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1 Introduction

In recent years, soft graviton theorem has been studied from various perspectives — per-

turbative quantum field theory [1–31], perturbative string theory [32–43] and BMS sym-

metry [44–53]. Our goal in this paper will be to give a general proof of the subleading

soft graviton theorem in any perturbative quantum field theory that includes gravity and

gives S-matrix elements free from infrared and ultraviolet divergences. At present the only

known candidates for such theories are heterotic and type II string field theories [54] in

backgrounds with five or more non-compact flat space-time dimensions.1

Our strategy will be the same one followed in [55], with the difference that instead

of the classical action we work with the one particle irreducible (1PI) effective action.

We begin with the gauge invariant 1PI effective action and expand it in powers of all

fields including the graviton. We then gauge fix it using a Lorentz covariant gauge fixing

condition. The resulting action has manifest Lorentz invariance but not manifest general

coordinate invariance. We now introduce the soft graviton field Sµν by covariantizing this

action with respect to the soft graviton field.2 This requires replacing the background

metric by ηµν +2Sµν and the ordinary derivatives by covariant derivatives computed with

this background metric. To first subleading order in soft momentum, there are no additional

terms coupling the soft graviton to the rest of the fields. Once this replacement is made,

we can compute the amplitude involving the soft graviton from the Feynman diagrams of

1When the number of non-compact space-time dimensions is 4, the soft graviton theorem is expected to

get corrected due to infrared divergences [8, 52] unless one uses an unusual definition of the soft limit [11].

Our analysis does not include these theories.
2As mentioned in [55], for superstring field theory this procedure would follow from background inde-

pendence of string field theory that ensures that switching on a soft graviton mode of the string field is

equivalent to deforming the background target space metric used for constructing the world-sheet conformal

field theory by a soft graviton mode. This is known to be true for bosonic string field theory [56, 57] but

has not yet been proven for superstring field theory [58].
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Γ Γ
ǫi, pi pi + k

ε, k

ǫ1, p1

ǫi−1, pi−1

ǫN , pN
· ·

· ·

ǫi+1, pi+1

Figure 1. Source of the leading contribution to the string loop amplitude with one external

soft graviton. ǫi and pi denote the polarization and momentum of the i-th external finite energy

particles, while εµν and k denote the polarization and momentum of the external soft graviton.

the resulting quantum field theory. Our use of 1PI effective action entails that we need to

compute only the tree amplitudes.

The other technical difference from the analysis of [55] is that while covariantizing the

action we take all the fields to carry flat tangent space indices instead of curved space

indices. This allows us to deal with fermions in the same way as the bosons. We now have

to use the vielbein e a
µ instead of the metric to describe the soft graviton field, but to first

order in Sµν — which is all we shall need for our analysis — this is done simply by taking

e a
µ to be δ a

µ + S a
µ where the indices are raised and lowered by the flat background metric

η. Since Sµν = Sνµ, this choice of e a
µ amounts to gauge fixing the local Lorentz symmetry

from the beginning and allows us to include superstring field theory in our framework where

local Lorentz symmetry is gauge fixed from the beginning.

The rest of the paper is organized as follows. In section 2 we prove the subleading

soft graviton theorem for one external soft graviton but arbitrary number of finite energy

external states. Some of the technical details of this analysis are given in appendices A

and B. In section 3 we prove the leading soft graviton theorem for arbitrary number of soft

gravitons and arbitrary number of finite energy external states. In all cases our results are

valid to all orders in the perturbation theory.

2 Subleading soft theorem for one external soft graviton

In this section we shall prove the subleading soft graviton theorem for amplitudes with one

external soft graviton, but arbitrary number of finite energy external states. We begin by

describing our notations.

In a Feynman diagram we shall call a line soft if all components of its momentum

are small, nearly on-shell if it carries finite energy but satisfies the on-shell condition

approximately and hard it is neither soft nor nearly on-shell. We shall work in backgrounds

where the number of non-compact space-times dimensions is five or more, and expand the

1PI action in powers of fields around the extremum describing the vacuum solution so that
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ǫ1, p1
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·

·

ǫN , pN

ε, k

Γ̃

Figure 2. Source of the subleading contribution to the string loop amplitude with one external

soft graviton.

there are no tadpoles in the resulting Feynman diagrams. In that case by standard power

counting [59] one can show that there are no hidden inverse powers of soft momentum

coming from the 1PI vertices with at most one soft external state, even in the presence

of massless fields, as long as there are no cubic coupling without derivatives among the

massless bosonic fields. Since we shall use the vertices computed from the 1PI effective

action, we need to draw only tree graphs, and for this reason there is a clear labelling of

each line as soft, nearly on-shell or hard. We use a thin line to denote external soft particle,

and a thick line to denote external or internal particles carrying finite momentum and /

or energy. All internal lines will denote the full renormalized propagator. We also denote

by Γ the amputated connected Green’s function from which propagators associated with

external legs have been removed — for three external legs this coincides with the 1PI vertex.

