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Abstract: We derive the electroweak (EW) collinear splitting functions for the Standard

Model, including the massive fermions, gauge bosons and the Higgs boson. We first present

the splitting functions in the limit of unbroken SU(2)L × U(1)Y and discuss their general

features in the collinear and soft-collinear regimes. These are the leading contributions at

a splitting scale (kT ) far above the EW scale (v). We then systematically incorporate EW

symmetry breaking (EWSB), which leads to the emergence of additional “ultra-collinear”

splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem.

We suggest a particularly convenient choice of non-covariant gauge (dubbed “Goldstone

Equivalence Gauge”) that disentangles the effects of Goldstone bosons and gauge fields in

the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/kT .

We implement a comprehensive, practical EW showering scheme based on these splitting

functions using a Sudakov evolution formalism. Novel features in the implementation in-

clude a complete accounting of ultra-collinear effects, matching between shower and decay,

kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of

neutral bosons (γ/Z/h) using density-matrices. We employ the EW showering formalism

to study a number of important physical processes at O(1–10TeV) energies. They include

(a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the

emergence of “weak jets” such as those initiated by transverse gauge bosons, with indi-

vidual splitting probabilities as large as O(35%); (c) EW showers initiated by top quarks,

including Higgs bosons in the final state; (d) the occurrence of O(1) interference effects

within EW showers involving the neutral bosons; and (e) EW corrections to new physics

processes, as illustrated by production of a heavy vector boson (W ′) and the subsequent

showering of its decay products.
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1 Introduction

1.1 Electroweak parton showers

Process-independent parton showers in QED and QCD have long served as invaluable

tools for particle physics in high energy collisions and decays. By exploiting formal factor-

izations between hard/wide-angle physics and soft/collinear physics [1–3], the extremely

complicated exclusive structure of high energy scattering events can be viewed in a mod-

ular fashion. The dominant flows of energy and other quantum numbers are modeled

with manageable, low-multiplicity matrix elements. These are subsequently dressed with

soft/collinear radiation, and hadronization applied to bare color charges. Detailed imple-

mentations have varied significantly in specific approach, but showering programs such as

PYTHIA [4], HERWIG [5], and SHERPA [6] are now standard workhorses required for describing

realistic collider events. They have also found widespread use in modeling the interactions

of high-energy cosmic rays [7], as well as the exclusive products of dark matter annihilation

and decay [8, 9].

Collinear parton showers become a ubiquitous phenomenon for processes at energies

far above the mass scales of the relevant final-state particles, such as the electron mass in

QED or the confinement scale in QCD. With the upgraded LHC and proposed future accel-

erators [10–12] and a growing suite of instruments sensitive to indirect signals of multi-TeV

dark matter [13–15], we are now forced to confront processes at energies far above the next

known mass threshold in Nature, the electroweak (EW) scale v ≈ 246GeV (the electroweak

vacuum expectation value, “VEV” in short). Consequently, we are entering a phase in parti-

cle physics where it becomes appropriate to consider electroweak parton showers, extending

the usual SU(3)QCD×U(1)EM showers into the fully SU(3)QCD×SU(2)L×U(1)Y symmetric

framework of the Standard Model (SM). In effect, we will start to see electroweak gauge

bosons, Higgs bosons, and top quarks behaving like massless partons [16, 17], appearing

both as constituents of jets [18] as well as of initial-state beam particles. This is in stark

contrast to the conventional perspective in which they are viewed as “heavy” particles that

are only produced as part of the hard interaction.

The concept of electroweak bosons as partons has a long history, beginning with the

“effective-W approximation” [19–21]. This picture of electroweak vector bosons radiating

off of initial-state quarks is now strongly supported by the experimental observation of

Higgs boson production via vector boson fusion (VBF) at the LHC [22]. As we imag-

ine probing VBF-initiated processes at even higher energies, with both the initial weak

bosons and their associated tag jets becoming significantly more collinear to the beams,

the idea of weak parton distribution functions (PDFs) within protons becomes progressively

more appropriate.

Many calculations have further revealed large negative electroweak virtual corrections

to a variety of exclusive high-energy processes, wherein real emission of additional weak

bosons is not included. Such large “non-emission” rate penalties indicate the onset of the

universal, logarithmically-enhanced Sudakov form-factors characteristic of massless gauge

theories [23, 24]. For example, exclusive di-jet production receives corrections from virtual

W/Z exchange that begin to exceed −10% for transverse momenta exceeding 3TeV [25, 26],
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and grow to approximately −30% at the 10’s of TeV energies expected at future hadron col-

liders. For processes that include weak bosons at the hard event scale, such as γ/Z/W+jets

or vector boson pair production, the corrections can quickly grow to O(1) [27–33]. A

process-independent framework for extracting all such log-enhanced electroweak virtual

corrections at fixed leading-order has been developed in [34, 35], and next-to-leading log-

arithmic resummation of the gauge corrections has been achieved using SCET formalism

in [36–40].

