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1 Introduction

Models where the Higgs emerges as a composite field from a new, strongly interacting

theory provide an attractive solution to the naturalness problem (see refs. [1, 2] for recent

reviews). A key ingredient is that the strong sector is endowed with a global symmetry G,

spontaneously broken to the subgroup H at a scale f ∼ TeV. The four components of the

Higgs doublet H are assumed to be among the Nambu-Goldstone bosons that parameterize

the G/H coset, thus explaining the hierarchy between the mass of the Higgs and those of

the other composite particles. To generate realistic couplings of H to the Standard Model
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(SM) gauge bosons and fermions, some amount of explicit G breaking is required. This

in turn generates a radiative potential for the Higgs that triggers electroweak symmetry

breaking (EWSB).

The minimal and best-known model in this class [3] is based on the SO(5)/SO(4) coset,

which is fully parameterized by the four components of H. Less minimal realizations,

however, are equally plausible from a bottom-up perspective, and open up an interesting

potential connection with the dark matter (DM) puzzle: if G/H contains additional pseudo

Nambu-Goldstone bosons (pNGBs) beyond H, one or more of these may be stable on

cosmological time scales, and serve as cold DM candidate(s). This simple idea is very

appealing, because the pNGB nature of the scalar DM would naturally explain why it is

light and weakly coupled to the SM at low energies. Furthermore, it is highly predictive,

since the DM interactions and mass are determined by the global symmetry structure

and by the few parameters (spurions) that break it explicitly. The latter are at least in

part fixed by the requirement of reproducing the measured SM parameters, such as the

Higgs vacuum expectation value (VEV) and mass, and the top Yukawa coupling. This

setup was first explored in ref. [4], where an additional real pNGB η was considered as

DM candidate, and its phenomenology was analyzed within the low-energy effective field

theory (EFT) of the SO(6)/SO(5) model [5], which yields (H, η) as Goldstone bosons. It

was pointed out that higher-dimensional derivative operators play a central role in the

phenomenology, setting composite pNGB DM apart from the well-known renormalizable

Higgs portal model [6–8]. Subsequently, ref. [9] performed an extensive phenomenological

analysis of the SO(6)/SO(5) model, introducing explicitly the lightest composite resonances

and imposing generalized Weinberg sum rules (WSRs) [10] to render the scalar potential

for H and η calculable [11, 12].

In the SO(6)/SO(5) model, the DM can be stabilized by an exact Z2 symmetry

Pη : η → −η . Even though the leading two-derivative Lagrangian preserves this sym-

metry, this is not automatically the case for higher order terms, because Pη /∈ SO(6).

For example, at the four-derivative order a Wess-Zumino-Witten (WZW) term appears,

∼ cW η(g2W a
µνW̃

aµν − g′ 2BµνB̃µν)/(16π2f), where cW is an anomaly coefficient that de-

pends on the ultraviolet (UV) completion [5]. Thus, to ensure DM stability one is forced to

assume that the UV theory respects the extended symmetry O(6)/O(5), which guarantees

that Pη ∈ O(5) is respected at all orders, and sets in particular cW = 0.

In this paper we consider a different DM stabilization mechanism: the DM is a com-

plex scalar, charged under an exact U(1)DM which is a global or gauged subgroup of the

unbroken symmetry H. This mechanism is UV-robust, in the sense that any G-invariant

high energy completion describing the strong sector will automatically preserve the U(1)DM

and therefore the DM stability. For a concrete realization we adopt the SO(7)/SO(6) coset,

which contains in addition to H two real Goldstones η, κ. The unbroken SO(6) possesses

an SO(4)×SO(2) subgroup, with H transforming as a 4 under SO(4) ∼= SU(2)L×SU(2)R,

whereas the SO(2) rotates η and κ. The SO(2) is manifestly preserved by the SM gauge

interactions and, as we will see, can also be respected by the couplings of the SM fermions

to the strong sector. In this case η and κ form a complex scalar field, charged under the

exact SO(2) ∼= U(1)DM . This complex pNGB scalar, dubbed χ, is the DM candidate.
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In section 2.1, we will discuss the predicted DM mass ranges. Depending on whether

the couplings of the top quark do or do not break the shift symmetry protecting χ, the DM

mass can be naturally of O(few) × 100 GeV or much smaller than the Higgs mass. These

two options lead to very distinct phenomenology. In this paper we focus on the scenario

where mχ is at the weak scale, whereas the case of light DM will be the subject of a sepa-

rate publication [13]. In the spirit of ref. [9], we introduce an effective Lagrangian for the

strong sector resonances and obtain calculability of the potential for H and χ by imposing

a set of WSRs. Our working model contains two layers of fermionic resonances (the “top

partners”) and one layer of vector resonances. We perform a detailed phenomenological

analysis, considering the constraints from the observed value of the DM relic abundance,

as well as from direct detection experiments and from the LHC. Indirect detection is also

briefly discussed. As first pointed out in ref. [4], the DM phenomenology is characterized

by the interplay of higher-dimensional derivative operators, which are important in anni-

hilation but suppressed by the tiny momentum transfer in the scattering off nuclei, with

the marginal (radiative) portal coupling ∼ λχ∗χH†H, which is energy-independent.

We identify two effects that were not considered in previous analyses, but can change

significantly the prediction for the pNGB DM relic abundance. Firstly, in section 4.1

we show that the mixing between the top and its partners reduces the tt̄χ∗χ coupling.

Somewhat counter-intuitively (see section 4.2 for the details), this turns out to suppress

the size of the portal coupling λ necessary to reproduce the relic abundance, relaxing the

tension with direct detection experiments. This is, in fact, essential to evade the current

constraints from XENON1T [14] and LUX [15]. Secondly, we find that the derivative

operators receive large, only partially calculable radiative corrections proportional to the

explicit G-breaking in the top sector, discussed in section 4.3. These radiative corrections

imply an irreducible theoretical uncertainty on the annihilation cross section, estimated at

50%, which broadens the viable region of parameter space. The outcome of our analysis

is that there exists a region of parameters, with DM mass in the 200 - 400 GeV range,

that is compatible with all current constraints but will be fully tested by direct detection

experiments like XENON1T in the near future. We discuss the LHC exclusions and future

prospects on the fermionic top partners, some of which are charged under the U(1)DM

and therefore decay into a top quark and a DM particle, yielding “stop-like” signatures.

The fine-tuning associated to the theory is also estimated. Notice that throughout the

discussion we will assume that U(1)DM is a global symmetry. A few comments about the

consequences of gauging it are given in the Outlook, section 6.

The SO(7)/SO(6) coset has been recently discussed in ref. [16], taking as DM candidate

the real scalar η, stabilized by a Z2 symmetry which is not an element of SO(7). While

SO(7) does not admit complex representations, implying that a WZW term is absent,1

in general other higher-derivative operators may break the parity, so the assumption still

needs to be made that an SO(7)-invariant UV completion exactly preserves it. Furthermore,

ref. [16] aimed at incorporating electroweak baryogenesis and concentrated on a region of

parameters that does not overlap with ours. See also refs. [18–20] for other composite Higgs

models with pNGB DM candidates.

1See ref. [17] for earlier remarks.
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The remainder of the paper is organized as follows. In section 2 we present the essential

ingredients of the model, discuss the DM stabilization and introduce the composite reso-

nances. In section 3 the scalar potential is studied and the WSRs that render it calculable

are implemented. In addition, a first characterization of the realistic parameter space is

performed. Section 4 is dedicated to the DM phenomenology: we present our calculation

of the DM relic abundance, including the novel effects previously mentioned, then we dis-

cuss the direct detection constraints and comment on indirect detection. Our main results

are presented in section 4.5. In section 5 we analyze the collider phenomenology of the

model. Finally, our concluding remarks are offered in section 6. The technical aspects of

the analysis are summarized in three appendices: appendix A contains the details of the

model, appendix B presents the complete scalar potential as well as our procedure for the

parameter scan, and appendix C collects some formulas for the DM phenomenology that

were omitted from the main text.

2 SO(7)/SO(6) model

We assume that the strong sector possesses an SO(7) global symmetry, spontaneously

broken to SO(6) at the scale f . The six Goldstone bosons (GBs) πa, a = 1, . . . , 6 transform

in the fundamental representation of the unbroken SO(6), which under SO(4) decomposes

into H ∼ 4, identified with the Higgs doublet, and two real singlets η, κ. Following the

Callan-Coleman-Wess-Zumino (CCWZ) construction [21, 22], whose details are given in

appendix A, the GBs are parameterized by the matrix U = exp
(
i
√

2πaXa/f
)
, where the

Xa are the broken generators. At the leading order in derivatives, the Goldstone Lagrangian

is given by

Lπ =
f2

4
daµd

aµ, (2.1)

where the CCWZ dµ symbol is constructed out of U and its SU(2)L × U(1)Y covariant

derivative. In the unitary gauge the vector of GBs can be written as

~π =
(

0, 0, 0, h̃, η, κ
)T

, (2.2)

with h̃ denoting the field whose physical excitation will be identified with the observed

Higgs boson. After performing a convenient field redefinition (see eq. (A.4)), the Goldstone

Lagrangian reads

Lπ =
1

2

[
(∂µh̃)2 + (∂µη)2 + (∂µκ)2

]
+

1

2

(
h̃∂µh̃+ η∂µη + κ∂µκ

)2
f2 − h̃2 − η2 − κ2

+
h̃2

4

[
ḡ2|W̄+

µ |2 +
1

2

(
ḡW̄ 3

µ − ḡ′B̄µ
)2]

.

(2.3)

The bar on the gauge fields (and their associated couplings) indicates that these are ele-

mentary states. In analogy to photon-rho mixing in QCD, the gauge fields couple linearly

to resonances of the strong sector. The resulting mass mixing is diagonalized, for example

for the charged fields, by ḡW̄±µ → gW±µ + . . . , where g and W±µ are the SM gauge coupling
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and field, respectively, and the dots stand for terms containing the vector resonances (see

eq. (A.15)). Hence we identify 〈h̃〉 = v ' 246 GeV. Assuming furthermore 〈η〉 = 〈κ〉 = 0

and expanding around the vacuum, we find that the singlets have canonical kinetic terms,

whereas for the Higgs the canonical normalization is achieved with

h̃ = v +
√

1− ξ h , ξ ≡ v2

f2
, (2.4)

where h is the physical excitation.

2.1 Coupling to elementary fermions and dark matter stability

We assume partial compositeness to be realized also in the fermionic sector [23], where the

elementary fermions are coupled linearly to operators of the strong dynamics. For the top

quark we have schematically

Lmix ∼ εq q̄LOq + εt t̄ROt + h.c. . (2.5)

Notice that to reproduce the hypercharge of the SM fermions it is necessary to enlarge the

global symmetry pattern to SO(7)×U(1)X → SO(6)×U(1)X , such that Y = T 3
R+X. The

SO(7)X representations of the operators Oq, t are not uniquely fixed. Since the SM fermions

do not fill complete multiplets of SO(7),2 the interactions in eq. (2.5) break explicitly at

least some of the shift symmetries protecting the GBs. A basic requirement is that the

Higgs shift symmetry be broken, in order for h̃ to acquire a Yukawa coupling to the top

and a 1-loop potential of the correct size. In addition, the SO(7) quantum numbers of Oq, t
determine the structure of the couplings and potential for the singlets. To examine the

different options for the quantum numbers, it is convenient to consider the decomposition

of the representations of SO(7) under its subgroup SO(4) × SO(3), which we can write

as SU(2)L × SU(2)R × SU(2)′, where SO(4) ∼= SU(2)L × SU(2)R while SO(3) ∼= SU(2)′

is generated by the broken generators under which the two singlets shift, Xη ≡ X5 and

Xκ ≡ X6, together with

TDM ≡ T 56 =
1√
2

diag(04×4, σ
2, 0) ∈ SO(6), (2.6)

where we used block notation. The label given to this generator anticipates its role in the

dark matter stabilization, which will be discussed momentarily. For the first few irreducible

SO(7) representations we have the following (SU(2)L, SU(2)R, SU(2)′) decompositions (see

for example ref. [24]),

1 = (1,1,1),

7 = (2,2,1)⊕ (1,1,3),

8 = (2,1,2)⊕ (1,2,2),

21 = (2,2,3)⊕ (3,1,1)⊕ (1,3,1)⊕ (1,1,3),

27 = (3,3,1)⊕ (2,2,3)⊕ (1,1,5)⊕ (1,1,1).

