
J
H
E
P
1
1
(
2
0
1
7
)
1
0
5

Published for SISSA by Springer

Received: October 2, 2017

Accepted: November 6, 2017

Published: November 17, 2017

Mass-deformed M2 branes in Stenzel space
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1 Introduction

One of the many surprises of the study of general relativity in higher dimensions is the non-

uniqueness of black hole solutions. Unlike the familiar four-dimensional context, where the

Kerr-Newman solution is the unique stationary, asymptotically-flat black hole, gravity in

higher dimensions admits a remarkable diversity of black hole solutions. Further remarkable

is that some of these black hole solutions have been found analytically, such as black rings,

black Saturns, and systems of concentric black rings. There is in fact strong evidence that

there exist an infinite number of (stationary) black hole phases, distinguished not only by

their non-spherical topologies, but also by the presence of non-uniform ripples along their

horizons (sometimes referred to as “lumpy black holes”). Moreover, the exotic black holes

of this wondrous ménagerie are not merely isolated points in solution space, but instead

are interconnected by a web of linear instabilities and topology-changing transitions.1

1A useful reference collecting many of the major results for black holes in higher dimensions is ref. [1].
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Much of this work on novel black holes has been done in the context of pure Einstein-

Hilbert gravity in higher dimensions, and it is plausible that the inclusion of matter will

only add to its richness. Particularly interesting choices of matter are those stemming from

10- or 11-dimensional supergravity, especially for geometries which admit a holographic

interpretation. In such contexts black holes correspond to thermal states in the dual field

theory, and knowledge of the different black hole solutions can be leveraged to construct the

phase diagram for the field theory at strong coupling. In [2, 3] this program was carried out

for the case of global AdS5×S5 solutions of IIB supergravity, dual to N = 4 SYM on the 3-

sphere. In addition to the well-known “large” black hole solution Schwarzschild-AdS5×S5,

the authors of [2, 3] also construct “lumpy” black holes (describing perturbations of the

Schw-AdS5 × S5 solution along the S5), and localised black holes on the S5 with horizon

topology S8. An analysis of the free energy of the different solutions reveals that in the

canonical ensemble the novel black holes are subdominant saddles and therefore do not alter

what is already known about the Hawking-Page confinement/de-confinement transition [4].

However, in the microcanonical ensemble the novel solutions do dominate at low energies,

whereas at large energies the large black hole phase is dominant. The phase transition is

first order, and the holographic interpretation of the localised black hole solution is a phase

in the CFT where the SO(6) R-symmetry is spontaneously broken to SO(5).2

In this paper we will investigate black hole solutions in 11-dimensional supergravity

which are asymptotitically AdS4 × V5,2, where V5,2 ≡ SO(5)/SO(3) is a 7-dimensional

Einstein space known as a Stiefel manifold.3 The black holes we shall construct are planar

with respect to the AdS4 factor and have flux with a non-zero Chern-Simons term, and

thus they serve as interesting extensions of the study of black holes in higher dimensions.

More importantly, we can use these black holes to map out the phase diagram for the

dual field theory, and study both confinement and spontaneous symmetry breaking, just as

was done for the asymptotically AdS5 × S5 solutions. Unfortunately the dual field theory

of asymptotically AdS4 × V5,2 solutions is much less well-understood than N = 4 SYM.

The authors of ref. [6] have proposed that the field theory dual to such solutions is an

N = 2 Chern-Simons quiver gauge theory with gauge group U(N)×U(N), and they have

also studied the effect of a mass deformation. Refs. [7, 8] instead propose different field

theory duals, but do not consider mass deformations. While the mass deformation is our

main interest here, we will have no comment on the validity of any of these proposals,

and unfortunately we will have to proceed with a less-than-ideal understanding of the

dual theory.

It is known that at zero temperature the field theory at hand exhibits confinement,

and in this limit the gravitational dual is known. It is given by the Cvetič-Gibbons-Lü-

Pope (or CGLP) solution [9], which has N = 1 supersymmetry in eleven dimensions. The

CGLP solution is in many ways the 11-dimensional analog of 10-dimensional Klebanov-

2Similar lumpy and localized thermal phases do exist on (1+1)-dimensional SYM theory on Rt × S1

dual to D1 branes with compactified worldvolume. In this case, localized thermal phases dominate both

the microcanononical and canonical ensembles at low energy [5].
3In fact V5,2 is Sasaki-Einstein, meaning that it is Einstein and a cone over it is Kähler. It can also be

written as a U(1) bundle over the (Kähler) Grassmannian SO(5)/(SO(3)× SO(2)).
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Strassler (KS) solution [10] of IIB supergravity. The KS solution geometrizes the duality

cascade of the dual field theory, wherein the rank of the gauge group is successively reduced

under RG flow. A similar phenomenon is thought to occur for the field theory dual of the

CGLP solution, although in this case the cascade is less well-understood than in Klebanov-

Strassler, particularly in the deep IR [6].

By constructing black hole solutions with CGLP asymptotics, we hope to learn about

the confinement/de-confinement transition, as well as any spontaneous symmetry breaking.

In analogy with the AdS5 × S5 case we expect different types of black hole solutions to

exist. The simplest solution will preserve the same amount of symmetry in the compactified

dimensions as the zero temperature CGLP solution, which is to say that spatial slices of

the horizon will be topologically R2 × V5,2. This will correspond to the high temperature

deconfined phase of the dual CFT. Another possible class of solutions are black holes

with different horizon topology, for example localised black holes with topology R2 × S7

or black ringoids with R2 × S4 × S3. And a third possibility are “lumpy” black holes

in an intermediate phase, having R2 × V5,2 topology but with symmetry-breaking ripples

along the V5,2 part of the horizon. In this paper we will construct the high-temperature,

symmetric black hole. General arguments suggest the existence of localised black holes,

and our numerical results seem to hint towards a possible ringoid solution; however the

construction of either of these is beyond the scope of the current paper. We hope to address

these in future work.

It would be very interesting to construct black holes in the KS geometry, as the dual

field theory is well-studied and corresponds to a supersymmetric gauge theory undergoing

a duality cascade. In refs. [11, 12] KS black holes were constructed which preserved the

SU(2) × SU(2) symmetry of the compactified dimensions. The more challenging task of

building localised or lumpy black holes with KS asymptotics is obstructed by the fact

that the KS solution is non-conformal in the UV. Equivalently, the bulk solution is not

asymptotically AdS5 — the warp function instead exhibits logarithmic running in the radial

direction. From a practical point-of-view, the logarithmic behaviour makes the problem

dramatically more difficult because the dominant numerical methods used in constructing

non-linear solutions to Einstein’s equation are tailored to functions that are smooth over

their domain, and behave poorly otherwise [13, 14].4 From a theoretical point of view, the

lack of a conformal fixed point in the UV complicates a holographic interpretation. By

contrast, the CGLP solution is conformal in the UV, the bulk is asymptotically AdS4, and

there are no logarithms, making the problem of constructing black holes more amenable

to numerics.

In addition to extending the study of black holes in higher dimensions and investigat-

ing phase transitions in strongly coupled field theories, another motivation for constructing

black holes with CGLP asymptotics is, perhaps surprisingly, the question of whether string

theory is capable of describing inflation. It is a non-trivial task to find inflationary, de-

Sitter-like solutions to string theory. There are a few proposals, the most popular of which

4Although the logarithm is smooth on any open set of the real line, numerically implementing the KS

asymptotics requires that we capture the behaviour at r =∞ where log is not differentiable.
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is KKLT [15], wherein AdS vacua of string theory are lifted into dS vacua through the ad-

dition of anti-branes and corrections to the superpotential from various sources.5 When the

anti-branes are added to the flux background, they puff up into a polarized configuration

that is metastable [16]; however, this step in the KKLT proposal has been heavily scruti-

nised in recent years. When constructing the supergravity solution corresponding to the

backreaction of smeared anti-D3 branes added to the KS background, it has been observed

that unfamiliar singularities arise whose interpretation is unclear [17].6 It was thought by

some that the singularities indicated an inconsistency or pathology in the KKLT proposal,

and thus began a research program aimed at investigating this further.

A comprehensive review of this anti-brane problem would be too lengthy and cumber-

some to give here; we will instead provide a brief discussion of the relevance of CGLP black

holes to this problem. It was found in many explicit cases that singularities arise when

anti-branes (smeared or localised) are added to flux backgrounds, and this was proved for a

large class of flux backgrounds in [18]. Specific studies showing that both smeared and lo-

calised anti-M2 branes added to the CGLP background are singular are refs. [19–21]. Since

the singularities are legitimate and not artefacts of any approximation, the key question

then concerns the interpretation of these singularities and whether they are physical or not.

One way to assess this is to regulate the singularities and examine their behaviour as the

regulator is removed. A simple way to regulate the solutions is to shield the singularities

with finite-radius black hole horizons. For flux backgrounds that admit a holographic inter-

pretation, the field theory dual of an anti-brane added to a flux background is a metastable

vacuum with broken supersymmetry. In this case the black hole regulator corresponds to

considering this metastable state at finite temperature. In certain flux backgrounds it has

been shown that smeared black hole solutions with negative charge do not exist, mean-

ing that the corresponding smeared anti-brane singularities cannot be regulated in this

way [12, 22]. In ref. [23] one of us demonstrated that for certain localised anti-branes, the

singularities could in fact be shielded by horizons, indicating that a key factor was whether

the anti-branes were localised or smeared. While not conclusive, this result provided some

reassurance that anti-branes can in fact be used to create de Sitter solutions in string

theory, since in the KKLT scenario localised anti-branes are used.7

5To be more precise, the key ingredient is that the added branes carry charge opposite to the flux

background, which itself is able to carry charge because of the Chern-Simons couplings. In this paper we

will consider the CGLP solution which only exists for one sign of the flux. The charge of any branes or

black holes in this background will then be measured relative to the charge of this flux.
6In the anti-brane literature a crucial distinction is the difference between localised anti-branes, which

are point-like in the transverse dimensions, and smeared branes, which have been distributed uniformly

along some or all of the transverse dimensions. We shall use this same terminology to describe black holes.

