+12926t4+68080t5+310960t6

+1264637t7+4666092t8+15835477t9+49925712t10

+147222704t11+407639569t12+1061263019t13

+2596136476t14+5955138398t15+12772447382t16

+25532967194t17+47425451135t18+81608753812t19

+129761856605t20+190227006014t21+256633049320t22

+318159221002t23+362094599888t24+378074695796t25

+ . . .palindrome . . .+t50


(1−t)111(1−t2)−2(1−t3)−1

[1010120] Non-rigid g
E7[1010120]
NON 108 . . .

[0200200] Even g
E7[0200200]
NON 110



1+19t+191t2+1350t3+7526t4+35208t5+143642t6

+524421t7+1744507t8+5355360t9+15303933t10

+40934228t11+102767564t12+242325486t13+536176791t14

+1110998287t15+2150326632t16+3877166750t17

+6495975323t18+10090787477t19+14505728258t20

+19267371072t21+23618674467t22+26697216460t23

+27811736966t24+. . .palindrome . . .+t48


(1−t)114(1−t2)−2(1−t3)−1(1−t4)−1

[0101021]
Non-rigid

Non-normal
? 110 . . .

Table 22. E7 orbit constructions and Hilbert series (E). Some orbits in the upper Hasse diagram

remain to be calculated.
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[0020020] Distinguished g
E7[0020020]
NON 112



1+16t+138t2+849t3+4168t4+17338t5+63414t6

+208931t7+630376t8+1761854t9+4597735t10

+11259794t11+25951083t12+56346651t13+115226073t14

+221674893t15+400557834t16+678589198t17+1075849008t18

+1593563475t19+2202070691t20+2835436943t21

+3398852391t22+3790337376t23+3930789260t24

+ . . .palindrome . . .+t48


(1−t)117(1−t2)−3(1−t3)−1(1−t4)−1

[2200200] Even g
E7[2000202]
NON 112



1+17t+154t2+986t3+5000t4+21352t5+79766t6

+267478t7+820082t8+2329206t9+6180894t10

+15395201t11+36035767t12+79165241t13+162774319t14

+312189809t15+556698600t16+920602987t17+1409431708t18

+1996091906t19+2614816619t20+3169351708t21

+3556104836t22+3695053378t23+. . .palindrome . . .+t46


(1−t)116(1−t2)−2(1−t4)−1(1−t6)−1

[0020200] Even g
E7[0020200]
NON 114



1+15t+120t2+681t3+3076t4+11763t5+39561t6

+119903t7+332732t8+854295t9+2043682t10+4576333t11

+9619784t12+19009985t13+35326464t14+61701521t15

+101189577t16+155639584t17+224285198t18+302586504t19

+382011620t20+451230570t21+498645737t22+515532540t23

+ . . .palindrome . . .+t46


(1−t)118(1−t2)−1(1−t3)−1(1−t4)−1(1−t6)−1

[2101101] Richardson g
E7[2101101]
NON 114 . . .

[2101021]
Richardson

Non-normal
? 114 . . .

[2020020] Even g
E7[2020020]
NON 116



1+12t+80t2+389t3+1537t4+5224t5+15812t6

+43613t7+111414t8+266651t9+602833t10+1294980t11

+2653055t12+5193586t13+9719982t14+17382620t15

+29666335t16+48232766t17+74551722t18+109315541t19

+151747724t20+199048858t21+246304054t22+287105977t23

+314916175t24+324800118t25+. . .palindrome . . .+t50


(1−t)121(1−t2)−3(1−t4)−1(1−t3)−1

[2020200] Even g
E7[2020200]
NON 118



1+10t+55t2+221t3+726t4+2068t5+5291t6

+12441t7+27313t8+56496t9+110640t10+205664t11

+363299t12+609916t13+973433t14+1477359t15

+2131586t16+2921382t17+3797706t18+4673326t19

+5432001t20+5951813t21+6137514t22+. . .palindrome . . .+t44


(1−t)123(1−t2)−1(1−t3)−1(1−t4)−1(1−t5)−1(1−t6)−1

. . . . . . . . . . . . . . .

[2222222] Distinguished g
E7[2222222]
NON 126

(1−t2)(1−t6)(1−t8)(1−t10)(1−t12)(1−t14)(1−t18)

(1−t)133

Table 23. E7 orbit constructions and Hilbert series (F). Some orbits in the upper Hasse diagram

remain to be calculated.
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[2000100]
Non-rigid

Normalisation
g
E7[2000100]
NON 84



1+47t+1129t2+18604t3+236007t4+2439134t5+

21162857t6+156442728t7+991136142t8+5390236639t9+

25171607172t10+100975434413t11+348257944507t12+

1033980718497t13+2646472834763t14+5847508202694t15+

11167569105434t16+18453105745417t17+26401938893655t18+

32725550735483t19+35152494567578t20+. . .palindrome . . .+t40


(1−t)84(1+t)−2

[2000020]
Even

Normalisation
g
E7[2000020]
NON 86



1+44t+992t2+15401t3+186066t4+1858596t5+

15801050t6+115491687t7+726319079t8+3923623495t9+

18189961165t10+72405189290t11+247811206611t12+

730559598720t13+1858314990721t14+4084659605334t15+

7767711560354t16+12792450962244t17+18258619963592t18+

22598363867429t19+24262180770322t20+. . .palindrome . . .+t40


(1−t)86(1+t)−3

[1010000]
Rigid

Normalisation
g
E7[1010000]
NON 92



1+39t+781t2+10832t3+117764t4+1068886t5+

8366502t6+57321559t7+345662862t8+1837194990t9+

8607330680t10+35546401942t11+129433976719t12+

415755856459t13+1178772756488t14+2951866871355t15+

6532714259889t16+12783348175656t17+22127754013620t18+

33894008054339t19+45953335735135t20+55157071947443t21+

58617041465558t22+. . .palindrome . . .+t44


(1−t)92(1+t)−2

[1001010]
Non-rigid

Normalisation
g
E7[1001010]
NON 94



1+36t+668t2+8641t3+88240t4+757413t5+

5640210t6+36937648t7+213664469t8+1092448880t9+

4936955929t10+19722690196t11+69678831438t12+

217824528290t13+602894508685t14+1478256695785t15+

3212596081865t16+6190973025268t17+10583499697498t18+

16054911924583t19+21617382287205t20+25839887564200t21+

27422997701800t22+. . .palindrome . . .+t44


(1−t)94(1+t)−3

[0100011]
Richardson

Normalisation
g
E7[0100011]
NON 96



1+33t+564t2+6777t3+64849t4+524725t5+

3696270t6+22952836t7+126186057t8+614879502t9+

2656800340t10+10184095054t11+34652624372t12+

104728696487t13+281292351713t14+671789330508t15+

1427206725858t16+2698313629951t17+4541504048285t18+

6806645160112t19+9086346089774t20+10805286175350t21+

11447593810728t22+. . .palindrome . . .+t44


(1−t)96(1+t)−4

Table 24. E7 nilpotent orbit normalisations and Hilbert series (A).
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[0010100]
Non-rigid

Normalisation
g
E7[0010100]
NON 98



1+32t+530t2+6181t3+57541t4+453663t5+

3113473t6+18837445t7+101120527t8+483453140t9+

2063999692t10+7883746897t11+26978747805t12+

82795280050t13+228030235944t14+563908554084t15+

1252637000445t16+2500204122427t17+4485045975803t18+

7232498422887t19+10486086399152t20+13671033536263t21+

16028614605883t22+16901469671998t23+

. . .palindrome . . .+t46


(1−t)98(1+t)−3

[2000200]
Even

Normalisation
g
E7[2000200]
NON 100



1+31t+496t2+5589t3+50366t4+384882t5+

2559623t6+14987542t7+77732943t8+358507573t9+

1474780676t10+5424817521t11+17880645370t12+

52902604370t13+140698668543t14+336770031480t15+

726143059501t16+1411518293411t17+2475048767521t18+

3916605082526t19+5595119586673t20+7217473926998t21+

8408241643667t22+8847237672754t23+. . .palindrome . . .+t46


(1−t)100(1+t)−2(1+t2)−1

[2000220]
Even

Normalisation
g
E7[2000220]
NON 102



1+28t+406t2+4193t3+35056t4+250188t5+

1554077t6+8463228t7+40558959t8+171532123t9+

641766636t10+2128615090t11+6269960410t12+

16425061205t13+38313744215t14+79664576550t15+

147784794213t16+244777770909t17+362202240175t18+

479033526384t19+566445179272t20+598980047444t21

+ . . .palindrome . . .+t42


(1−t)105(1−t2)−1(1−t4)−1(1−t6)−1

[0101021]
Non-rigid

Normalisation
g
E7[0101021]
NON 110 . . .

[2101021]
Richardson

Normalisation
g
E7[2101021]
NON 114 . . .

Table 25. E7 nilpotent orbit normalisations and Hilbert series (B). Some orbits in the upper Hasse

diagram remain to be calculated.
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[2000002]

Even

Normalisation

Dual

g
E7[2000002]
NON 96



1+33t+564t2+6777t3+64849t4+524725t5+

3696270t6+22952836t7+126186057t8+614879502t9+

2656800340t10+10184095054t11+34652624372t12+

104728696487t13+281292351713t14+671789330508t15+

1427206725858t16+2698313629951t17+4541504048285t18+

6806645160112t19+9086346089774t20+10805286175350t21+

11447593810728t22+. . .palindrome . . .+t44


(1−t)96(1+t)−4

[0000202]
Even

Cover
g
E7[0000202]
NON 104



1+27t+379t2+3681t3+27917t4+176916t5+977308t6

+4835965t7+21801267t8+90393556t9+346150921t10

+1225347941t11+4006584460t12+12082557933t13

+33549402062t14+85635361526t15+200649655775t16

+431024819812t17+847995374640t18+1526658506276t19

+2513332265924t20+3781664655782t21+5198296443145t22

+6526055274327t23+7481012613977t24+7829538747780t25

+ . . .palindrome . . .+t50


(1−t)104(1+t)−2

[0200020]
Even

Cover
g
E7[0200020]
NON 104



1+27t+379t2+3681t3+27917t4+176916t5+977308t6

+4835965t7+21801267t8+90393556t9+346150921t10

+1225347941t11+4006584460t12+12082557933t13

+33549402062t14+85635361526t15+200649655775t16

+431024819812t17+847995374640t18+1526658506276t19

+2513332265924t20+3781664655782t21+5198296443145t22

+6526055274327t23+7481012613977t24+7829538747780t25

+ . . .palindrome . . .+t50


(1−t)104(1+t)−2

[2200020]
Even

Cover
g
E7[2200020]
NON 106



1+23t+278t2+2347t3+15661t4+88602t5+443711t6

+2019526t7+8474061t8+32964305t9+118904753t10

+396852983t11+1222209842t12+3464334539t13

+9017094730t14+21510440738t15+46954294808t16

+93667605825t17+170596058804t18+283478314657t19

+429596168703t20+593606736352t21+747833464708t22

+858975277303t23+899574922840t24+. . .palindrome . . .+t48


(1−t)110(1−t2)−3(1−t3)−1

Table 26. E7 extra moduli spaces and Hilbert series (A). These moduli spaces are associated with