(2.7)

2An exception is the case where tR is embedded into an SO(7) singlet, see below.
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Figure 1. Schematic overview of the SO(7) algebra. In the left drawing the structure of the

SU(2)L × SU(2)R × SU(2)′ subgroup is displayed, whereas the right drawing shows the symmetries

that remain unbroken after the weak gauging of the SM electroweak group and the coupling of

qL, tR to operators Oq,Ot ∼ 72/3 of SO(7)X .

To guarantee custodial protection against zero-momentum corrections to the ZbLb̄L vertex,

which would conflict with LEP measurements, qL must be embedded in the (2,2)2/3 repre-

sentation of (SU(2)L, SU(2)R)X [25]. Hence a natural and minimal possibility is Oq ∼ 72/3,

which we adopt henceforth. In this case the coupling of qL preserves the entire SU(2)′. The

requirement of U(1)X -invariance of the top mass term fixes then the X charge of Ot to be

2/3, but several options are available for its transformation under SO(7).

In this paper we focus on the choice

tR ∼ (1,1,3) ⊂ 7 . (2.8)

In this case the SU(2)′ is explicitly broken, but the embedding can be chosen as to preserve

a residual U(1), generated by one among {Xη, Xκ, TDM}. Therefore we can either leave

the shift-symmetry of one of the singlets intact, thus keeping it massless, or preserve the

U(1) symmetry acting on η and κ that is generated by TDM. We choose the latter, hence

η and κ are combined into a complex scalar field

χ ≡ (κ+ iη) /
√

2 , (2.9)

that is an eigenstate of U(1)DM with charge +1 (the normalization is fixed by taking√
2TDM as the generator), while tR is uncharged under this symmetry. The complex

scalar χ is our DM candidate, and the unbroken U(1)DM ensures its stability. This setup is

represented schematically in figure 1. Under (SU(2)L, SU(2)R)DM
X the 72/3 decomposes as

72/3 = (2,2)0
2/3 ⊕ (1,1)0

2/3 ⊕ (1,1)±1
2/3 , (2.10)

where the tR is embedded in the (1,1)0
2/3, while the qL is embedded in the (2,2)0

2/3. The

coupling of tR to the strong sector explicitly breaks the shift symmetry for χ, which will

acquire a potential, and in particular a mass, of the same parametric size as the Higgs.

The explicit form of the embeddings is

ξL =
1√
2

(
ibL, bL, itL, −tL, 0, 0, 0

)T
, ξR =

(
0, 0, 0, 0, 0, 0, tR

)T
. (2.11)

– 6 –
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A different phenomenological scenario is realized if the embedding of tR preserves

SU(2)′. Glancing at eq. (2.7), this can be obtained in several ways: for example, tR ∼
(1,3,1) ⊂ 21 (antisymmetric tensor) or tR ∼ (1,1,1) ⊂ 27 (symmetric traceless tensor).

Alternatively, we may assume that tR is a fully composite SO(7) singlet. In all these cases

the couplings of the top quark do not break the symmetries under which χ shifts, hence

the leading contributions to its potential come from the couplings of the light fermions,

from the weak gauging of U(1)DM, or from both. As a consequence, the DM is naturally

much lighter than the Higgs. This intriguing possibility will be the subject of a separate

publication [13]. For mχ < mh/2, an important constraint comes from the invisible decay

width of the Higgs, mediated by the derivative interactions in eq. (2.3). The decay width is

Γ(h→ χ∗χ) =
m3
hv

2

16πf4(1− ξ)

√
1−

4m2
χ

m2
h

, (2.12)

where we neglected the contribution of the radiative portal coupling λ (see eq. (3.1) below),

which is expected to be very small in the light χ scenario. The current 95% CL lower bound

of BR(h→ χ∗χ) < 0.24 [26] translates into f & 1.2 TeV.

One further comment about the DM stability is in order. In the above discussion

we have assumed that each elementary fermion multiplet couples, in a U(1)DM-invariant

way, to only one operator of the strong sector. However, in general additional, subleading

couplings to other operators could be present. If any of these break the U(1)DM, the DM

stability may be compromised. Therefore we need to make the assumption that the U(1)DM

is either a global symmetry respected by all elementary-composite mixing couplings, or an

unbroken gauge symmetry.

2.2 Resonances

The strong sector resonances fill multiplets of the unbroken SO(6) and can be consistently

described in the CCWZ framework. We begin with the fermion sector, which plays a

dominant role in our discussion. Since we have chosen to embed the third generation

fermions in the fundamental of SO(7), which decomposes as 72/3 = 62/3 ⊕ 12/3 under

SO(6)×U(1)X , we consider top partners in the fundamental Q and singlet S representations

of SO(6). The explicit expression of the fundamental is

Q =
1√
2

(
iB − iX5/3, B +X5/3, iT + iX2/3, −T +X2/3, −iY + iZ, Y + Z

)T
. (2.13)

The doublet (T,B)T transforms as 20
1/6 under (SU(2)L)DM

Y , and therefore has the same

quantum numbers as qL, whereas the exotic doublet (X5/3, X2/3)T ∼ 20
7/6 contains an

exotic fermion with electric charge equal to 5/3. The two states Y,Z ∼ 1±1
2/3 share the

SM quantum numbers of the tR, but are additionally charged under U(1)DM. The latter

symmetry, being exact, strongly constrains their couplings. Finally, the quantum numbers

of the SO(6) singlet are S ∼ 10
2/3 . The leading order Lagrangian describing the fermion

– 7 –
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sector is

Lf = iq̄L /DqL + it̄R /DtR +

NQ∑
i=1

Q̄i
(
i /D + /e −mQi

)
Qi

+

NS∑
j=1

S̄j
(
i /D −mSj

)
Sj +

NQ∑
i=1

(
εitQξ̄

A
RUAaQ

a
iL + εiqQξ̄

A
LUAaQ

a
iR

)
+

NS∑
j=1

(
εjtS ξ̄

A
RUA7SjL + εjqS ξ̄

A
LUA7SjR

)
+ h.c.,

(2.14)

whereNQ andNS denote the number of copies of each species of resonance that lie below the

cutoff of the low-energy theory, and A (a) is an index in the fundamental of SO(7) (SO(6)).

The second line of eq. (2.14) is the low-energy interpolation of eq. (2.5): the embeddings

ξL,R defined in eq. (2.11), which transform linearly under SO(7), have been ‘dressed’ into

reducible SO(6) representations via insertions of the Goldstone matrix U . Also notice

that the kinetic term of the Qi includes the eµ symbol, which is necessary to respect the

nonlinearly realized SO(7). In general the following term should also be added to the

Lagrangian,

Ld =

NQ∑
i=1

NS∑
j=1

cLjiS̄jL /d
a
Q a
iL + h.c.+ (L→ R), (2.15)

where cL,Rji are coefficients of O(1). The operators in eq. (2.15) arise purely from the

strong dynamics, and as a consequence they do not contribute to the scalar potential. At

leading order in the 1/f expansion, they give rise to derivative interactions of one GB and

two fermions, which scale as ∼ cL,R p/f , where p is the relevant energy. In the processes

relevant for DM phenomenology, namely annihilation and scattering with heavy nuclei,

we have p/f . mχ/f � 1, hence these interactions are suppressed compared to the G-

breaking couplings that arise from eq. (2.14), which scale as ∼ ε/f . For this reason, the

interactions in eq. (2.15) will be neglected in the remainder of this paper, unless otherwise

noted. Nevertheless, since they can be important in hadron collider processes [27], where

p/f ∼ m∗/f ∼ O(1) with m∗ the mass of a resonance, we will return to them in the

discussion of the LHC and future collider prospects in section 5.2.

Resonances in the gauge sector are assumed to follow the generalized hidden local sym-

metry approach [28], where given a G/H sigma model, the vector resonances are introduced

as gauge fields of a local G symmetry. In our case G = SO(7), whose adjoint representation

decomposes as 21 = 15 ⊕ 6 under SO(6). Thus we introduce vector resonances in the

adjoint ρµ ∼ 15 and in the fundamental aµ ∼ 6 of SO(6). Their Lagrangian is given in

appendix A.

3 Scalar potential and realistic EWSB

The explicit SO(7) breakings introduced by the weak gauging of SU(2)L × U(1)Y and by

the fermionic elementary-composite mixing parameters in eq. (2.14), which we will often

– 8 –
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collectively denote by ε, generate a radiative potential for the GBs. This can be computed

at 1-loop using the standard Coleman-Weinberg (CW) technique [29]. In the unitary gauge

and expanded to quartic order in the fields, the effective potential takes the form

V (h̃, χ) =
1

2
µ2
hh̃

2 +
λh
4
h̃4 + µ2

DMχ
∗χ+ λDM(χ∗χ)2 + λh̃2χ∗χ . (3.1)

This potential must, first of all, yield a correct EWSB VEV, 〈h̃〉 = v � f . Even though

U(1)DM is exactly preserved by the Lagrangian, in general it may still be broken sponta-

neously. Since this would spoil the DM stability, in the following we only consider parameter

choices that satisfy 〈χ〉 = 0 . Then the masses of the physical scalars are

m2
h = (1− ξ) ∂

2V

∂h̃2

∣∣∣∣
h̃= v, χ= 0

= (1− ξ)2λhv2 , m2
χ =

∂2V

∂χ∂χ∗

∣∣∣∣
h̃= v, χ= 0

= µ2
DM + λv2 ,

(3.2)

where the (1−ξ) factor in the expression of m2
h is due to eq. (2.4). In general, the mass pa-

rameters µ2
h, µ

2
DM and couplings λh, λDM, λ are quadratically and logarithmically sensitive,

respectively, to the UV cutoff Λ . 4πf of the effective theory.3 However, to retain predic-

tivity we assume that they are fully saturated by the contribution of the SM fields plus the

first few vector and fermion resonances that we introduced in section 2.2. This is achieved

by imposing a set of generalized WSRs [10], which ensure that the form factors determin-

ing the parameters of the CW potential vanish sufficiently fast at large momenta [11, 12].

In addition, we assume that further explicit breakings of SO(7) originating from the UV

dynamics, if present, give a subleading contribution to the scalar potential.4

Beginning with the gauge sector, we recall that the gauging of SU(2)L×U(1)Y preserves

U(1)DM (see e.g. figure 1), hence the associated loops only yield a contribution to the Higgs

mass parameter, denoted µ2
h,g, and one to the quartic coupling, λh,g. The UV-finiteness

of these coefficients can be obtained by introducing one multiplet of vector resonances in

the adjoint of SO(6), ρµ, and one in the fundamental, aµ, and imposing two WSRs that

translate into the conditions

2f2
ρ − 2f2

a = f2 , f2
ρm

2
ρ = f2

am
2
a , (WSR 1 + 2)g (3.3)

where fρ, a are the decay constants of the resonances, and mρ, a their masses. The first

relation removes the quadratic divergence in µ2
h,g and makes λh,g finite, whereas the second

ensures the cancellation of the residual logarithmic divergence in µ2
h,g. Equations (3.3) allow

us to express fa and ma in terms of fρ,mρ and f ; the first one also requires fρ > f/
√

2.

The contribution to the Higgs mass parameter reads, at leading order in g2/g2
ρ � 1 (where

3Notice that by naive power counting, the quartic couplings can also be quadratically divergent.