Localised black holes will have spherical horizon topologies in the transverse dimensions and smeared black

holes will preserve the same symmetry in the compactified dimensions as the original flux background. The

high-temperature CGLP black hole with horizon spatial slice R2 × V5,2 is therefore a smeared black hole.
7Ref. [18] claims to rule out both localised anti-branes and localised negatively charged black holes in a

large class of flux-backgrounds. We remain unconvinced by their argument in the finite temperature, black

hole case. Rather than debate the issue here, we will merely note that this lack of agreement makes an

exact analysis of localised black holes in CGLP even more desirable.
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The analysis in ref. [23] makes a few simplifying approximations and considered a

simple toy flux background, and it would be desirable to examine localised black holes

exactly in flux backgrounds such as CGLP (or KS) that are more directly relevant to

the KKLT uplifting mechanism. If negatively charged localised black holes exist in these

backgrounds, then this would mean that localised anti-brane singularities can indeed be

shielded behind a horizon. The dual metastable states in the field theory would exist

at finite temperature, and knowledge of the bulk solution might help facilitate a better

understanding of the field theory state at zero temperature.8

With these motivations in mind, in this paper we take the first step towards the difficult

task of constructing localised black holes in CGLP and mapping out the complete phase

diagram for the mass deformed dual gauge theory. In section 2 we review the geometry of

the Stenzel manifold and consider the dimensional reduction of 11 dimensional supergravity

on this space. Then in section 3 we review the two analytically known solutions on this

background, the planar Schwarzschild black hole and the CGLP solution itself. In section 4

we perform a linear treatment as a warm up to the more complicated task of constructing

the full, non-linear solution, which is done in section 5. Lastly, we end with a concluding

discussion.

2 11D Supergravity on squashed Stenzel space

2.1 Action and equations of motion

Throughout this paper we will work in 11 dimensional supergravity, whose action is

S11D =
1

2κ2
11

∫ (
R? 1− 1

2
G(4) ∧ ?G(4) +

1

6
G(4) ∧G(4) ∧A(3)

)
, (2.1)

where G(4) = dA(3) and R is the Ricci scalar (and ? 1 = vol11 is the volume form). The

equations of motion are

Rab −
1

2
Rgab =

1

2
Tab , (2.2a)

d ?G(4) =
1

2
G(4) ∧G(4), (2.2b)

with energy-momentum tensor

Tab =
1

6

[
G(4)acde

G(4)b
cde − 1

8
gabG(4)cdef

G(4)
cdef

]
. (2.3)

We will find it convenient, however, to express the Ricci scalar in terms of the trace of the

energy-momentum tensor and thus move it to the other side,

Rab =
1

12

[
G(4)acde

G(4)b
cde − 1

12
gabG(4)cdef

G(4)
cdef

]
. (2.4)

8One thing to be mindful of when taking the zero temperature limit of black p-branes is that the

behaviour of the temperature as extremality is approached depends on the particular solution in question.

In particular, for the simple black p-branes of [24] the behaviour depends strongly the dimension and for

some branes the temperature diverges as the extremal limit is approached.
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We will be interested in a class of brane solutions of 11 dimensional supergravity for

which the line element takes the general form

ds2 = gtt dt2 + gxx
(
dx2

1 + dx2
2

)
+ ds2

8 , (2.5)

where ds2
8 is an 8-dimensional manifold that is topologically a Stenzel space (i.e. a deformed

cone over the Stiefel manifold V5,2 as in the CGLP solution [9]), but on which certain

squashing modes of the V5,2 have been turned on. The Ricci-flat Stenzel metrics of CGLP

also have squashing modes of the V5,2 turned on, as functions of the radial coordinate;

however, in our solutions these squashing functions will be modified due to the presence of

a black hole horizon. Thus one might call our 8-dimensional transverse space a “squashed

Stenzel space”. In any case, the 11-dimensional solutions are asymptotic to AdS4 × V5,2

(each factor with its standard Einstein metric) and will be therefore dual to a strongly

coupled large-N gauge theory in 2 + 1 dimensions. In the following section, we first briefly

review the Stenzel manifold and the associated Stiefel manifold V5,2, before discussing in

more detail the class of solutions we will consider.

2.2 The n = 3 Stenzel space and the Stiefel manifold V5,2

The n-th Stenzel space is a (2n+ 2)-dimensional manifold homeomorphic to the cotangent

bundle T ∗Sn+1 of the sphere Sn+1 ' SO(n+2)/SO(n+1). It is a complex manifold whose

complex structure comes from a holomorphic embedding of T ∗Sn+1 in Cn+2 given by the

quadric surface,

zizi = ε2, {zi} ∈ Cn+2, ε ∈ R, i ∈ {1, . . . , n+ 2}, (2.6)

and thus informally one can think of it as a hyperboloid asymptotic to the cone zizi = 0, but

deformed by blowing up an Sn+1 “bubble” in the center (at xixi = ε2, where xi = Re(zi)).

This hyperboloid can then be endowed with a metric which is Kähler and Ricci-flat.9

The base of the asymptotic cone is not spherical, but is instead given by a different

compact space, the Stiefel manifold Vn+2,2, and thus we will refer it as a “Stiefel cone”.

Our particular case of interest is the 8-dimensional Stenzel space for n = 3, and thus the

base of the cone is V5,2, which is the 7-dimensional coset SO(5)/SO(3),10 where the SO(3)

is embedded in SO(5) as the lower 3×3 block of a 5×5 matrix of SO(5).11 It is also useful

to think of V5,2 as an S3 bundle over S4 (given by the bundle of unit cotangent vectors in

T ∗S4);12 then the “tip” of the Stenzel space is described by the S3 fiber shrinking smoothly

to zero size, leaving the finite-size S4 to form a topological 4-cycle.

One can imagine that fully coordinatizing a space like V5,2 can be complicated. Since

in this work we will preserve the SO(5) symmetry, it will be more useful to write the metric

in terms of left-invariant 1-forms of SO(5). Following [9], we begin with the standard SO(5)

9However, it is not the metric which comes from the above embedding.
10For generic p and q, the Stiefel manifold Vp,q ≡ SO(p)/SO(p− q) is precisely the configuration space of

q oriented, orthonormal vectors in p-dimensional Euclidean space.
11This is in contrast to the squashed 7-sphere, which is also an SO(5)/SO(3) coset, but the SO(3) is

embedded in SO(5) in a different way [25].
12Again, we note that this is not the Hopf bundle, which would instead give us S7 as its total space.
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Maurer-Cartan 1-forms LAB, which are antisymmetric in AB, and where A,B ∈ {1, . . . , 5}.
These forms satisfy the SO(5) Lie algebra:

dLAB = LAC ∧ LCB . (2.7)

To parametrize the coset SO(5)/SO(3), we will break the indices A,B into the indices 1,

2, and i, j ∈ {3, 4, 5}, and then re-name a few of the SO(5) forms as follows:

σi ≡ L1i , σ̃i ≡ L2i , and ν ≡ L12 . (2.8)

The remaining Lij will then generate the SO(3) on the lower diagonal block. The Maurer-

Cartan relations (2.7) can now be written as

dσi = ν ∧ σ̃i + Lij ∧ σj , dσ̃i = −ν ∧ σi + Lij ∧ σ̃j , dν = −σi ∧ σ̃i
dLij = Lik ∧ Lkj − σi ∧ σj − σ̃i ∧ σ̃j . (2.9)

Expressions for these left-invariant forms in terms of explicit coordinates may be found

in [26] (and with a minor typo corrected in [27]).

Using the above left-invariant 1-forms, we can then write a “round” metric (i.e., with

maximal isometry SO(5)× SO(2)) on V5,2 as follows:

ds2(V5,2) =
9

16
ν2 +

3

8

3∑
i=1

(σ2
i + σ̃2

i ) . (2.10)

Any choices of numerical factors would have preserved the maximal isometry; the particular

choices 9/16 and 3/8 are such that the metric is Einstein, and its metric cone

ds2
C = dr2 + r2 ds2(V5,2) (2.11)

is Ricci-flat.13 This cone is a higher-dimensional analogue of the 6-dimensional conifold

of [28] (in fact, the Stiefel manifold V4,2 is the same as T 1,1). There is of course a conical

singularity at r = 0, which can be smoothed out by blowing it up into a sphere (in our case

an S4), yielding the n = 3 Stenzel space. This is called “deformation of the cone”, and

lower-dimensional analogues include the deformed conifold (n = 2), and the Eguchi-Hanson

instanton (n = 1).