The total rates of realW/Z emissions and other electroweak parton splittings have a di-

rect correspondence with the “lost” event rates encoded in the negative electroweak virtual

corrections, with matching logarithmic enhancements in accordance with the Kinoshita-

Lee-Nauenberg theorem. Iterating this observation across all possible nested emissions and

loops within a given process builds up the usual parton shower picture, allowing formal

resummations of the logarithms that would otherwise still appear in well-defined exclusive

rates. Many studies have addressed aspects of electroweak parton showering in the past

several years [41–49]. Parts of the complete shower are already available in public codes and

are being tested at the LHC, with ATLAS recently making a first observation of collinear-

enhanced W/Z radiation within QCD jets [50]. A detailed listing of electroweak collinear

splitting functions and PDF evolution equations, restricted to processes that survive in the

unbroken limit, has been worked out in [43]. There, the effects of electroweak symmetry

breaking (EWSB) are addressed minimalistically by including a hard phase space cutoff

and working in a preferred isospin basis. These results and more recent SCET-based cal-

culations have also been adapted for the problem of TeV-scale dark matter annihilation

in [51–57]. For general-purpose applications, recent versions of PYTHIA incorporate radia-

tion of W and Z bosons off of light fermions [47], including a detailed model of how this

component of the shower turns off due to W/Z mass effects. A study using SHERPA [48]

instead breaks down these emissions into separate transverse (VT ) and longitudinal (VL)

components, coupling in the latter strictly using Yukawa couplings by appealing to the

Goldstone-boson Equivalence Theorem (GET) [21, 58]. The problem has been approached

in different way within ALPGEN [46, 59], by multiplying exclusive hard event rates with

the fixed-order Sudakov factors of [34, 35] and supplementing with exact fixed-order real

emission processes. This approach, which is itself a first step towards electroweak shower

matching, works well when the soft/collinear phase space enhancements are modest and the

need for added accuracy of higher-multiplicity hard event generation balances the added

computational complexity. However, a complete matching prescription will also ultimately

involve a dedicated parton shower step, especially when convolved with QCD radiation.

The simpler, process-independent parton shower approach will also become particularly

useful in new physics applications [60, 61].

1.2 Our approach

Notably, no existing general-purpose parton showering algorithm that is capable of gener-

ating fully exclusive events has addressed the full scope of universal collinear electroweak

physics. In particular, a complete treatment must include the high-rate of non-Abelian

splittings amongst the weak bosons themselves, as well as showers that involve longitu-
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dinal/scalar states and many of the sometimes subtle effects of spontaneous symmetry

breaking. The goal of the present paper is to outline such an algorithm, providing a

comprehensive framework in which all collinear electroweak showering phenomena can be

implemented, and including a systematic treatment of EWSB. Towards this end, we de-

rive and tabulate the complete set of electroweak splitting functions in the broken phase,

including the massive fermions, gauge bosons, and the Higgs boson. These generalize and

unify both the unbroken-phase evolution equations of [43] and the purely broken-phase

effects already observed within the effective-W approximation, namely the generation of

longitudinal vector boson beams from massless fermions [19–21]. We further investigate

some of the physical consequences of these various electroweak showering phenomena.

Relative to QED and QCD showers, the complete electroweak parton shower exhibits

many novel features. At the level of the unbroken theory at high energies, the shower

becomes chiral and the particle content is extended to include an EW-charged scalar dou-

blet. Most of the degrees of freedom contained in this scalar are to be identified with

the longitudinal gauge bosons via the Goldstone-boson Equivalence Theorem. Including

Yukawa couplings, the set of core splitting function topologies expands from the usual three

to seven. EWSB also already makes a subtle imprint here due to the presence of a pre-

ferred isospin basis for asymptotic states, leading to interference and self-averaging effects

between different exclusive isospin channels. The latter are intimately related to “Bloch-

Nordsieck violation” when occurring in the initial state [41, 45, 62]. As the shower evolves

down through the weak scale, it becomes physically regulated by the appearance of gauge

boson, scalar, and fermion masses. Unlike in QCD where the shower regulation occurs non-

perturbatively due to confinement, or in QED where a small photon mass is sometimes used

as an artificial regulator for soft emissions, the electroweak shower exhibits a perturbative

transition with genuinely massive gauge bosons. It is possible to describe this transition

rather accurately, but doing so requires a careful accounting of symmetry-violating effects

beyond simple kinematic suppressions, and a consistent elimination of gauge artifacts. In

particular, Goldstone-boson equivalence ceases to hold at relative transverse momenta of

order the weak scale, allowing for an additional burst of many “ultra-collinear” radiation

processes that do not exist in the unbroken theory, and are highly suppressed at energy

scales kT ≫ v. To cleanly isolate these effects, we introduce a novel gauge dubbed “Gold-

stone Equivalence Gauge” (GEG). This is a particularly convenient choice of non-covariant

gauge, allowing a completely transparent view of Goldstone-boson equivalence within the

shower, as well as systematic corrections away from it in the splitting matrix elements,

organized in a power series in VEV factors. The naively bad high energy behavior of

the longitudinal gauge bosons is deleted, and the Goldstone fields allowed to interpolate

physical states, at the cost of re-introducing explicit gauge-Goldstone boson mixing.

Our formalism developed here has deep implications and rich applications at TeV-scale

energies and beyond. Some aspects include EW parton distribution functions associated

with initial state radiation (ISR), multiple emissions in EW final state radiation (FSR),

consistent merging of EW decays with EW showering, a quantum-coherent treatment of the

Sudakov evolution of γ/Z/h states, as well as modeling of general ultra-collinear processes

including, e.g., tR → htR and h → hh. We also make some preliminary studies of the
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impact of EW showering on new physics searches in the context of a heavy W ′ decay.

Quite generally, we begin to see the emergence of the many nontrivial phenomena of “weak

jets” across a broad range of SM and BSM phenomena.

Before proceeding, we also clarify what is not covered in our current treatment. We

make exclusive use here of the collinear approximation, which, in physical gauges such as

GEG, explicitly factorizes all soft and collinear divergences particle-by-particle, isolating

them to 1 → 2 real emission diagrams and self-energy loops. This furnishes a formally

leading-log model of EW showering, capturing all double-log effects from the soft-collinear

region of gauge emissions, as well as the single-logs associated to all hard-collinear split-

tings. The former are identical to the double-logs that would be inferred from the collinear

limits of the eikonal approximation, whose particle-by-particle factorization can be seen

upon application of Ward identities [34, 35, 45]. However, there are additional single-log

soft divergences within gauge emission interferences and virtual exchanges between dif-

ferent particles, which do not factorize so simply. For non-singlet EW ensembles, these

contributions lead to global entanglements of isospin quantum numbers between different

particles in the event, which are absent in our shower. These isospin entanglements are

somewhat analogous to the global kinematic entanglements that occur due to soft gluon

emissions/exchanges at NLL level in QCD. Nonetheless, the dominant effects of isospin

rearrangements, in particular the Bloch-Nordsieck violation, arise already at the double-log

level, and are modeled by our shower up to residual single-log ambiguities. We will address

approaches to the NLL resummation of isospin entanglements in a future work [63].