The leading contribution to the amplitude, carrying one power of soft momentum k in

the denominator, comes from the diagrams of the type shown in figure 1. We shall use the

sign convention that all external momenta enter the diagram so that incoming (outgoing)

particles carry momentum labels with positive (negative) energy component. If Mi denotes

the mass of the i-th external particle then on-shell condition gives

p2i +M2
i = 0, k2 = 0 , (2.1)

together with conditions on polarizations that will be discussed later. Now if we take the

internal particle carrying momentum pi+k to have the same mass Mi, then the propagator

gives a terms proportional to {(pi + k)2 + M2
i }

−1 = (2pi · k)
−1. This is responsible for

producing the inverse power of soft momentum in the amplitude.

The first subleading contribution in powers of soft momentum comes from the sub-

leading contribution from figure 1 as well as the leading contribution from figure 2. Γ̃

in figure 2 denotes amputated Green’s function from which the contributions of the type

shown in figure 1 have been subtracted. As a result Γ̃ has no contribution containing

inverse powers of momentum.

For computing the contributions from these diagrams we need to determine the cou-

pling of the soft graviton to the rest of the fields. This is done by following the procedure
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outlined in the introduction. We introduce vielbein e a
µ and the inverse vielbein E

µ
a in

terms of the soft graviton field Sµν to first order in Sµν as

e a
µ = δ a

µ + S a
µ , E µ

a = δ µ
a − S µ

a , (2.2)

where all indices are raised and lowered by the flat metric η. Let {Φα} denote the collection

of all the fields in the theory, transforming in some large reducible representation of the

Lorentz group.3 Now in the Lorentz invariant gauge fixed 1PI effective action we replace

derivatives of the fields Φα as follows:

∂a1 . . . ∂anΦα ⇒ E µ1
a1

· · ·E µn
an Dµ1

. . . Dµn
Φα (2.3)

where

O1DµO2Φα ≡ O1 ∂µO2Φα +O1
1

2
ωab
µ (Jab)

γ
α O2Φγ , ωab

µ ≡
(
∂bS a

µ − ∂aS b
µ

)
. (2.4)

Here the Oi’s denote any collection of covariant derivative operators, and Jab are the angu-

lar momentum generators, normalized such that if Φ carries covariant vector indices, then

(Jab) d
c = δacη

bd − δbcη
ad . (2.5)

Note that in the expression for Dµ in (2.4) we have not included the terms involving the

Christoffel symbol Γρ
µν , needed for defining Dµ acting on another covariant derivative Dν

hidden inside O2. We have provided the justification of this in appendix A.

First let us evaluate the contribution from figure 2. This analysis will be more or

less identical to the one given in [55]; so we shall be brief. Since we are interested in

computing the leading contribution from this graph, we can ignore terms involving ωab
µ since

they involve derivatives of Sµν and therefore have one or more powers of soft momentum.

Therefore for this amplitude the effect of coupling the soft graviton can be obtained by

replacing the vielbeins as in (2.2) with Sµν given by the constant polarization tensor εµν .

This is equivalent to replacing, in the amplitude without the soft graviton, the vielbeins as

e a
µ = δ a

µ + ε a
µ , E µ

a = δ µ
a − ε µ

a . (2.6)

Instead of making this replacement inside each vertex and propagator of Γ̃, we can also

make this replacement in the final amplitude written in the constant vielbein background.

Now since the fields and hence the polarization tensors carry flat tangent space indices, the

only place where a vielbein enters in the final expression for the amplitude is in converting

the indices of the external momenta pi from space-time indices to flat indices. This can be

achieved by using the combination E
µ

a piµ = pia−ε b
a pib. Once this is done the indices can be

contracted with each other by the metric η without any reference to the vielbeins. Therefore

the effect of coupling soft graviton in the amplitude in figure 2 is to shift pia by −ε b
a pib.