We will focus on the case n = 3, i.e. the 8-dimensional Stenzel space. Using the left-

invariant 1-forms of (2.9), one can write a cohomogeneity-1 ansatz for the Stenzel metric

as follows:

ds2
S = c2

(
dτ2

4
+ ν2

)
+

3∑
i=1

(
a2σ2

i + b2σ̃2
i

)
, (2.12)

where here a, b, and c are functions of the radial coordinate τ only. This ansatz of course

includes the Stiefel cone (2.11) as a special case, for which

a2 = b2 =
3

8
r2, c2 =

9

16
r2, τ =

8

3
ln r . (2.13)

13In fact the metric (2.10) is Sasaki-Einstein, which means in addition that its metric cone is Kähler.
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The ansatz (2.12) generically has SO(5) symmetry, except in the case that a2 = b2, when

that symmetry is enhanced to SO(5)×SO(2) (the SO(2) in this case is the right action that

rotates σi into σ̃i, originating from the 1, 2 indices of the original LAB). The functions a, b, c

are determined by the conditions that the metric be Kähler and Ricci-flat, and asymptotic

to the Stiefel cone (2.11). We will work with the same conventions as [27], where the

solutions are written:

a2 =
33/4`2ε

2
(2 + cosh τ)1/4 cosh(τ/2) ,

b2 =
33/4`2ε

2
(2 + cosh τ)1/4 sinh2(τ/2)

cosh(τ/2)
,

c2 =
37/4`2ε

2

cosh3(τ/2)

(2 + cosh τ)3/4
. (2.14)

Here `ε is a length scale, sometimes also written as `ε = ε3/4. In the large-τ limit, one

recovers the Stiefel cone via the coordinate transformation

r2 =
23/4

31/4
`2ε e

3τ/4 . (2.15)

However, as τ → 0, the function b → 0, causing the σ̃2
i part of the metric (2.12) to be

squashed to zero size. This is in fact the S3 fiber of S3 ↪→ V5,2 → S4 pinching off, and one

can show that this happens smoothly, much like at the origin of R4 in spherical coordinates.

This leaves an S4 homology cycle at τ = 0, as expected for a deformed conifold geometry,

whose size is controlled by the length parameter `2ε .

Ref. [9] showed that on this Stenzel space there exists a cohomology 4-form α(4), dual

to the homology 4-cycle, which is harmonic, normalisable, and self-dual14 α(4) = ?8 α(4),

given by

α(4) = dβ(3), β(3) = εijk

(
p

6
σ̃i ∧ σ̃j ∧ σ̃k +

q

2
σi ∧ σj ∧ σ̃k

)
,

p =
9

8

(1 + 3 cosh(τ))

cosh3(τ/2)
, q =

9

4
sech(τ/2) . (2.16)

Since it is self-dual, α(4) provides a Chern-Simons source α(4) ∧ α(4) = ‖α(4)‖2 for the

right-hand side of (2.2b).

We will be interested in brane-flux solutions where the 8-dimensional metric ds2
8 in (2.5)

takes the form of the Stenzel ansatz (2.12); however the squashing functions a, b, c will

change in order to accommodate a black-hole horizon at some value of τ . Thus we will

refer to this 8-dimensional manifold as a “squashed Stenzel space”. Most of the properties

we have just described for Stenzel spaces will no longer hold: at finite temperature, the

squashed Stenzel spaces of this paper will not be Kähler, nor Ricci-flat; however, the

squashing will remain SO(5)-invariant, and there will still exist a normalisable 4-form (but

it will not be self-dual).

14The notion of “self-dual” vs. “anti-self-dual” of course depends on the chosen orientation.
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2.3 Dimensional reduction

Since we are interested in a field-theory interpretation of our results, in this section we

present the dimensional reduction of the above ansätze down to 4 dimensions (along the

t, x1, x2, and τ coordinates). We will consider the following reduction ansatz:

ds2 = e−3α−3β−γ ds2
4 + L2

[
9

4
e2γν2 +

3

2

3∑
i=1

(
e2ασ2

i + e2βσ̃2
i

)]
, (2.17a)

G(4) = L−1 dC(3) + L3εijk d

(
P

6
σ̃i ∧ σ̃j ∧ σ̃k +

Q

2
σi ∧ σj ∧ σ̃k

)
, (2.17b)

where C(3) is a 3-form potential living entirely in M4. Although in the end our solution

will depend only on the radial coordinate τ , for the reduction we keep arbitrary dependence

on the coordinates of the 4-dimensional space M4. The reduced action is

S4D =
1

2κ2
4

∫
M4

[
?
4

(4)R− 1

2
KIJ(φ) dφI ∧ ?

4
dφJ − 1

2L2
e9α+9β+3γ dC(3) ∧ ?

4
dC(3)

− 16

27L2
d
(
Q2 − PQ

)
∧ C(3) − ?

4
U(φ)

]
, (2.18)

The kinetic matrix is given by

KIJ(φ) =


15 9 3 0 0

9 15 3 0 0

3 3 3 0 0

0 0 0 8
27e
−6β 0

0 0 0 0 8
9e
−4α−2β

 , (2.19)

and φI = {α, β, γ, P,Q} with I ∈ {1, 2, 3, 4, 5} are the scalar fields. The gravitational

constants are related by

κ2
4 ≡

κ2
11

(2L)7vol(V5,2)
=

κ2
11

27π4L7
, (2.20)

where we have used that the volume of V5,2 is given by 2−733π4 [26]. The factor of (2L)

is the radius of the V5,2 that appears in the 11-dimensional AdS4 × V5,2 solution. The

4-dimensional potential is given by

L2 U(φ) = e−5α−5β−3γ

[
3

2
e4γ +

2

3

(
e2α − e2β

)2
− 6e2γ

(
e2α + e2β

)]
+

16

81
e−9α−9β−3γ

[
e4α+2β(P − 2Q)2 + 3e6βQ2

]
. (2.21)

We have explicitly checked that this truncation is consistent. That is to say, any solution

of the equations of motion derived from this action can be embedded in 11 dimensional

supergravity via the lift defined in eqs. (2.17).

This theory features a 3-form potential C(3) whose equation of motion is

d

(
e9α+9β+3γ ?

4
dC(3) −

16

27
(Q2 − PQ)

)
= 0 . (2.22)
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It is natural to dualise the 4-form field strength and introduce F̃0 = e9α+9β+3γ ?4 dC(3),

whose solution is

F̃0 = F0 +
16

27

(
Q2 − PQ

)
. (2.23)

with F0 a constant. We can then substitute dC(3) = −e−9α−9β−3γ ?4 F̃0 back into the action

to obtain15

S4D =
1

2κ2
4

∫
M4

[
?
4

(4)R− 1

2
KIJ(φ) dφI ∧ ?

4
dφJ − ?

4
V (φ)

]
. (2.24)

where the potential V is now

V (φ) = U(φ) +
9

2L2
e−9α−9β−3γ

(
F0

3
+

16

81
(Q2 − PQ)

)2

. (2.25)

If we choose F0 = 3, then the potential approaches −6/L2 for φI → 0, and thus M4 is

asymptotically locally AdS4 with radius L. Different choices of F0 correspond to different

values of the AdS radius.

Since we are interested in a holographic interpretation of our solutions near the bound-

ary where they approach AdS4 × V5,2, it is useful to expand the action (2.24) to second

order around the AdS4 vacuum, which gives the following action for small fluctuations in

the scalars:

S
(2)
4D =

1

2κ2
4

∫
AdS4

d4x

√
−(4)ḡ

[
−1

2
KIJ(0) (4)∇µφI (4)∇µφJ − 1

2
MIJφ

IφJ
]
, (2.26)

where the mass matrix MIJ is given by

L2MIJ =

(
L2

2

)
δ2V

δφIδφJ

∣∣∣∣
0

=



610

3

650

3
66 0 0

650

3

610

3
66 0 0

66 66 30 0 0

0 0 0
32

81
−208

81

0 0 0 −208

81

512

81


. (2.27)

We would furthermore like to diagonalise the scalars and find their masses. To accomplish

this, we first choose a basis of scalars which diagonalises K(0), and then rescale this basis so

that the kinetic term is canonically normalised to 1
2δIJ . We can then make an orthogonal

transformation of the rescaled scalars which diagonalises M . When the dust settles, the

final transformation is

φ̃I = SIJφ
J , (2.28)

15Up to boundary terms which we will ignore, as they will not be needed here. Appropriate boundary

terms can be fixed by, e.g. holographic renormalization.
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where

S =



9√
7

9√
7

3√
7

0 0

0 0 0
1

3

√
2

3
−
√

2

3

−
√

3

7
−
√

3

7
2

√
3

7
0 0

−
√

3
√

3 0 0 0

0 0 0

√
2

3

√
2

3


. (2.29)

The canonically-normalised quadratic action then becomes

S
(2)
4D =

1

2κ2
4

∫
d4x

√
−(4)ḡ

[
−1

2
δIJ

(4)∇µφ̃I (4)∇µφ̃J − 1

2
M̃2
IJ φ̃

I φ̃J
]
, (2.30)

with the masses16

L2M̃2
IJ = diag

(
18, 10, 4,−20

9
,−14

9

)
. (2.31)

Since these are just minimally coupled scalars, we can determine their conformal dimen-

sions easily. Expanding the M4 metric in Fefferman-Graham coordinates xµ = (zFG, x
a),

a = 0, 1, 2, we obtain

ds2
4 =

L2

z2
FG

dz2
FG +

∞∑
n=0

gab
(pn)(x) dxa dxb zpnFG , (2.32)

where here pn is an increasing sequence of (rational) powers, and the coefficients gab
(pn)(x)

are metric tensors of (− + +) signature. The leading term is given by p0 = −2 with the

flat Minkowski metric:

g
(p0)
ab dxa dxb = −(dx0)2 + (dx1)2 + (dx2)2. (2.33)

We have introduced a general expression pn for the powers because for general matter

content the expansion will involve non-integer powers of zFG.

The boundary expansion of a mass M scalar is

φ(z, x) ∼ z∆+

FG (a0(x) + a1(x)zFG + . . .) + z
∆−
FG (b0(x) + b1(x)zFG + . . .) , (2.34)

where

∆± =
3±
√

9 + 4M2L2

2
. (2.35)

If M2L2 > M2
BFL

2 + 1 (where M2
BFL

2 = −9/4 is the four-dimensional Breitenlöhner-

Freedman mass), one has ∆− < 1/2. In that case a field with the ∆− branch absent, i.e.

bi(x) = 0, corresponds to a normalisable fall-off, whereas the solution with bi(x) 6= 0 is

16We note that this theory of five scalars is a sub-truncation of the V5,2 spectrum written down in [29];

however from physical reasoning we infer that φ̃4 should receive alternate quantisation, in contrast to the

tables in that paper. We also point out that the analysis of [30] for V5,2 agrees with our assessment.
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non-normalisable. The holographic interpretation is that a0(x) is a VEV for a dimension

∆+ operator in the CFT, and b0(x) is a source for that operator. This interpretation holds

for the scalars φ̃I for I = 1, 2, 3, which have conformal dimensions ∆ = 6, 5, 4, respectively.