The rest of the paper is organized as follows. We begin in section 2 with a generic

discussion of splitting and evolution formalism with massive particles. We then outline

some of the other nontrivial features such as PDFs for massive particles, interference be-

tween different mass eigenstates, showers interpolating onto resonances, and back-reaction

effects from multiple emissions. In section 3, we introduce the splitting kernels for the

unbroken electroweak theory, namely SU(2)L×U(1)Y gauge theory with massless fermions

in SM representations, a single (massless) scalar doublet, and Yukawa interactions. We

then proceed in section 4 to generalize these results to the broken phase. After a discussion

of the violation of the Goldstone-boson Equivalence Theorem, we introduce the Goldstone

Equivalence Gauge. We then discuss the EWSB modifications to the unbroken splitting

functions and present a complete list of ultra-collinear processes that arise at leading-order

in the VEV. Section 5 explores some key consequences of electroweak showering in final-

state and initial-state splitting processes, including a discussion of EW parton distribution

functions and multiple EW final state radiation. We emphasize the novel features of the

EW shower and illustrate some of the effects in the decay of a heavy vector boson W ′. We

summarize and conclude in section 6. Appendices give supplementary details of Goldstone

Equivalence Gauge, the corresponding Feynman rules and illustrative examples of practical

calculations, more details on the density-matrix formalism for coherent Sudakov evolution,

and a short description of our virtuality-ordered showering program used for obtaining

numerical FSR results.
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Figure 1. Schematic processes involving a collinear splitting A → B + C in either the final state

(left) or initial state (right).

2 Showering preliminaries and novel features with EWSB

We first summarize the general formalism for the splitting functions and evolution equations

with massive particles that forms the basis for the rest of the presentation. We then lay

out some other novel features due to EWSB.

2.1 Splitting formalism

Consider a generic hard process nominally containing a particle A in the final state, slightly

off-shell and subsequently splitting to B and C, as depicted in figure 1 (left figure). In the

limit where the daughters B and C are both approximately collinear to the parent particle

A, the cross section can be expressed in a factorized form [2]

dσX,BC ≃ dσX,A × dPA→B+C , (2.1)

where dP is the differential splitting function (or probability distribution) for A → B+C.

A given splitting can also act as the “hard” process for later splittings, building up jets.

The factorization of collinear splittings applies similarly for initial-state particles, leading

to the picture of parton distribution functions (PDFs) for an initial state parton B or C,

as in figure 1 (right figure),

dσAB′→CX ≃ dPA→B+C × dσBB′→X . (2.2)

We will discuss this situation in the next subsection. While our main focus here is on the

leading-log resummation of these splitting effects in a parton shower/evolution framework,

at a leading approximation eqs. (2.1) and (2.2) can also be taken as-is, with a unique

splitting in the event and no virtual/resummation effects, in order to quickly capture the

tree-level collinear behavior of high energy processes. In our further analyses, we will refer

to such a treatment as a “fixed-order EW shower” or “fixed-order EW FSR (ISR).”

Integrating out the azimuthal orientation of the B+C system, the splitting kinematics

are parametrized with two variables: a dimensionful scale (usually chosen to be approxi-

mately collinear boost-invariant) and a dimensionless energy-sharing variable z. Common

choices for the dimensionful variable are the daughter transverse momentum kT relative

to the splitting axis, the virtuality Q of the off-shell particle in the process, and variations
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proportional to the daughters’ energy-weighted opening angle θEA. Our descriptions here

will mainly use kT , as this makes more obvious the collinear phase space effects in the pres-

ence of masses. For our numerical results in section 5, we switch to virtuality, which allows

for a simpler matching onto W/Z/t decays. Mapping between any of these different scale

choices is however straightforward. The energy-sharing variable z (z̄ ≡ 1− z) is commonly

taken to be the energy fraction of A taken up by B (C). The splitting kinematics takes

the form

EB ≈ zEA, EC ≈ z̄EA, kT ≈ zz̄EAθ . (2.3)

When considering splittings involving massive or highly off-shell particles, various possible

definitions of z exist which exhibit different non-relativistic limits. Besides strict energy

fraction, a common choice is the light-cone momentum fraction, z ≡ (EB +~kB · k̂A)/(EA+

|~kA|). Our specific implementation in section 5 uses the three-momentum fraction

z ≡ |~kB|
|~kB|+ |~kC |

, (2.4)

which makes phase space suppression in the non-relativistic limit more transparent. How-

ever, in the relativistic regime, where the collinear factorization is strictly valid, all of these

definitions are equivalent, and we do not presently make a further distinction.1

In the simplest cases, generalizing the collinear splitting function calculations to ac-

count for masses is straightforward. Up to the non-universal and convention-dependent

factors that come into play in the non-relativistic/non-collinear limits, the splitting func-

tions can be expressed as

dPA→B+C

dz dk2T
≃ 1

16π2

zz̄ |M(split)|2
(k2T + z̄m2

B + zm2
C − zz̄m2

A)
2
. (2.5)

Here, M(split) is the A → B + C splitting matrix-element, which can be computed from

the corresponding amputated 1 → 2 Feynman diagrams with on-shell polarization vectors

(modulo gauge ambiguities, which we discuss later). This may or may not be spin-averaged,

depending on how much information is to be kept in the shower. Depending upon the

kinematics, the mass-dependent factors in the denominator act to either effectively cut

off collinear divergences at small kT or, in final-state showers, to possibly transition the

system into a resonance region. In cases where interference between different mass eigen-

states can be important, this basic framework must be further generalized. Resonance and

interference effects are introduced in section 2.3.