SU(2) homomorphisms but do not represent additional nilpotent orbits (see text).
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[0110100]
Richardson

Dual
g
E7[0110100]
NON 106



1+22t+254t2+2048t3+12949t4+68223t5+310470t6

+1248798t7+4509005t8+14770398t9+44209400t10

+121447827t11+306952315t12+714370802t13+1530391654t14

+3014498298t15+5450883816t16+9031969079t17

+13689807076t18+18950786410t19+23928392089t20

+27532705839t21+28852797782t22+. . .palindrome . . .+t44


(1−t)111(1−t2)−2(1−t3)−2(1−t4)−1

[2020000]
Even

Dual
g
E7[2020000]
NON 110



1+19t+191t2+1350t3+7526t4+35208t5+143642t6

+524421t7+1744507t8+5355360t9+15303933t10

+40934228t11+102767564t12+242325486t13+536176791t14

+1110998287t15+2150326632t16+3877166750t17

+6495975323t18+10090787477t19+14505728258t20

+19267371072t21+23618674467t22+26697216460t23

+27811736966t24+. . .palindrome . . .+t48


(1−t)114(1−t2)−2(1−t3)−1(1−t4)−1

[2000202]
Even

Cover
g
E7[2000202]
NON 112



1+16t+138t2+849t3+4168t4+17471t5+65408t6

+225142t7+724817t8+2200974t9+6320547t10

+17149886t11+43841235t12+105203348t13+236137382t14

+494303171t15+962735326t16+1741496782t17

+2921452525t18+4539095853t19+6523887358t20

+8663785096t21+10619676955t22+12004111582t23

+12505497100t24+. . .palindrome . . .+t48


(1−t)117(1−t2)−3(1−t3)−1(1−t4)−1

[2011010]
Non-rigid

Extra
g
E7[2011010]
NON 112 . . .

Table 27. E7 extra moduli spaces and Hilbert series (B). These moduli spaces are associated with

SU(2) homomorphisms but do not represent additional nilpotent orbits (see text).
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[00000000] Trivial g
E8[00000000]
NON 0 1

[00000010] Rigid
g
E8[00000010]
Coulomb

or

g
E8[00000010]
NON

58



1+189t+14080t2+562133t3+13722599t4+220731150t5

+2454952400t6+19517762786t7+113608689871t8

+492718282457t9+1612836871168t10

+4022154098447t11+7692605013883t12+11332578013712t13

+12891341012848t14+. . .palindrome . . .+t28


(1−t)58(1+t)−1

[10000000] Rigid
g
E8[10000000]
Coulomb

or

g
E8[10000000]
NON

92



1+154t+11936t2+590394t3+20506501t4+527204320t5

+10378075500t6+160202160870t7+1974075401833t8

+19687582048248t9+160663069166772t10+1082397634755580t11

+6063957293140705t12+28419656685639506t13

+111973818366411496t14+372403620091866888t15

+1048956129150029406t16+2509111945366416404t17

+5107852437413443490t18+8864217905887836806t19

+13130135397834893988t20+16614983532652987182t21

+17970189038072829240t22+. . .palindrome . . .+t44


(1−t)92(1+t)−2

[00000100] Rigid g
E8[00000100]
NON 112



1+136t+9315t2+428400t3+14708060t4+396277232t5

+8617281802t6+154047376228t7+2294538829234t8

+28778512108660t9+306547418244756t10+2793130207608416t11

+21902089359475164t12+148574498522828576t13

+875844462689467918t14+4504433101633914112t15

+20280338406367275682t16+80174835126831444248t17

+279043709885823869536t18+856992570120176226304t19

+2327140363248048742796t20+5597079269967040359776t21

+11940943517987127026935t22+22625554953126294656764t23

+38114904246052740864163t24+57133198249164919950508t25

+76253347580416742978018t26+90657328908674311746240t27

+96036853608886812320440t28+. . .palindrome . . .+t56


(1−t)112

Table 28. E8 orbit constructions and Hilbert series (A).

Characteristic Type Construction Dim. Unrefined HS

[00000020] Even g
E8[00000020]
NON 114



1+133t+8911t2+400995t3+13486580t4+356584057t5

+7623391966t6+134206634140t7+1971437827690t8

+24415159489727t9+257072913186568t10+2317538562914724t11

+17995649940635004t12+120979229232553840t13

+707282480739436178t14+3609956701308961796t15

+16140434282332124866t16+63405524248622811378t17

+219417855826005179940t18+670412057684945457526t19

+1812177346079591528612t20+4341065907801003784365t21

+9229322963452174348555t22+17436647191913535443645t23

+29303858730884657436479t24+43844634221326426603948t25

+58440640016940455205864t26+69425059021468796578222t27

+73525348635628936776580t28+. . .palindrome . . .+t56


(1−t)114(1+t)−1

. . . . . . . . . . . . . . .

[22222222] Distinguished g
E8[22222222]
NON 240

(1−t2)(1−t8)(1−t12)(1−t14)(1−t18)(1−t20)(1−t24)(1−t30)

(1−t)240

Table 29. E8 orbit constructions and Hilbert series (B). Orbits in the centre of the Hasse diagram

remain to be calculated.

– 49 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
6

Characteristic Character HWG mHL HWG

[0000000] 1 . . .

[1000000] 1
1−m1t

. . .

[0000100] 1
(1−m1t)(1−m5t2)

. . .

[0000020] 1
(1−m1t)(1−m5t2)(1−m6

2t3)
. . .

[0100000] 1
(1−m1t)(1−m2t3)(1−m3t4)(1−m5t2)

. . .

[2000000] 1−m1
2m2

2t10

(1−m1t)(1−m1
2t4)(1−m2t3)(1−m2

2t6)(1−m3t4)(1−m5t2)(1−m1m2t5)
. . .

. . . . . . . . .

[2202222] . . . 1− h1t
17

[2222222] . . . 1

Table 30. E7 orbits and HWGs. An mHL HWG of 1 denotes mHLE7

[0000000](t). Orbits in the

centre of the Hasse diagram are omitted.

Characteristic Character HWG mHL HWG

[00000000] 1 . . .

[00000010] 1
1−m7t

. . .

[10000000] 1
(1−m7t)(1−m1t2)

. . .

[00000100] 1
(1−m7t)(1−m1t2)(1−m6t3)(1−m5t4)

. . .

[00000020] 1−m6
2m7

2t10

(1−m7t)(1−m1t2)(1−m6t3)(1−m5t4)(1−m7
2t4)(1−m6m7t5)(1−m6

2t6)
. . .

. . . . . . . . .

[22022222] . . . 1− h7t
29

[22222222] . . . 1

Table 31. E8 orbits and HWGs. An mHL HWG of 1 denotes mHLE8

[00000000](t). Orbits in the

centre of the Hasse diagram are omitted.
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4 Discussion and conclusions

Coulomb branch. Taken together with the Classical group quivers given in [1], the

Exceptional group quivers in section 2 provide Coulomb branch constructions, using the

unitary monopole formula, for all nilpotent orbits with Characteristic Height 2. These

Coulomb branch constructions either yield the closures of normal nilpotent orbits, or, in

the case of non-normal orbits, their normal components (the unions of which yield the

orbits). Other than in the case of the A series, where quivers can be found by 3d mirror

symmetry [2], Coulomb branch constructions based on the monopole formula for nilpotent

orbits of Characteristic Height greater than 2 are not (yet) known.

All the nilpotent orbits with Characteristic Height 2 have character HWGs of a freely

generated type. In the case of nilpotent orbits higher up a Hasse diagram, multiple roots

have Characteristic Height ≥ 2, so the moduli spaces can be complicated by relations be-

tween Lie algebra operators, with the result that the HWGs are usually not freely generated.

This leaves open the question as to whether faithful Coulomb branch constructions for

a broader class of nilpotent orbits can be found. While preliminary steps have been taken

towards developing constructions based on non-unitary versions of the monopole formula

in [5], for example, this remains an area for further research.

Nilpotent orbit normalisation formula. In the absence of quiver theory constructions

for Exceptional group nilpotent orbits of Characteristic Height greater than 2, it is a

significant finding that a direct plethystic calculation of the closure of any normal nilpotent

orbit is possible using the Nilpotent Orbit Normalisation formula developed in section 3.

The NON formula can be viewed as a generalisation of the Weyl character formula. One

of its attractions is that it explicates, in a direct manner, the relationship between an

SU(2) homomorphism, as described by its Characteristic, its nilpositive element X and the

resulting nilpotent orbit (or normalisation).

Like the Coulomb branch formula, the NON formula yields a moduli space with a

palindromic Hilbert series, so the situation surrounding non-normal nilpotent orbits, which

have non-palindromic Hilbert series, needs consideration; however, for normal orbits, the

Higgs or Coulomb branch (where available) and NON methods all construct the same

moduli spaces.

Turning to the established list of non-normal orbits; in all the cases calculated, the

NON formula leads to moduli spaces, with palindromic Hilbert series, containing elements

outside the nilpotent cone N .

For Classical non-normal orbits, the NON formula either yields the normal compo-

nents of those orbits that are unions, as in the case of D2r spinor pairs, or it yields their

normalisations. These normalisations can be restricted to equal the non-normal orbits by

excluding sub-spaces described by charged orbits of lower dimension.

In the case of Exceptional non-normal orbits, there are no spinor pairs, and the NON

formula yields normalisations. By conjecturing relationships, similar to those between

Classical non-normal orbits and their normalisations, it has been possible to find restrictions

– 51 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
6

of the normalisations in G2, F4 and E6, that yield Hilbert series lying within N , and which,

subject to a more definitive analysis, can be viewed as candidates for the non-normal orbits.

This study has not made significant use of Bala-Carter labels [10, 25, 26]. The perspec-

tive herein is that a nilpotent element X is more naturally characterised by an extension of

the quotient group structure G/G0 that applies to Richardson orbits. The NON formula

generalises this structure to non-Richardson orbits, by defining Φ̃G/G0
to exclude the roots

in Φ
[1]
G from the positive roots in ΦG/G0

; this appears to be permissible due to the Weyl

group invariance of Φ
[1]
G under the subset WG0 of reflections of ΦG.