3Even though superstring field theory has infinite number of fields, for any given scattering process

we can work with an effective field theory of a finite number of fields by integrating out fields that are

sufficiently heavy so that they are not produced in the scattering [54]. Therefore we can assume that the

number of fields is finite.
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In order to express the result in a convenient form, let us introduce the symbol Γα
(i)(pi)

to be the quantity such that

ǫi,αΓ
α
(i)(pi) = Γ(ǫ1, p1; . . . ; ǫN , pN ) , (2.7)

where the right hand side denotes the amputated N-point Green’s function with general

off-shell momenta p1, . . . , pN and polarization tensors ǫ1, . . . , ǫN without the external soft

photon. Therefore the arguments ǫ1, p1; . . . ; ǫN , pN other than ǫi, pi are hidden in Γα
(i)(pi).

With this notation, the result of the previous paragraph can be used to express the ampli-

tude shown in figure 2 as

−
N∑

i=1

ε b
a pib ǫi,α

∂

∂pia
Γα
(i)(pi) . (2.8)

We now turn to the contribution from figure 1. For this we need to study the three

point coupling between a single soft graviton and two finite energy particles to the first

subleading order in the soft momenta. By our previous argument this may be obtained

by covariantizing the quadratic term in the manifestly Lorentz invariant, gauge fixed 1PI

effective action without the soft graviton. We begin by writing the general form of the

quadratic part of the 1PI effective action in momentum space:

S(2) =
1

2

∫
dDq1

(2π)D
dDq2

(2π)D
Φα(q1)K

αβ(q2)Φβ(q2) (2π)
Dδ(D)(q1 + q2) , (2.9)

where Φα(q) now denotes the Fourier transform of the field Φα introduced earlier and D is

the number of non-compact space-time dimensions. We shall take Kαβ(q) to be symmetric:4

Kαβ(q) = Kβα(−q) . (2.10)

In this case the propagator is given by

DF (q)αβ = i(K(q)−1)αβ , (2.11)

where q is the momentum flowing from the end carrying the label β to the end carrying the

label α. Noting that the derivative operator ∂µ in position space becomes a multiplicative

operation by i qµ in the momentum space, and using (2.3), (2.4), we see that effect of

coupling a soft graviton field Sµν = εµνe
ik.x with

εµν = ενµ, kµεµν = 0 = kνεµν , ηµνεµν = 0 , (2.12)

can be obtained by making the following replacement in (2.9):

δ(D)(q1 + q2)K
αβ(q2)

→ δ(D)(q1 + q2)K
αβ(q2) (2.13)

− δ(D)(q1 + q2 + k)

[
εµνq

ν
2

∂

∂q2µ
Kαβ(q2) +

1

2
(ka εbµ − kb εaµ)

∂

∂q2µ
Kαγ(q2)

(
Jab

) β

γ

]
.

4For grassmann odd fields there will be an extra minus sign on the right hand side of (2.10), but this

does not affect the rest of the analysis.
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This gives the part of the action describing the coupling of a soft graviton field Sµν =

εµνe
ik.x to a pair of other fields to be

S(3) =
1

2

∫
dDq1

(2π)D
dDq2

(2π)D
(2π)Dδ(D)(q1 + q2 + k) (2.14)

×Φα(q1)

[
−εµνq

ν
2

∂

∂q2µ
Kαβ(q2)−

1

2
(ka εbµ − kb εaµ)

∂

∂q2µ
Kαγ(q2)

(
Jab

) β

γ

]
Φβ(q2) .

Therefore the three point vertex of a soft graviton of momentum k, a Φα particle of mo-

mentum p and a Φβ particle of momentum −p− k is given by

Γ(3)αβ(ε, k; p,−p− k) =
i

2

[
− εµν(p+ k)ν

∂

∂pµ
Kαβ(−p− k)− εµνp

ν ∂

∂pµ
Kβα(p)

+
1

2
(ka εbµ − kb εaµ)

∂

∂pµ
Kαγ(−p− k)

(
Jab

) β

γ

−
1

2
(ka εbµ − kb εaµ)

∂

∂pµ
Kβγ(p)

(
Jab

) α

γ

]
. (2.15)

The contribution from the amplitude shown in figure 1 may now be expressed as

ǫi,α Γ
(3)αβ(ε, k; pi,−pi − k) i{K−1(−pi − k)}βδΓ

δ
(i)(pi + k) , (2.16)

where Γ(i) has been defined in (2.7). It has been shown in appendix B that as long as ǫi,α
and pi satisfy the on-shell condition

ǫi,αK
αβ(−pi) = 0 , (2.17)

(2.16) can be reduced to

(pi · k)
−1 εµν p

µ
i p

ν
i ǫi,αΓ

α
(i)(pi) + (pi · k)

−1 εµν p
µ
i p

ν
i ǫi,α kρ

∂

∂piρ
Γα
(i)(pi)

+(pi · k)
−1 ka εbµ p

µ
i ǫi,α (J

ab) α
γ Γγ

(i)(pi) . (2.18)