However, the structure of the field-dependent mass matrices leads to a quadratically divergent term

∼ Λ2STrm2(h, χ) = Λ2(k0 + khh
2 + kχχ

∗χ) with k0,h,χ field-independent constants. Thus the leading de-

gree of divergence of the quartics is only logarithmic.
4Notice also that, due to the contribution of top quark and SM gauge boson loops, the expression of λh

in eq. (3.1) is infrared (IR) divergent. To retain full predictivity, this issue is resolved by adding to V (h̃, χ)

an additional quartic for h̃ that is non-analytic at h̃ = 0. See appendix B for further details.
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gρ = mρ/fρ) and neglecting the subleading hypercharge coupling,

µ2
h, g ≈

9 g2

32π2
m2
ρ

f2
ρ

f2
log

(
2f2
ρ/f

2

2f2
ρ/f

2 − 1

)
. (3.4)

Since this is strictly positive, the gauge loops alone do not lead to EWSB. However, a

negative contribution to µ2
h can easily arise from the fermionic sector, and µ2

h, g will be

tuned against it to obtain a realistic Higgs VEV v � f . On the other hand, the gauge

contribution to the Higgs quartic is small, and plays a subleading role.

In the fermionic sector, the elementary-composite mixing parameters ε explicitly break

the shift symmetries protecting both h̃ and χ, therefore in general fermion loops yield

contributions to all the coefficients in the effective potential of eq. (3.1). To ensure their

UV finiteness, we impose two sets of WSRs, which translate into the relations

NQ∑
i=1

∣∣εiqQ∣∣2 =

NS∑
j=1

∣∣∣εjqS∣∣∣2 , NQ∑
i=1

∣∣εitQ∣∣2 =

NS∑
j=1

∣∣∣εjtS∣∣∣2 , (WSR 1)f (3.5)

NQ∑
i=1

∣∣εiqQ∣∣2m2
Qi =

NS∑
j=1

∣∣∣εjqS∣∣∣2m2
Sj ,

NQ∑
i=1

∣∣εitQ∣∣2m2
Qi =

NS∑
j=1

∣∣∣εjtS∣∣∣2m2
Sj . (WSR 2)f (3.6)

The first set of WSRs reduce the 1-loop degree of divergence of the mass parameters

µ2
h,f and µ2

DM,f (where the “f” subscript indicates the fermionic piece) from quadratic to

logarithmic and make the dimensionless couplings finite, whereas the second set remove

the residual logarithmic divergences in µ2
h,f and µ2

DM,f . The minimal set of resonances

compatible with eqs. (3.5), (3.6) consists of one SO(6) fundamental Q and one singlet S.

This ‘one-layer’ setup is very predictive, but, as discussed in section 3.1, it leads to a DM

candidate that is phenomenologically ruled out. Nevertheless, thanks to the simplicity of

the one-layer model, we obtain some analytical results and thus gain valuable insight. We

then turn to an enlarged setup where two copies of each species of resonance are present

below the cutoff. As shown in section 3.2, this “two-layer” construction gives sufficient

freedom to accommodate a fully viable DM candidate, leading us to concentrate on this

model for our phenomenological analysis.

3.1 One layer of fermionic resonances

We consider the fermionic Lagrangian of eq. (2.14) with NQ = NS = 1. In this case the

WSRs in eqs. (3.5), (3.6) give

ε2qQ = ε2qS , ε2tQ = ε2tS , m2
Q = m2

S , (3.7)

where we have assumed all the parameters to be real, so that CP is conserved. In the

following we take, without loss of generality, positive masses mQ = mS ≡ m > 0. Then the

conditions in eq. (3.7) do not fix the relative signs of the mixing parameters, εqQ = ± εqS
and εtQ = ± εtS . If these two signs are equal, then the non-derivative part of eq. (2.14) has

an additional SO(7) symmetry that allows the Goldstone matrix to be removed by means of

a field redefinition (see for example ref. [30]), hence the scalar potential vanishes. If instead
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the mixings have opposite sign, the potential does not vanish. Taking for definiteness

εqQ = −εqS ≡ −εq and εtQ = εtS ≡ εt ,5 we find

µ2
DM,f = λDM,f = 0 , λf = −

µ2
h,f

f2
=
Ncε

2
qε

2
tm

2 log(M2
T /M

2
S)

2π2f4(M2
T −M2

S)
, (3.8)

where M2
T,S = m2+ε2q,t are the squared masses of the top partners that mix with the qL and

tR, respectively, neglecting small corrections due to EWSB. Equation (3.8) gives the com-

plete expressions of µ2
DM, λDM and λ, which do not receive any contribution from the gauge

sector. In addition, we find the following approximate expression for the Higgs quartic,

λh ≈
Ncε

2
qε

2
tm

2 log(M2
T /M

2
S)

π2f4(M2
T −M2

S)
, (3.9)

obtained by neglecting the gauge contribution to the potential. Equations (3.8) and (3.9)

suggest the relation λ ≈ λh/2, which is indeed verified within 20% in our numerical scan

of the parameter space. Therefore both the portal coupling and the DM mass are fixed in

terms of v and the Higgs mass,

λ ≈ λh
2
'
m2
h

4v2
' 0.065 , m2

χ = λv2 ≈ λhv
2

2
'
m2
h

4
' (63 GeV)2 . (3.10)

Unfortunately, this combination of DM mass and coupling has already been ruled out

experimentally: since the DM is light and the portal coupling is not very suppressed, the

derivative interactions in eq. (2.3) have negligible effects, and the phenomenology of χ can

be approximately described with a renormalizable Higgs portal model [6–8]. In this model,

the region λ ∼ λh/2, mχ ∼ mh/2 has been ruled out by direct detection experiments and,

for mχ < mh/2, also by LHC bounds on the Higgs invisible width, see e.g. ref. [32] for a

recent assessment.

The problematic values in eq. (3.10) arose because in the presence of only one layer

of resonances, the second set of WSRs in eq. (3.6) imply that the form factors ΠL1 and

ΠR1 in eqs. (B.6), (B.7) vanish, and as a consequence we find a non-generic form of the

potential, whose structure is entirely determined by the top mass form factor ΠLR. Thus

it seems plausible that a viable phenomenological scenario may be obtained by extending

the model to include a second layer of resonances, which provides additional parametric

freedom and should allow for significant departures from eq. (3.10) while preserving full

calculability via WSRs. This hypothesis is supported by a test on the one-layer model,

where we lift the second set of WSRs and instead cut off the residual logarithmic divergences

in µ2
h,f and µ2

DM,f at the scale Λ = 4πf . In this case the potential has a generic form,

and accordingly we find that large deviations from eq. (3.10) are realized. Therefore, in

the next subsection we will analyze the model where two layers of fermionic resonances lie

below the cutoff. Before doing so, however, we point out a few additional properties of

the case NQ = NS = 1, which apply at least at the qualitative level also in the extended

5Notice that by redefining the phases of the resonances, we can equivalently choose a field basis with

same-sign mixings and mQ + mS = 0. This is a realization of the “maximal symmetry” of ref. [31].

Accordingly, the tuning of the model is minimal, see eq. (3.13) below.

– 11 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
4

model. Combining eq. (3.9) with the expression of the top mass at leading order in ξ � 1,

mt '
√

2εqεtv/(MTMSf), we obtain

m2
h

m2
t

≈ Nc

π2f2

M2
TM

2
S

M2
T −M2

S

log(M2
T /M

2
S) . (3.11)

This relation, which was already obtained in the context of the MCHM based on

SO(5)/SO(4) [12, 33], shows that realizing a light Higgs requires at least one of the top

partners to be relatively light, with mass roughly comparable to f . Equation (3.11) is ver-

ified numerically to good accuracy, with minor corrections arising due to the presence of

the gauge contribution in the potential, which was neglected in the derivation of eq. (3.9).

The fine-tuning needed to obtain v � f can be estimated using the standard measure [34]

∆ = ∆ξ = maxi

∣∣∣∣ ∂ log ξ

∂ log ci

∣∣∣∣ , (3.12)

where ci denotes the input parameters. In the one-layer model we have ci =

{εq, εt,m, fρ,mρ}, but an immediate estimate of the tuning can be obtained by notic-

ing that if the gauge contribution to V is neglected, eqs. (3.8)–(3.10) give ξ ≈ 1/2. Thus

µ2
h,g must be adjusted to give ξ � 1, leading to a fine-tuning

∆−1 ∼ 2ξ . (3.13)

This is in fact the minimal (or irreducible) amount of tuning characteristic of models

where the Higgs potential is entirely generated at the radiative level. A numerical estimate

obtained using eq. (3.12) agrees well with this result.

To conclude, we remark that very similar results, including the prediction of eq. (3.10),

were previously found in ref. [9] for the realization of the SO(6)/SO(5) model with minimal

fermion content.

3.2 Two layers of fermionic resonances

We consider the fermionic Lagrangian of eq. (2.14) with NQ = NS = 2. In this case the

conditions imposed by the first set of WSRs, eq. (3.5), can be solved in terms of two mixings

εq,t and four angles α, θ, β and φ ,

ε1qQ
cosα

=
ε2qQ

sinα
=

ε1qS
cos θ

=
ε2qS

sin θ
= εq ,

ε1tQ
cosβ

=
ε2tQ

sinβ
=

ε1tS
cosφ

=
ε2tS

sinφ
= εt . (3.14)

The second set of WSRs in eq. (3.6) fixes two of the angles, modulo discrete ambiguities.

We choose

s2
θ,φ =

m2
Q1
−m2

S1
+
(
m2
Q2
−m2

Q1

)
s2
α,β

m2
S2
−m2

S1

(s2
x ≡ sin2 x), (3.15)

and without loss of generality we assume mS2 > mS1 and mQ2 > mQ1 . The resulting

parameter space6 is scanned numerically, see appendix B for details. Figure 2 shows the

6Note that for special values of the parameters, the model can be realized via a three-site construc-

tion [35].
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Figure 2. Distribution in the (mχ, λ) plane for the parameter scan of the two-layer model. The

left panel corresponds to f = 1 TeV, the right panel to f = 1.4 TeV. The black boxes roughly

indicate the viable regions of parameters for DM. The red dot shows the approximate prediction of

the one-layer model, eq. (3.10). For orange (blue) points, the lightest fermionic resonance is heavier

(lighter) than the approximate LHC lower bound of 1 TeV.

resulting distribution in the (mχ, λ) plane for two values of f , namely 1 TeV and 1.4 TeV.

As expected, large deviations from the predictions of 1-loop-finite one-layer model are

generic. First of all, χ is typically much heavier than mh/2 ∼ 63 GeV. In particular, its

mass populates the 100 - 400 GeV range where, as will be shown in section 4, we find that

the DM relic abundance is around the observed value. In addition, the portal coupling

λ can be smaller than λh/2 ∼ 0.065. This is crucial because, as will also be discussed

in detail in section 4, direct detection bounds require smaller values of this coupling. In

figure 2 we also observe that a reduction of the portal coupling is correlated with the

appearance of light top partners, which can run into tension with the current lower bound

of approximately 1 TeV set by LHC searches. (We will discuss the LHC constraints in detail

in section 5, but this rough estimate suffices for the scope of the present discussion.) In

fact, for f = 1 TeV we do not find any points that have viable DM parameters, i.e. roughly

100 GeV . mχ . 200 GeV and λ . 0.02 (indicated by the black box in the left panel

of figure 2), without running into conflict with top partner bounds. Increasing f relaxes

this tension, because it allows the top partners to be naturally heavier and it shifts the

viable DM mass region to higher values, where the constraints on λ from direct detection

are less stringent. The minimal f that yields a sizable region of allowed parameter space

is 1.4 TeV, which we will therefore use as our primary benchmark for the remainder of

this paper. The corresponding viable ranges for the DM mass and portal coupling are

200 GeV . mχ . 400 GeV and λ . 0.04, respectively, shown by the black box in the right

panel of figure 2.

The irreducible tuning associated to f = 1.4 TeV is, according to eq. (3.13), ∆−1 ∼
2ξ ' 6%. A more precise, point-by-point estimate is obtained by applying the general

definition of eq. (3.12), and shown in figure 3. We see that as the departure from the

predictions of the one-layer model becomes larger, namely as the χ mass is raised to

mχ � mh/2 and the portal coupling is suppressed to λ � λh/2 , the minimum tuning

required increases. The worsening of the tuning for larger mχ, observed in the left panel of
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Figure 3. Fine-tuning of the two-layer model, shown versus the DM mass (left panel) and versus

the portal coupling (right panel). For orange (blue) points, the lightest fermionic resonance is

heavier (lighter) than the approximate LHC lower bound of 1 TeV. The scale f is fixed to 1.4 TeV.