This analysis of the closures of nilpotent orbits as moduli spaces does, however, leave

a few residual puzzles in relation to the narrative in the mathematical Literature regarding

the nilpotent orbits of Exceptional groups. Specifically:

1. A small number of extra root maps, which are not listed amongst the Characteristics

in standard tables, follow from the SU(2) homomorphisms of EF groups. Some of

these extra root maps, such as E6[111110], E6[020202], E7[2020000], E7[0110100],

E7[2000002] and E7[2020000], generate refined Hilbert series that are identical to

those from the Characteristics of nilpotent orbits; others give rise to moduli spaces

with palindromic HS, that are extensions of nilpotent orbits outside N . Although

several cases for E7 and E8 remain to be calculated, no new nilpotent orbits have

been identified. This appears consistent with the perspective that these extra root

maps may be related to Weyl group conjugacy classes that are equivalent to nilpotent

orbits, modulo certain symmetric group actions [33].

Nonetheless, these extra roots maps provide examples of dualities, such that certain

SU(2) embeddings in G with different root maps or Characteristics lead to identical

closures of nilpotent orbits of G; such dualities appear to conflict with the standard

narrative surrounding the Jacoboson-Morozov theorem in the Literature [10], which

claims a bijection, not just between SU(2) embeddings and nilpotent elements X,

but also between SU(2) embeddings and nilpotent orbits OX .

2. When defining the partial ordering (or topology) of nilpotent orbits within the nilpo-

tent cone N , it is important to deal with the orbits, rather than their normalisations.

The Hasse diagrams of inclusion relations depend on whether non-normal nilpotent

orbits, or their normalisations, are used. This may account for the few discrepan-

cies in linking patterns (to or from non-normal orbits) between the F4 and E6 Hasse

diagrams obtained from the moduli space analysis in this study and the standard dia-

grams in the Literature. Whereas the standard diagrams date from [31], the listing of

non-normal orbits of Exceptional groups appears some years later in [32]. It would be

interesting to be able to give a precise account of the source of the differences between

the topologies of orbits calculated from the NON formula and the standard diagrams.

The moduli space calculations for Exceptional groups, in particular, have been limited

by practical computing constraints and so several tables herein are incomplete, more so

in terms of HWG descriptions than unrefined HS. Given continuing developments in com-

puting power, in terms of memory, speed and algorithms for polynomial algebra, it should
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eventually be possible to fill in the gaps in this analysis of the moduli spaces of quiver theo-

ries. This may resolve the open questions about the nilpotent orbits of Exceptional groups.

There remains the problem of how to formulate an unambiguous analytic method for

restricting the normalisation of a non-normal Exceptional group nilpotent orbit to the

nilpotent cone N , as required by (3.6). The analysis for Classical orbits, drawing on Higgs

branch results, describes the difference between a non-normal orbit and its normalisation

in terms of the charged NON formula for an orbit lower down the Hasse diagram; but

what determines the particular charges and coefficients that appear? The solution may be

related to the type of degeneration between adjacent orbits, where it is known from [30] that

for Exceptional group orbits this is considerably more complicated than the Kraft-Procesi

transitions [11] between Classical group orbits.

Although such technical issues remain to be resolved, this paper and its companion [1]

go some considerable way towards systematising the intricate relationships between quiver

theories, Hilbert series (and their generating functions) and the closures of nilpotent orbits,

as well as developing a number of relevant analytical methods and tools. These in turn

lay the foundations for the use of such quiver theories for Hilbert series with background

charges as canonical building blocks that can be deployed to construct, analyse and/or

decompose a much wider range of theories. Looking beyond 4d N = 2 Higgs branch and

3d N = 4 Coulomb branch theories, these methods should be applicable to other moduli

spaces where nilpotent orbits play a central structural role, such as 5d N = 1 theories,

6d (1, 0) CFTs, F theory and class S theories, amongst others.
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A Hilbert series transformations

A refined Hilbert series gGHS (x, t) in class functions of G can be transformed by Weyl

integration to a HWG based on the characters (or modified Hall Littlewood polynomials)

of G, with the aid of a generating function for the characters (or mHL) of G:

gGHWG (m, t) =

∮
G

dµG gGχ (x∗,m) gGHS (x, t) ,

gGHWG (h, t) =

∮
G

dµGmHL g
G
mHL (x∗, h, t) gGHS (x, t) ,

(A.1)

where gGχ (x∗,m) is a generating function for conjugate characters and gG(m)HL (x∗, h, t) is

a generating function for orthonormal modified Hall Littlewood polynomials.
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The reverse transformations to recover refined Hilbert series from the HWGS can be

implemented by summation over the Weyl group of G:

gGHS (x, t) =
∑
w∈WG

w ·

gGHWG(m, t)
∣∣
m→x

∏
α∈Φ+

1

(1− z−α)

,
gGHS (x, t) =

∑
w∈WG

w ·

gGHWG(h, t)
∣∣
h→x

∏
α∈Φ+

1

(1− z−α) (1− zαt)

,
(A.2)

where the elements w of the Weyl group act on the fugacities x and z. For further detail

see [1, 12].

B Symmetry factors

The determination of symmetry factors from U(N) Casimirs in (2.3) follows [3]. These are

conditional functions that depend on the partition λ (qi) that enumerates the number of

monopole charges qi,j that are equal within each monopole flux qi. Construct a partition

of Ni for each node, which counts how many of the charges qi,j are equal, such that

λ(qi) = (λi,1, . . . , λi,Ni), where
Ni∑
j=1

λi,j = Ni. The non-zero terms λi,j in the partition give

the ranks of the residual U(Ni) symmetries associated with each node.13 As examples for

U(2), U(3) and U(4), we have:

PU(2)
qi =

1

(1−t)(1−t2)
×

{
1 :λ= (2)

(1+t) :λ= (1,1)
, (B.1)

PU(3)
qi =

1

(1−t)(1−t2)(1−t3)
×


1 :λ= (3)(
1+t+t2

)
:λ= (2,1)

(1+t)
(
1+t+t2

)
:λ= (1,1,1)

, (B.2)

PU(4)
qi =

1

(1−t)(1−t2)(1−t3)(1−t4)
×



1 :λ= (4)(
1+t+t2+t3

)
:λ= (3,1)(

1+t2
)(

1+t+t2
)

:λ= (2,2)(
1+t+t2

)(
1+t+t2+t3

)
:λ= (2,1,1)

(1+t)
(
1+t+t2

)(
1+t+t2+t3

)
:λ= (1,1,1,1)

.

(B.3)

C Background on nilpotent orbits

C.1 Nilpotent elements

The closure of a nilpotent orbit of G can be considered as a moduli space described by class

functions on the representation lattice of G. So, as a necessary preliminary to motivating

13A U(N) group has Casimirs of degrees 1 through N . So, for example, if qi,j = qi,k for all j, k,

then λ = (Ni) and {di,1, . . . di,Ni} = {1, . . . , Ni} and if qi,j 6= qi,k for all j, k, then λ = (1Ni) and

{di,1, . . . di,Ni} = {1, . . . , 1}.
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the use of SUSY quiver theories and their moduli spaces in this context, it is useful to

review the relationships between a group G, the nilpotent elements (or operators) X of its

Lie algebra g, and the nilpotent orbits OX to which they give rise.

A nilpotent matrix M over some field (taken as C) is one that vanishes at some

power Mk = 0 for k ≥ d, where d is defined as the nilpotent degree of the matrix. By

similarity transformation, all the eigenvalues of M are zero and all its invariants vanish:

det[M ] = 0, . . . , tr[M ] = 0. Examples of nilpotent matrices include strictly upper (or lower)

triangular matrices. Thus, a nilpositive raising operator X of a Lie algebra {Hi, E
+
α , E

−
α },

defined as X ≡
∑
α
uαE

+
α , for some coefficients uα, acts as a nilpotent matrix on the vector

space of representations. Importantly, elements of g obtained by applying a similarity

transformation from G to X retain zero eigenvalues and remain nilpotent. This leads

naturally to the concept of a nilpotent orbit defined as an equivalence class of nilpotent

elements [10]:

OX = {M : M = AXA−1 for A ∈ G}. (C.1)

The simple restriction that an element X should be nilpotent can be combined with further

restrictions, with respect to nilpotent degree, matrix rank, etc., to define a poset (partially

ordered set) of equivalence classes of nilpotent matrices. This poset can be graphed to

give a distinct Hasse diagram for each Lie group. The boundary of all the nilpotent orbits

associated with these equivalence classes is known as the closure of the maximal nilpotent

orbit or nilpotent cone N . Similarly, each equivalence class OX gives rise to the closure of

a nilpotent orbit ŌX . By a common abuse of terminology, closures of nilpotent orbits ŌX
are often referred to simply as nilpotent orbits OX , and this is the convention generally

adopted herein.

Now consider the Casimir invariants of a Lie group G, which are equal in number to

its rank, with their degrees {d} being amongst the defining properties of G [18].14 The

simple condition that a Lie algebra element X should be nilpotent entails, from the van-

ishing eigenvalues of X, that the Casimir operators formed from the traces of symmetrised

products of X should vanish:

∀d : d ∈ {Degrees of Symmetric Casimirs of G} → tr
[
Xd
]

= 0. (C.2)

Viewed as a moduli space, the nilpotent cone N is therefore the quotient of the moduli space

of Lie algebra generators ofG (the PE of the adjoint representation) divided by (its subspace

of) the moduli space of Casimir invariants. The resulting Hilbert series takes the form:

gNHS =
PE

[
χG[adj.]t

]
∏

d∈Casimirs[G]

PE [td]

=
∏

d∈Casimirs[G]

(
1− td

)
PE

[
χG[adj.]t

]
= mHLG[0,...,0](t) .

(C.3)

14The Casimirs of G are symmetric invariant tensors of the adjoint representation, with their degrees

being An : {2, . . . , n, n+ 1}, Bn/Cn : {2, 4, . . . , 2n}, Dn : {2, 4, . . . , 2n− 2, n}, G2 : {2, 6}, F4 : {2, 6, 8, 12},
E6 : {2, 5, 6, 8, 9, 12}, E7 : {2, 6, 8, 10, 12, 14, 18} and E8 : {2, 8, 12, 14, 18, 20, 24, 30}.
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This exactly matches the definition of the modified Hall Littlewood function mHLG[0,...,0] [1].

So, the Hilbert series of the (closure of the) maximal nilpotent orbit is equal to mHLG[singlet]
and has the dimension:

|N | = |g| − rank[g]. (C.4)

The dimension of (the closure of) a general nilpotent orbit |OX | is given by [10]:

|OX | = |g| − |gX |, (C.5)

where gX is the centraliser of X in g, defined as gX ≡ {c : c ∈ g & [X, c] = 0}, and consis-

tency with |OX | ≤ |N | entails that |gX | ≥ rank[g].

This definition of a nilpotent orbit in Lie algebra terms generalises from the matrix

operators of Classical groups to the operators of Exceptional groups.

C.2 SU(2) homomorphisms

Key methods of identifying and classifying the nilpotent orbits of G follow from their rela-

tionships with SU(2) homomorphisms. As described in [10], the Jacobson-Morozov theorem

shows that each nilpotent element X of g falls within some standard triple {H,X, Y } of

some SU(2) subalgebra of g. Also, a theorem of Kostant shows that the map from stan-

dard triples to nilpotent elements is injective, up to conjugation of the nilpotent elements.