After summing over i and adding the contribution (2.8) from figure 2 we get the subleading

soft graviton theorem for one soft graviton:

Γ(ε, k; ǫ1, p1; . . . ; ǫN , pN ) =

N∑

i=1

(pi · k)
−1 εµν p

µ
i p

ν
i ǫi,αΓ

α
(i)(pi)

+
N∑

i=1

{
(pi · k)

−1 εµν p
µ
i p

ν
i kρ − ερb p

b
i

}
ǫi,α

∂

∂piρ
Γα
(i)(pi)

+
N∑

i=1

(pi · k)
−1 ka εbµ p

µ
i ǫi,α(J

ab) α
γ Γγ

(i)(pi) , (2.19)

with Γγ

(i)(pi) defined through (2.7). In order to compare with the result of [6] we rewrite

this as

Γ(ε, k; ǫ1, p1; . . . ; ǫN , pN ) =
N∑

i=1

(pi · k)
−1 εµν p

µ
i p

ν
i ǫi,αΓ

α
(i)(pi) (2.20)

+
N∑

i=1

(pi · k)
−1 εµν p

µ
i kρ ǫi,α

[
δαγ

{
pνi

∂

∂piρ
− p

ρ
i

∂

∂piν

}
+ (Jρν) α

γ

]
Γγ

(i)(pi) .
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pi

k1

pi + k1

pj
k2

pj + k2
Γ Γ

Γ

· ·

Figure 3. Two external soft gravitons attached to different external lines carrying finite momenta.

This is the standard form of the subleading soft graviton theorem given in [6] with the

term inside the curly bracket representing orbital angular momentum operator and Jρν

representing the spin angular momentum operator.

It was shown in [14] that in certain theories the soft graviton amplitude is determined

by the form of the on-shell three point vertex of one soft graviton and a pair of finite

energy particles. Our analysis shows that the subleading soft graviton amplitude is in

fact completely determined in terms of momentum and spin of the external finite energy

particles, and no further information on the three point function is required.

3 Leading soft theorem for multiple soft gravitons

We shall now consider amplitudes with multiple soft gravitons. A general form of the lead-

ing order amplitude with multiple soft gravitons was given in [2]. This analysis was based on

the structure of the on-shell three point function of a soft graviton and a pair of finite energy

particles of arbitrary mass and spin, which in turn was derived in [1]. However the analysis

of [1] was done in four space-time dimensions in which the graviton polarization tensor of a

given helicity can be represented as the square of the photon polarization vector of the same

helicity. We believe that with a little effort it may be possible to generalize this proof to

arbitrary dimensions, but we shall follow a different approach based on the general relation

between the off-shell three point functions and off-shell two point functions given in (2.15).

We shall first analyze the case where we have two soft external gravitons carrying

momenta k1 and k2. In this case the leading contribution has two powers of soft momenta

in the denominator, arising from diagrams where the two soft gravitons attach to different

external legs as in figure 3 or both soft gravitons attach to the same external leg as in

figure 4. In either of the diagrams, the product of the leading contributions from the three

point vertex and the internal propagator that follows it is given by

εµνp
µ
i p

ν
i (pi · ℓ)

−1 , (3.1)
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·

·
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Figure 4. Two external soft gravitons attached to the same external line carrying finite momenta.

where pi is the (nearly) on-shell momentum entering the vertex, ε is the polarization of the

soft graviton and pi + ℓ is the momentum carried by the internal propagator that follows

the vertex. The derivation of this is identical to the derivation of the first term on the right

hand side of (2.18) and follows easily from the analysis given in appendix B.

From this point onwards the analysis proceeds as in [55]. The contribution from figure 3

takes the form

1

pi · k1
ε(1)µν p

µ
i p

ν
i ×

1

pj · k2
ε(2)ρσ p

ρ
jp

σ
j × Γ(ǫ1, p1; . . . ; ǫN , pN ) + less singular terms . (3.2)

On the other hand the contribution from figure 4 takes the form

1

pi · k1
ε(1)µν p

µ
i p

ν
i ×

1

pi · (k1 + k2)
ε(2)ρσ p

ρ
jp

σ
j × Γ(ǫ1, p1; . . . ; ǫN , pN ) + less singular terms .