On dimensional grounds, |M(split)|2 goes like either k2T or some combination of the

various m2’s. Conventional splitting functions typically scale like dk2T /k
2
T , which is exhib-

ited by all of the gauge and Yukawa splittings of the massless unbroken electroweak theory,

1There is unavoidably some frame-dependence to this setup, as there is in all parton showers that

are defined strictly using collinear approximations. A more complete treatment would exhibit manifest

Lorentz-invariance and control of the low-momentum region, at the expense of more complicated book-

keeping of the global event’s kinematic and isospin structure, by using superpositions of different 2 → 3

dipole splittings. Extending our treatment in this manner is in principle straightforward, but beyond the

scope of the present work.
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as to be shown in section 3. There can also be mass-dependent splitting matrix elements

that lead to m2dk2T /k
4
T type scaling. These splittings are highly suppressed for kT & m.

However, they are much more strongly power-enhanced at low kT , a behavior which we

call ultra-collinear. Upon integration over kT , the total rate for an ultra-collinear splitting

comes out proportional to dimensionless combinations of couplings and masses, with the

vast majority of the rate concentrated near kT ∼ m. Such processes exist in familiar con-

texts like QED and QCD with massive fermions, for example the helicity-flipping splittings

eL → γeR and g → bLb̄L. They are usually not treated as distinct collinear physics with

their own universal splitting functions, though they are crucial for systematically modeling

shower thresholds. We choose to treat them on independent footing, since the thresh-

old behaviors of the electroweak shower are highly nontrivial, including processes that are

qualitatively different from the massless limit.

In both the conventional collinear and ultra-collinear cases, the remaining z dependence

after integrating over kT can be either dz/z or dz×(regular). The former yields additional

soft logarithms (again, formally regulated by the particle masses), and appears only in

splittings where B or C is a gauge boson.

2.2 Evolution equations

When applied to the initial state, the splitting functions outlined in the previous section

lead to both initial state radiation (ISR) as well as the dynamical generation of B and C

parton distribution functions from a parent A. Considering a generic parton distribution

function fi(z, µ
2) with a factorization scale µ in kT -space, the leading-order convolution

relation is

fB(z, µ
2) = fB(z, µ

2
0) +

∑

A

∫ 1

z

dξ

ξ
fA(ξ, µ

2
0)

∫ µ2

µ2
0

dk2T
dPA→B+C(z/ξ, k

2
T )

dz dk2T
, (2.6)

where µ0 is an input factorization scale. Differentiating with respect to µ2 and incorpo-

rating as well the evolution of the fA leads to the celebrated Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) equation [64–66].

∂fB(z, µ
2)

∂µ2
=

∑

A

∫ 1

z

dξ

ξ

dPA→B+C(z/ξ, µ
2)

dz dk2T
fA(ξ, µ

2) . (2.7)

Gauge theories such as QED and QCD predict that at high energies the splitting functions

dP/dk2T go like 1/k2T , and thus that the PDFs evolve like ln(Q2/µ2). This is the classic

violation of the Bjorken scaling law [67]. In the broken electroweak theory, there are also the

qualitatively different ultra-collinear splitting functions, which instead go as m2/k4T . The

PDFs arising from these splittings “live” only at the scale kT ∼ m. Instead of evolving

logarithmically, they are cut off by a strong power-law suppression at kT & m. The

corresponding PDFs preserve Bjorken scaling, up to contributions beyond leading order.

In particular, longitudinal weak boson PDFs are practically entirely determined at splitting

scales of O(mW ), even when used as inputs into processes at energies E ≫ mW .2

2This observation persists even in the presence of QCD corrections. We can imagine that a quark

is first evolved to large kT (and hence large space-like virtuality Q) from multiple gluon emissions, and
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Numerical computation of electroweak PDFs with a proper scale evolution do not exist

yet in the literature, though the complete unbroken-theory evolution equations appear

in [43], and fixed-order results are straightforward to obtain with the simple convolution

in eq. (2.6). In the resummed treatment, contributions from the region kT ∼ mW can

perhaps most simply be incorporated as perturbative “threshold” effects, essentially adding

in their integrated fixed-order contributions up to some scale (a few)×mW as δ-functions

in kT -space. These would include the finite, mass-suppressed contributions from the turn-

on of f → WT f splittings, as well as the entire ultra-collinear f → WLf contribution.

Equivalently at leading-order, they may instead be folded continuously into the DGLAP

evolution using the massive splitting functions defined as in eq. (2.5). This latter approach

may also be simpler when alternative scaling variables are used, such as virtuality.

The other qualitatively new electroweak effects in the PDFs concern the treatment of

weak isospin. First, the chiral nature of the EW gauge interactions leads to more rapid evo-

lution toward low-x for left-handed fermions than for right-handed fermions. Furthermore,

the isospin non-singlet nature of typical beam particles yields an additional interesting sub-

tlety. In QED and color-averaged QCD evolution, the soft-singular limits of, e.g., q → gq at

a given scale become indistinguishable from q → q with no splitting. Indeed, this allows for

the balancing of real and virtual IR divergences as z is formally taken to zero at fixed kT ,

conventionally encoded in the plus-prescription. However, following this prescription for

the electroweak evolution of fermion PDFs at kT ≫ mW leads to unregulated divergences

in isospin-flipping transitions, such as uL ↔ dL via arbitrarily soft W± emission. This is

a manifestation of the so-called Bloch-Nordsieck violation effect [41, 45, 62]. Regulation

and resummation of this effect requires the introduction of some form of explicit cutoff

z & kT /E in the evolution equations when formulated in (kT , z) space, in order to avoid

non-collinear emission regions [43].3 The net effect is a gradual, controlled merging of the

uL and dL PDFs (or eL and νL PDFs in the case of electron beams) into a common “qL”

(“ℓL”) PDF. Unlike conventional PDF evolution, implementing the z cutoff in this way ne-

cessitates extending the arguments of the PDFs to explicitly include the (CM-frame) beam

energy. While this is not a major complication, we do point out that different choices of

scaling variables may yield the same non-collinear regulation without requiring the extra

energy argument. A particularly simple choice would be the energy-weighted angle θEA.