Figure 4. Mass of the lightest top partner mixing with the tR (MS1
) versus mass of the lightest top

partner mixing with the qL (MT1
), neglecting EWSB corrections, in the two-layer model. Orange

(blue) points have a Higgs mass within (outside) the range 120 GeV < mh < 130 GeV. The red

line shows the approximate prediction of the one-layer model, eq. (3.11). We set f = 1.4 TeV.

figure 3, can be explained by noticing that a heavier χ can only be obtained by increasing

the size of the form factor ΠR1 , which vanishes in the one-layer model (see eq. (B.9)). This

in turn requires a more severe cancellation in the Higgs mass parameter in order to achieve a

small ξ. Nevertheless, a phenomenologically viable DM mass, 200 GeV . mχ . 400 GeV,

can be obtained without significantly exacerbating the tuning compared to irreducible

contribution of 2ξ ∼ 6%. On the other hand, from the right panel of figure 3 we read

that a portal coupling that is small enough to satisfy the current direct detection bounds,

λ . 0.04, requires ∆−1 . 1%. We have also checked that once the Higgs VEV and mass

are fixed to the observed values, no additional tuning is needed in the DM mass: replacing

ξ with µ2
DM in eq. (3.12), for the points shown in figure 3 we found that ∆−1

µ2
DM

can be of

O(1) even for DM mass as low as 200 GeV. In summary, we estimate that in this model

the level of fine-tuning required to solve both the Higgs naturalness and DM puzzles is 1%

or slightly worse. This is primarily a consequence of the experimental pressure from direct

detection experiments and LHC direct searches for top partners.

Figure 4 shows that the correlation between a light Higgs and light top partners, which

in the one-layer model was expressed by eq. (3.11), holds in the two-layer setup as well.
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Furthermore, eq. (3.11) still yields a reasonable quantitative first approximation, provided

we identify MT and MS with the masses of the lightest top partners mixing with qL and

tR, respectively.

Having qualitatively characterized the viable parameter space, we are now ready to

present its phenomenology. We begin in section 4 with DM physics, and then discuss the

collider aspects in section 5.

4 Dark matter phenomenology

In this section we present the phenomenology of our DM candidate χ. We focus on two

main observables, namely the DM relic abundance and the DM-nucleus scattering cross

section, which is relevant for direct detection experiments. We conclude the section with a

brief comment on the constraints from indirect detection.

4.1 Effective theory for DM annihilation

The DM relic abundance is set by the annihilation rate in the early universe, which takes

place at an energy scale
√
s ∼ 2mχ � m∗, where m∗ denotes the mass of the strong sector

resonances (m∗ ∼ g∗f , with g∗ some strong sector coupling). The relic abundance can

therefore be calculated in an effective theory where the resonances have been integrated out,

and only the pNGB scalars χ, h, the SM gauge bosons and the SM fermions are included

as propagating degrees of freedom. Assuming that the freeze-out temperature satisfies

Tf � v, which is generically the case for DM with a weak-scale mass, the Lagrangian can

be written in the broken electroweak phase. Additionally, we will consider operators which

are at most quadratic in the DM field, since higher-order terms do not contribute to the

annihilation processes. The effective Lagrangian has the structure

Leff = LGB + Lt︸ ︷︷ ︸
tree

− Veff︸ ︷︷ ︸
1-loop

. (4.1)

The first piece originates from the sigma model Lagrangian in eq. (2.3), expanded in terms

of the physical fields

LGB =
1

2
(∂µh)2

(
1 + 2 ahhh

h

v
+ 2 ahhχχ

χ∗χ

v2

)
+ ∂µχ∂

µχ∗

+
1

v
∂µh ∂

µ(χ∗χ)

(
bhχχ + bhhχχ

h

v

)
+ 2 ahV V

h

v

(
m2
WW

+
µ W

−µ +
m2
Z

2
ZµZ

µ

)
. (4.2)

Veff arises instead from the radiative scalar potential, eq. (3.1), and reads

Veff =
1

2
m2
hh

2 + dhhh
m2
h

2v
h3 +m2

χχ
∗χ+ 2 dhχχvλhχ

∗χ+ dhhχχλh
2χ∗χ . (4.3)

The scalar couplings in eq. (4.3), despite being loop-suppressed, can have effects comparable

to those of the tree-level interactions in LGB, whose derivative structure leads to a suppres-

sion ∼ s/f2 � 1 (see eq. (4.8) below) [4]. With the exception of λ, all the dimensionless

coefficients in eqs. (4.2), (4.3) are functions of ξ only and are given in eq. (C.1).
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Figure 5. Corrections from top partner mixing to the effective tt̄h and tt̄χ∗χ couplings, defined as

δttχχ ≡ cttχχ/cnlσmttχχ and δtth ≡ (ctth − 1)/(cnlσmtth − 1), as functions of the compositeness fraction sR
of the right handed top (see eq. (B.13) for its definition). The gray dashed line indicates the pure

sigma model result, where top partner mixing is neglected. The points shown are obtained from a

parameter scan of the two-layer model with f = 1.4 TeV, requiring all fermionic resonances to be

heavier than the approximate LHC bound of 1 TeV.

Finally, the Lagrangian containing the couplings of the top quark relevant to DM

annihilation is

Lt = it̄/∂t−mtt̄t

(
1 + ctth

h

v
+ 2 cttχχ

χ∗χ

v2

)
, (4.4)

where the dimensionless coefficients have the form

ck = cnlσm
k (ξ) +O

(
ξ
ε2

m2
∗

)
, k = {tth, ttχχ}. (4.5)

The functions cnlσm
k (ξ) encode the nonlinearity of the sigma model and read

cnlσm
tth =

1− 2ξ√
1− ξ

, cnlσm
ttχχ = − ξ

2(1− ξ)
. (4.6)

The additional terms in the r.h.s. of eq. (4.5) come instead from the mixing of the top

with the top partners. These terms are suppressed unless one of the chiralities of the top

is largely composite, in which case ε ∼ m∗ , and were neglected in the previous studies of

composite pNGB DM of refs. [4, 9]. In our analysis, however, we find that these corrections

play a very important role, as can be seen in figure 5, where the full numerical value of the

ck coefficients is compared to the cnlσm
k (ξ). In particular, the coefficient cttχχ is strongly

suppressed by top partner mixing even for moderate tR compositeness, and in the limit

of fully composite tR the top partner contribution exactly cancels cnlσm
ttχχ (ξ), leading to a

vanishing cttχχ . This can be understood as follows: with our choice of embeddings, the

shift symmetry of the DM pNGB χ is automatically preserved by the couplings of the

elementary qL to the strong sector resonances, whereas the couplings of the elementary

tR break it (see eq. (2.11)). However, in the limit where the physical RH top is a fully

composite field (whose overlap with the elementary fermion is zero), its couplings also

preserve the χ shift symmetry, hence a non-derivative tt̄χ∗χ coupling is forbidden. On
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Figure 6. Thermally averaged cross section for DM annihilation. The gray dashed line shows the

value required to reproduce the present relic abundance according to the approximate relation in

eq. (4.7). The scale f was fixed to 1.4 TeV. In the left panel we set the portal coupling to the

representative value λ = 0.05, in the right panel we chose two representative values of the DM

mass. In both panels the tt̄h and tt̄χ∗χ couplings were set to their sigma model values (eq. (4.6)),

thus neglecting top partner mixing. With this simplification, 〈σvrel〉 is completely determined by

f,mχ and λ.

the other hand, the tt̄h coupling receives smaller, but still important, corrections from top

partner mixing.7

4.2 DM relic abundance

The present abundance of DM, which arises from its freeze-out in the early Universe, is

computed by solving the corresponding Boltzmann equation. A useful approximate solution

is given by
ΩDMh

2

0.1198
' 3 · 10−26cm3 s−1

1
2 〈σvrel〉 (Tf )

. (4.7)

On the l.h.s. of this equation, ΩDM is the ratio between the energy density of DM and

the critical energy density of the Universe, h = H0/(100 km/s/Mpc) is the reduced value

of the present Hubble parameter, and (ΩDMh
2)exp = 0.1198 ± 0.0015 is the experimental

value as measured by the Planck collaboration [36]. On the r.h.s. , 〈σvrel〉 (Tf ) is the ther-

mally averaged annihilation cross section times the relative velocity of two DM particles,

computed at the freeze-out temperature Tf ≈ mχ/20 . The factor 1/2 in the denominator

of the r.h.s. accounts for the fact that the DM is not self-conjugate.

DM annihilation proceeds dominantly via χχ∗ → tt̄,WW,ZZ and hh. All these pro-

cesses are mediated by diagrams where a Higgs is exchanged in the s-channel. Even though

the χχ∗ → hh, tt̄ amplitudes receive additional contributions, it is nevertheless useful to

assume in first approximation that annihilation proceeds entirely through s-channel Higgs

exchange. In this case the cross section is proportional to the square of the χχ∗h vertex,

which from the effective Lagrangian of eq. (4.1) reads

σvrel ∝
(
bhχχ
v

s− 2 dhχχλv

)2

≈ v2

(
s

f2
− 2λ

)2

, (4.8)

7Notice that the tt̄h coupling does not vanish at full RH top compositeness, because even in that limit

the coupling of qL to the strong sector breaks the h shift symmetry.
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Figure 7. Impact on the total annihilation cross section of varying the strength of the tt̄χ∗χ contact

interaction in the range cttχχ ∈ [cnlσmttχχ , 0]. The lower value corresponds to the pure sigma model,

where top partner mixing is neglected, whereas the upper value corresponds to a setup with fully

composite tR, where top partner mixing is maximal. The realistic parameter points lie within this

range, i.e. they fall within the band shaded in blue. The gray dashed line shows the value required

to reproduce the present relic abundance according to the approximate relation in eq. (4.7). In the

left panel we set λ = 0.05, whereas in the right panel the DM mass was fixed to mχ = 300 GeV.

We took f = 1.4 TeV in both panels.

where the first term comes from the derivative interactions in eq. (4.2) and the second

term from the radiative scalar potential in eq. (4.3). Neglecting relativistic corrections we

have s ≈ 4m2
χ, therefore the two contributions cancel out for m2

χ ∼ λf2/2, leading to a

strong suppression of the annihilation cross section [4, 9, 37]. This feature can be clearly

observed in the cross sections for annihilation into WW,ZZ and also hh, see the left panel

of figure 6. The structure in eq. (4.8) also implies that for given f and mχ, there are two

values of the portal coupling λ that reproduce the observed DM relic density, see the right

panel of figure 6. As will be shown below, however, the branch with larger λ is excluded by

direct detection, whereas the one with smaller portal coupling provides a viable scenario.