Taken together, these theorems establish a bijection between standard triples and con-

jugacy classes of nilpotent elements. By arguing a bijection between conjugacy classes

of nilpotent elements and nilpotent orbits, (Theorem 3.2.10) [10] further claims a bijec-

tion between standard triples and (closures of) nilpotent orbits OX . Each standard triple

{H,X, Y } is in turn defined by a homomorphism (or embedding) ρ from G to SU(2) and

this implies a bijection between SU(2) homomorphisms ρ and distinct nilpotent orbits OX .

The possible embeddings of SU(2) into G were first systematically enumerated, for

both Classical and Exceptional groups, by Dynkin [9]. From the perspective of character

analysis, each such homomorphism ρ corresponds to a fugacity map between the CSA

coordinates {x1, . . . , xr} of G and {x} of SU(2), under which the character χG of each

representation of G decomposes into a sum of characters of SU(2) irreps:

ρ : {x1, . . . , xr} → {xω1 , . . . , xωr} ,

ρ : χG (x1, . . . , xr)→
∑⊕

n
an [n] (x) ,

(C.6)

where the coefficients an are non-negative integers. The exponents [ω1, . . . , ωr] in (C.6),

are referred to herein as the weight map of ρ. The enumeration of nilpotent orbits via

SU(2) homomorphisms is therefore equivalent to the problem of identifying all such valid

weight maps.

The number of possible homomorphisms is limited by a theorem [9], which entails that

ρ, when expressed in terms of simple root fugacities {z1, . . . , zr} of G and {z} of SU(2),

must be conjugate under the action of the Weyl group of G to a map of the form:

ρ : {z1, . . . zr} → {z
q1
2 , . . . , z

qr
2 }, (C.7)
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where qi ∈ {0, 1, 2}. The labels [q1, . . . , qr] are termed the Characteristic of a nilpotent

orbit [9], also refered to herein as a root map of ρ.15 Thus, there are at most 3rank[G] root

maps that need to be tested, which is a straightforward computational procedure for low

rank groups.16

These homomorphisms can also be labelled by the SU(2) decomposition of ρ(R), where

R is some representation of G. R is usually chosen to be the fundamental representation for

A series groups, or the vector representation for BCD series groups. Such decompositions

of ρ(R) are conventionally expressed using condensed partition notation, under which each

SU(2) irrep [n] with non-zero multiplicity an is assigned an element in the partition equal

to its dimension, with an exponent equal to its multiplicity:

ρ(R) =

nmax∑
n=0

an [n] ⇔ (|[nmax]|anmax , . . . , |[n]|an , . . . , 1a0) . (C.8)

Additional selection rules are required to ensure that the representations ρ(R) assigned

to each irrep R of G are consistent with its bilinear invariants. Recall that an irrep can be

classified as (i) real, (ii) pseudo real or (iii) complex, depending, respectively, on whether

it has (i) a symmetric bilinear invariant with itself, (ii) an antisymmetric bilinear invariant

with itself, or (iii) a bilinear invariant with its contragredient representation (complex

conjugate in the case of unitary representations). As shown in [10], when R has bilinear

symmetric or antisymmetric invariants, this requires irrep selection rules, to exclude any

homomorphisms ρ under which such bilinears change type:

1. Real R. If a partition element (i.e. SU(2) irrep) of even dimension appears, it must

appear an even number of times. This ensures that any pseudo real SU(2) irreps

come in pairs. These are often referred to as B partitions or D partitions.

2. Pseudo real R. If a partition element (i.e. SU(2) irrep) of odd dimension appears, it

must appear an even number of times. This ensures that any real SU(2) irreps come

in pairs. These are often referred to as C partitions.

3. Complex R. Complex irreps have bilinear invariants with their complex conjugates,

rather than with themselves. Conjugate pairs of representations have identical SU(2)

partitions, so no selection rules apply.

It is important to appreciate that these irrep selection rules depend on the type of repre-

sentation R of the parent group, upon which ρ acts, and not on the parent group series

(as implied in some of the Literature). The Real and Pseudo real rules apply across all

representations of both Classical and Exceptional groups.

Appendix D tabulates these homomorphisms for Exceptional groups.17 The homomor-

phisms are described by their dimensions, their Characteristics (or root maps) and weight

15The Literature also refers to a Characteristic G[ρ] as the Dynkin labels (of a nilpotent orbit), not to

be confused with the weight space Dynkin labels (of irreps) [n]G. Since the labels in a Characteristic can

only be 0, 1 or 2, it can be convenient to omit the separators “,”.
16Note that root and weight fugacities and maps are related by the Cartan matrix of G as z = xA and

q = Aω, respectively.
17Homomorphisms for Classical groups up to rank 5 were tabulated in [1].
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maps, and the resulting partitions of the key irreps of G. While partial tables are often pre-

sented in the Literature [10, 35], this fuller presentation, including vectors/fundamentals

and the adjoint representation, is helpful for the analysis of nilpotent orbits.

In particular, the SU(2) homomorphism of [adj]G encodes information about the di-

mension |gX | of the centraliser, and this allows calculation of the dimension of an orbit:

since the highest weight of each SU(2) irrep is annihilated by the SU(2) raising operator

X, |gX | is equal to the number of SU(2) irreps in the partition ρ([adj]G). Thus (C.5) can

be restated in terms of the length of the adjoint partition as:

|OX | = |g| − |ρ ([adj]G) | . (C.9)

As an example, G2 has five nilpotent orbits and these can be referred to uniquely,

either by the partition data assigned (under ρ) to one of its representations, or by the

Characteristic (root map), or by the weight map. Taking the CSA fugacities of G2 as

{x1, x2} and the simple root fugacities as {z1 = x2
1/x

3
2, z2 = x2

2/x1}, and those of SU(2)

and {x} and {z = x2}, respectively, the homomorphism ρ with Characteristic [20] (and

weight map [42]) can also be identified in any one of the following equivalent ways:

ρ : (z1, z2)→ (z, 1) ,

ρ : (x1, x2)→
(
x4, x2

)
,

ρ : [0, 1]→ [2]⊕ [2]⊕ [0] ,

ρ : [0, 1]→ (32, 1) ,

ρ : [1, 0]→ (5, 33) ,

|Oρ| = 10 .

(C.10)

The dimension of this orbit is 10, equal to the dimension 14 of G2 less the length of the

adjoint partition (5, 33), which contains 4 SU(2) irreps.

Intriguingly, while these SU(2) homomorphisms identify all the Characteristics of Ex-

ceptional group nilpotent orbits that appear in standard tables [9, 10], this method also

leads to a few extra root maps for some Exceptional groups. One extra root map arises in

F4; there are 3 in E6, 8 in E7 and 39 in E8. These are highlighted in appendix D and their

moduli spaces are examined and discussed in section 3.

C.3 Standard triples

It is useful to summarise the relationship between SU(2) homomorphisms and standard

triples {H,X, Y }, as elaborated in [9]. Standard triples are defined by the commutation

relations [H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H. These operators are embedded in the

Lie algebra g of G, which is given by the operators {Hi, Eα+, Eα−}.
Now, consider a Characteristic [q] ≡ [q1, . . . , qr], with corresponding weight map [w] ≡

[w1, . . . , wr], related by [q] = A · [w]. Each root, α =
∑

i aiαi, where {α1, . . . , αr} are simple

roots, is assigned a Characteristic root height :

[α] ≡
r∑
i=1

aiqi. (C.11)
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The elements of the standard triple {H,X, Y } are then chosen as:

H =
r∑
i=1

wiHi,

X =
∑

α∈ΦG:[α]=2

uαEα+,

Y =
∑

α∈ΦG:[α]=2

vαEα−,

(C.12)

for some coefficients uα and vα. X contains only those roots with [α] = 2, and each of

these satisfies the commutation relations [H,Eα+] = 2Eα+, so [H,X] = 2X. Similarly, Y

satisfies [H,Y ] = −2Y . The commutation relation [X,Y ] = H constrains uα and vα. This

analysis generalises to any SU(2) homomorphism of G. The nilpotent operators Eα within

in the standard triple follow directly from the Characteristic. The coefficients uα and vα
can then be determined, up to scaling freedoms, from the Lie algebra g.

Notwithstanding the received bijective relationship between standard triples and nilpo-

tent orbits, there is no simple prescription in the Literature for finding the closure of a

nilpotent orbit from its standard triple, although its dimension can be obtained from (C.9).

C.4 Terminology

It is helpful to collect some of the terminology surrounding the classification of nilpotent

orbits.

Canonical orbits. The dimensions of nilpotent orbits have a partial ordering, which is

often expressed using Hasse diagrams. Formally, this partial ordering is defined by inclusion

relations amongst the closures Ō of nilpotent orbits O.18 There are a number of canonical

orbits within this partial ordering:

1. The trivial orbit. This is associated with the partitions ρG(R) = (1|R|) and always

has zero dimension.

2. The minimal orbit. This is the first orbit with non-zero dimension and is always

unique. Its complex dimension is equal to twice the sum of the dual Coxeter labels

of G. This equals the dimension of the reduced single instanton moduli space of G.

3. The sub-regular orbit. This is the orbit with next to highest dimension. It is always

unique, having a complex dimension equal to the number of the roots of G, less 2.

4. The maximal orbit. This is the orbit with highest dimension and is always unique. Its

complex dimension is equal to the number of roots of G. This equals the dimension

of the modified Hall Littlewood function mHLG[0,...,0].

The above orbits are not distinct for low rank groups. For example, in A1, the minimal

and maximal orbits coincide, as do the trivial and sub-regular.

18The closures Ō correspond to the quiver theory moduli spaces that are calculated in this study.
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Distinguished orbits. A distinguished nilpotent element is associated with an SU(2)

homomorphism in which ρG(adj.) contains no SU(2) singlets [10]. This rule leads to the

following list of distinguished nilpotent orbits:19

Ar: Maximal nilpotent orbit only,

Br: Partitions of 2r + 1 into distinct odd parts,

Cr: Partitions of 2r into distinct even parts,

Dr: Partitions of 2r into distinct odd parts,

G2: [20] and [22],

F4: [0200], [0202], [2202] and [2222],

E6: [202020] [220222] and [222222],

E7: [0020020], [2020020], [2020220], [2202022], [2202222] and [2222222],

E8: [00020000], [00200020], [00200200], [00200220], [20200200], [20200220], [20202020],

[20202220], [22020222], [22022222] and [22222222].

Even orbits. An even nilpotent orbit is one that has a Characteristic containing the

labels 0 or 2 only. All distinguished orbits are even [10].