We defer a detailed study of these issues to future work [63].

We caution that this treatment of the initial state using PDFs remains strictly valid

only within the leading-log, collinear approximation. Soft W± virtual exchanges between

the isospin non-singlet beams will induce single-log entanglements that do not factorize

between the individual beams, and even more complicated entanglements emerge when

then splits into an on-shell quark and space-like longitudinal vector boson. The former emerges as an ISR

jet and the latter participates in a hard interaction. We would find (e.g., using Goldstone Equivalence

Gauge, introduced in section 4.1) that the collinear-enhanced piece of the scattering amplitude carries a net

suppression factor of O(m2/Q2), which cannot be compensated by integration over the collinear emission

phase space.
3In QED and QCD, these non-collinear emissions are implicitly and “incorrectly” integrated over in the

plus-prescription. However, in the limit E ≫ kT , the numerical impact of doing so is of sub-leading impor-

tance.
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we also consider isospin-exclusive final states. The proper generalization for the initial

state is from running PDFs to running quantum-ensemble parton luminosities defined for

pairs of beams. But it is also possible to define a scheme where these beam-entanglement

effects are selectively treated at fixed-order, and PDF resummation still suffices [63]. (The

entanglement effects actually wash out as the scale is raised and the isospin ensembles

become incoherent.) However, these PDFs will still likely reference the global beam setup

via the aforementioned non-collinear cutoff.

Even applying the conventional factorization at leading-log, some of the PDFs must

also still be treated as matrices [43]. This is particularly relevant for the photon and trans-

verse Z-boson PDFs, which develop sizable off-diagonal contributions. Indeed, the naive

concept of independent “photon PDF” and “Z PDF” at kT ≫ mZ is necessarily miss-

ing important physics, as γ and Z are not gauge eigenstates. We outline the appropriate

treatment in section 2.3.2 and appendix C.

The same splitting functions that govern ISR and PDF generation also serve as the

evolution kernels for final-state radiation (FSR). This integrates to the well-known Sudakov

form factor ∆A(t) characterizing the possible time-like branchings of parent A at scales

below t ∼ log(kT ) or log(Q)

∆A(t) = exp

[

−
∑

BC

∫ t

t0

dt′
∫

dz
dPA→B+C(z, t

′)

dz dt

]

, (2.8)

where the allowed z range is determined by kinematics. Practically, we perform the evo-

lution starting at a high kT or virtuality scale characterized by the CM-frame energy of

the hard partonic process, and running continuously down through the weak scale with the

proper mass effects. The Sudakov factor, evaluated in small t steps, functions as a survival

probability for A, upon which the usual Markov chain monte carlo is constructed. (See,

e.g., [68].) If A does not survive at some step, it is split into a state B +C. This splitting

acts as the “hard” process that produced particles B and C, and Sudakov evolution is

continued on each of those particles. The “resolution” scale t0 can be any scale well below

mW , at which conventional QED and QCD showers can take over. Of course, the basic

framework leaves many details unspecified, and allows for a great deal of freedom in spe-

cific implementation. For example, besides the choice of evolution variable, one must also

specify a treatment of kinematic reshuffling. We elaborate on some additional aspects of

our own implementation of final-state showers below and in appendix D. We will generally

refer this treatment of Sudakov formalism as the “full EW shower” or “full EW FSR”, in

contrast to the fixed-order splitting calculations in eqs. (2.1) and (2.2).

2.3 Other novel features in EW showering

There are several additional novel features in EW showering beyond those encountered in

the standard formalism. We outline a few relevant to our later discussions and also propose

concrete schemes for their implementations.
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2.3.1 Mass effects

Besides the basic kinematic modifications and the emergence ultra-collinear splitting phe-

nomena, the existence of a mass scale mW,Z ∼ gv and mf ∼ yfv requires some special

treatments as we approach kinematic thresholds and the boundaries of turnoff regions.

An immediate complication is that final-state weak showering smoothly connects onto

the on-shell weak decays of top quarks, W/Z bosons, and (to a much lesser extent) Higgs

bosons. The shower describes the highly off-shell behavior of these particles, including

resummed logarithmically-enhanced effects. But the effect of the pole is nonetheless visible,

encoded in the last term in the denominator of eq. (2.5). Within the resonance region, the

dominant behavior is more correctly captured by the standard Breit-Wigner line-shape

governed by the physical width Γ, which involves a very different kind of resummation.

However, a few Γ above the peak, both descriptions can be expanded perturbatively and

yield numerically similar predictions.4 It is therefore straightforward to define a well-

behaved matching prescription. This is easiest to formulate within a virtuality-ordered

shower: Halt the shower at some matching scale Qmatch = m+(a few)Γ, and if the state

has survived to this point, distribute its final mass according to a Breit-Wigner resonance

below Qmatch. The exact choice of matching scale here is not crucial, as long as it is within

the region where the Breit-Wigner and shower predictions are comparable. For other

shower ordering variables, such as kT , we can instead run the shower down to its nominal

kinematic limit, but not integrating z within the region that would yield Q < Qmatch. In

either case, the parton shower may be restarted on the resonance’s decay products.