For mχ > mt, the simple scaling in eq. (4.8) is violated by the χχ∗ → tt̄ amplitude,

where the tt̄χ∗χ contact interaction plays an important role. This is illustrated in figure 7,

where we show the effect on the total annihilation cross section of varying the tt̄χ∗χ coupling

within the range cnlσm
ttχχ < cttχχ < 0, which contains all phenomenologically interesting points

(recall figure 5). The effect of top partner mixing is to suppress |cttχχ|, which in turn shifts

the DM relic abundance contour to larger mχ for fixed λ, or conversely, to smaller λ for

fixed DM mass. As can be seen in the right panel of figure 7, at fixed mχ the shift is

larger for the branch with smaller λ. This can be explained by noticing that the size of

the amplitude containing the tt̄χ∗χ contact interaction, relative to the one that couples

χχ∗ to an s-channel virtual Higgs via the portal coupling, is parametrically 2m2
χ/(λf

2) (for

mχ � mh/2). On the branch with larger λ this ratio is smaller than 1, so the corrections

to the tt̄χ∗χ coupling play a subleading role. Conversely, on the branch with smaller

λ the ratio is larger than 1, hence the reduction of the portal coupling caused by top

partner mixing is sizable. As it will be shown below, this effect is crucial to evade direct

detection bounds.
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4.3 Radiative corrections to pNGB derivative interactions

Throughout our discussion thus far, the effects of gauge and fermionic loops were taken

into account via the CW effective potential. In particular, for the computation of the

annihilation cross sections we made use of eq. (4.1), where the tree-level couplings were

supplemented by the 1-loop CW term. The effective potential, however, only captures the

radiative corrections in the approximation of vanishing external momenta. This is not ap-

propriate for DM annihilation, where the relevant external momentum scale is p ∼ mχ, and

1-loop corrections to derivative operators of O(p2) are expected to be also important. As an

illustrative example, let us consider the χχ∗hh interaction at high energies, where EWSB

effects can be neglected. From eq. (4.2), the tree-level (derivative) coupling reads simply

LGB ⊃
1

f2
h∂µh(χ∗∂µχ+ χ∂µχ∗). (4.9)

Radiative corrections to this interaction arise only from the fermion sector. The O(p0)

1-loop contribution is proportional to the SO(7)-breaking parameters ε and is just given

by the portal coupling, Veff ⊃ λh2χ∗χ . It is in general logarithmically UV-divergent, but

it is rendered finite by the set of WSRs in eq. (3.5). The O(p2) 1-loop term must also be

proportional to the ε parameters, because in the limit of vanishing explicit breaking, ε→ 0,

the O(p2) scalar Lagrangian is simply given by the sigma model kinetic term, eq. (2.1),

whose coefficient is fixed by f . Then the radiatively corrected form of the two-derivative

coupling can be estimated as

i(ctree + c1−loop)
p2

f2
, ctree ∼ 1 , c1−loop ∼

Ncε
2

16π2f2
log Λ2 . (4.10)

Notice that c1−loop is expected to be logarithmically divergent, since the WSRs in

eqs. (3.5), (3.6) do not soften its UV behavior. The log enhancement, together with the

fact that in general the ratio ε/f is of O(1) or even somewhat larger, make this 1-loop

correction potentially very important and thus warrant a detailed calculation. We find

four classes of diagrams that renormalize the operator in eq. (4.9), depicted in figure 8.

Two types of fermion-scalar vertices appear in the diagrams: the non-derivative couplings

arising from elementary-composite mixing terms, as well as the derivative couplings origi-

nating from the eµ symbol that are contained in the kinetic terms of the resonances in the

SO(6) fundamental,
∑

i Q̄i/eQi .8 Neglecting external masses, so that s+ t+u ' 0, we find

for the O(p2) piece of the χ∗χ→ hh amplitude (see appendix C for details)

i(ctree + c1−loop)
s

f2
, ctree = 1 , c1−loop =

Nc

2π2f2

(
ε2t −

ε2q
8

)
log

Λ2

m2
∗
, (4.11)

where we have imposed the WSRs, and m∗ stands for the mass of some fermionic resonance.

Notice the mild loop suppression factor Nc/(2π
2), and the log enhancement. After EWSB,

this interaction contributes to the trilinear χ∗χh derivative coupling, which as we discussed

8Notice that in general the couplings containing the dµ symbol that appear in eq. (2.15) also contribute.

However, for simplicity we set their coefficients to zero in the computation.
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Figure 8. Representative set of 1-loop diagrams that contribute to the renormalization of

the χ∗χhh interaction at O(p2). The circles indicate non-derivative interactions arising from

elementary-composite mixing terms, whereas the squares denote derivative couplings originating

from the eµ symbol (see eq. (2.14)).

in section 4.2 enters all annihilation cross section amplitudes, and in fact dominates in the

viable region of parameters, where λ is suppressed. Therefore in order to retain predictivity,

we must keep the size of the radiative correction under control. We find an irreducible

uncertainty of about 50% at the cross section level, which corresponds to

0.5 <

(
1 +

c1−loop

ctree

)2

< 1.5 −→ − 0.4 <
1

f2

(
ε2t −

ε2q
8

)
< 0.3 , (4.12)

where we have estimated Λ ∼ 10 TeV and m∗ ∼ 1 TeV. Barring a cancellation ε2q ≈ 8 ε2t ,

which may be regarded as a tuning unless it can be enforced by a symmetry, a further

reduction of the uncertainty would lead to values of εq,t that are too small to reproduce

the measured top mass. In conclusion, we will require that eq. (4.12) is satisfied through-

out our phenomenological analysis, and we will correspondingly assign a 50% theoretical

uncertainty on the total DM annihilation cross section.

4.4 Constraints from DM direct detection

Direct detection experiments aim at revealing DM-nucleus scattering events by measuring

the nuclear recoil energy. Currently, the strongest constraints on the spin-independent (SI)

DM-nucleon elastic cross-section come from the Xenon-based XENON1T [14] and LUX [15]

experiments, with the former providing a slightly tighter bound. In our model, the elastic

scattering of DM with a quark q is mediated by three types of diagrams: Higgs exchange

in the t-channel, the χ∗χq̄q contact interaction, and diagrams involving the exchange of

the U(1)DM-charged top partners Y,Z. The first two classes mediate scattering with

all quarks, whereas the exchange of Y,Z only affects the scattering with (virtual) tops.

Importantly, in Higgs exchange diagrams the contribution of the derivative coupling ∼
(v/f2)∂h∂(χ∗χ) is suppressed by −q2/f2 � 1, where

√
−q2 . 100 MeV is the small

momentum transfer. Therefore these diagrams are effectively proportional to the portal

coupling λ. Furthermore, throughout the realistic parameter space the Higgs exchange

amplitude dominates, being enhanced by 2λf2/m2
h � 1 with respect to the sum of the

other two terms. Hence the SI DM-nucleon cross section is well approximated by the

simple expression familiar from the renormalizable Higgs portal model (see e.g. ref. [38]),

σχNSI '
f2
N

π

m4
Nλ

2

m2
χm

4
h

∼ 4 · 10−46 cm2

(
λ

0.03

)2(300 GeV

mχ

)2

, (4.13)
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where mN is the nucleon mass, and fN ' 0.30 contains the dependence on the nucleon

matrix elements. The exact expression of σχNSI is reported in appendix C. The cross section

value 4 · 10−46 cm2 corresponds to the current 90% CL upper bound at mDM = 300 GeV

from XENON1T [14], showing that direct detection constraints require λ to be suppressed

by about a factor 2 with respect to the most natural value λ ∼ λh/2 ∼ 0.065. Notice

that to calculate the excluded regions in the (mχ, λ) plane of figure 9 below, the local DM

density was assumed to take the standard value ρ0 = 0.3 GeV cm−3, independently of the

predicted thermal value. All direct detection constraints are given at 90% CL.

4.5 Results

The main results of our phenomenological analysis are shown in figure 9. We set

f = 1.4 TeV and perform a parameter scan, imposing that v, mh and mt match the exper-

imental values. We also require each point to be compatible with detailed LHC constraints

on top partners, which are discussed in section 5.1 below and summarized in eq. (5.4). In

addition, the parameter space is restricted by the condition of eq. (4.12), thus ensuring that

the theoretical uncertainty on the annihilation cross section due to missing radiative correc-

tions is within 50%. The points are projected onto the plane (mχ, λ), using three different

colors depending on whether the relic abundance is compatible with (green), exceeds (red)

or undershoots (purple) the observed value. To compute the relic abundance we imple-

mented the effective Lagrangian of eq. (4.1) in FeynRules [39] and used micrOMEGAs [40]

to solve the Boltzmann equation (see appendix C for details) for the DM density.9 Notice

that the couplings involving the top quark depend on the elementary-composite mixings

and top partner masses, hence the relic abundance is not a function only of f, mχ and

λ, but must be separately evaluated at each point in parameter space. By contrast, the

bounds from direct detection experiments, namely LUX (brown) and XENON1T (gray),

are insensitive to the top partner parameters.

In the upper panel of figure 9, we illustrate the effect of neglecting the 50% theoretical

uncertainty on 〈σvrel〉, and show in green color the points that yield a relic abundance

within 5% of the observed value. For reference we also show, as thick blue lines, the 3σ

relic abundance contours that are obtained by setting the tt̄h and tt̄χ∗χ couplings to their

sigma model values. In this limit the annihilation cross section is completely fixed by

{f,mχ, λ}. The “two-branch” structure discussed in section 4.2 is clearly visible: for each

value of mχ & 180 GeV there are two values of λ that reproduce the correct relic abundance.

In the upper branch DM annihilation proceeds dominantly through the portal coupling,

whereas in the lower branch it is controlled primarily by the derivative interactions. In

between the branches the two effects strongly cancel (see the discussion below eq. (4.8)),

leading to a suppressed annihilation cross section and therefore to over-abundant DM. On

the contrary, outside of the two branches one of the two couplings becomes too strong,

and as a consequence the DM is under-abundant. The upper branch is robustly ruled out

by direct detection, and we therefore focus on the lower branch. Here the green points

9This treatment includes annihilation into light quarks and leptons, as well as into the three-body final

states WW ∗ or ZZ∗, which become important for lighter DM.
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Figure 9. Distributions in the (mχ, λ) plane that summarize our analysis of DM phenomenology.

The points have different colors depending on whether they are compatible with (green), exceed

(red) or undershoot (purple) the observed value of the DM relic abundance. In the upper (lower)

panel, the theoretical uncertainty of 50% on the annihilation cross section is neglected (included).

See the main text for further explanations on the meaning of the different curves.

fall between the two relic abundance contours obtained setting cttχχ = cnlσm
ttχχ (solid blue)

and cttχχ = 0 (dashed blue). The latter corresponds to maximal tR compositeness. For

fixed mχ, a suppressed |cttχχ| reduces the portal coupling required for the correct relic

abundance, and this in turn relaxes the direct detection constraints. Indeed, the subset

of viable points that are compatible with direct detection limits lies close to the cttχχ = 0

curve. Had we not included top partner mixing, we would have wrongly concluded that all

these points are ruled out by LUX and XENON1T data. This highlights the importance

of carefully taking into account the effects of the fermionic resonances.
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In the lower panel of figure 9 we show the complete picture. The theoretical uncertainty

is now included, so the green points reproduce the experimental value of the relic abundance

within 50%. We find a large set of points that reproduce the relic abundance within the

uncertainty, and at the same time evade the current direct detection bounds. The DM

mass is in the range 200 GeV . mχ . 400 GeV and the portal coupling between roughly

0.01 . λ . 0.04. We also show, as a dashed gray curve, the projected XENON1T sensitivity

after two years of data taking [41] (whereas the “35d” label on the solid dashed curve refers

to the current exposure of 35 days [14]). All the currently viable points lie well within the

ultimate reach of XENON1T, which will thus be able to test the entire parameter space of

the model for f = 1.4 TeV.

4.6 Indirect detection

Indirect detection experiments, which search for signals of DM annihilation in the galaxy

halo, constitute an additional probe of the model discussed here. Detailed constraints

from the antiproton spectrum measured by PAMELA [42] were presented, for the real

singlet pNGB DM in the SO(6)/SO(5) model, in ref. [9]. Since the annihilation pattern

of our complex DM is very similar, we were able to check that the viable region of our

parameter space is safely compatible with PAMELA antiproton data. It is important

to observe that changing the assumptions on the systematic uncertainties that affect the

astrophysical backgrounds can have a very large impact on the antiproton limits. For

example, the more conservative approach taken in ref. [43] resulted in bounds on the DM

annihilation cross section at present time, 〈σvrel〉0, that were an order of magnitude weaker

than those quoted in ref. [9]. Very recently, refs. [44, 45] used the new AMS-02 antiproton

measurement [46] to set very strong constraints. For example, assuming annihilation into

bb̄ the thermal value of the cross section 〈σvrel〉0 ∼ 3× 10−26 cm3 s−1 was excluded for DM

masses in the range 150 GeV . mDM . 500 GeV [44]. A detailed scrutiny of the AMS-02

constraints on pNGB DM, including the aforementioned large impact of the assumptions on

systematic uncertainties, is an interesting direction for future work. Finally, we note that

gamma ray observations of nearby dwarf spheroidal galaxies also set competitive bounds on

DM annihilation, while being affected by smaller systematics compared to the antiproton

channel. The current limits are roughly 〈σvrel〉0 . 10−25 cm3 s−1 for DM mass in the few

hundred GeV range [47].10

5 Collider phenomenology

In this section the collider phenomenology of the model is outlined, focusing on the signals

of fermionic top partners at hadron colliders, which constitute the most sensitive probe.