Richardson orbits. A Richardson nilpotent orbit is one that can be induced from the

trivial nilpotent orbit of a subgroup [10]. Every nilpotent orbit that has a Characteristic

containing only the labels 0 or 2 has a quotient group G/H structure and can be induced,

as explained in section 3.1, from the trivial nilpotent orbit of the subgroup H, whose

Dynkin diagram is defined by the 0 labels of the Characteristic. All even orbits are thus

Richardson orbits. In addition, some groups have non-even Richardson orbits, with the

rules for identifying such orbits being given in [36]. Richardson orbits have polarizations [27]

and symplectic resolutions [36]. The complete set of Richardson orbits is:

Ar: All nilpotent orbits,

Br: Partitions of 2r + 1, whose first q parts are odd, where q is odd, with the remaining

parts even,

Cr: Partitions of 2r, whose first q parts are odd, where q is even, with the remaining parts

even,

Dr: Partitions of 2r, whose first q parts are odd, with the remaining parts even, and

either (i) q is even but q 6= 2, or (ii) q = 2 and the two odd parts are located at

positions 2k − 1 and 2k for some integer k,

EFG: All even orbits, plus

19The list of distinguished Exceptional group Characteristics appears in table 23 of [9].
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F4: [1012],

E6: [100010], [010100], [100012], [110111] and [110112],

E7: [0100011], [1010100], [2010100], [2101101] and [2101021],

E8: [01001002], [101010000], [21010220], [01000120], [10101010], [10101020] and [20101020].

Rigid vs non-rigid orbits. A non-rigid nilpotent orbit is one that can be induced from

some nilpotent orbit of a subgroup. All Richardson orbits are thus non-rigid, being induced

from a trivial nilpotent orbit. Importantly, any orbit whose Characteristic contains 2 can be

induced from the orbit of the subgroup defined by the Dynkin diagram and Characteristic

that remains after removing one or more nodes with Characteristic 2 from the parent

diagram.

Conversely, a rigid nilpotent orbit is one that cannot be induced from a nilpotent orbit

of a subgroup. A rigid nilpotent orbit has a Characteristic containing 0 and 1 only, as a

necessary, but not sufficient, condition. Notably, the minimal nilpotent orbits of simple

groups, other than those isomorphic to the A series, are rigid [10]. Also, for example,

D4[1011] is rigid amongst orbits of low rank groups. Rigid orbits of Exceptional groups

are identified in [29].

The inclusion relations between the above types of orbit provide a classification scheme:

{Nilpotent Orbits} = {Rigid} ∪ {Non-Rigid} ,
{Non-Rigid} ⊃ {Richardson} ⊃ {Even} ⊃ {Distinguished} .

(C.13)

Special orbits. A special nilpotent orbit is one that is invariant under two applications

of the Spaltenstein map. For Classical groups the Spaltenstein map is defined by fun-

damental/vector partition transposition, followed, if the transpose partition is not valid

under the Real/Pseudo real selection rules, by BCD-collapse to a lower partition. The

Spaltenstein map d is thus many to one, often described as d3 = d, and can lead to the

conflation of distinct nilpotent orbits, as discussed in [1]. All A series nilpotent orbits are

special. A special BC series nilpotent orbit is one whose Spaltenstein map does not require

BC collapse.

A Spaltenstein map can also be defined for Exceptional groups. All Richardson orbits

are special, as is any orbit of a higher rank group induced from a special orbit [10]. Some

rigid orbits are also special.

Normal vs non-normal orbits. From the perspective of this study, a more important

distinction is that between normal and non-normal nilpotent orbits. A normal symplectic

variety only contains singularities that are rational Gorenstein [30], and by virtue of a

theorem in [37], this entails that it is Calabi-Yau with a palindromic Hilbert series [38].

Consistent with this, the normal nilpotent orbits of Classical groups were found in [1] to

have palindromic Hilbert series; however, non-normal nilpotent orbits were found to have

non-palindromic Hilbert series.

The normalisation of a nilpotent orbit can be defined as a palindromic moduli space

of the same dimension that forms a covering space. A normal nilpotent orbit is its own
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normalisation. Normalisations of non-normal nilpotent orbits contain elements outside the

nilpotent cone N .

For Classical groups, it was shown in [11], based on a geometric analysis, that the vector

partition of a non-normal orbit is always related to that of the orbit immediately below it, by

a particular degeneration of its Young’s diagram. In this degeneration, a pair of even rows

in some sub-diagram, described by the partition (2r, 2r), degenerates to (2r−1, 2r−1, 1, 1);

all the rows above and all the columns to the left of the sub-diagram remain unchanged.

Such degenerations result from a D2r subalgebra of a BCD series parent (all A series

nilpotent orbits are normal) and are termed A2r−1 ∪ A2r−1 degenerations. A D2r group

may have several degenerations associated with its spinor pairs, including A2r−1 ∪ A2r−1

and A1 ∪A1 degenerations.

A similar situation arises in Exceptional groups, where non-normal nilpotent orbits

are also associated with particular degenerations of their partitions [30]. The non-normal

nilpotent orbits of Exceptional groups are listed in [32], being:

G2: [01],

F4: [0002], [2001], [0101], [1010], [1012], (5 cases),

E6: [100011], [200020], [100012], [010101], [200022], (5 cases),

E7: [2000100], [2000020], [1010000], [1001010], [0100011], [0010100], [2000200], [2000220],

[0101021], [2101021], (10 cases),

E8: [10000020], [00001010], [00000220], [0100010], [10001000], [20000020], [00000121],

[10001020], [20001010], [00100020], [00000022], [20000200], [20000220], [10100010],

[01001010], [01000101], [10010100], [00101000], [10010120], [20002000], [01000121],

[00101020], [20002020], [21000121], [20002220], [20101020], [20020020], [01010221],

[21010221], (29 cases).

The non-normal orbits of Exceptional groups occur amongst all types other than dis-

tinguished and their relationships with their normalisations are complicated [30]. It is

conjectured in [32] that all distinguished nilpotent orbits are normal.

D Exceptional group nilpotent orbits and SU(2) homomorphisms

D.1 G2

Dimension [1,0] [0,1] Root Map Weight Map

0 114 17 {0, 0} {0, 0}

6 3, 24, 13 22, 13 {1, 0} {2, 1}

8 42, 3, 13 3, 22 {0, 1} {3, 2}

10 5, 33 32, 1 {2, 0} {4, 2}

12 {11, 3} {7} {2, 2} {10, 6}
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D.2 F4

Dimension [1,0,0,0] [0,0,0,1] Root Map Weight Map

0 152 126 {0, 0, 0, 0} {0, 0, 0, 0}

16 3, 214, 121 26, 114 {1, 0, 0, 0} {2, 3, 2, 1}

22 37, 28, 115 3, 28, 17 {0, 0, 0, 1} {2, 4, 3, 2}

28 42, 36, 210, 16 33, 26, 15 {0, 1, 0, 0} {3, 6, 4, 2}

30 5, 313, 18 36, 18 {2, 0, 0, 0} {4, 6, 4, 2}

30 57, 3, 114 5, 37 {0, 0, 0, 2} {4, 8, 6, 4}

34 53, 42, 36, 24, 13 42, 33, 24, 1 {0, 0, 1, 0} {4, 8, 6, 3}

36 7, 54, 44, 3, 16 5, 44, 15 {2, 0, 0, 1} {6, 10, 7, 4}

36 62, 53, 42, 32, 24, 13 5, 42, 33, 22 {0, 1, 0, 1} {5, 10, 7, 4}

38 7, 62, 5, 44, 33, 13 52, 42, 3, 22, 1 {1, 0, 1, 0} {6, 11, 8, 4}

40 72, 54, 36 53, 33, 12 {0, 2, 0, 0} {6, 12, 8, 4}

40 9, 74, 34, 13 7, 53, 3, 1 {2, 0, 0, 2} {8, 14, 10, 6}

42 11, 75, 3, 13 73, 15 {2, 2, 0, 0} {10, 18, 12, 6}

42 11, 102, 7, 42, 3, 13 9, 62, 5 {1, 0, 1, 2} {10, 19, 14, 8}

44 112, 9, 7, 5, 33 9, 7, 52 {0, 2, 0, 2} {10, 20, 14, 8}

46 15, 112, 7, 5, 3 {11, 9, 5, 1} {2, 2, 0, 2} {14, 26, 18, 10}

48 {23, 15, 11, 3} {17, 9} {2, 2, 2, 2} {22, 42, 30, 16}

Partitions are shown for the F4 adjoint and vector representations only. Homomorphisms

identified include one root map which is not a nilpotent orbit: 40: [2,0,0,2]. This is

highlighted in red.
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D.3 E6, E7, E8

Dimension [1,0,0,0,0,0] [0,0,0,0,0,1] Root Map Weight Map

0 127 178 {0, 0, 0, 0, 0, 0} {0, 0, 0, 0, 0, 0}

22 26, 115 3, 220, 135 {0, 0, 0, 0, 0, 1} {1, 2, 3, 2, 1, 2}

32 3, 28, 18 38, 216, 122 {1, 0, 0, 0, 1, 0} {2, 3, 4, 3, 2, 2}

40 33, 26, 16 42, 39, 216, 111 {0, 0, 1, 0, 0, 0} {2, 4, 6, 4, 2, 3}

42 36, 19 5, 319, 116 {0, 0, 0, 0, 0, 2} {2, 4, 6, 4, 2, 4}

46 4, 34, 24, 13 5, 46, 38, 28, 19 {1, 0, 0, 0, 1, 1} {3, 5, 7, 5, 3, 4}

48 5, 37, 1 58, 38, 114 {2, 0, 0, 0, 2, 0} {4, 6, 8, 6, 4, 4}

50 42, 33, 24, 12 53, 44, 39, 28, 14 {0, 1, 0, 1, 0, 0} {3, 6, 8, 6, 3, 4}

52 5, 44, 16 7, 55, 48, 3, 111 {1, 0, 0, 0, 1, 2} {4, 7, 10, 7, 4, 6}

54 5, 42, 33, 22, 1 62, 54, 44, 35, 26, 13 {1, 0, 1, 0, 1, 0} {4, 7, 10, 7, 4, 5}

56 52, 42, 3, 22, 12 7, 62, 53, 46, 34, 22, 14 {0, 1, 0, 1, 0, 1} {4, 8, 11, 8, 4, 6}

58 53, 33, 13 72, 57, 39, 12 {0, 0, 2, 0, 0, 0} {4, 8, 12, 8, 4, 6}

58 6, 5, 42, 32, 2 73, 62, 52, 44, 34, 22, 13 {1, 1, 0, 1, 1, 0} {5, 9, 12, 9, 5, 6}

60 73, 16 11, 78, 3, 18 {0, 0, 2, 0, 0, 2} {6, 12, 18, 12, 6, 10}

60 7, 53, 3, 12 9, 75, 53, 35, 14 {2, 0, 0, 0, 2, 2} {6, 10, 14, 10, 6, 8}

62 {7, 6, 5, 4, 3, 2} 9, 82, 7, 62, 53, 42, 32, 22, 1 {1, 1, 0, 1, 1, 1} {6, 11, 15, 11, 6, 8}