Another place where mass effects can become important is in multiple emissions. In

massless showers, sequential splittings are dominantly very strongly-ordered in scale, and

as a consequence a given splitting rate can be computed without regard to the subsequent

splittings while still capturing the leading behavior. However, in showers with massive

particles, a large fraction of the available phase space for secondary splittings may require

nontrivial kinematic rearrangements within the preceding splittings. For example, a W

boson might nominally be produced with a kinematic mass mW via emission off of a

fermion. If the W subsequently splits into a W and a Z boson at a virtuality Q ≫
mW , there is a chance that the off-shell W now sits near a suppressed region (i.e., dead

cone) for emission off of the mother fermion. In order to avoid badly mis-modeling such

cases, secondary splittings can be weighted according to the relative rate modification

that would be incurred on the previous splitting. This back-reaction factor depends in

detail on how kinematic arrangements are done in the shower. Generally, a given (z,Q) or

(z, kT ) parametrizing the mother splitting will be mapped onto a new (z∗, Q∗) or (z∗, k∗T )

for producing the off-shell daughter. The required back-reaction factor is the ratio of the

new differential splitting function to the original one, multiplied by the Jacobian for the

change of variables. For a final-state shower sequence A∗ → B∗C → (DE)C, for the nested

splitting we can use a splitting function multiplied by the back-reaction factor:

dP(B∗ → DE)

dzDE dk2T,DE

×
(

dP(A∗ → B∗C)/dz∗dk2∗T
dP(A∗ → BC)/dz dk2T

·
∣

∣

∣

∣

det

[

dz∗dk2∗T
dz dk2T

]∣

∣

∣

∣

)

. (2.9)

4The agreement is further improved if Γ is generalized to Γ(Q). E.g., ΓZ → ΓZ(Q) ≃ (Q/mZ)ΓZ .

– 10 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
3

The simplest implementation would compute this factor independently for each daughter

branch, assuming an on-shell sister and neglecting possible correlations in the potentially

fully off-shell final configuration A∗ → B∗C∗. But a more thoroughly correlated weight-

ing scheme could be pursued if deemed numerically relevant. The above prescription also

generalizes beyond massive showers, wherein it has a sizable overlap with the effects of

standard angular vetoing. We further show below how back-reaction factors can be con-

veniently applied for a complete treatment of mixed neutral bosons, wherein an “on-shell”

kinematic mass is not necessarily determined at their production.

The above back-reaction effects can be particularly important for ultra-collinear emis-

sions, as these occur almost exclusively at the boundaries delineated by finite-mass ef-

fects. For example, the prototypical ultra-collinear emission is f → WLf
′ with massless

fermions [19–21]. It proceeds only via a delicate balancing between a suppression factor

m2
W /E2 in the squared splitting matrix element and a strong 1/k4T power enhancement

from the fermion propagator that gets cut off at kT ∼ mW , controlled by the form of the

denominator in eq. (2.5). Within a final-state shower, if either the WL or its sister f ′ is set

far off-shell by a secondary splitting at some scale Q (possibly a QCD splitting), that cut-

off moves out to kT ∼ Q but the original production matrix element stays approximately

the same, and the total rate picks up an additional relative power suppression factor of

O(m2
W /Q2).5 Roughly speaking, ultra-collinear processes can only occur near the “end”

of the weak parton shower as it passes through the weak scale, or conversely near the “be-

ginning” of weak PDF evolution. Such a feature is essentially built-into kT -ordered parton

evolution. The back-reaction correction ensures that it is also enforced in showers built on

other ordering variables, such as virtuality, while still allowing further low-scale showering

such as q → gq and WL → γWL.

2.3.2 Mixed-state evolution

Thus far, the shower formalism that we have presented neglects the possibility of inter-

ference between different off-shell intermediate particle states contributing to a specific

splitting topology. Traditionally in QED and QCD showers, such interference leads to sub-

leading effects associated with the unmeasured spin and color of intermediate particles [69].

However, the full electroweak theory at high energies presents us with cases where different

mass and gauge eigenstates can also interfere at O(1) level, most notably the neutral bo-

son admixtures γ/ZT and h/ZL [43]. All other particles in the SM carry (approximately)

conserved charge or flavor quantum numbers that can flow out into the asymptotic state,

and therefore they do not tend to interfere in this manner. Interferences originating from

CKM/PMNS flavor violations should be small and difficult to observe, and we neglect them

for simplicity.

5When the WL is off-shell, we would naively compensate by using an off-shell gauge polarization, yielding

Q2/E2 instead of m2
W /E2. However, the appropriate treatment, discussed in more detail in appendices A

and B, uses on-shell polarization factors throughout. Additional non-collinear corrections might still be

present, but are more appropriately viewed as contributions to 1 → 3 splittings. New soft logarithms might

also arise in these processes, but new collinear logs will not.
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Showering involving superpositions of different particle species can be described using

density matrix formalism. Let us consider the simpler case of final-state showers for illus-

tration. The initial value of the density matrix is set proportional to the outer product

of production amplitudes: ρij ∝ M(prod)∗
i M(prod)

j , tracing out over other details of the

rest of the event.6 Here, the indices run over the particle species. The probability for

an initial mixed quantum state to subsequently split into a specific exclusive final state

must be computed by generalizing the splitting functions to Hermitian splitting matrices

dPij . The exclusive splitting rates are then computed by tracing against the normalized

density matrix,7

dP =
ρij dPji

tr[ρ]
. (2.10)

Representing the propagator matrix as Dij , and the amputated splitting amplitudes as

M(split)
i , this modifies eq. (2.5) to the more complete, yet more complicated form

[

dPA→B+C

dz dk2T

]

ij

≃ 1

16π2

1

zz̄
M(split)∗

k D∗
kiDjlM(split)

l . (2.11)

Note that large interference effects can persist even in the massless limit with unmixed

propagators. A full treatment, including the Sudakov evolution for ρij and the explicit

form of the propagators for γ/ZT and h/ZL systems, is given in appendix C.