(3.3)

There is another contribution where the external soft lines carrying momenta k1 and k2

are exchanged in (3.3). Adding this to (3.3) we get

1

pi · k1
ε(1)µν p

µ
i p

ν
i ×

1

pi · k2
ε(2)ρσ p

ρ
i p

σ
i × Γ(ǫ1, p1; . . . ; ǫN , pN ) + less singular terms . (3.4)

After summing over all possible insertions of the two soft gravitons on N external lines

carrying finite momentum, we get [2]

N∑

i=1

1

pi · k1
ε(1)µν p

µ
i p

ν
i ×

N∑

j=1

1

pj · k2
ε(2)ρσ p

ρ
jp

σ
j × Γ(ǫ1, p1; . . . ; ǫN , pN ) + less singular terms .

(3.5)

For m external soft gravitons the leading term will have m powers of soft momentum

in the denominator, coming from diagrams where each external soft graviton gets attached

to a nearly on-shell line. After summing over all possible insertions we arrive at the

generalization of (3.5):

Γ(ε(1), k1; . . . ; ε
(m), km; ǫ1, p1; . . . ; ǫN , pN ) =

m∏

s=1

[
N∑

i=1

1

pi · ks
ε(s)µν p

µ
i p

ν
i

]
Γ(ǫ1, p1; . . . ; ǫN , pN )

+less singular terms . (3.6)
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A Justification for dropping Christoffel symbols from covariant deriva-

tives

In defining the covariant derivative operator Dµ appearing in (2.3) using (2.4), we dropped

possible terms involving the Christoffel symbol Γρ
µν . These Christoffel symbols arise when

Dµ acts on another covariant derivative Dν . In this appendix we shall justify this.

The relevant place where the appearance of these Christoffel symbol terms could affect

our analysis is in (2.14). Let us suppose that we have a term in the action of the form
∫

dDxE µ1
c1

· · ·E µr
cr Φa1···amDµ1

· · ·Dµr
Ψb1···bn (A.1)

with the free indices ai, bi, ci contracted with the flat metric η. Here E
µ

c are the inverse

vielbeins and Φ and Ψ are appropriate tensor fields carrying tangent space indices. Upon

expressing Dµi
as ∂µi

+ · · · , a typical term in · · · that was ignored in (2.4) is of the form

−

∫
dDxE µ1

c1
· · ·E µr

cr Φa1···amDµ1
· · ·Dµi−1

Γρ
µiµj

Dµi+1
· · ·Dµj−1

DρDµj+1
· · ·Dµr

Ψb1···bn .

(A.2)

In the soft limit Γρ
µiµj

carries a factor of the soft momentum and a factor of soft graviton

polarization. Therefore we can replace the rest of the covariant derivatives by ordinary

derivatives, ignore terms involving derivatives of Γ and replace E µ
c by δ

µ
c . With this (A.2)

reduces to

−

∫
dDx δ µ1

c1
· · · δ µr

cr Γρ
µiµj

Φa1···am∂ρ∂µ1
· · · ∂µi−1

∂µi+1
· · · ∂µj−1

∂µj+1
· · · ∂µr

Ψb1···bn . (A.3)

Let us now return to (A.1) and, using integration by parts, express this as

(−1)r
∫

dDxE µ1
c1

· · ·E µr
cr Ψb1···bnDµ1

· · ·Dµr
Φa1···am . (A.4)

Note that integration by parts will reverse the order in which the covariant derivatives

act, but since the commutator of two covariant derivatives is proportional to the Riemann

tensor and carries two powers of soft momentum, we can ignore the reversal of order. For

grassmann odd fields there will be an additional minus sign in (A.4), but this will cancel

with an additional minus sign that will appear in going from (A.5) to (A.6). The fields will

also carry spinor indices contracted with appropriate Lorentz covariant tensors, but this

does not affect the analysis. By expanding the expression for Dµi
in (A.4) we shall get the

analog of (A.2), and from this the analog of (A.3):

− (−1)r
∫

dDx δ µ1
c1

· · · δ µr
cr Γρ

µiµj
Ψb1···bn∂ρ∂µ1

· · · ∂µi−1
∂µi+1

· · · ∂µj−1
∂µj+1

· · · ∂µr
Φa1···am .

(A.5)
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We shall now again integrate by parts and ignore derivatives of Γ since that will generate

two powers of soft momentum. This takes (A.5) to

−(−1)r(−1)r−1

∫
dDxδ µ1

c1
···δ µr

cr Γρ
µiµj

Φa1···am∂ρ∂µ1
···∂µi−1

∂µi+1
···∂µj−1

∂µj+1
···∂µr

Ψb1···bn .

(A.6)

We now see that (A.3) and (A.6) cancel each other. This shows that once we express (A.1)

as

1

2

∫
dDxE µ1

c1
· · ·E µr

cr [Φa1···amDµ1
· · ·Dµr

Ψb1···bn + (−1)rΨb1···bnDµr
· · ·Dµ1

Φa1···am ] ,

(A.7)

the terms involving Christoffel symbols drop out.