However, the I = 4, 5 scalars have masses in the range

M2
BFL

2 < M2L2 < M2
BFL

2 + 1 , (2.36)

for which 1/2 < ∆− ≤ ∆+ < 5/2, and there is therefore an ambiguity in the boundary

conditions. In this case both branches of solutions are normalisable. Setting the bi(x) = 0

is known as standard quantisation, and setting the ai(x) = 0 corresponds to alternate

quantisation.17 As both boundary conditions are possible, we must resolve the ambiguity

by considering the problem at hand. In our case, the requirement that the bulk and

boundary theories be supersymmetric picks out a preferred boundary condition. Exactly

which of the two choices supersymmetry requires is dependent on the particular Kaluza-

Klein mode in question.

First we consider the φ̃5 scalar. The spectrum of conformal dimensions for supergravity

perturbations of AdS4 × V5,2 was worked out in [7] (see also [30]). As noted by [6], of the

two possible dimensions for φ̃5, ∆ = 2/3 or 7/3, only the second shows up in ref. [7]’s table

of dimensions. Therefore we choose the conformal dimension ∆ = 7/3. This corresponds to

standard quantisation. The coefficient of the z
2/3
FG in the expansion for φ̃5 then corresponds

to a source in the dual CFT.

Next, consider the φ̃4 scalar. We claim that this scalar receives alternate quantisation,

so that ∆ = 4/3 is the conformal dimension of the dual operator. To confirm this explicitly,

we could presumably do the same sort of analysis as in [7, 30]. Unfortunately this seems

to require a greater understanding of the Kaluza-Klein spectrum than we possess. We can

infer the proper quantisation by examining the form of φ̃4 on a known supersymmetric

supergravity solution which is not sourced by an operator of this form. This will be done

in section 3.2 for the CGLP solution.

Having understood the boundary conditions for the 4D scalars, and taking the 4-

metric to be asymptotically AdS4, we can then work out the boundary conditions for the

11-dimensional fields. This will be done below in section 5.3. (In fact the 4D analysis here

is quite necessary in order to understand the appropriate 11D boundary conditions, since

the two sets of fields are related in a non-trivial way.)

3 Review of known solutions

Our objective in this work is to construct what we will call the “CGLP black brane” solution

of 11-dimensional supergravity, but it will be helpful to review two closely-related solutions

which are known analytically: the Schwarzschild black brane, and the supersymmetric

CGLP solution.

17One may also have a0(x) ∝ b0(x) which corresponds to a multi-trace boundary condition. We will not

consider such boundary conditions here.
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3.1 Schwarzschild black brane

The simplest brane solution we will consider is the AdS-Schwarzschild black brane, a

Freund-Rubin solution of the formM4×V5,2, whereM4 is the planar AdS4 Schwarzschild

black hole:

ds2 =
L2

z2

[
−f(z) dt2 +

dz2

f(z)
+ (dw2

1 + dw2
2)

]
+ 4L2 ds2(V5,2) , (3.1a)

f(z) =

(
1− z3

z3
+

)
, (3.1b)

A(3) = −L
3

z3
f(z) dt ∧ dw1 ∧ dw2 . (3.1c)

(3.1d)

This solution corresponds to the near-horizon geometry of finite-temperature M2-branes at

the singular tip of the Stiefel cone (2.11). The constant z+ parametrises the temperature

of the black brane via

LT =
3

4πz+
. (3.2)

Here L is the AdS4 length scale, which is related to the number of M2-branes given by

N =
1

(2π`p)6

∫
V5,2

?G(4) =
81π4L6

(2π`p)6
, (3.3)

where `p is the 11-dimensional Planck length, related to the gravitational coupling via

4πκ2
11 = (2π`p)

9.

3.2 The CGLP solution

In [9], Cvetič, Gibbons, Lü, and Pope presented a smooth, supersymmetric (and thus zero-

temperature) solution to 11-dimensional supergravity corresponding to “fractional” M2-

branes dissolved in flux, which generalizes the Klebanov-Strassler solution [10] to higher

dimensions. This solution can be written as a warped product of (2 + 1)-dimensional

Minkowski space and the 8-dimensional Stenzel space with n = 3, as was discussed in

section 2.2. The metric and 3-form potential take the form:

ds2 = H−2/3 dxµ dxµ +H1/3 ds2
S , (3.4a)

A(3) = −H−1 dt ∧ dw1 ∧ dw2 +mβ(3) , (3.4b)

where dxµ dxµ is (2 + 1)-dimensional Minkowski space, ds2
S is the Stenzel metric given

in (2.14), and β(3) was defined in (2.16). The function H is given by [27]

H =
23/2311/4m2

`6ε

∫ ∞
(2+cosh τ)1/4

d t

(t4 − 1)5/2
. (3.5)

The magnetic part of the 3-form potential preserves the SO(5) symmetry of the Stenzel

metric, and its corresponding magnetic 4-form α(4) = dβ(3) is the (unique) L2 normalis-

able harmonic form on this space. Thus the ansatz (3.4) has the right ingredients to be

asymptotically AdS4 × V5,2.
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Re-writing the metric ansatz (3.4a) in a 4 + 7 split (where the 7-dimensional part is

given by the V5,2 directions), one obtains the 4-dimensional metric of section 2.3:

ds2
4 = e3α+3β+γ

[
H−2/3 dxµ dxµ +

H1/3c2

4
dτ2

]
, (3.6)

To analyze the asymptotics, it will be useful to introduce a Fefferman-Graham coordinate

zFG defined by

zFG = 25/431/4

(
L

`ε

)2

e−3τ/4

(
1− 81

26
e−τ +

214515

22984
e−2τ + . . .

)
, (3.7)

for which the ds2
4 takes the Fefferman-Graham form of (2.32) with L = m1/3.

Since the CGLP asymptotics AdS4×V5,2 is the same as those of the Schwarzschild black

brane, this means that their holographic dual theories have the same UV fixed point; the

magnetic flux α(4) (present in the CGLP case) then corresponds to a relevant deformation.

To understand the effect of the deformation, it is instructive to examine the M2-brane

charge. Since the Chern-Simons term G(4)∧G(4) is non-zero, the notion of charge becomes

a bit nuanced in this background. We must consider two distinct notions of charge, the

Maxwell charge and the Page charge.18 These are

QMaxwell =

∫
V5,2

?G(4) , (3.8a)

QPage =

∫
V5,2

(
?G(4) −

1

2
A(3) ∧G(4)

)
. (3.8b)

The Maxwell charge includes contributions from the Chern-Simons term, which allows the

flux to source itself; but as a consequence, it is not a conserved charge (since the charge

within a Gaussian surface can receive volume contributions from the Chern-Simons term).

The Page charge, by contrast, is the integral of a conserved current, and is the appropriate

quantity to quantise [31]:

N =
QPage

(2π`p)6
=

81π4m2

(2π`p)6
∈ Z . (3.9)

Note that with the identification L = m1/3, already discussed below (3.7), this is the same

expression as in (3.3), and thus this is the N of the large-N limit which relates the dual

gauge theory to these gravitational solutions.

Following [6, 27] we may define a running, or effective number of M2-branes using the

Maxwell charge via

N(τ) =
QMaxwell(τ)

(2π`p)6
=

81π4m2

(2π`p)6
tanh4(τ/2) . (3.10)

This is not quantised. In the UV, it agrees with the number of M2-branes computed via the

Page charge, N(∞) = N , and decreases monotonically away from the boundary, vanishing

18In [31] three separate notions of charge are discussed for general supergravity configurations, but for the

current context in which there are no localised brane sources, there are only two inequivalent definitions.
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at τ = 0, the tip of the Stenzel manifold. The geometric effect of this flux is to smooth

out the singularity of the Stiefel cone. The holographic interpretation of this running

of N(τ) is a Seiberg-like duality cascade where the rank of the gauge groups decreases

under RG flow [6]. The flow leads to a confined state in the IR, with confinement scale `ε
(which can be removed via a rescaling of the Minkowski coordinates [27]). Because there

is no horizon, the solution may be considered at any temperature upon Wick rotation

to a Euclidean geometry. Thus, this CGLP solution is to be interpreted as the confined

phase of the holographic theory, i.e. it plays a role analogous to that of thermal AdS in the

confinement/de-confinement transition of AdS5 × S5.

From the dimensionally reduced perspective, the 4-dimensional metric is not an Ein-

stein space, and the scalars φI do not correspond to an extremum of V , i.e. δV/δφI
∣∣
CGLP

6=
0. Yet we may still apply the perturbative analysis in section 2.3 since the solution is asymp-

totically AdS4×V5,2. Of particular interest are the boundary expansions for the tachyonic

scalars φ̃4 and φ̃5. These have the boundary expansions

φ̃4 = −
√

3 (α− β) = −2−2/331/6

(
`ε
L

)8/3

z
4/3
FG +O(z

8/3
FG ) . (3.11)

φ̃5 =

√
2

3
(P +Q) = 22/335/6

(
`ε
L

)4/3

z
2/3
FG +O(z2

FG) . (3.12)

The conformal dimension of φ̃5 was previously found to be ∆ = 7/3, so the fall-off for this

scalar corresponds to a source in the dual field theory. In particular it corresponds to a mass

deformation. The conformal dimension for φ̃4 is less clear. The possibilities are ∆ = 4/3

or 5/3. Because the only source involved in the CGLP solution is the mass deformation,

this boundary condition for φ̃4 should not involve a sourcing term. We therefore infer that

∆ = 4/3 as the ∆ = 5/3 branch is absent. It is known that in Kaluza-Klein theory for 11

dimensional supergravity, low mass scalars sometimes receive alternate quantisation, see

for example ref. [32].