64 9, 62, 5, 1 11, 102, 9, 7, 62, 5, 42, 3, 13 {2, 1, 0, 1, 2, 1} {8, 14, 19, 14, 8, 10}

64 {8, 7, 5, 4, 3} 102, 9, 72, 62, 52, 42, 3, 12 {1, 1, 1, 1, 1, 0} {7, 13, 18, 13, 7, 9}

64 {8, 7, 6, 3, 2, 1} 11, 9, 82, 72, 62, 5, 32, 22, 1 {1, 1, 0, 1, 1, 2} {7, 13, 18, 13, 7, 10}

66 9, 7, 52, 1 112, 92, 72, 53, 33 {2, 0, 2, 0, 2, 0} {8, 14, 20, 14, 8, 10}

66 92, 5, 3, 1 13, 11, 92, 74, 32, 12 {0, 2, 0, 2, 0, 2} {8, 16, 22, 16, 8, 12}

68 11, 9, 5, 12 15, 113, 9, 7, 52, 3, 1 {2, 0, 2, 0, 2, 2} {10, 18, 26, 18, 10, 14}

70 {13, 9, 5} 17, 15, 112, 9, 7, 5, 3 {2, 2, 0, 2, 2, 2} {12, 22, 30, 22, 12, 16}

72 {17, 9, 1} {23, 17, 15, 11, 9, 3} {2, 2, 2, 2, 2, 2} {16, 30, 42, 30, 16, 22}

Partitions are shown for the E6 adjoint and fundamental representations only. Homo-

morphisms identified include three root maps which are not recognised Characteristics of

nilpotent orbits: these are highlighted in red.
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D.4 E7

Dimension [1,0,0,0,0,0,0] [0,0,0,0,0,1,0] Root Map Weight Map

0 1133 156 {0, 0, 0, 0, 0, 0, 0} {0, 0, 0, 0, 0, 0, 0}

34 3, 232, 166 212, 132 {1, 0, 0, 0, 0, 0, 0} {2, 3, 4, 3, 2, 1, 2}

52 310, 232, 139 32, 216, 118 {0, 0, 0, 0, 1, 0, 0} {2, 4, 6, 5, 4, 2, 3}

54 327, 152 4, 226 {0, 0, 0, 0, 0, 2, 0} {2, 4, 6, 5, 4, 3, 3}

64 42, 315, 228, 124 36, 212, 114 {0, 1, 0, 0, 0, 0, 0} {3, 6, 8, 6, 4, 2, 4}

66 5, 331, 135 312, 120 {2, 0, 0, 0, 0, 0, 0} {4, 6, 8, 6, 4, 2, 4}

70 46, 316, 220, 121 4, 36, 214, 16 {0, 0, 0, 0, 0, 1, 1} {3, 6, 9, 7, 5, 3, 5}

76 5, 48, 316, 216, 116 42, 38, 28, 18 {1, 0, 0, 0, 1, 0, 0} {4, 7, 10, 8, 6, 3, 5}

82 53, 48, 315, 216, 19 44, 36, 28, 16 {0, 0, 1, 0, 0, 0, 0} {4, 8, 12, 9, 6, 3, 6}

84 57, 328, 114 47, 214 {0, 0, 0, 0, 0, 0, 2} {4, 8, 12, 9, 6, 3, 7}

84 510, 322, 117 52, 314, 14 {0, 0, 0, 0, 2, 0, 0} {4, 8, 12, 10, 8, 4, 6}

84 7, 57, 416, 3, 124 52, 48, 114 {2, 0, 0, 0, 1, 0, 0} {6, 10, 14, 11, 8, 4, 7}

86 7, 515, 310, 121 6, 49, 27 {2, 0, 0, 0, 0, 2, 0} {6, 10, 14, 11, 8, 5, 7}

90 62, 56, 48, 311, 210, 16 52, 44, 36, 24, 14 {0, 1, 0, 0, 1, 0, 0} {5, 10, 14, 11, 8, 4, 7}

92 7, 62, 57, 410, 36, 26, 19 54, 44, 32, 24, 16 {1, 0, 1, 0, 0, 0, 0} {6, 11, 16, 12, 8, 4, 8}

94 72, 513, 315, 19 56, 36, 18 {0, 2, 0, 0, 0, 0, 0} {6, 12, 16, 12, 8, 4, 8}

94 7, 64, 57, 46, 37, 28, 16 6, 52, 45, 34, 23, 12 {1, 0, 0, 1, 0, 1, 0} {6, 11, 16, 13, 9, 5, 8}

96 11, 714, 3, 121 76, 114 {2, 2, 0, 0, 0, 0, 0} {10, 18, 24, 18, 12, 6, 12}

96 9, 75, 514, 3, 116 66, 4, 28 {2, 0, 0, 0, 0, 0, 2} {8, 14, 20, 15, 10, 5, 11}

96 72, 64, 55, 48, 38, 24, 16 6, 54, 42, 34, 25 {0, 1, 0, 0, 0, 1, 1} {6, 12, 17, 13, 9, 5, 9}

98 73, 64, 54, 48, 38, 24, 14 62, 52, 44, 34, 22, 12 {0, 0, 1, 0, 1, 0, 0} {6, 12, 18, 14, 10, 5, 9}

100 75, 510, 315, 13 63, 47, 25 {0, 0, 0, 2, 0, 0, 0} {6, 12, 18, 15, 10, 5, 9}

100 9, 77, 59, 37, 19 72, 56, 32, 16 {2, 0, 0, 0, 2, 0, 0} {8, 14, 20, 16, 12, 6, 10}

102 11, 97, 7, 57, 3, 114 10, 67, 4 {2, 0, 0, 0, 2, 2, 0} {10, 18, 26, 21, 16, 9, 13}

102 11, 84, 76, 64, 32, 24, 110 8, 74, 6, 25, 14 {2, 1, 0, 0, 0, 1, 1} {10, 18, 25, 19, 13, 7, 13}

104 95, 72, 513, 19 82, 63, 45, 2 {0, 0, 0, 0, 2, 0, 2} {8, 16, 24, 19, 14, 7, 13}

104 92, 78, 55, 310, 14 8, 64, 45, 22 {0, 2, 0, 0, 0, 2, 0} {8, 16, 22, 17, 12, 7, 11}

104 9, 82, 73, 64, 55, 44, 34, 24, 12 72, 62, 52, 42, 32, 22, 12 {1, 0, 1, 0, 1, 0, 0} {8, 15, 22, 17, 12, 6, 11}

106 13, 99, 55, 3, 111 10, 84, 4, 25 {2, 2, 0, 0, 0, 2, 0} {12, 22, 30, 23, 16, 9, 15}

106 93, 75, 510, 36, 13 74, 52, 36 {0, 0, 2, 0, 0, 0, 0} {8, 16, 24, 18, 12, 6, 12}
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Dimension [1,0,0,0,0,0,0] [0,0,0,0,0,1,0] Root Map Weight Map

106 11, 9, 84, 74, 64, 5, 34, 24, 14 82, 72, 62, 32, 22, 14 {2, 0, 1, 0, 1, 0, 0} {10, 18, 26, 20, 14, 7, 13}

108 11, 93, 78, 53, 37, 13 83, 63, 4, 25 {2, 0, 0, 2, 0, 0, 0} {10, 18, 26, 21, 14, 7, 13}

108 102, 9, 82, 74, 62, 54, 44, 33, 13 82, 72, 52, 42, 32, 12 {0, 1, 1, 0, 1, 0, 0} {9, 18, 26, 20, 14, 7, 13}

108 11, 102, 93, 7, 66, 53, 42, 3, 16 92, 64, 52, 14 {1, 0, 1, 0, 2, 0, 0} {10, 19, 28, 22, 16, 8, 14}

108 11, 102, 93, 82, 7, 62, 53, 42, 32, 24, 13 10, 72, 63, 52, 4 {1, 0, 1, 0, 1, 2, 0} {10, 19, 28, 22, 16, 9, 14}

110 112, 94, 74, 57, 33, 13 92, 72, 54, 14 {0, 2, 0, 0, 2, 0, 0} {10, 20, 28, 22, 16, 8, 14}

110 13, 11, 96, 74, 52, 34, 15 94, 52, 32, 14 {2, 0, 2, 0, 0, 0, 0} {12, 22, 32, 24, 16, 8, 16}

110 112, 102, 9, 82, 73, 62, 5, 44, 33, 13 10, 8, 72, 6, 52, 42 {0, 1, 0, 1, 0, 2, 1} {10, 20, 29, 23, 16, 9, 15}

112 113, 93, 75, 54, 36 10, 82, 63, 43 {0, 0, 2, 0, 0, 2, 0} {10, 20, 30, 23, 16, 9, 15}

112 13, 113, 92, 77, 5, 34, 13 102, 82, 6, 43, 2 {2, 0, 0, 0, 2, 0, 2} {12, 22, 32, 25, 18, 9, 17}

112 15, 115, 93, 7, 54, 3, 16 112, 92, 52, 16 {2, 2, 0, 0, 2, 0, 0} {14, 26, 36, 28, 20, 10, 18}

112 13, 11, 102, 92, 84, 62, 52, 35, 12 10, 92, 72, 42, 23 {2, 0, 1, 1, 0, 1, 0} {12, 22, 32, 25, 17, 9, 16}

114 133, 11, 93, 75, 53, 3, 13 112, 74, 32 {0, 0, 2, 0, 2, 0, 0} {12, 24, 36, 28, 20, 10, 18}

114 15, 122, 11, 102, 93, 7, 62, 42, 32, 13 112, 10, 8, 52, 23 {2, 1, 0, 1, 1, 0, 1} {14, 26, 37, 29, 20, 10, 19}

114 15, 122, 112, 102, 9, 72, 62, 42, 32, 13 12, 10, 92, 6, 4, 32 {2, 1, 0, 1, 0, 2, 1} {14, 26, 37, 29, 20, 11, 19}

116 15, 13, 114, 92, 73, 52, 34 12, 102, 8, 6, 42, 2 {2, 0, 2, 0, 0, 2, 0} {14, 26, 38, 29, 20, 11, 19}

118 17, 15, 132, 112, 93, 7, 53, 3, 1 132, 92, 52, 12 {2, 0, 2, 0, 2, 0, 0} {16, 30, 44, 34, 24, 12, 22}

118 19, 162, 15, 112, 102, 7, 62, 3, 13 16, 112, 10, 6, 12 {2, 1, 0, 1, 2, 2, 1} {18, 34, 49, 39, 28, 15, 25}

120 23, 173, 15, 11, 93, 3, 13 172, 92, 14 {2, 2, 2, 0, 2, 0, 0} {22, 42, 60, 46, 32, 16, 30}

120 19, 17, 152, 113, 9, 72, 5, 32 16, 12, 102, 6, 2 {2, 0, 2, 0, 2, 2, 0} {18, 34, 50, 39, 28, 15, 25}