Handling the kinematics and decays of mixed states requires some additional steps.

“On-shell” kinematics cannot be defined a priori, and we cannot collapse onto mass eigen-

states or a showered final-state with well-defined mass until the coherent Sudakov evolution

has run its course. A simple prescription is to first produce a mixed boson with its min-

imum possible kinematic mass (zero for γ/ZT , mZ for h/ZL) in order to fully fill out

the phase space. Splittings that occur before reaching the resonance are weighted by a

back-reaction factor as per eq. (2.9). If the state survives un-split down to the heavier

resonance’s matching threshold, we can decide to project onto a specific mass eigenstate

according to the relative probabilities encoded in the surviving density matrix. The back-

reaction factor may once again be employed here, implemented as a veto probability for the

heavier resonance. (The factor will typically come out less than one for a sensibly-defined

change of variables.) If the veto is thrown, the splitting that produced the mixed state is

undone, and its mother’s evolution continued. This prescription especially becomes rele-

vant when evolving near kinematic thresholds or suppressed regions, for example where Z

boson emission would be suppressed but photon emission allowed.

For the mixed γ/ZT system, if a photon is projected out, we can restart a pure QED

parton shower (γ → ff̄) with virtuality constrained below the Z boson’s Qmatch scale

at ≈ 100GeV. Interference effects below the matching scale can also be incorporated by

coherently adding both the γ and Z contributions within the Z resonance region. This

6This treatment does not attempt to address quantum correlations between different branches of an

event or shower.
7In more complete generality, a mixed state can split into another mixed state, leading to an enlarged

set of indices for the splitting matrices. However, in most cases, the final-state density matrices are fully

determined by the initial-state density matrices, such that in practice a single pair of indices suffices.
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requires delineating as well a lower virtuality boundary, ideally at a scale O(1) smaller than

mZ . Depending on the integrated probability in this region (modulo the back-reaction

veto), we would either create an ff̄ state with an appropriately-distributed mass, or again

set the state to a photon and continue running a pure QED shower, now constrained below

the Z resonance region.

We also comment that a fully consistent treatment here would require minor changes

to the standard output formats of hard event generators. The standard practice of immedi-

ately collapsing onto mass eigenstates is equivalent to assuming trivial Sudakov evolution,

and cannot formally be inverted such that a proper coherent parton shower can be applied.

In particular, only one specific linear combination of γ/ZT states participates in the high-

rate non-Abelian splittings to W±
T W∓

T . While collapsing onto mass eigenstates is required

to obtain well-defined hard event kinematics, a simple remedy here would be to supply

for these particles their production density matrices, using some appropriately-mapped

massless kinematics.

3 Splitting functions in unbroken SU(2)L × U(1)Y

Before working out the complete set of electroweak splitting functions in the broken phase,

it is important to first consider a conceptual limit with an unbroken SU(2)L × U(1)Y
gauge symmetry with massless gauge bosons and fermions, supplemented by a massless

complex scalar doublet field H without a VEV. This last ingredient is the would-be Higgs

doublet. This simplified treatment in the unbroken phase is not only useful to develop some

intuition, but also captures the leading high-kT collinear splitting behavior of the broken

SM electroweak sector. Some aspects of electroweak collinear splitting and evolution at

this level have been discussed, e.g., in [43].

Anticipating electroweak symmetry breaking, we adopt the electric charge basis in

weak isospin space. The corresponding SU(2)L bosons are W± and W 0, and the hyper-

charge gauge boson we denote as B0. Gauge boson helicities are purely transverse (T ),

and are averaged.8 For the scalar doublet, we decompose as

H =

(

H+

H0

)

=

(

φ+

1√
2
(h− iφ0)

)

, (3.1)

where φ±, φ0 will later become the electroweak Goldstone bosons and h the Higgs boson.

However, at this stage, we will keep the neutral bosons h and φ0 bundled into the complex

scalar field H0, as they are produced and showered together coherently. In the absence of

the VEV, the doublet carries a perturbatively-conserved “Higgs number,” which may also

be taken to flow through RH-chiral fermions in the Yukawa interactions.9 We denote a

8While the gauge helicity averaging is not strictly necessary, especially given that we will later make

a distinction between transverse and longitudinal polarizations, it does simplify our presentation. We

also do not incorporate azimuthal interference effects, though this would be straightforward in analogy

with QCD [5].
9We have expanded the neutral scalar field as H0 ∝ h − iφ0, adopting a phase convention such that h

and φ0 fields create/annihilate their respective one-particle states with trivial phases, and H0 annihilates
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generic fermion of a given helicity by fs with s = L,R (or equivalently s = ∓). We do not

always specify the explicit isospin components of f at this stage, but implicitly work in the

usual (u, d)/(ν, e) basis. Isospin-flips (including RH-chiral isospin where appropriate) will

be indicated by a prime, e.g. u′ = d. Effects of flavor mixing are ignored.

The U(1)Y and SU(2)L gauge couplings are respectively taken to be g1 ≈ 0.36 and

g2 ≈ 0.65 (here evaluated near the weak scale, though in general run to a scale of O(kT )).

For compactness we often represent a generic gauge coupling by gV . We represent the

gauge charge Q of a particle p coupling to gauge boson V by QV
p , and we give the complete

list of the gauge charges for the SM fermions and scalars in table 8 in appendix B.1.

The splitting functions that involve only fermions and gauge bosons closely follow

those of QED and QCD. Fermions with appropriate quantum numbers may emit trans-

verse SU(2)L and U(1)Y gauge bosons with both soft and collinear enhancements, yielding

total rates that grow double-logarithmically with energy. At this stage, fermion helicity

coincides with the corresponding chirality, and is strictly conserved in these processes.