The alert reader may worry that the above derivation assumes that the two point

function computed from the 1PI action has the form of a polynomial in derivatives while

in practice this is not so. We can allay this fear by working in momentum space. Suppose

that in the absence of the soft graviton, the quadratic term of the 1PI effective action

involving single powers of Φ and Ψ takes the form

∫
dDp

(2π)D
Φa1···am(−p)fc1···cr(p)Ψb1···bn(p) , (A.8)

contracted with η’s. Here Φ and Ψ are Fourier transforms of the fields that appear in (A.1)

and f is some function of the momentum p. Then after coupling to the soft graviton, the

unwanted terms given in (A.3) have the form

−
1

2

∫
dDp

(2π)D
Φa1···am(−p− k)

∂2fc1···cr(p)

∂pµ∂pν
Ψb1···bn(p) (−ipρ) Γ

ρ
µν(k) , (A.9)

where Γ now denotes the Christoffel symbol computed using soft graviton in the momentum

space. In arriving at (A.9) we have used the fact that in momentum space ∂µ is replaced

by i pµ.

Now by making a p → −p change of variables in (A.8) we arrive at a similar formula

with the Ψ and Φ exchanged

∫
dDp

(2π)D
Ψb1···bn(−p)fc1···cr(−p)Φa1···am(p) , (A.10)

Its covariantization will generate the analog of (A.9)

−
1

2

∫
dDp

(2π)D
Ψb1···bm(−p− k)

∂2fc1···cr(−p)

∂pµ∂pν
Φa1···nn

(p)(−ipρ) Γ
ρ
µν(k) . (A.11)

Now making a change of variables p → −p− k we get

−
1

2

∫
dDp

(2π)D
Φa1···nn

(−p− k)
∂2fc1···cr(p+ k)

∂pµ∂pν
Ψb1···bm(p) (i(pρ + kρ))Γ

ρ
µν(k) . (A.12)

Averaging over (A.9) and (A.12), and using the fact that Γ already contains one power of

soft momentum, we now easily see that the integrand has two powers of k. Therefore it

vanishes to the first subleading order in the soft momentum k.
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B Derivation of (2.18)

Our goal in this appendix will be to prove the equality of (2.16) and (2.18). We begin by

studying some properties of the matrix Kαβ(q) appearing in the kinetic term (2.9), and the

propagator DF defined in (2.11). Let us also define Ξ(q) via

Ξ(q) = (q2 +M2)DF (q) = i (q2 +M2)K(q)−1 , (B.1)

where M is the mass of the external state that we shall be interested in. Ξ(q) obviously

depends on M , but this dependence is not displayed explicitly. At a generic value of q,

Ξ(q) has the same rank as that of K(q) or DF (q), i.e. the total number of fields. But in the

limit q2+M2 → 0, we expect Ξ(q) to approach a finite matrix of rank that is typically less

than the total number of fields, since only a subset of particles have mass M producing a

pole in the propagator DF at q2 +M2 = 0.5

Using (B.1) we get

K(q) Ξ(q) = i (q2 +M2) . (B.2)

Differentiation of both sides of (B.2) with respect to qµ gives

∂K(q)

∂qµ
Ξ(q) +K(q)

∂Ξ(q)

∂qµ
= 2 i qµ . (B.3)

Now suppose ǫα denotes the polarization of an on-shell state carrying momentum q and

mass M . Then we have

ǫαK
αβ(q) = 0 , at q2 +M2 = 0 . (B.4)

Combining this with (B.3) we get

ǫα

[
∂K(q)

∂qµ
Ξ(q)

]α

γ

= 2 i ǫγ qµ at q2 +M2 = 0 . (B.5)

Next we shall study the consequence of Lorentz invariance. First of all, since we use a

Lorentz covariant gauge fixing condition, the matrix K and Ξ must be Lorentz covariant:

Kαγ(q)(Jab) β
γ +Kγβ(q)(Jab) α

γ = qa
∂Kαβ(q)

∂qb
− qb

∂Kαβ(q)

∂qa
, (B.6)

−Ξαγ(q)(J
ab) γ

β − Ξγβ(q)(J
ab) γ

α = qa
∂Ξαβ(q)

∂qb
− qb

∂Ξαβ(q)

∂qa
. (B.7)

It is easy to see, using (B.5), (B.6) and (B.7) that at q2 +M2 = 0,

ǫα (J
ab) α

β

[
∂K(q)

∂qµ
Ξ(q)

]β

γ

= ǫβ

[(
qa

∂2K(q)