122 23, 19, 17, 152, 112, 9, 7, 32 {18, 16, 10, 8, 4} {2, 2, 0, 2, 0, 2, 2} {22, 42, 60, 47, 32, 17, 31}

124 27, 23, 19, 17, 15, 112, 7, 3 {22, 16, 12, 6} {2, 2, 0, 2, 2, 2, 2} {26, 50, 72, 57, 40, 21, 37}

126 {35, 27, 23, 19, 15, 11, 3} {28, 18, 10} {2, 2, 2, 2, 2, 2, 2} {34, 66, 96, 75, 52, 27, 49}

Partitions are shown for the E7 adjoint and vector representations only. Homomorphisms

identified include eight root maps which are not recognised Characteristics of nilpotent

orbits: these are highlighted in red.
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D.5 E8

Dimension [0,0,0,0,0,1,0] Root Map Weight Map

0 1248 {0, 0, 0, 0, 0, 0, 0, 0} {0, 0, 0, 0, 0, 0, 0, 0}

58 3, 256, 1133 {0, 0, 0, 0, 0, 0, 1, 0} {2, 4, 6, 5, 4, 3, 2, 3}

92 314, 264, 178 {1, 0, 0, 0, 0, 0, 0, 0} {4, 7, 10, 8, 6, 4, 2, 5}

112 42, 327, 252, 155 {0, 0, 0, 0, 0, 1, 0, 0} {4, 8, 12, 10, 8, 6, 3, 6}

114 5, 355, 178 {0, 0, 0, 0, 0, 0, 2, 0} {4, 8, 12, 10, 8, 6, 4, 6}

128 48, 328, 248, 136 {0, 0, 0, 0, 0, 0, 0, 1} {5, 10, 15, 12, 9, 6, 3, 8}

136 5, 412, 332, 232, 135 {1, 0, 0, 0, 0, 0, 1, 0} {6, 11, 16, 13, 10, 7, 4, 8}

146 53, 416, 327, 232, 124 {0, 0, 0, 0, 1, 0, 0, 0} {6, 12, 18, 15, 12, 8, 4, 9}

148 7, 511, 432, 3, 155 {1, 0, 0, 0, 0, 0, 2, 0} {8, 15, 22, 18, 14, 10, 6, 11}

154 57, 414, 328, 228, 117 {0, 1, 0, 0, 0, 0, 0, 0} {7, 14, 20, 16, 12, 8, 4, 10}

156 514, 350, 128 {2, 0, 0, 0, 0, 0, 0, 0} {8, 14, 20, 16, 12, 8, 4, 10}

162 62, 510, 416, 323, 218, 117 {1, 0, 0, 0, 0, 1, 0, 0} {8, 15, 22, 18, 14, 10, 5, 11}

164 7, 62, 515, 418, 310, 214, 124 {0, 0, 0, 0, 1, 0, 1, 0} {8, 16, 24, 20, 16, 11, 6, 12}

166 72, 525, 327, 128 {0, 0, 0, 0, 0, 2, 0, 0} {8, 16, 24, 20, 16, 12, 6, 12}

168 11, 726, 3, 152 {0, 0, 0, 0, 0, 2, 2, 0} {12, 24, 36, 30, 24, 18, 10, 18}

168 64, 510, 416, 320, 220, 110 {0, 0, 0, 1, 0, 0, 0, 0} {8, 16, 24, 20, 15, 10, 5, 12}

172 7, 66, 511, 416, 315, 214, 113 {0, 1, 0, 0, 0, 0, 1, 0} {9, 18, 26, 21, 16, 11, 6, 13}

176 72, 66, 513, 412, 316, 214, 19 {0, 0, 0, 0, 0, 1, 0, 1} {9, 18, 27, 22, 17, 12, 6, 14}

178 73, 68, 58, 416, 316, 28, 111 {1, 0, 0, 0, 1, 0, 0, 0} {10, 19, 28, 23, 18, 12, 6, 14}

178 9, 75, 612, 514, 42, 3, 216, 119 {0, 1, 0, 0, 0, 0, 2, 0} {11, 22, 32, 26, 20, 14, 8, 16}

180 9, 711, 521, 311, 124 {2, 0, 0, 0, 0, 0, 2, 0} {12, 22, 32, 26, 20, 14, 8, 16}

182 75, 66, 510, 414, 315, 210, 16 {0, 0, 1, 0, 0, 0, 0, 0} {10, 20, 30, 24, 18, 12, 6, 15}

184 78, 520, 328, 18 {0, 0, 0, 0, 0, 0, 0, 2} {10, 20, 30, 24, 18, 12, 6, 16}

184 11, 86, 714, 66, 32, 214, 121 {0, 0, 0, 0, 0, 1, 2, 1} {13, 26, 39, 32, 25, 18, 10, 20}

186 82, 75, 68, 59, 412, 311, 28, 17 {0, 1, 0, 0, 0, 1, 0, 0} {11, 22, 32, 26, 20, 14, 7, 16}

188 84, 76, 64, 510, 416, 36, 24, 110 {1, 0, 0, 1, 0, 0, 0, 0} {12, 23, 34, 28, 21, 14, 7, 17}

188 9, 82, 77, 68, 59, 48, 38, 28, 19 {1, 0, 0, 0, 1, 0, 1, 0} {12, 23, 34, 28, 22, 15, 8, 17}

190 11, 9, 88, 78, 68, 5, 38, 28, 115 {1, 0, 0, 0, 1, 0, 2, 0} {14, 27, 40, 33, 26, 18, 10, 20}

192 9, 84, 75, 68, 59, 48, 39, 28, 14 {0, 0, 1, 0, 0, 0, 1, 0} {12, 24, 36, 29, 22, 15, 8, 18}

192 92, 82, 78, 68, 55, 410, 310, 24, 17 {0, 0, 0, 1, 0, 1, 0, 0} {12, 24, 36, 30, 23, 16, 8, 18}

194 93, 713, 514, 318, 16 {0, 0, 0, 0, 2, 0, 0, 0} {12, 24, 36, 30, 24, 16, 8, 18}

194 95, 84, 72, 66, 513, 410, 22, 112 {1, 0, 1, 0, 0, 0, 0, 0} {14, 27, 40, 32, 24, 16, 8, 20}

196 97, 77, 521, 37, 110 {0, 2, 0, 0, 0, 0, 0, 0} {14, 28, 40, 32, 24, 16, 8, 20}

196 102, 9, 86, 78, 62, 58, 48, 37, 110 {1, 0, 0, 0, 1, 1, 0, 0} {14, 27, 40, 33, 26, 18, 9, 20}

196 11, 102, 97, 7, 614, 57, 42, 3, 117 {2, 0, 0, 0, 1, 0, 1, 0} {16, 30, 44, 36, 28, 19, 10, 22}

196 13, 102, 99, 88, 55, 42, 3, 210, 114 {0, 0, 0, 1, 0, 1, 2, 0} {16, 32, 48, 40, 31, 22, 12, 24}
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Dimension [0,0,0,0,0,1,0] Root Map Weight Map

196 93, 84, 75, 66, 510, 48, 37, 26, 13 {0, 1, 0, 0, 1, 0, 0, 0} {13, 26, 38, 31, 24, 16, 8, 19}

196 11, 93, 86, 78, 66, 53, 42, 37, 210, 16 {0, 0, 1, 0, 0, 0, 2, 0} {14, 28, 42, 34, 26, 18, 10, 21}

198 11, 96, 714, 57, 314, 18 {0, 0, 0, 0, 0, 0, 2, 2} {14, 28, 42, 34, 26, 18, 10, 22}

198 112, 98, 78, 515, 33, 114 {2, 0, 0, 0, 0, 2, 0, 0} {16, 30, 44, 36, 28, 20, 10, 22}

198 13, 11, 914, 74, 56, 38, 116 {0, 0, 0, 0, 2, 0, 2, 0} {16, 32, 48, 40, 32, 22, 12, 24}

200 15, 119, 97, 7, 58, 3, 121 {2, 0, 0, 0, 0, 2, 2, 0} {20, 38, 56, 46, 36, 26, 14, 28}

200 102, 93, 84, 76, 66, 56, 48, 36, 24, 13 {0, 0, 1, 0, 0, 1, 0, 0} {14, 28, 42, 34, 26, 18, 9, 21}

202 104, 93, 82, 76, 66, 59, 44, 36, 22, 14 {0, 1, 0, 1, 0, 0, 0, 0} {15, 30, 44, 36, 27, 18, 9, 22}

202 11, 102, 93, 86, 74, 66, 56, 44, 37, 24, 13 {0, 1, 0, 0, 1, 0, 1, 0} {15, 30, 44, 36, 28, 19, 10, 22}

202 11, 104, 93, 82, 75, 68, 57, 44, 32, 24, 16 {1, 0, 1, 0, 0, 0, 1, 0} {16, 31, 46, 37, 28, 19, 10, 23}

204 112, 104, 9, 84, 77, 64, 55, 48, 33, 16 {0, 1, 0, 0, 0, 1, 0, 1} {16, 32, 47, 38, 29, 20, 10, 24}

204 112, 102, 94, 84, 74, 66, 57, 44, 34, 24, 13 {1, 0, 0, 1, 0, 1, 0, 0} {16, 31, 46, 38, 29, 20, 10, 23}

204 13, 11, 104, 96, 84, 74, 62, 52, 44, 35, 26, 15 {0, 1, 0, 0, 1, 0, 2, 0} {17, 34, 50, 41, 32, 22, 12, 25}

206 13, 112, 104, 93, 88, 64, 54, 311, 15 {0, 0, 0, 1, 0, 0, 2, 1} {17, 34, 51, 42, 32, 22, 12, 26}

206 113, 102, 93, 84, 75, 66, 54, 46, 36, 13 {0, 0, 1, 0, 1, 0, 0, 0} {16, 32, 48, 39, 30, 20, 10, 24}

206 13, 113, 104, 92, 84, 77, 62, 5, 46, 34, 22, 16 {1, 0, 1, 0, 0, 0, 2, 0} {18, 35, 52, 42, 32, 22, 12, 26}

208 114, 96, 710, 510, 310 {0, 0, 0, 2, 0, 0, 0, 0} {16, 32, 48, 40, 30, 20, 10, 24}

208 13, 115, 96, 710, 55, 39, 14 {0, 2, 0, 0, 0, 0, 2, 0} {18, 36, 52, 42, 32, 22, 12, 26}

208 132, 114, 99, 73, 513, 3, 18 {0, 0, 0, 0, 0, 2, 0, 2} {18, 36, 54, 44, 34, 24, 12, 28}

208 142, 116, 104, 92, 7, 610, 53, 3, 111 {1, 0, 0, 1, 0, 2, 0, 0} {20, 39, 58, 48, 37, 26, 13, 29}