4 Perturbative analysis

The CGLP black brane we wish to construct in this paper is a finite-temperature version

of the CGLP solution. It preserves the same SO(5) isometry as CGLP, and therefore

corresponds to the backreaction of smeared, finite-temperature branes. One can think of

the branes as being smeared over the homology S4, but of course what actually happens

is that the tip of the Stenzel space is replaced by a horizon of V5,2 topology.

Before embarking on the task of building this full non-linear solution, we will first

consider a perturbation of the Schwarzschild black brane corresponding to a linearised

mass deformation. This should agree with the general solution linearised in the mass

deformation parameter and will serve as a good seed for our numerics in the non-linear

problem.19 Because the flux in the Schwarzschild black brane (3.1) is purely electric, it

19Note that we can perturbatively add flux to the Schwarzschild black brane, but we cannot perturbatively

add a horizon to the CGLP solution because black holes are not small perturbations. Something like a

matched asymptotic expansion would have to be preformed instead, a task we will not pursue here.
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is consistent to perturb only the 3-form potential δA(3), leaving the metric fixed to linear

order. Therefore, we will consider a linear 3-form perturbation of the form

δA(3) = L3 εijk
(
P

6
σ̃i ∧ σ̃j ∧ σ̃k +

Q

2
σi ∧ σj ∧ σ̃k

)
. (4.1)

It is instructive to consider this perturbation from the 4-dimensional perspective. In

this case, it merely corresponds to a subset of the perturbative analysis performed in

section 2.3. There we perturbed around a Freund-Rubin solution of the form M4 × V5,2,

with M4 an asymptotically AdS4 manifold. The Schwarzschild black brane fits this form,

and so the analysis done in that section applies here as well. In this case M4 is the AdS4

Schwarzschild black hole considered in section 3.1, and α = β = γ = 0. Therefore, the

11-dimensional linearised 4-form equation

d ? δG(4) −G(4) ∧ δG(4) = 0 , (4.2)

is equivalent to the equations of motion for the diagonalised scalars φ̃I worked out in

section 2.3, and restricted to the case that α = β = γ = 0. The relationship between the

P,Q and the φ̃I is:

φ̃2 =

√
2

3
√

3
(P − 3Q), φ̃5 =

√
2

3
(P +Q) . (4.3)

We expect to find a regular solution of these equations corresponding to a mass de-

formation in the boundary CFT. Recall that φ̃2 has M2L2 = 10, so that only one choice

of fall-off is normalisable. It is not hard to verify that there is no regular non-zero solu-

tion with normalisable boundary conditions, so φ̃2 = 0. Alternatively, φ̃5 has a mass of

M2L2 = −14/9, and a source for this scalar corresponds to a mass deformation. There-

fore, we search for a solution for φ̃5 that is regular at the horizon and falls off like z
2/3
FG

in Fefferman-Graham coordinates. Such a solution may be found analytically. In terms

of the original P,Q variables and the coordinates used in the Schwarzschild solution of

section 3.1 it is:

P (z) = µ z2/3 q(z) , and Q(z) =
µ

3
z2/3 q(z) (4.4a)

with

q(z) =
cos
(
π
18

)
Γ
(

4
9

)
Γ
(

7
9

)2
π

2F1

(
2

9
,
2

9
; 1; 1− z3

)
. (4.4b)

Here µ parametrizes the mass deformation, and the numerical prefactors have been chosen

to ensure that q(0) = 1. We will see that our full nonlinear numerical results will reproduce

this expression when µ is small.

5 The CGLP black brane

We now turn to the main challenge, the non-linear construction of the (smeared) CGLP

black brane. For the numerical construction of these solutions, it will be useful to employ

the DeTurck trick in order to render the equations elliptic, which then makes them amenable

to numerical methods. We shall give a brief overview of the DeTurck method first, and

then proceed to the details of our numerical solutions.
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5.1 The DeTurck method

The essential problem which the DeTurck trick solves is that the Einstein equation has

a great deal of gauge redundancy coming from diffeomorphism invariance. The DeTurck

trick, first introduced in [33] and recently reviewed in [14], is a method of gauge-fixing by

making these extra degrees of freedom dynamical. One accomplishes this by adding a new

term to the Einstein equation of the form 1
2(Lξ g)ab = ∇(aξb), where ξa is a vector field

defined by the formula

ξa = gcb
(

Γacb − Γ̄acb

)
, or equivalently, ξa = gcb

(
∇̄cgba −

1

2
∇̄agbc

)
. (5.1)

The meaning of the quantities in this formula are as follows: first one should choose a

fixed “reference metric” ḡab on our spacetime manifoldM11, which is essentially arbitrary,

except that it should have the same isometries and asymptotic structure as the solutions we

seek. The reference metric serves as an initial “guess”, and so it pays to choose a reference

which is reasonably close to the expected solution. Having chosen ḡab, one then computes

the connection ∇̄ which is Levi-Cività with respect to ḡab. That is, ∇̄ preserves ḡab, but

not gab, which is the unknown solution we are after. One then sets ξa, as shown in (5.1),

equal to the trace of the difference of the two connections ∇, ∇̄ (and thus ξa is properly a

tensorial object).

In doing this, one can show that the Lie derivative ∇(aξb) contains the second-order

derivatives of the gauge degrees of freedom, which were previously missing from Einstein’s

equation. So, one can then modify the equation by the addition of this term, which yields

the Einstein-DeTurck equation,

Rab −∇(aξb) =
1

12

[
G(4)acde

G(4)b
cde − 1

12
gabG(4)cdef

G(4)
cdef

]
, (5.2)

which is now properly elliptic. Of course, one may be concerned that the problem has been

re-defined by the addition of the new term, and this concern is not unwarranted: it will

become necessary to check that, on the solutions, the quantity χ = (ξaξa)
1/2 converges to

zero sufficiently fast (at a rate dictated by the numerical method used). Then when χ = 0,

the solutions of the Einstein-DeTurck equation (5.2) will in fact be solutions of the Einstein

equation (2.4), in a gauge where the traces of the connection coefficients are numerically

equal to those of the chosen reference metric ḡab (thus providing exactly the right number

of gauge-fixing conditions).

One drawback with the DeTurck method is that one cannot fix a gauge ahead of time,

because the gauge degrees of freedom have been made dynamical. That is to say, one

cannot choose very many specific facts about the coordinates used to describe the metric,

except for coordinates along isometries which are effectively removed from the problem.

Thus for our present cohomogeneity-one problem, the (metric) coefficient of the radial

coordinate must include an arbitrary function to be solved for, as in q(y) dy2, in order

to leave the gauge unspecified. Similarly, a cohomogeneity-two problem must include an

expression for a completely-generic 2-dimensional metric, and so on. For problems of low

cohomogeneity, this drawback is far outweighed by the benefit attained in making the
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Einstein equation elliptic, but we know of no problems greater than cohomogeneity-three

to which this method has been successfully applied with the computing resources available

in the present day.

In the context of the present calculation with SO(5) symmetry, properly reducing the

equations to cohomogeneity-one is actually a non-trivial challenge. This challenge comes

from the proliferation of left-invariant one-forms ν, σi, σ̃i in the metric ansatz for Stenzel

space (2.12). While it is possible to write these out in coordinates, the expressions are

quite long and calculations in a coordinate basis quickly become unwieldy. But there is no

good reason to use coordinates; it is far more efficient to use the Lie algebra (2.9) directly,

which ought to be sufficient for calculating all of the curvatures. The authors, however, are

not aware of any instance in the literature where the DeTurck method has been applied

in a non-coordinate basis. Therefore, we have developed in detail a method for doing so,

which we give in appendix A.

5.2 Specialized ansatz for numerics

A convenient ansatz for the numerical construction of the CGLP black brane is

ds2 = L2

[
−(1− y9)y2

+ q1(y) dt2 + y2
+ q3(y)(dw2

1 + dw2
2)

y6
+

9 q2(y) dy2

(1− y9)y2

]
+ L2

[
9

4
q6(y)ν2 +

3

2

3∑
i=1

(
q4(y)σ2

i + q5(y)σ̃2
i

)]
, (5.3a)

A(3) = L3 (1− y9)y3
+ q9(y)

y9
dt ∧ dw1 ∧ dw2

+
L3 y2

y
2/3
+

εijk

(
1

6
q7(y) σ̃i ∧ σ̃j ∧ σ̃k +

1

2
q8(y)σi ∧ σj ∧ σ̃k

)
, (5.3b)

where y = 0 is the location of the conformal boundary and the horizon is a null hypersurface

with y = 1. Note the presence of q2(y) which is necessary to avoid prematurely fixing a

gauge. The full ansatz contains nine functions qi(y), with i ∈ {1, . . . , 9}, to be determined

by solving the combined system of (2.2b) and (5.2). These nine functions must satisfy

boundary conditions which will be detailed in section 5.3. For the reference metric ḡab
to be used in the DeTurck trick, we shall take the Schwarzschild black brane, which is

described by q1, . . . , q6 = 1, q7 = q8 = 0, and q9 = 1.