Nevertheless, before discussing this aspect in more detail we briefly touch upon other

observables. Due to its pNGB nature, the Higgs boson couples to the other SM particles

with strength that deviates at O(v2/f2) from the SM predictions. In particular, the hV V

coupling (V = W,Z) is rescaled by a factor cV =
√

1− ξ . For our benchmark value

10We thank A. Urbano for illuminating discussions about indirect detection constraints.
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f = 1.4 TeV, the deviation is of ≈ 1.5%, which is unaccessible at the LHC, but will be

tested at future e+e− colliders (see ref. [48] for a recent overview). Parametrically similar

deviations affect other SM couplings, such as ht̄t, hgg/hγγ and Zt̄t, which however will be

tested with less accuracy than hV V . In addition, monojet searches only provide subleading

constraints, because the coupling of χ to the proton constituents is very weak. In particular

the contact interactions q̄qχ∗χ, where q is a light quark, are Yukawa-suppressed (if present

at all).

5.1 LHC constraints on top partners

A rather generic feature of pNGB Higgs models with partial compositeness is that the

lightness of the Higgs requires at least some of the top partners to be light, m∗ = g∗f

with g∗ ∼ 1 (see ref. [49] for an extensive discussion). In our model, this is illustrated

by figure 4. Since the top partners are colored, the searches for their signals at hadron

colliders, in particular at the LHC, are among the most important experimental tests of the

composite Higgs framework [27, 50–52]. In the following discussion we adopt a simplified

model where only one layer of resonances, containing one SO(6) fundamental Q and one

singlet S, is included. This captures the main phenomenological features of the complete

model, provided the second layer of resonances is somewhat heavier than the first, as it is

the case in most of the parameter space.

We start from the fermionic Lagrangian in eq. (2.14) with NQ = NS = 1. Notice that,

as consistently done throughout our analysis, the coefficients of the derivative interactions

in eq. (2.15) are set to zero, cL,R = 0. We will return to the possible role of these interactions

in LHC physics in section 5.2. Neglecting EWSB effects, the elementary-composite mixings

are diagonalized by the rotations(
tR
SR

)
→

(
cosφR − sinφR
sinφR cosφR

)(
tR
SR

)
,

(
qL
QL

)
→

(
cosφL − sinφL
sinφL cosφL

)(
qL
QL

)
, (5.1)

where Q ≡ (T,B)T and the mixing angles are tanφR = εtS/mS and tanφL = εqQ/mQ .

On the other hand, the remaining fermions contained in Q, namely the exotic doublet

(X5/3, X2/3)T and the U(1)DM-charged SM singlets Y,Z, do not mix with the elementary

fermions. In summary, the top partner masses are

MS =
√
m2
S + ε2tS , MT,B =

√
m2
Q + ε2qQ , MX5/3, X2/3,Y,Z = mQ . (5.2)

Hence at the bottom of the spectrum we find either a singlet S, or four approximately

degenerate states X2/3, X5/3,Y and Z.11 The scan of the complete two-layer model, shown

in the left panel of figure 10, demonstrates that the lightest top partner is typically a singlet,

although the alternative configuration is also possible. The decay patterns of the resonances

can be immediately understood using the Goldstone equivalence theorem. Expanding the

U matrix to O(1/f) and diagonalizing the elementary-composite mixings via eq. (5.1), one

11EWSB effects do not alter the masses of X5/3,Y and Z, which remain exactly degenerate, but they do

shift MX2/3
slightly. The correction can have either sign depending on the parameter point.
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Figure 10. Distributions in the model with two fermionic resonance layers. Left: mass of the

lightest exotic top partner (mQ1
) versus the mass of the lightest singlet top partner (MS1

). For

orange (blue) points, the lightest fermionic resonance is heavier (lighter) than the approximate LHC

lower bound of 1 TeV. The red line corresponds to mQ1
= MS1

. Right: branching ratios of the

lightest singlet S1, for the parameter points where it is the lightest fermionic resonance. The dashed

lines indicate the leading order predictions, see eq. (5.3).

immediately finds the leading order results

BR(S →W+b) = 2 BR(S → Zt) = 2 BR(S → ht) =
1

2
,

BR(T → ht) = BR(T → Zt) = BR(X2/3 → ht) = BR(X2/3 → Zt) =
1

2
,

BR(X5/3 →W+t) = BR(B →W−t) = BR(Y → χt) = BR(Z → χ∗t) = 1 .

(5.3)

In particular, as a consequence of U(1)DM conservation, Y (Z) always decays into a top

quark and a χ (χ∗) particle (see refs. [53–55] for recent studies of top partner decays into

additional Goldstone scalars). The above predictions are well respected in the complete

model. For example, in the right panel of figure 10 the exact branching ratios of the singlet

are shown, for the parameter points where it is the lightest fermionic resonance. We find

good agreement with eq. (5.3).

The LHC searches for top partners target two distinct production mechanisms: pair

production via the QCD interactions, namely pp → ψ̄ψ where ψ is a generic top partner,

and single production in association with a top or bottom via the electroweak interactions,

for example for a singlet S the leading process is pp → Sb̄j via the b̄W−S vertex. Notice

that the U(1)DM-charged top partners Y and Z cannot be singly produced. We have

verified that under our assumption cL,Rji = 0, the bounds from single production [56] are

weaker than those coming from QCD pair production [57, 58], hence we only discuss the

latter. For simplicity, in the following we set the branching ratios to the approximate

values of eq. (5.3). The search of ref. [57] focuses on the ψ̄ψ → t(h → bb̄)+X process in

1- and 0-lepton final states, yielding the 95% CL constraints MS > 1.02 TeV and MX2/3
>

1.16 TeV (henceforth, LHC limits will always be quoted at 95% CL). The bound on X2/3 is

stronger due to the larger branching ratio into th. The search of ref. [58] instead specifically
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targets the X5/3 in the same-sign-dileptons final state, and gives MX5/3
> 1.16 TeV.12 In

addition to these “standard” constraints, we must account for those on Y and Z, which

are mass-degenerate and always decay into a top quark and a DM particle, giving rise to

tt̄ + missing transverse energy (MET) signatures. The corresponding constraint depends

on the DM mass. As motivated by the results of our phenomenological analysis (see

figure 9), we choose the representative value mχ = 300 GeV. To estimate the current

bound on MY = MZ , we start from the result obtained in the dedicated 8 TeV analysis

of ref. [59], mψ > 0.85 TeV based on ∼ 20 fb−1 of data. Using the Collider Reach [60]

method, we rescale this bound to the current luminosity and energy, ∼ 36 fb−1 at 13 TeV,

obtaining mψ > 1.30 TeV. Finally, to take into account that Y and Z are two degenerate

Dirac fermions that contribute to the signal, we solve the following equation for MY :

σpp→ ψ̄ψ, 13 TeV(mψ = 1.30 TeV) = 2σpp→ ψ̄ψ, 13 TeV(MY), arriving to MY > 1.42 TeV.13 In

summary, the current LHC constraints on the top partner masses are, at 95% CL,

MS > 1 TeV, MX5/3, X2/3
> 1.2 TeV, MY,Z > 1.4 TeV. (5.4)

These conditions are imposed at every point in the parameter scan presented in figure 9.

5.2 Beyond the lightest top partner(s)

As discussed in section 5.1, the first experimental manifestation of the model at colliders

would most likely be the discovery of the lightest top partner. We now turn to a brief

discussion of the opportunities to probe the heavier fermionic resonances at the LHC and

future colliders. If the lightest top partner is a singlet S, the connection with the DM

problem could not be made until the U(1)DM-charged top partners Y and Z, which belong

to the heavier multiplet Q, can be accessed. For large enough splitting mQ − MS , the

direct decay to χ(∗)t and the cascade decay to χ(∗)S are both unsuppressed. The branching

fraction is, assuming εtQ,MS � mQ and in the limit of full tR compositeness sinφR → 1,

BR(Y → χt) = BR(Z → χ∗t) '
c2
R

c2
L + c2

R

, (5.5)

where to keep the discussion general we took nonzero coefficients for the derivative interac-

tions in eq. (2.15), setting cL,R = i cL,R so that CP is conserved. Equation (5.5) suggests

that Y and Z decay rather democratically into the two available channels. Therefore the

QCD pair production of Y and Z, either at the LHC or at a future FCC-hh, can generate

cascades where the decay of an intermediate S yields a Z or h in addition to the “stop-like”

bW b̄Wχχ∗ signature, potentially providing an additional handle to characterize the exotic

top partners.

In the opposite scenario mQ < MS , since the Y and Z are at the bottom of the

spectrum, their discovery in the tt̄ + MET final state would happen early on, hinting

12This is the bound obtained for a purely right-handed t̄W−X5/3 coupling, as appropriate since in this

model the left-handed coupling is suppressed by one extra power of v.
13As an independent cross-check, we have recast the constraint on the stop mass ex-

tracted from ref. [61], mt̃ > 1.04 TeV with ∼ 36 fb−1, by solving for MY the equation

σpp→ t̃∗ t̃, 13 TeV(mt̃ = 1.04 TeV) = 2 σpp→ ψ̄ψ, 13 TeV(MY), obtaining a consistent bound MY > 1.47 TeV.
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to a connection with DM physics. The heavier singlet may then be accessed via single

production pp → Sb̄j, whose rate can be enhanced by the derivative interactions propor-

tional to cL,R [27]. Of special interest is the decay into the U(1)DM-charged top partners,

S → χ∗Y, χZ, leading at the end of the cascade to the final state tχχ∗b̄j, i.e. a monotop

signature. The branching ratio for these decays is, assuming εtQ,mQ � MS and in the

limit of full tR compositeness,

BR(S → χ∗Y) = BR(S → χZ) ' 1

6
. (5.6)

Notice that this result holds for arbitrary cL and cR. Hence ≈ 1/3 of the singly-produced

singlets yield the monotop final state. This promising signature deserves a dedicated anal-

ysis, which is however beyond the scope of this paper.

6 Outlook

We have presented a model where a composite pNGB scalar DM χ is charged under an

exact U(1)DM that belongs to the unbroken symmetry group of the strong sector. This pro-

vides a robust stabilization mechanism for χ, since the U(1)DM is automatically respected

by any G-invariant UV completion. Higher-dimensional derivative operators that arise from

the nonlinear sigma model play an important role in the DM phenomenology [4]. They can

give a large contribution to DM annihilation in the early Universe, while at the same time

yielding negligible effects in the scattering with the nuclei of underground detectors. As a

consequence, the tension with the strong direct detection constraints on the marginal cou-

pling ∼ λχ∗χH†H is relaxed compared to the standard Higgs portal model, where λ is fixed

by the relic density. An extensive phenomenological analysis reveals a region of parameters

compatible with all current constraints from the relic density, direct detection experiments

and LHC searches for the top partners. The symmetry breaking scale is f = 1.4 TeV,

the mass of the DM 200 GeV . mχ . 400 GeV and the portal coupling 0.01 . λ . 0.04.

We found that the mixing of the top quark with the top partners plays a crucial role in

obtaining the correct relic abundance, while at the same time evading the current direct

detection constraints. In addition, we have identified a set of radiative corrections to the

derivative operators, that imply a sizable theoretical uncertainty on the DM annihilation

cross section and therefore a broadening of the allowed region of parameters. Nevertheless,

this DM candidate falls within the ultimate sensitivity of XENON1T, and therefore will

be fully tested in the near future. Indirect detection constraints and the impact of the

assumed systematic errors are an interesting direction for future work.

Throughout the discussion, we have assumed that the U(1)DM is a global symmetry.