208 122, 112, 102, 94, 84, 75, 62, 56, 46, 33, 14 {0, 0, 0, 1, 0, 1, 0, 1} {17, 34, 51, 42, 32, 22, 11, 26}

208 122, 113, 102, 92, 84, 75, 66, 55, 42, 32, 24, 13 {1, 0, 1, 0, 0, 1, 0, 0} {18, 35, 52, 42, 32, 22, 11, 26}

208 15, 122, 115, 104, 93, 82, 7, 62, 54, 42, 32, 26, 16 {1, 0, 0, 1, 0, 1, 2, 0} {20, 39, 58, 48, 37, 26, 14, 29}

210 17, 155, 11, 914, 3, 116 {2, 2, 0, 0, 0, 0, 2, 0} {26, 50, 72, 58, 44, 30, 16, 36}

210 133, 115, 93, 713, 53, 35, 16 {2, 0, 0, 0, 2, 0, 0, 0} {20, 38, 56, 46, 36, 24, 12, 28}

210 15, 135, 11, 99, 75, 56, 111 {2, 0, 0, 0, 0, 0, 2, 2} {22, 42, 62, 50, 38, 26, 14, 32}

210 15, 124, 112, 104, 95, 72, 64, 44, 36, 16 {0, 1, 0, 0, 0, 1, 2, 1} {20, 40, 59, 48, 37, 26, 14, 30}

210 13, 122, 11, 104, 94, 82, 75, 64, 52, 46, 34, 13 {0, 0, 1, 0, 1, 0, 1, 0} {18, 36, 54, 44, 34, 23, 12, 27}

212 135, 11, 99, 75, 510, 16 {0, 0, 2, 0, 0, 0, 0, 0} {20, 40, 60, 48, 36, 24, 12, 30}

212 132, 122, 11, 104, 92, 84, 74, 64, 54, 42, 35, 12 {0, 1, 0, 1, 0, 1, 0, 0} {19, 38, 56, 46, 35, 24, 12, 28}

212 133, 122, 11, 102, 93, 84, 75, 64, 53, 42, 32, 22, 13 {1, 0, 1, 0, 1, 0, 0, 0} {20, 39, 58, 47, 36, 24, 12, 29}

212 15, 13, 122, 114, 104, 92, 82, 73, 62, 52, 44, 34, 22, 13 {0, 0, 1, 0, 1, 0, 2, 0} {20, 40, 60, 49, 38, 26, 14, 30}

214 15, 132, 117, 95, 75, 55, 38, 1 {0, 0, 0, 2, 0, 0, 2, 0} {20, 40, 60, 50, 38, 26, 14, 30}

214 17, 15, 136, 112, 97, 7, 57, 3, 18 {2, 0, 0, 0, 2, 0, 2, 0} {24, 46, 68, 56, 44, 30, 16, 34}

214 142, 133, 11, 104, 93, 82, 76, 62, 52, 44, 3, 14 {0, 1, 1, 0, 0, 1, 0, 0} {21, 42, 62, 50, 38, 26, 13, 31}

216 23, 177, 15, 11, 97, 3, 114 {2, 0, 0, 0, 2, 2, 2, 0} {32, 62, 92, 76, 60, 42, 22, 46}

216 152, 133, 115, 94, 78, 53, 35, 12 {0, 2, 0, 0, 0, 2, 0, 0} {22, 44, 64, 52, 40, 28, 14, 32}
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216 19, 164, 15, 116, 104, 7, 64, 3, 110 {2, 1, 0, 0, 0, 1, 2, 1} {28, 54, 79, 64, 49, 34, 18, 40}

216 162, 133, 124, 112, 92, 82, 75, 62, 53, 3, 22, 14 {0, 1, 0, 1, 0, 2, 0, 0} {23, 46, 68, 56, 43, 30, 15, 34}

216 17, 142, 132, 124, 112, 102, 9, 82, 72, 62, 53, 35, 22, 12 {0, 1, 0, 1, 0, 1, 2, 0} {23, 46, 68, 56, 43, 30, 16, 34}

216 15, 142, 13, 122, 112, 102, 93, 84, 73, 62, 53, 42, 32, 22, 1 {1, 0, 1, 0, 1, 0, 1, 0} {22, 43, 64, 52, 40, 27, 14, 32}

218 172, 153, 13, 116, 93, 77, 33, 15 {2, 0, 0, 0, 0, 2, 0, 2} {26, 50, 74, 60, 46, 32, 16, 38}

218 19, 154, 135, 112, 92, 76, 36, 14 {0, 2, 0, 0, 0, 2, 2, 0} {26, 52, 76, 62, 48, 34, 18, 38}

218 162, 152, 13, 122, 112, 104, 92, 74, 64, 5, 42, 14 {0, 1, 0, 1, 0, 1, 0, 1} {24, 48, 71, 58, 44, 30, 15, 36}

218 162, 15, 133, 122, 11, 102, 93, 84, 7, 62, 53, 42, 3, 13 {1, 0, 1, 0, 1, 1, 0, 0} {24, 47, 70, 57, 44, 30, 15, 35}

218 17, 15, 142, 132, 122, 112, 102, 93, 82, 7, 62, 53, 42, 32, 22, 1 {1, 0, 1, 0, 1, 0, 2, 0} {24, 47, 70, 57, 44, 30, 16, 35}

220 17, 153, 132, 116, 93, 75, 54, 34 {0, 0, 2, 0, 0, 0, 2, 0} {24, 48, 72, 58, 44, 30, 16, 36}

220 21, 174, 15, 135, 95, 7, 54, 17 {2, 0, 0, 0, 0, 2, 2, 2} {30, 58, 86, 70, 54, 38, 20, 44}

220 182, 15, 144, 132, 11, 102, 93, 75, 53, 3, 14 {0, 0, 1, 1, 0, 2, 0, 0} {26, 52, 78, 64, 49, 34, 17, 39}

220 19, 17, 162, 152, 122, 113, 104, 9, 72, 62, 5, 32, 22, 13 {2, 0, 1, 0, 1, 0, 2, 0} {28, 54, 80, 65, 50, 34, 18, 40}

220 17, 162, 15, 132, 122, 112, 102, 93, 82, 72, 62, 52, 42, 3, 12 {0, 1, 1, 0, 1, 0, 1, 0} {25, 50, 74, 60, 46, 31, 16, 37}

222 19, 172, 153, 13, 116, 93, 73, 52, 34, 1 {2, 0, 0, 2, 0, 0, 2, 0} {28, 54, 80, 66, 50, 34, 18, 40}

222 23, 182, 173, 162, 15, 11, 102, 93, 82, 32, 24, 13 {1, 0, 1, 0, 1, 2, 2, 0} {32, 63, 94, 77, 60, 42, 22, 47}

222 182, 17, 15, 142, 132, 113, 102, 92, 82, 7, 62, 53, 3, 12 {0, 1, 1, 0, 1, 1, 0, 0} {27, 54, 80, 65, 50, 34, 17, 40}

224 192, 17, 153, 133, 113, 93, 75, 5, 33 {0, 0, 2, 0, 0, 2, 0, 0} {28, 56, 84, 68, 52, 36, 18, 42}

224 21, 19, 172, 154, 116, 74, 53, 3, 12 {0, 2, 0, 0, 2, 0, 2, 0} {30, 60, 88, 72, 56, 38, 20, 44}

224 21, 193, 152, 133, 115, 92, 72, 34, 12 {2, 0, 2, 0, 0, 0, 2, 0} {32, 62, 92, 74, 56, 38, 20, 46}

224 202, 17, 162, 152, 13, 122, 112, 93, 82, 7, 53, 3, 12 {1, 0, 1, 1, 0, 2, 0, 0} {30, 59, 88, 72, 55, 38, 19, 44}

224 23, 19, 182, 17, 162, 152, 112, 102, 9, 82, 7, 42, 32, 13 {0, 1, 0, 1, 0, 2, 2, 1} {32, 64, 95, 78, 60, 42, 22, 48}

226 23, 192, 173, 153, 113, 93, 72, 5, 34 {0, 0, 2, 0, 0, 2, 2, 0} {32, 64, 96, 78, 60, 42, 22, 48}

226 25, 21, 194, 153, 114, 9, 72, 5, 32, 13 {2, 0, 0, 2, 0, 2, 2, 0} {36, 70, 104, 86, 66, 46, 24, 52}

226 23, 21, 192, 17, 153, 132, 113, 9, 74, 32, 12 {2, 0, 0, 0, 2, 0, 2, 2} {34, 66, 98, 80, 62, 42, 22, 50}

226 23, 222, 19, 162, 15, 133, 122, 11, 102, 7, 42, 3, 13 {2, 1, 0, 1, 1, 0, 1, 1} {36, 70, 103, 84, 64, 43, 22, 52}

228 232, 21, 19, 17, 153, 132, 114, 9, 7, 5, 33 {2, 0, 2, 0, 0, 2, 0, 0} {36, 70, 104, 84, 64, 44, 22, 52}

228 27, 23, 222, 19, 17, 162, 15, 122, 112, 7, 62, 3, 13 {2, 1, 0, 1, 0, 2, 2, 1} {40, 78, 115, 94, 72, 50, 26, 58}

230 27, 232, 21, 19, 172, 152, 13, 113, 72, 5, 32 {2, 0, 2, 0, 0, 2, 2, 0} {40, 78, 116, 94, 72, 50, 26, 58}

232 29, 27, 232, 192, 17, 153, 112, 9, 7, 5, 3 {2, 0, 2, 0, 2, 0, 2, 0} {44, 86, 128, 104, 80, 54, 28, 64}

232 35, 282, 27, 23, 19, 182, 15, 11, 102, 3, 13 {2, 1, 0, 1, 2, 2, 2, 1} {52, 102, 151, 124, 96, 66, 34, 76}

232 31, 27, 25, 23, 21, 192, 152, 13, 112, 72, 3, 1 {2, 0, 0, 2, 0, 2, 2, 2} {46, 90, 134, 110, 84, 58, 30, 68}

234 35, 29, 272, 23, 192, 17, 15, 112, 9, 32 {2, 0, 2, 0, 2, 2, 2, 0} {52, 102, 152, 124, 96, 66, 34, 76}

236 39, 35, 29, 27, 232, 19, 17, 15, 11, 7, 3 {2, 2, 0, 2, 0, 2, 2, 2} {60, 118, 174, 142, 108, 74, 38, 88}

238 {47, 39, 35, 29, 27, 23, 19, 15, 11, 3} {2, 2, 0, 2, 2, 2, 2, 2} {72, 142, 210, 172, 132, 90, 46, 106}

240 {59, 47, 39, 35, 27, 23, 15, 3} {2, 2, 2, 2, 2, 2, 2, 2} {92, 182, 270, 220, 168, 114, 58, 136}

Partitions are shown for the adjoint representation only. Homomorphisms identified in-

clude 39 root maps which are not recognised Characteristics of nilpotent orbits: these are

highlighted in red.
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