In fact, one may immediately integrate the t, w1, w2 component of the Maxwell equa-

tion (2.2b) to obtain q9 in terms of the other functions, thus reducing the number of

unknowns to eight:

q9(y) =
y9

(1− y9)

∫ y

1

{
9
√
q1(u)

√
q2(u)q3(u)

u10q4(u)3/2q5(u)3/2
√
q6(u)

−
16
√
q1(u)

√
q2(u)q3(u) [q7(u)− q8(u)] q8(u)

9u6q4(u)3/2q5(u)3/2
√
q6(u)

}
du , (5.4)

where the integration constant has been chosen such that q9(0) = −1 and q9(1) is finite.

The remaining equations depend on q9 only through the combination ∂y[(1− y9)q9(y)/y9],
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and thus we can then eliminate q9 algebraically in terms of the above integrand, leaving us

with eight coupled nonlinear ordinary differential equations for the remaining q1, . . . , q8.

5.3 Boundary conditions

We must choose boundary conditions at the horizon (y = 1) and at asymptotic infinity

(y = 0). At the horizon, we demand regularity of the line element (5.3b), which requires

q1(1) = q2(1) and Robin boundary conditions for the remaining functions, which we will not

reproduce here as they are rather long and uninteresting. At infinity, one must choose the

appropriate leading fall-offs, which in this case is a somewhat subtle matter. While some

of these fall-off conditions arise by straightforward matching to the the CGLP solution;

others require comparison to the 4-dimensional reduction of section 2.3 in order to ensure

that the mass deformation is turned on with no additional sources.

We will not derive the boundary conditions here, but merely present them. Near y = 0,

we shall take all of our functions qi to be power series:

qi(y) =

∞∑
j=0

a
(j)
i yj . (5.5)

We do not write any logarithmic terms, since we expect the asymptotic conformal symmetry

to be preserved.20 Most of the constants a
(j)
i are functions of a few others that are free.

The latter are completely fixed once a solution is found, i.e. they will parametrise the

expectation values in our boundary theory. Up to O(y8), the boundary expansions of the

qi are given by:

q1(y) = 1− 224y4µ2

116883y
4/3
+

+O(y8) ,

q2(y) = 1 +
2272µ2y4

116883y
4/3
+

+O(y8) ,

q3(y) = 1− 224y4µ2

116883y
4/3
+

+O(y8) ,

q4(y) = 1 + θ1y
4 + βy5 +O(y8) ,

q5(y) = 1−

(
64µ2

3159y
4/3
+

+ θ1

)
y4 − βy5 +O(y8) , (5.6)

q6(y) = 1− 32y4µ2

3159y
4/3
+

+O(y8) ,

q7(y) = µ−

(
1552µ3

350649y
4/3
+

+
7θ1µ

6

)
y4 + θ2y

5 +O(y8) ,

q8(y) =
µ

3
+

(
272µ3

350649y
4/3
+

− µθ1

6

)
y4 +

(
8βµ

39
+
θ2

3

)
y5 +O(y8) ,

20See [34] for a discussion of related systems where this is not the case.
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where θ1, θ2 and β are functions of y+ and µ, and should be extracted once a solution is

found. More constants, which we will detail below, appear at higher order in y and they

are all related to expectations values of the several scalars in the theory or the expectation

value of the energy.

In the dimensional reduction of section 2.3 we found two scalars with mass-squared

negative enough to support either standard or alternative boundary conditions. The scalar

φ̃5 corresponds to a mass deformation of the dual field theory, and sourcing this field

translates into the leading behaviour for q7, q8. The second scalar, φ̃4, comes from the

Stenzel part of the metric, and should not be sourced. The expansion for this scalar is

φ̃4(y) ∝ log(q4)− log(q5) ≈

(
64µ2

3159y
4/3
+

+ 2θ1

)
y4 + 2βy5 +O(y6) . (5.7)

To eliminate the source, one must set the coefficient of z
5/3
FG in Fefferman-Graham coordi-

nates to zero. The map to Fefferman-Graham coordinates is not very illuminating, so we

omit it; the result is that we must set β = 0.

In order to implement these boundary conditions, it is more convenient to change to

a different basis of functions q̂i(y) given by

q1(y) = 1− 224y4µ2

116883y
4/3
+

+ y7q̂1(y) ,

q2(y) = 1 +
2272µ2y4

116883y
4/3
+

+ y7q̂2(y) ,

q3(y) = 1− 224y4µ2

116883y
4/3
+

+ y7q̂3(y) ,

q4(y) = 1 + y4q̂4(y) ,

q5(y) = 1 + y4q̂5(y) ,

q6(y) = 1− 32y4µ2

3159y
4/3
+

+ y7q̂6(y) ,

q7(y) = µ+ y3q̂7(y) ,

q8(y) =
µ

3
+ y3q̂8(y) .

(5.8)

Then in terms of the hatted quantities, the boundary conditions at y = 0 become very

simple:

q̂1 = q̂2 = q̂3 = q̂6 = q̂7 = q̂8 = 0 ,

q̂4(0) + q̂5(0) +
64µ2

3159y
4/3
+

= 0 , and q̂′4(0) = 0 . (5.9)

The last of these boundary conditions expresses that β = 0, i.e. that the scalar φ̃4 has

alternative quantisation. Of course, one must also rewrite the boundary conditions at the
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horizon in terms of the hatted variables; for instance the regularity condition q1(1) = q2(1)

becomes

q̂1(1) =
64µ2

2997 y
4/3
+

+ q̂2(y) . (5.10)

It is these hatted quantities that we will solve for numerically.

Finally, we need to understand how to compare quantities we calculate in this back-

ground (dual to a thermal, de-confined state) to quantities calculated in the CGLP back-

ground (dual to a confined state). Thus we must understand the relationship between

our CGLP black brane parameters (L, y+, µ) and the CGLP parameters (L, `ε). The two

solutions differ in the IR, but they should agree in the UV to leading order. Both solutions

are asymptotically AdS4 with radius L. The temperature is an IR quantity and does not

affect the UV. Both solutions have magnetic 4-form flux turned on, and from the 4D per-

spective this corresponds to a source for the scalar φ̃5. By working in Fefferman-Graham

coordinates for each solution, the source has the same normalisation in both solutions if

we identify

4
√

2

9
L2/3µ = 22/335/6

(
`ε
L

)4/3

. (5.11)

5.4 Energy and a Smarr relation

Having sorted out the boundary conditions, we also need a definition of energy and a

corresponding Smarr relation. Since conformal symmetry remains intact in the UV, we

expect the energy to be scale-invariant. This has three important consequences: i) we can

use scale invariance to fix y+ = 1 and dial µ as we move in parameter space, since only

the ratio µ̂ ≡ µ/T 2/3 is scale-invariant; ii) the scale invariance of the theory has important

consequences for thermodynamics, such as allowing for a Smarr formula; iii) since the

temperature has a thermodynamic conjugate variable (the entropy density) so will µ. We

will call this thermodynamic conjugate variable Θ (also a density).

From a physical perspective, µ is a parameter that we fix at infinity, and so we expect

our energy density to be computed at fixed µ. In the microcanonical ensemble, this means

that the energy density ρ should be a function only of the entropy density s and µ: ρ =

ρ(s, µ). Scale invariance demands that this function be homogeneous. Since the mass

dimension of the entropy density is 2, the mass dimension of the energy density is 3 and

the mass dimension of µ is 2/3, the density must behave in the following way under scale

transformations:

ρ(λ2s, λ2/3µ) = λ3ρ(s, µ) . (5.12)

We will see shortly that this scaling relation has remarkable consequences. As we have just

mentioned, the energy density is a function of s and µ only, with conjugate variables T

and Θ, and so we will have a first law of the form

δρ = T δs+ Θ δµ , (5.13)
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where δ denotes a variation along the moduli space of solutions; in our case, δ = δy+∂y+ +

δµ∂µ. The scaling relation (5.12) and the first law (5.13) together imply a Smarr relation

for the energy density: if one differentiates (5.12) with respect to λ, and then set λ = 1,

one obtains the result

2s

(
∂ρ

∂s

)
µ

+
2

3
µ

(
∂ρ

∂µ

)
s

= 3ρ(s, µ) ⇒ Ts =
3

2
ρ− 1

3
Θµ , (5.14)

where we have used the first law (5.13) to obtain the final implication.

In a subsequent publication [35] we will show that one can associate a variation (in

moduli space) of a conserved quantity to each Killing vector field ξ̂ as follows. First, we

can construct a closed 9−form, which we coin ωξ̂, given by

ωξ̂ = ωg
ξ̂

+ ω
A(3)

ξ̂
, (5.15)

where

hab ≡ δgab , a(3) ≡ δA(3) , ωg
ξ̂

=
1

2κ2

[
−δ dξ̂ − iξ̂ ?[(∇bh

b
a −∇ah)ea]

]
,

ω
A(3)

ξ̂
= δQA(3) − iξ̂Θ

A(3) ,

Θ
A(3)

ξ̂
=

1

2κ2

(
?G(4) ∧ a(3) −

1

3
G(4) ∧A(3) ∧ a(3)

)
,

Q
A(3)

ξ̂
= − 1

2κ2

(
?G(4) −

1

3
G(4) ∧A(3)

)
∧ iξ̂A(3) .

One can explicitly check, using the equations of motion and the fact that ξ̂ is a Killing

vector, that ωξ̂ is a closed 9−form,

dωξ̂ = 0 . (5.16)

Our geometry is written in coordinates adapted to the three Killing directions along

the worldvolume of the branes, whose Killing vectors are ξ̂ = ∂t and ξ̂ = ∂wi . We will

denote hypersurfaces of constant t and wi by Σt and Σwi . Since these hypersurfaces are

10-dimensional, we can integrate dω∂t and dω∂wi along Σt and Σwi , respectively. For the

hypersurfaces of constant t we will assume that the coordinates wi are periodic with period

∆wi, and in the hypersurfaces of constant wi we will take t ∈ [0,∆t]. For either of these

surfaces we have

0 =

∫
Σξ̂

dωξ̂ =

∫
Sy=0

ξ̂

ωξ̂ −
∫
Sy=1

ξ̂

ωξ̂, which implies

∫
Sy=0

ξ̂

ωξ̂ =

∫
Sy=1

ξ̂

ωξ̂ , (5.17)

where Sy=0,1

ξ̂
is a constant-y slice of Σξ̂ and we have used Stokes’ theorem.