∂qb∂qµ
− qb

∂2K

∂qa∂qµ

)
Ξ(q)

]β

γ

+ǫβ

[
∂K(q)

∂qµ

(
qa

∂Ξ(q)

∂qb
− qb

∂Ξ(q)

∂qa

)]β

γ

+2 i qµ ǫα(J
ab) α

γ − 2 i ǫγ

(
qaηµb − qbηµa

)
. (B.8)

5For massless particles the propagator may have double poles in some gauges, e.g. in a generic covariant

gauge the propagator of a massless gauge field is given by (ηµν − β kµkν/k2)/k2 for some constant β. We

shall assume that our gauge fixing condition is such that we avoid propagators with double poles.
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Next we turn to the analysis of the three point vertex Γ(3)αβ(ε, k; p,−p − k) given

in (2.15). Using (B.6) we can simplify the second line of (2.15) and get

Γ(3)αβ(ε, k; p,−p− k) =
i

2

[
− εµν(p+ k)ν

∂Kαβ(−p− k)

∂pµ
− εµνp

ν ∂K
βα(p)

∂pµ

−
1

2
(ka εbµ − kb εaµ)

∂Kγβ(−p− k)

∂pµ
(Jab) α

γ

+
1

2
(ka εbµ − kb εaµ)

∂

∂pµ

{
pa

∂Kαβ(−p− k)

∂pb
− pb

∂Kαβ(−p− k)

∂pa

}

−
1

2
(ka εbµ − kb εaµ)

∂Kβγ(p)

∂pµ

(
Jab

) α

γ

]
. (B.9)

Using (2.12), (2.10), expanding Kαβ(−p− k) in the first term in a Taylor series expansion

in kρ, and keeping terms up to first subleading order in the soft momentum k, we can

express (B.9) as

Γ(3)αβ(ε, k; p,−p− k) =
i

2

[
− 2 εµνp

ν ∂K
αβ(−p)

∂pµ
− 2 εµνp

νkσ
∂2Kαβ(−p)

∂pσ∂pµ
(B.10)

+k · p εbµ
∂2Kαβ(−p)

∂pµ∂pb
− (ka εbµ − kb εaµ)

∂Kγβ(−p)

∂pµ

(
Jab

) α

γ

]
.

We now turn to (2.16). Substituting (B.10) into (2.16) we get the net contribution

to (2.16) to first subleading order in the soft momentum:

ǫi,α Γ
(3)αβ(ε, k; pi,−pi − k) i{K−1(−pi − k)}βδΓ

δ
(i)(pi + k) (B.11)

=
1

2
ǫi,α

[
2 εµνp

ν
i

∂Kαβ(−pi)

∂piµ
+ 2 εµνp

ν
i kσ

∂2Kαβ(−pi)

∂piσ∂piµ
− k · pi εbµ

∂2Kαβ(−pi)

∂piµ∂pib

+(ka εbµ − kb εaµ)
∂Kγβ(−pi)

∂piµ

(
Jab

) α

γ

]
{K−1(−pi − k)}βδ

[
1 + kρ

∂

∂piρ

]
Γδ
(i)(pi) .

Replacing the K−1(−pi − k) factor using (B.2) after setting M = Mi, the mass of the i-th

external state, and using (pi + k)2 +M2
i = 2pi · k, we may express (B.11) as

−
i

2
(2pi ·k)

−1ǫi,α

[
2εµνp

ν
i

∂Kαβ(−pi)

∂piµ
+2εµνp

ν
i kσ

∂2Kαβ(−pi)

∂piσ∂piµ
−k ·piεbµ

∂2Kαβ(−pi)

∂piµ∂pib

+(kaεbµ−kbεaµ)
∂Kγβ(−pi)

∂piµ

(
Jab

) α

γ

]
Ξβδ(−pi−k)

[
1+kρ

∂

∂piρ

]
Γδ
(i)(pi) (B.12)

=−
i

2
(2pi ·k)

−1ǫi,α

[
2εµνp

ν
i

∂Kαβ(−pi)

∂piµ
+2εµνp

ν
i kσ

∂2Kαβ(−pi)

∂piσ∂piµ
−k ·piεbµ

∂2Kαβ(−pi)

∂piµ∂pib

+(kaεbµ−kbεaµ)
∂Kγβ(−pi)

∂piµ

(
Jab

) α

γ

]{
Ξβδ(−pi)+kσ

∂Ξβδ(−pi)