We wish to conclude with a few remarks about the possibility of weakly gauging it, with

associated gauge boson AµD and coupling gD. To preserve the DM stability, we assume

that U(1)DM is exact, and therefore AD is massless. An immediate concern is the kinetic

mixing with the SM hypercharge gauge boson, (ε/2)BµνF
µν
D , which after diagonalization

of the kinetic terms leads to a small hypercharge for the DM χ, hence in particular a

coupling of size ∼ εgD to the SM photon. Millicharged DM can remain tightly coupled
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to the baryon-photon plasma during the recombination epoch, behaving like a baryon

and thus affecting the CMB. Requiring that the DM decouples from the plasma before

recombination yields a constraint ε(gD/e) . 5 × 10−5 for mχ = O(100) GeV [62]. In

addition, strong bounds from direct detection arise, but these do not apply in a wide

region of εgD where the DM would have been evacuated from the galactic disk by supernova

explosion shock waves, and prevented to return by galactic magnetic fields [62, 63]. In our

model, composite resonances charged under both U(1)Y and U(1)DM do exist, for example

the fermionic top partners Y and Z, as well as gauge resonances. However, at 1-loop

no kinetic mixing is induced, because for each multiplet Φ ∼ RX under SO(6) × U(1)X
we have ε1−loop

Φ ∝ Tr [(T 3
R + X)TDM] = 0, where T 3

R and TDM are SO(6) generators in

the R representation. In addition, a preliminary investigation suggests that ε may be

even further suppressed, due to the non-abelian nature of TDM ∈ SO(6). If the kinetic

mixing is small enough — or altogether absent, — then DM charged under a dark U(1)

has been shown to be broadly compatible with astrophysical observations [64–67]. In

particular, the recent reappraisal of ref. [67] suggested the viability of charged DM with

weak scale mass and coupling to the dark photon of strength only moderately weaker

than electromagnetism. In the light of the above considerations, the effects of gauging

the U(1)DM on the DM phenomenology discussed in this paper are expected to be mild,

because for weak-scale mχ the dominant interactions are set by larger couplings, especially

the top Yukawa. On the other hand, in the scenario where the mixings of the top with

the strong sector preserve the χ shift symmetry, leading to mχ � mh and suppressed

DM-SM couplings, the additional interactions with the dark photon can lead to significant

modifications of the phenomenology [13].
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A CCWZ construction for SO(7)/SO(6)

For the generators of the fundamental representation of SO(7) we take

(TαL,R)IJ = − i
2

[
1

2
εαβγ(δβI δ

γ
J − δ

β
Jδ

γ
I )± (δαI δ

4
J − δαJ δ4

I )

]
, α = 1, 2, 3,

T abIJ = − i√
2

(δaI δ
b
J − δaJδbI), b = 5, 6; a = 1, . . . , b− 1, (A.1)

Xa
IJ = − i√

2
(δaI δ

7
J − δaJδ7

I ), a = 1, . . . , 6,
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where the indices I, J take the values 1, . . . , 7. TαL,R and T ab are the generators of

SO(6), collectively denoted by T â (â = 1, . . . , 15), with TαL,R spanning the custodial

SO(4) ∼= SU(2)L × SU(2)R subgroup, while Xa are the broken generators that parameter-

ize the coset space SO(7)/SO(6). Notice that the unbroken generators are block-diagonal

in our basis,

T â =

(
tâ 0

0 0

)
, tâ ∈ SO(6). (A.2)

All generators TA (A = 1, . . . , 21) are normalized such that Tr
[
TATB

]
= δAB. Under the

unbroken SO(6), the six GBs πa transform linearly and in the fundamental representation,

whose decomposition under SO(4) is 6 = 4 ⊕ 1 ⊕ 1. The Higgs doublet H = (hu, hd)
T is

identified with the 4, so that

~π =
1√
2

(
−i(hu − h∗u), hu + h∗u, i(hd − h∗d), hd + h∗d,

√
2 η,
√

2κ
)T

. (A.3)

In unitary gauge, i.e. hu = 0, hd = h̃/
√

2, this has the expression in eq. (2.2) and the Gold-

stone matrix U(~π) = exp
(
i
√

2πaXa/f
)

can be written, after performing the convenient

field redefinition [5]

sin(π/f)

π
πa → πa

f
with π =

√
~π T~π , (A.4)

in the following form

U =



13×3

1− h̃2

f2(1+Ω)
− h̃η
f2(1+Ω)

− h̃κ
f2(1+Ω)

h̃
f

− h̃η
f2(1+Ω)

1− η2

f2(1+Ω)
− ηκ
f2(1+Ω)

η
f

− h̃κ
f2(1+Ω)

− ηκ
f2(1+Ω)

1− κ2

f2(1+Ω)
κ
f

− h̃
f − η

f −κ
f Ω


, Ω =

1

f

√
f2 − h̃2 − η2 − κ2 .

(A.5)

Under g ∈ SO(7), the GB matrix transforms as

U (~π)→ g U (~π) h (~π; g)T , (A.6)

where h (~π; g) is block-diagonal in our basis,

h (~π; g) =

(
h6 0

0 1

)
, h6 ∈ SO(6). (A.7)

The dµ and eµ symbols are defined via14

iU †DµU ≡ daµXa + eâµT
â , (A.8)

where DµU = ∂µU − iAâµT âU . Notice that we took the gauge fields as belonging to the

SO(6) subalgebra, since this is the relevant case. Explicitly, for SU(2)L × U(1)Y we have

14Notice that we define the dµ and eµ symbols with opposite sign compared to, e.g., ref. [27].
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AâµT
â = ḡW̄α

µ T
α
L + ḡ′B̄µT

3
R . If the U(1)DM were also gauged, then AâµT

â → AâµT
â +

gDADµ
√

2T 56, with AD the associated vector field and gD its coupling. Under g ∈ SO(7),

daµ → (h6)ab d
b
µ , eµ ≡ eâµtâ → h6 (eµ + i∂µ)hT6 , (A.9)

where h6 was defined in eq. (A.7). To leading order in 1/f , we have

daµ = −
√

2

f
Dµπ

a +O(1/f3), eâµ = Aâµ +O(1/f2) , (A.10)

where Dµπ
a = ∂µπ

a − iAâµ(tâ)abπ
b . The fermion covariant derivatives that appear in

eq. (2.14) read

DµqL =

(
∂µ − iḡW̄α

µ

σα

2
− iḡ′ 1

6
B̄µ

)
qL , DµΨ =

(
∂µ − i

2

3
ḡ′B̄µ

)
Ψ , (A.11)

where Ψ = tR, Qi, Sj , and in all cases the color SU(3) component is understood.

At the leading order in derivatives, the Lagrangian describing the vector resonances

ρµ ≡ ρâµtâ ∼ 15 and aµ ≡ aaµXa ∼ 6 reads

LV = −1

4
Tr (ρµνρ

µν)+
f2
ρ

2
Tr (gρρµ − eµ)2− 1

4
Tr (aµνa

µν)+
f2
a

2∆2
Tr (gaaµ −∆dµ)2 , (A.12)

where fρ, a are decay constants, gρ, a are couplings, and ∆ is a dimensionless parameter.

The field strengths are given by

ρµν = ∂µρν − ∂νρµ − igρ [ρµ, ρν ] , aaµν = ∇µaaν −∇νaaµ, ∇µ = ∂µ − ieµ . (A.13)

In the limit where the external gauge fields are neglected, the masses of the ρ and a read

m2
ρ = g2

ρf
2
ρ , m2

a =
g2
af

2
a

∆2
. (A.14)

Neglecting EWSB, only ρµ can mix with the SU(2)L × U(1)Y gauge fields. The mass

eigenstates are obtained via the rotations(
W̄α

ραL

)
→ 1√

g2
ρ + ḡ2

(
gρ −ḡ
ḡ gρ

)(
Wα

ραL

)
,

(
B̄

ρ3
R

)
→ 1√

g2
ρ + ḡ′ 2

(
gρ −ḡ′

ḡ′ gρ

)(
B

ρ3
R

)
,

(A.15)

with Wα and B identified with the SM states. The associated SM couplings are g =

gρḡ/
√
g2
ρ + ḡ2 and g′ = gρḡ

′/
√
g2
ρ + ḡ′ 2.

B Scalar potential and parameter scan

Integrating out the vector resonances at tree level, we obtain the effective Lagrangian

containing the gauge fields W̄α, B̄ and the Higgs,

Leff
g =

1

2

(
gµν − pµpν

p2

)(
2Π+−W̄

+
µ W̄

+
ν + Π33W̄

3
µW̄

3
ν + ΠBBB̄µB̄ν + 2Π3BW̄

3
µB̄ν

)
(B.1)
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where

Π+− = Π33 = Π0 +
h̃2

4f2
Πg

1 , ΠBB = ΠB +
ḡ′ 2

ḡ2

h̃2

4f2
Πg

1 , Π3B = − ḡ
′

ḡ

h̃2

4f2
Πg

1 . (B.2)

The dynamics of the strong sector resonances are encoded in the momentum-dependent

form factors, which read in Euclidean space

Π0(B) = p2

(
1 +

ḡ(′) 2f2
ρ

p2 +m2
ρ

)
, Πg

1 = ḡ2

[
f2 + 2p2

(
f2
a

p2 +m2
a

−
f2
ρ

p2 +m2
ρ

)]
. (B.3)

The effective potential for the Higgs has the expression

Vg(h̃) =
3

2

∫
d4p

(2π)4
log
[
Π2

+−(Π33ΠBB −Π2
3B)
]
. (B.4)

Integrating out the fermionic resonances at tree level we obtain an effective Lagrangian

containing the top quark, the bL and the GBs as degrees of freedom,

Leff
t = ΠL0 b̄L/pbL + ΠLt̄L/ptL + ΠRt̄R/ptR − (ΠLR t̄LtR + h.c.) , (B.5)

where

ΠL = ΠL0 +
h̃2

2f2
ΠL1 , ΠR = ΠR0 +

(
h̃2

f2
+

2χ∗χ

f2

)
ΠR1 , ΠLR =

h̃√
2f

√
1− h̃2

f2
− 2χ∗χ

f2
Πt

1 .

(B.6)

The momentum-dependent form factors read, in Euclidean space,

ΠL0 = 1 +

NQ∑
i=1

|εiqQ|2

p2 +m2
Qi

, ΠL1 =

NS∑
j=1

|εjqS |2

p2 +m2
Sj

−
NQ∑
i=1

|εiqQ|2

p2 +m2
Qi

,

ΠR0 = 1 +

NS∑
j=1

|εjtS |2

p2 +m2
Sj

, ΠR1 =

NQ∑
i=1

|εitQ|2

p2 +m2
Qi

−
NS∑
j=1

|εjtS |2

p2 +m2
Sj

, (B.7)

Πt
1 =

NS∑
j=1

ε∗jtSε
j
qSmSj

p2 +m2
Sj

−
NQ∑
i=1

ε∗itQε
i
qQmQi

p2 +m2
Qi

.

The effective potential for the GBs reads

Vf (h̃, χ) = −2Nc

∫
d4p

(2π)4
log
(
p2ΠLΠR + |ΠLR|2

)
. (B.8)

Expanding eqs. (B.4) and (B.8) to quartic order in the fields and matching with eq. (3.1),

we obtain the expressions of the parameters µ2
h, λh, µ

2
DM, λDM and λ as integrals over the
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form factors. For the dominant fermion contribution we find

µ2
h,f = − Nc

8π2f2

∫ ∞
0

dp2p2

(
ΠL1

ΠL0

+
2ΠR1

ΠR0

+
(Πt

1)2

p2ΠL0ΠR0

)
,

λh,f =
Nc

4π2f4

∫ ∞
µ2

IR

dp2p2

[
1

4

(
ΠL1

ΠL0

+
2ΠR1

ΠR0

+
(Πt

1)2

p2ΠL0ΠR0

)2

+
(Πt

1)2 − p2ΠL1ΠR1

p2ΠL0ΠR0

]
,

µ2
DM = − Nc

4π2f2

∫ ∞
0

dp2p2 ΠR1

ΠR0

, λDM =
Nc

4π2f4

∫ ∞
0

dp2p2
Π2
R1

Π2
R0

,

λ =
Nc

8π2f4

∫ ∞
0

dp2p2

[
2

Π2
R1

Π2
R0

+
(Πt

1)2

p2ΠL0ΠR0

(
1 +

ΠR1

ΠR0

)]
, (B.9)

where we assumed real mixing parameters ε. Notice that the integral for the Higgs quartic

λh,f is IR divergent; the same happens for the (small) gauge contribution λh,g. The IR

divergence signals that the potential is non-analytic at h̃ = 0, due to the contribution

of the light degrees of freedom (the top quark and SM gauge bosons). To remove this

issue, the expansion of the potential in eq. (3.1) is extended to include an additional

term ∆V = (δh/2)h̃4 log(h̃2/f2), which captures the non-analytic contribution to the Higgs

quartic. Then all the coefficients of V + ∆V are IR-finite, including δh. The Higgs VEV

〈h̃〉 = v is obtained by solving the equation 〈h̃〉2 = −µ2
h/[λh + δh(1 + 2 log(〈h̃〉2/f2))], and

the Higgs mass is m2
h = (1− ξ)2v2(λh + 3δh + 2δh log ξ).