Using the boundary conditions of section 5.3, we can evaluate the horizon y = 1 slice

of (5.17) for ξ̂ = ∂t to find
1

∆w1∆w2

∫
Sy=1
∂t

ω∂t = Tδs . (5.18)
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Therefore it follows, by applying our first law (5.13), that at the asymptotic y = 0 slice

of (5.17) one has
1

∆w1∆w2

∫
Sy=0
∂t

ω∂t = dρ−Θ dµ . (5.19)

Finally we observe that the following difference yields δ(Ts):

1

∆w1∆w2

∫
Sy=0
∂t

ω∂t−
1

∆t

∫
Sy=0
∂wi

ω∂wi =
1

∆w1∆w2

∫
Sy=1
∂t

ω∂t−
1

∆t

∫
Sy=1
∂wi

ω∂wi = δ(Ts) , (5.20)

which implies, via the Smarr relation, that

1

∆w1∆w2

∫
Sy=0
∂t

ω∂t −
1

∆t

∫
Sy=0
∂wi

ω∂wi = δ

(
3

2
ρ− 1

3
Θµ

)
. (5.21)

The left hand sides of (5.18) and (5.21) can be readily evaluated in terms of our

asymptotic quantities. Furthermore, they provide two partial differential equations in µ

and y+ for two unknowns ρ and Θ, which can be solved up to two constant of integration

ρ0 and C1:

Θ =
N3/2

4374π6

[
12πC1µ

7/2 − 5y
5/3
+ q̂′′7(0)

]
, (5.22a)

ρ =
N3/2

419904π6

[
ρ0 + 256πC1µ

9/2 − 192µy
5/3
+ q̂′′7(0)− 729y3

+

(
3q̂′′1(0)− 4

)]
. (5.22b)

The integration constants can be fixed by requiring that the energy of the CGLP solution

be zero. This fixes ρ0 = 0 and C1 = 0. However, let us imagine for a moment we did not

have the CGLP solution. In this case we could still set C1 to zero, by appealing to the fact

that we expect the energy to be an analytic function of µ. This is best seen by the fact

we can construct a perturbation theory around µ = 0 where P and Q only contain odd

powers of µ, and the remaining functions contain even powers of µ only.

Now that we have an energy density we can discuss some thermodynamic properties

we would like to investigate. First, we point out that the energy density ρ is not a scale-

invariant quantity, so instead we will consider ρ̂ = ρ/T 3. Similarly, for the entropy density

we should only consider ŝ = s/T 2. From these we can construct a dimensionless free energy

density f̂ ≡ ρ̂−ŝ. In terms of the scale-invariant quantities, the first law of thermodynamics

takes a particularly simple form:

3f̂(µ̂) + ŝ(µ̂)− 2

3
µ̂f̂ ′(µ̂) = 0 . (5.23)

All the solutions we present in this work satisfy this form of the first law up to 10−6%.

We will also find it informative to plot the specific heat density at constant µ, which

is defined as

cµ = T

(
∂s

∂T

)
µ

. (5.24)

It is easy to see that cµ is not a scale-invariant quantity, so we should consider ĉµ = cµ/T
2

instead. In terms of our dimensionless quantitates, we find

ĉµ = 2ŝ(µ̂)− 2

3
µ̂ ŝ′(µ̂) . (5.25)
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Our final expression (5.22b) for the energy does not agree with the one found in [21].

We have traced this discrepancy to the fact that [21] uses a subtraction method to deal with

the AdS asymptotics, which is known to have ambiguities. Such ambiguities eventually lead

to the birth of holographic renormalisation [36].

5.5 Numerical results

We are now finally ready to solve the system of equations for the CGLP black brane and

discuss our results. In order to solve for the 8 functions q̂i, with i ∈ {1, . . . , 8}, we discretise

the system of coupled ordinary differential equations using a pseudo-spectral collocation

method on a Chebyshev grid. The resulting nonlinear system of algebraic equations is then

solved using a standard Newton-Raphson method algorithm. Once a solution is found, we

compute its energy density via (5.22b). The entropy density can also be easily computed

via the area of the horizon.

The most important quantity to plot is the dimensionless free energy f̂ . For small

µ̂ (high temperature) f̂ is negative, and vanishes for the CGLP solution, f̂CGLP = 0.

Therefore, if f̂ of the CGLP black brane crosses zero to become positive, it would signal a

first order confinement/de-confinement phase transition in the field theory. On the gravity

side, this would mean that the CGLP solution would have lower free energy than the black

brane phase we constructed for sufficiently large µ̂ (small temperature). On the left panel

of figure 1 we plot f̂ as a function of µ̂.

While we do not observe f̂ crossing zero, we do find evidence for a phase transition

occurring at

µ̂crit =
( µ

T 2/3

)
crit

= 18.3906± 0.0046 . (5.26)

Perhaps surprisingly, this transition seems to be second order, since f̂ has zero derivative

as we approach µ̂crit from below. An additional surprise is that the solution appears to

be singular at the critical point. This can be seen in several ways. On the right panel

of figure 1 we plot the Kretschmann scalar, K ≡ L4RabcdRabcd, as a function of µ̂. We

can measure, via a simple third order polynomial extrapolation, the value of µ̂ at which K
diverges,21 and that coincides with our estimate for µ̂crit to within 0.02%!

In order to better understand the nature of the singularity we can study the ratio

q4/q5. Evaluated on the CGLP solution, this ratio is a/b, which is 1 at the AdS boundary

and diverges like a/b ∼ τ−1 at the tip of the Stenzel metric. In the left panel of figure 2

we plot the value of this ratio at the horizon. As µ̂ increases q4 increases to about 7.563

but seems to remain finite, while q5 approaches zero very rapidly precisely at the location

of the singularity, i.e. at µ̂ = µ̂crit (again, the extracted value via extrapolation agrees with

µ̂crit within 0.002%). By looking at our metric ansatz (5.3b), it seems the S3 described

by the σ̃i wants to shrink at that point. We interpret this as evidence for a topological

phase transition through a singular cone solution to a black brane with horizon topology

R2 × S3 × S4. We plan to investigate this possibility in future work.

Next we comment on the specific heat at constant µ, plotted in the right panel of

figure 2. If this quantity were to change sign, it would indicate a Gregory-Laflamme type

21This is best done by extrapolating the behaviour of K−1 as a function of µ̂.
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Figure 1. Left panel : the dimensionless free energy density f̂ as a function of µ̂: f̂ reaches zero

at µ̂c ≈ 18.3906 ± 0.0046 with what appears to be zero derivative. Right panel : the Kretschmann

scalar K as a function of µ̂.

� � �� ��
�

���

���

���

���

μ

�
�
/�
�

� � �� ��

�

�

�

�

�

μ

�
μ

Figure 2. Left panel : the ratio (q4/q5)y=1 evaluated at the as a function of µ̂. Right panel : the

dimensionless specific heat ĉµ as a function of µ̂.

instability along the flat directions w1, w2 of the black brane we have constructed. However,

we find no evidence of this, as ĉµ does not change sign.

Lastly, we will consider the M2-brane charge. Recall that in flux backgrounds where

the Chern-Simons term is non-zero, G(4) ∧G(4) 6= 0, we may consider both a Maxwell and

a Page charge. The Page charge (3.8b) is conserved, and will take the same value in the

solution considered here as in both the CGLP and Schwarzschild black brane solutions.

In the current set-up the Page charge is just measuring the AdS4 radius. The Maxwell

charge (3.8a) varies radially throughout the geometry, and agrees with the Page charge

at infinity since the Chern-Simons term vanishes asymptotically. We therefore consider
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Figure 3. Ratio of the Maxwell charge measured at the horizon to the Maxwell charge measured

at infinity.

the ratio
QMaxwell(y)

QPage
=
QMaxwell(y)

QMaxwell(0)
=
N(y)

N(0)
. (5.27)

Of particular interest is this ratio evaluated at the horizon, in which case it compares the

M2-brane charge at the boundary to the M2-brane charge at the horizon. This quantity is

of great relevance for understanding the fate of anti-brane singularities as discussed in the

Introduction. If the charge at the horizon is the same sign as at infinity for all solutions, it

means that the singularities of smeared anti-branes added to the CGLP solution cannot be

cloaked with a finite-temperature horizon. This is what has been found for a wide variety

of smeared black holes in other flux backgrounds.22 In figure 3 we plot the ratio of the

Maxwell charge at the horizon to the charge at infinity, and find that while it does decrease

with increasing µ̂, it never crosses zero. Thus there does not appear to exist a finite-

temperature negatively charged smeared CGLP black brane, which is entirely consistent

with expectations.

Some novel features of the CGLP black brane relative to previous anti-brane investi-

gations are the AdS asymptotics and the existence of a dual field theory. It would be very

interesting to understand the observed behaviour of the Maxwell charge from the CFT per-

spective, but unfortunately we do not understand the precise holographic dual of QMaxwell.