∂piσ

}[
1+kρ

∂

∂piρ

]
Γδ
(i)(pi).
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If p2i +M2
i = 0, then the ǫi,α in (B.12) is a physical state of mass Mi. Therefore we can

now use (B.5) to express (B.12) as

(pi · k)
−1 εµν p

µ
i p

ν
i ǫi,αΓ

α
(i)(pi)−

i

2
(pi · k)

−1 ǫi,α εµνp
ν
i kσ

∂2Kαβ(−pi)

∂piσ∂piµ
Ξβδ(−pi) Γ

δ
(i)(pi)

+
i

4
ǫi,α εbµ

∂2Kαβ(−pi)

∂piµ∂pib
Ξβδ(−pi) Γ

δ
(i)(pi)

−i ǫi,α (2pi · k)
−1 εµνp

ν
i

∂Kαβ(−pi)

∂piµ
kρ

∂Ξβδ(−pi)

∂piρ
Γδ
(i)(pi)

+(pi · k)
−1 εµν p

µ
i p

ν
i ǫi,α kρ

∂

∂piρ
Γα
(i)(pi)

−
i

4
(pi · k)

−1 ǫi,α(ka εbµ − kb εaµ)
∂Kγβ(−pi)

∂piµ

(
Jab

) α

γ
Ξβδ(−pi) Γ

δ
(i)(pi) . (B.13)

Using (B.8) and (2.12) we can manipulate the last line in (B.13) and express (B.13) as

(pi · k)
−1 εµν p

µ
i p

ν
i ǫi,αΓ

α
(i)(pi)−

i

2
(pi · k)

−1 ǫi,α εµνp
ν
i kσ

∂2Kαβ(−pi)

∂piσ∂piµ
Ξβδ(−pi) Γ

δ
(i)(pi)

+
i

4
ǫi,α εbµ

∂2Kαβ(−pi)

∂piµ∂pib
Ξβδ(−pi) Γ

δ
(i)(pi)

−i ǫi,α (2pi · k)
−1 εµνp

ν
i

∂Kαβ(−pi)

∂piµ
kρ

∂Ξβδ(−pi)

∂piρ
Γδ
(i)(pi)

+(pi · k)
−1 εµν p

µ
i p

ν
i ǫi,α kρ

∂

∂piρ
Γα
(i)(pi)

−
i

2
(pi · k)

−1 ka εbµ ǫi,α

[{
pai

∂2K(−pi)

∂pib∂piµ
− pbi

∂2K(−pi)

∂pia∂piµ

}
Ξ(−pi)

]α

γ

Γγ

(i)(pi)

−
i

2
(pi · k)

−1 ka εbµ ǫi,α

[
∂K(−pi)

∂piµ

{
pai

∂Ξ(−pi)

∂pib
− pbi

∂Ξ(−pi)

∂pia

}]α

γ

Γγ

(i)(pi)

+(pi · k)
−1 ka εbµ p

µ
i ǫi,α (J

ab) α
γ Γγ

(i)(pi) . (B.14)

This can be simplified to

(pi · k)
−1 εµν p

µ
i p

ν
i ǫi,αΓ

α
(i)(pi)−

i

4
ǫi,α εbµ

∂2Kαβ(−pi)

∂piµ∂pib
Ξβδ(−pi) Γ

δ
(i)(pi)

+(pi · k)
−1 εµν p

µ
i p

ν
i ǫi,α kρ

∂

∂piρ
Γα
(i)(pi)−

i

2
εbµ ǫi,α

[
∂K(−pi)

∂piµ

∂Ξ(−pi)

∂pib

]α

γ

Γγ

(i)(pi)

+(pi · k)
−1 ka εbµ p

µ
i ǫi,α (J

ab) α
γ Γγ

(i)(pi) . (B.15)

The sum of the second and fourth term of (B.15) may be written as

−
i

4
ǫi,αεbµ

∂2

∂piµ∂pib

[
Kαβ(−pi)Ξβγ(−pi)

]
Γγ

(i)(pi)+
i

4
ǫi,αεbµK

αβ(−pi)
∂2Ξβγ(−pi)

∂piµ∂pib
Γγ

(i)(pi).

(B.16)

Using (B.2) the first term can be shown to be proportional to εbµη
bµ and hence it vanishes

due to (2.12). On the other hand the second term vanishes due to (2.17). This allows us
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to express (B.15) as

(pi · k)
−1 εµν p

µ
i p

ν
i ǫi,αΓ

α
(i)(pi) + (pi · k)

−1 εµν p
µ
i p

ν
i ǫi,α kρ

∂

∂piρ
Γα
(i)(pi)

+(pi · k)
−1 ka εbµ p

µ
i ǫi,α (J

ab) α
γ Γγ

(i)(pi) . (B.17)

This proves (2.18).
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