We now summarize our procedure for the parameter scan. From eq. (3.15), requiring

that 0 ≤ s2
θ,φ ≤ 1 leads to the constraints

m2
S1
−m2

Q1

m2
Q2
−m2

Q1

≤ s2
α,β ≤

m2
S2
−m2

Q1

m2
Q2
−m2

Q1

. (B.10)

These can be satisfied only for mS2 > mQ1 , which we therefore assume. Taking into account

that Πt
1 is the only form factor that is sensitive to the signs of the mixing parameters ε, and

that furthermore the scalar potential is unaffected by Πt
1 → −Πt

1, the angles are restricted

to the following ranges

θ, α ∈ [−π/2, π/2], φ ∈ [0, π/2], β ∈ [0, π]. (B.11)

We summarize here the procedure adopted in the parameter scan of the two-layer model

with WSRs (the procedure for the scan of the one-layer model is analogous).

1. The following parameters are randomly selected: εt ∈ [f/10, 8f ] , mS1,Q1 ∈ [0, 6f ] ,

mS2,Q2 ∈ [mQ1 , 6f ], fρ ∈
[
f/
√

2, 2f
]

;

2. The angles α and β are randomly picked, compatibly with the restrictions in

eqs. (B.10) and (B.11). Then φ is completely fixed, while the sign of sin θ is

picked randomly.

3. εq is fixed by solving the following equation

m2
t =

∣∣ΠLR(m2
t )
∣∣2

ΠL(m2
t )ΠR(m2

t )

∣∣∣∣∣
h̃= v, χ= 0

, (B.12)

where the numerical value of the top mass is set to mt = mMS
t (2 TeV) = 150 GeV.
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4. mρ is fixed by requiring the Higgs VEV to match the observed value, 〈h̃〉 = v '
246 GeV.

In the two-layer model, the compositeness fraction sL (sR) of the left (right) handed top

is computed by diagonalizing analytically the fermion mass matrix for v → 0, and taking

the projection onto the composite fermions of the normalized eigenvector that corresponds

to the physical tL (tR). For example, the compositeness fraction of tR is defined as

sR ≡

√
a2

2 + a2
3

a2
1 + a2

2 + a2
3

with tpR =
1√

a2
1 + a2

2 + a2
3

(a1tR + a2S1 + a3S2), (B.13)

where tpR denotes the mass-eigenstate right-handed top (for v → 0). The compositeness

fractions satisfy 0 ≤ sL,R ≤ 1. In the one-layer model, they are identified with the sine of

the elementary-composite mixing angles.

C Details on DM phenomenology

The explicit values of the couplings in eqs. (4.2, 4.3) are

ahhh = bhχχ =
ξ√

1− ξ
, ahhχχ =

ξ2

1− ξ
, bhhχχ = ξ

1 + ξ

1− ξ
,

ahV V = dhχχ = dhhh =
√

1− ξ , dhhχχ = 1− ξ .
(C.1)

The couplings between the scalars and the top quark in eq. (4.4) can be easily computed

by matching with eq. (B.5), where the top partners have been integrated out in the original

field basis. However, the results of the parameter scan show that the “composite” mass

of the lightest singlet, mS1 , can in some cases be as low as few hundred GeV (while the

physical mass of the lightest singlet is still above the experimental lower bound of 1 TeV,

because it receives a large contribution from the elementary-composite mixing parameters

∼ εt), thus invalidating the simple effective theory approach in this basis. Therefore we

proceed as follows: starting from the UV Lagrangian in eq. (2.14), after exact, numerical

diagonalization of the fermion mass matrices we consider the following terms

Lf 3 it̄/∂t−mtt̄t
(
c̃tth

h

v
+ 2 c̃ttχχ

χ∗χ

v2

)
(C.2)

+

NQ∑
i=1

[
Y i
(
i/∂ −mQi

)
Yi+ Z i

(
i/∂ −mQi

)
Zi+ t̄(biLPL + biRPR)(Yiχ∗ + Ziχ) + h.c.

]
,

where we introduced the coefficients c̃tth, c̃ttχχ, b
i
L and biR, which are real if CP invariance

is imposed. After integrating out the Yi and Zi and matching to eq. (4.4), we find that

ctth = c̃tth, whereas

cttχχ = c̃ttχχ −
v2

mt

NQ∑
i=1

[
biLb

i
R

mQi

+
mt

2m2
Qi

(bi 2L + bi 2R )

]
. (C.3)
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We have verified that for parameter choices where the EFT approximation is justified,

the values of ctth and cttχχ obtained from eq. (B.5) agree with those computed with this

semi-numerical method.

The cosmological evolution of the χ number density15 is described by the Boltzmann

equation
dnχ
dt

+ 3Hnχ = −〈σvrel〉
[
n2
χ −

(
neq
χ

)2]
, (C.4)

where neq
χ is the equilibrium number density, H is the time-dependent Hubble parameter

and 〈σvrel〉 is the thermally averaged annihilation cross-section times the relative velocity

of two DM particles, whose expression is [68]

〈σvrel〉(T ) =
1

16m4
χTK

2
2 (mχ/T )

∫ ∞
4m2

χ

ds s
√
s− 4m2

χK1(
√
s/T )σvrel(s) , (C.5)

where T denotes the temperature and K1,K2 are modified Bessel functions of the second

kind. Dark matter annihilates dominantly into WW,ZZ, hh and tt̄. The corresponding

cross sections were calculated analytically in terms of the parameters of the effective La-

grangian in eq. (4.1), and found to agree with those of ref. [4] in the limit ctth = cnlσm
tth ,

cttχχ = cnlσm
ttχχ . Equation (4.7) provides a naive solution of the Boltzmann equation, which

is nevertheless useful for a qualitative understanding.

The leading 1-loop corrections to the derivative χχ∗hh coupling in eq. (4.9) are ob-

tained computing the set of Feynman diagrams depicted in figure 8, and selecting the

logarithmically divergent pieces. For simplicity, we report the result in the limit where the

GB masses are neglected. Even though this is a rough approximation for DM annihila-

tion, where the kinematic variables take the values (assuming m2
χ � m2

h) s ∼ 4m2
χ and

t ∼ u ∼ −m2
χ, it is nevertheless sufficient for the purpose of estimating the theoretical

uncertainty on the cross section. In particular, it implies that s+ t+u ' 0. The first class

of diagrams in figure 8, which contain two insertions of the elementary-composite mixings,

yield the result in momentum space

iNc

8π2f4

(
ε2t −

ε2q
8

)
s log Λ2 . (C.6)

Notice that this class of diagrams also yield the O(p0) coupling λ. The second class of

diagrams contain two derivative couplings arising from the eµ symbol, and give

iNc

8π2f4

(
−
ε2q
8

)
3 s log Λ2 , (C.7)

which can be seen as arising from two ε insertions on the internal fermion lines. The con-

tribution of the third class of diagrams turns out to be proportional to the external masses,

and thus negligible within our approximations. Lastly, the triangle diagrams composing

the fourth class yield
iNc

8π2f4

(
ε2t
)
3 s log Λ2 . (C.8)

15Notice that the DM number density is obtained summing over particles and anti-particles, nDM = 2nχ.
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Summing eqs. (C.6), (C.7) and (C.8) and making the argument of the logarithm dimen-

sionless by inserting m2
∗, we arrive at the final result in eq. (4.11).

The SI DM-nucleon cross section is given by

σχNSI =
1

π

(
mN

mχ +mN

)2 [ZFp + (A− Z)Fn
A

]2

, (C.9)

where mN = (mp + mn)/2 is the average nucleon mass, and for Xenon A = 130, Z = 54.

The effective couplings of the DM to nucleons can be written as

Fx
mx

=
∑

q=u,d,s

fxTqaq +
2

27
fxTg

( ∑
q=c,b

aq + ktg

)
, (x = p, n) (C.10)

where the first term represents the tree-level coupling to the light quarks u, d, s, while

the second term parameterizes the coupling to gluons via loops of heavy fermions. For

convenience, in the second term we have further singled out the contribution mediated by

the top and top partners, ktg, from the one coming from the charm and bottom. The former

can be easily computed using the low-energy theorem for the GBs,

ktg =
λv

m2
h

dhχχDh −
1

2
Dχχ∗ (C.11)

with the definitions

Dh ≡
√

1− ξ
(
∂

∂h̃
log |detMt(h̃, χ)|

)
h̃= v, χ= 0

=
1

v

1− 2ξ√
1− ξ

,

Dχχ∗ ≡
(

∂2

∂χ∂χ∗
log |detMt(h̃, χ)|

)
h̃= v, χ= 0

= − 1

f2(1− ξ)
,

(C.12)

where Mt is the field-dependent mass matrix for the top sector. Even though ktg receives

contributions from the top partners, its final expression depends only on f and is insensitive

to the resonance parameters. This cancellation can be traced to the fact that with our

choice of fermion embeddings, qL, tR ∼ 7 of SO(7), there is only one SO(6) invariant that

generates the top mass [69, 70].16 We remark that our computation based on eq. (C.11)

is only approximate for the box diagrams that contain Y,Z propagators, and could be

improved through an exact computation of the χg → χg scattering amplitude, see ref. [71]

for an extensive discussion in the similar case of neutralino-nucleon scattering. However,

we have checked that for realistic parameter points the contribution of the box diagrams

to ktg is . 10%, hence we estimate that the corrections to our approximation would only

affect σχNSI at the percent level.

The contribution of the light SM quarks is encoded by the coefficients aq (q =

u, d, c, s, b) in eq. (C.10). It is somewhat model-dependent, being determined by the choice

of the corresponding embeddings, which we have not specified so far since they do not affect

any other aspect of the phenomenology. For concreteness, we assume all left-handed light

quarks to be embedded in the 7, whereas for the right-handed light quarks we take bR ∼ 7,

16Notice that the expression of ktg is identical to that obtained in SO(6)/SO(5) when qL, tR ∼ 6 [4].
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leading to a contribution identical to the one of the top sector, and qR ∼ 1 (q = u, d, c, s),

yielding a vanishing coefficient for the χ∗χq̄q contact term. In summary, we have

ktg = ab =
λ

m2
h

(1− 2ξ) +
1

2f2(1− ξ)
, au,d,c,s =

λ

m2
h

(1− ξ). (C.13)

For the nuclear matrix elements that appear in eq. (C.10) we take fpTu = 0.021,

fpTd = 0.041, fnTu = 0.019, fnTd = 0.045, obtained from agreeing determinations of the pion-

nucleon sigma term σπN from chiral perturbation theory [72] and dispersive methods [73],

and fp,nTs = 0.043, based on lattice QCD results [74]. The gluon matrix element is then

fp,nTg = 1 −
∑

q=u,d,s f
p,n
Tq
' 0.89. For realistic parameters the Higgs exchange dominates

and the cross section can be approximated by the simple expression in eq. (4.13), with

fN ≡ 2/9 + (7/9)
∑

q=u,d,s f
p,n
Tq
' 0.30.
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