It is natural to associate the running of QMaxwell with a series of duality cascades where

the rank of the dual gauge group is decreased, but without a more complete understanding

of the dual field theory this understanding remains only heuristic. A connection of this

nature between allowed charges of black branes in flux backgrounds and CFT quantities

would be extremely useful. One tantalising possibility is that if one better understood the

22We should point out that an inability to blacken an anti-brane singularity does not necessarily rule it

out as unphysical; for example in ref. [37] it was noted that there are singular Coulomb branch solutions in

AdS5/CFT4 which are physical and yet cannot support any finite temperature. Conversely, however, the

ability to blacken a singularity does support an argument that the singularity is physical.
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role of the Maxwell charge in the dual field theory, then it might become obvious which

types (if any) of negatively-charged black holes can exist in flux backgrounds with field

theory duals. We leave this interesting idea for future work, and will merely remark that

in the dimensionally reduced theory, QMaxwell is proportional to F̃0, and so understanding

the holographic dual of F̃0 would be very useful.

6 Discussion

Asymptotically AdS4 × V5,2 black branes in 11-dimensional supergravity provide a fertile

ground for theoretical study, encompassing such diverse topics as novel black brane so-

lutions in higher dimensions, thermodynamics of 2+1 dimensional CFTs, and the KKLT

proposal for building de Sitter solutions in string theory. In this work we have tried to em-

phasise the connections between these different perspectives in the context of black brane

solutions in the CGLP flux background. Of the many black hole solutions that may exist,

we have considered the simplest one: namely, the “smeared” black brane with the same

internal SO(5) symmetry as the zero-temperature CGLP solution.

By analogy with black holes in AdS5 × S5 [2, 3], one might expect a first-order

confinement/de-confinement phase transition between the smeared CGLP black brane and

the thermal CGLP solution. Surprisingly, this does not happen. Instead the family of

CGLP black branes terminates in a singular solution, which appears to have precisely the

same free energy as the confined CGLP solution — in other words, the expected phase

transition would appear to coincide with the singularity! There are a number of interest-

ing ways this may be resolved. Just as in AdS5 × S5, we expect there to exist a variety

of other solutions such as localised black branes, although these will be more difficult to

construct [2, 3]. One possible resolution to the puzzle is that these localised solutions par-

ticipate in the confinement/de-confinement transition in the canonical ensemble in some

way. From the perspective of the field theory, these less-symmetric solutions correspond to

states with broken R-symmetry, and it might be that confinement and spontaneous sym-

metry breaking are somehow related in this theory. Another possibility is that one might

fail to see a phase transition even after considering these less-symmetric solutions, and in

the strict large-N limit the theory does not confine. Presumably 1/N effects would then

lead to confinement.

It is interesting to contemplate the different possible black hole phases that may exist.

In the AdS5 × S5 system, the expected localised solution with horizon topology S8 was

found, and in addition evidence was seen for an infinite family of solutions associated with

different spherical harmonics on the S5 (black branes for the ` = 1, 2 harmonics were

explicitly constructed [3]). In the CGLP case, we certainly expect localised black branes

to exist with horizon topology R2 × S7. There may or may not be an infinite number of

solutions associated with harmonics on the V5,2, it is difficult to say at this point. However,

our geometric understanding of the singularity of the critical black brane suggests that a

new family of solutions should connect to the family we have constructed here, with the

two families joined by a topology changing transition at the singular point. The geometry

of the singular solution suggests that the horizon topology of this new family may be
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R2 × S3 × S4. If such a solution exists, an interesting question is whether or not it plays a

role in resolving the puzzle of the confinement/de-confinement transition.

Regarding the problem of anti-branes in flux backgrounds, we have demonstrated that

smeared CGLP black branes cannot support negative charge on the horizon. This was

entirely expected, and conforms to widely-held expectations as well as previous results for

the CGLP background. Whether or not this is the case for more general black branes

(including localised anti-branes) is an entirely different, and much more difficult problem

with less consensus. While we do not have any concrete results for this problem as of

yet, we end with a few concluding remarks on the subject. In ref. [23], it was argued that

solutions with less spatial symmetry have greater freedom to support negative charge at the

horizon. In the CGLP background, any less symmetric solutions such as a black brane with

horizon topology R2×S3×S4 or R2×S7 may well be able to support negative charge at the

horizon. Additionally, if the supergravity equations of motion impose some restriction of

the charge of black branes in the CGLP background, then there should be a corresponding

statement in the dual field theory. This is a very intriguing possibility. By examining the

details of the smeared black brane constructed here, it seems that the relevant quantity on

the gravity side is the Maxwell charge, or equivalently the 4-dimensional 0-form flux F̃0.

An understanding of the holographic interpretation of either of these quantities could shed

light on what restrictions anti-branes in flux are subject to.
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A The DeTurck trick in a non-coordinate basis

In section 5.1 we have introduced the DeTurck trick for rendering the Einstein equation

elliptic (for time-independent solutions) by making its gauge degrees of freedom dynamical,

in such a way that solutions of the Einstein-DeTurck equation correspond in the end to

solutions of the original Einstein equation in the DeTurck gauge [33]. This trick involves

adding the Lie derivative Lξ g to the Einstein equation for a particular vector field ξ which

is typically written in either of the following ways:

ξµ = gνρ
(

Γµνρ − Γ̄µνρ

)
, or ξµ = gνρ

(
∇̄νgµρ −

1

2
∇̄µgνρ

)
, (A.1)
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where the barred quantities refer to a given reference metric. Conventions in general rela-

tivity typically hold that Greek indices from the middle of the alphabet refer to a coordinate

basis ∂/∂xµ, and when explicit Christoffel symbols appear, one may have concerns as to

whether the expression written is indeed applicable in a non-coordinate basis or not. Since

in this work we have used a collection of left-invariant forms rather than a coordinate basis,

it is useful to clearly develop the DeTurck method for such bases.

The starting point is the second expression in (A.1), in which each individual term

is obviously covariant. This expression is simply a certain combination of traces of the

non-metricity tensor N ∇̄ for the reference connection ∇̄. The non-metricity tensor of a

given connection ∇̄ is just the covariant derivative of the metric,

N ∇̄µνρ ≡ ∇̄µgνρ, (A.2)

and of course for a metric-compatible connection it vanishes. But since this is a tensorial

object, we can readily change it into any basis, including non-coordinate ones. A more

basis-agnostic way of writing the non-metricity tensor N ∇̄ : TM × TM × TM → R is in

terms of its action on three arbitrary vector fields X,Y, Z:

N ∇̄Z (X,Y ) = ∇̄Zg(X,Y )− g(∇̄ZX,Y )− g(X, ∇̄ZY ). (A.3)

Of course one easily recovers the components in a basis by choosing X,Y, Z from, e.g.,

some convenient set of frame fields eA. Using the metric tensor g ≡ gAB e
A ⊗ eB, one can

then define the vector ξ via its inner product with an arbitrary vector X:

g(ξ,X) = gAB
[
N ∇̄eA(eB, X)− 1

2
N ∇̄X (eA, eB)

]
, (A.4)

or equivalently, “raising an index”, we can obtain the components of ξA itself:

ξA = gADgBC
[
N ∇̄eB (eC , eD)− 1

2
N ∇̄eD(eB, eC)

]
. (A.5)

In order to obtain the non-metricity tensor for the types of calculations we do in this

work, it is convenient to choose an orthogonal frame rather than an orthonormal one. The

reason for this is that the reference metric ḡ uses the same 1-forms σi, σ̃i, ν to represent

the isometry directions, but puts different functions in front of them; e.g. on the Stiefel

part of the metric ansatz one has

g = a(r)2 σ2
i + b(r)2 σ̃2

i + c(r)2 ν2, ḡ = ā(r)2 σ2
i + b̄(r)2 σ̃2

i + c̄(r)2 ν2, (A.6)

where in the reference metric, the barred functions are fixed a priori. Since we wish to

obtain N ∇̄ ≡ ∇̄g, it is useful to use the orthogonal basis

eν = ν, ei = σi, eı̃ = σ̃i. (A.7)

Then one has ∇̄eA ≡ −ω̄AB ⊗ eB for the connection 1-forms ω̄AB. Since ∇̄ is Levi-

Cività with respect to ḡ, these connection 1-forms can be obtained by solving the metric-

compatibility (for the reference metric ḡ) and torsion-free conditions given by:

∇̄ḡ = 0 =
(

dḡAB − ḡAC ω̄CB − ḡBC ω̄CA
)
⊗ eA ⊗ eB, (A.8)

T̄A = 0 = deA + ω̄AB ∧ eB. (A.9)
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Note that since the frame is not orthonormal, the metric coefficients ḡAB 6= δAB, and (A.8)

replaces the usual antisymmetry condition one would have in an orthonormal frame. Having

obtained the connection 1-forms ω̄AB, one can then evaluate ∇̄g and take the traces in (A.5)

to obtain the DeTurck vector ξ.

Finally, it is instructive to re-write the covariant expression (A.5) in terms of the

connection 1-forms ωAB and ω̄AB (of ∇ and ∇̄, respectively) in the (common) orthogonal

basis (A.7). This exercise in index gymnastics yields

ξA = gBC
(
ωB

A
C − ω̄BAC

)
+ gAC

(
ωB

B
C − ω̄BBC

)
− gAC

(
ωC

B
B − ω̄CBB

)
. (A.10)

Comparing this to the first expression in (A.1), we can see that we were right to view it with

suspicion. The change to the non-coordinate basis has not merely introduced a substitution

Γ→ ω, but has generated additional terms. In fact, we ought to have expected this, since

Γµνρ is symmetric in its lower indices, while ωB
A
C is not, and thus the simple operation of

tracing over the lower indices is removing information from ωB
A
C that was not removed

in the expression of (A.1).

The expression obtained in (A.10) is in fact valid in any basis, be it orthogonal or not,

and thus should be viewed as the generalization of the first expression in (A.5) for generic

bases. A word of caution, however: one must ensure that the A,B indices of ωAB and ω̄AB
refer to the same basis; that is, one should not mistakenly think of ωAB and ω̄AB as the

connection 1-forms for orthonormal bases on g and ḡ. Alternatively, one can stick to the

manifestly covariant expression (A.5).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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