The SU(2)L bosons also couple to one another via their non-Abelian gauge interactions,

and similarly undergo double-logarithmic soft and collinear splittings W 0 → W+W− and

W± → W±W 0. This is in direct analogy to g → gg in QCD, except that here we do not

sum/average over gauge indices. All of the electroweak gauge bosons may also undergo

single-log collinear splittings into fermion pairs, similar to g → qq̄ or γ → ff̄ .

The results can be cast into a familiar form. We write the probability function of

finding a parton B inside a parton A with an energy or momentum fraction z in terms of

the collinear splitting kernels for A → B as PBA(z). Stripping the common g2/8π2 and

1/k2T factors, as well as group theory factors that depend on the gauge representations

(hyper-charges or SU(2)L quadratic Casimirs and Dynkin indices), we are left with

PV f (z) =
1 + z̄2

z
, PV ′V (z) =

(1− zz̄)2

zz̄
, PfV (z) =

z2 + z̄2

2
, (3.2)

with z̄ ≡ 1 − z. Note that the other possible splitting f → f (′)V is given by Pf (′)f (z) =

(1 + z2)/z̄, but it is not independent and can be derived from PV f with z ↔ z̄. The factor

of 1/2 in PfV , relative to the standard form in QED with the electric charge stripped (or

in QCD with the SU(3) Dynkin index stripped), is due to the fact that we treat each chiral

fermion individually.

Interference between different gauge groups is a subtlety that is absent in the color-

averaged SU(3)QCD × U(1)EM shower, and arises here from the fact that we have fixed a

preferred gauge basis for asymptotic states instead of summing over gauge indices. Within

different exclusive isospin channels in this basis, exchanges of B0 and W 0 can exhibit

O(1) interference, and thus must be described using density matrices, which have briefly

the one-particle state |H0〉 ∝ |h〉 + i|φ0〉. Treating h and φ0 as independent showering particles would be

analogous to adopting a Majorana basis instead of a Dirac basis for the fermions in QED or QCD. An

incoherent parton shower set up in such a basis would not properly model the flow of fermion number and

electric charge. Analogously, H0 and H0∗ particles carry well-defined Higgs number that we choose to

explicitly track through the shower. This leads to correlations between spins and electric charges within

asymptotic states.
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been discussed in section 2.3.2. In a truly massless theory, the physical preparation and

identification of states in any preferred weak isospin basis is actually impossible, since

arbitrarily softW± can be radiated copiously at no energy cost and randomize the isospin.10

Our preferred basis here only becomes physical once we turn on the electroweak VEV and

cut off the IR divergences. But the tendency for states to self-average in isospin space will

persist at high energies.

Beyond these, the major change is the introduction of the scalar doublet.11 First,

the scalars may themselves radiate SU(2)L and U(1)Y gauge bosons. The soft-collinear

behavior is identical to their fermionic counterparts, but the hard-collinear behavior is

different. Second, the electroweak gauge bosons can split into a pair of scalars, again in

close analog with splittings to fermion pairs. Third, fermions with appreciable Yukawa

couplings to the scalar doublet can emit a scalar and undergo a helicity flip. Finally, the

scalars can split into a pair of collinear, opposite-chirality (same-helicity) fermions. The

corresponding splitting function kernels are found to be

PHf (z) =
z

2
, PHV (z) = zz̄, PV H(z) =

2z̄

z
, PfH(z) =

1

2
. (3.3)

The other possible splittings H → H(′)V and fs → f
(′)
-s H are given by PH(′)H(z) = 2z/z̄

and P
f
(′)
-s fs

(z) = z̄/2, derived from PV H and PHf , respectively.
12 The splittings W 0/B0 →

H0H0(∗) can also be conveniently represented by the final-state hφ0, in what will ultimately

become hZL in mass/CP basis. Here the final-state bosons are entangled, but the effects of

that entanglement are subtle and only become relevant if both bosons undergo secondary

splittings and/or hard interactions. In practice, we will simply take the expedient of

collapsing the final state to hφ0.

The complete set of splitting functions is summarized in tables 1 through 3. The

tables are organized according to the spin of the incoming particles: polarized fermions

with helicity s, transverse gauge bosons (VT ), and scalars. Each table is further subdivided

according to the spins of outgoing particles, all together corresponding to seven unique

core splitting functions. The various table entries associated to a specific set of incoming

and outgoing spins provide the remaining coupling and group theory factors. All of the

splitting functions have a conventional collinear logarithmic enhancement dk2T /k
2
T , and

those involving emission of a massless gauge boson have an additional soft logarithmic

enhancement dz/z. (The latter are the only emissions that preserve the leading particle’s

helicity in the soft emission limit.) To represent the off-diagonal terms for the neutral

gauge bosons (either in production or splitting, where appropriate), we use the symbol

10Absent the quark chiral condensate at O(100MeV), massless SU(2)L would also technically confine in

the IR, so that asymptotic states would anyway be isospin-singlet bound states, making the situation even

more analogous to QCD.
11We neglect all 1 → 3 splittings coming from either the scalar quartic or the scalar-gauge 4-point. These

may feature single-logarithmic collinear divergences, but are expected to be rather highly numerically

suppressed due to an additional O(1/16π2) phase space factor.
12Note that transitions involving the scalars must conserve the Higgs number introduced earlier in this

section. For example, we may have H0 → W−φ+, but not H0 → W+φ−. Similarly, H0 → tR t̄R is allowed

but H0 → tLt̄L is not.
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⇐ ⇐ ⇐ ⇒

1

8π2

1

k2T

(

1 + z̄2

z

)

1

8π2

1

k2T

(z

2

)

→ VT f
(′)
s [BW ]0T fs H0(∗) f-s or φ± f ′

-s

fs=L,R g2V (Q
V
fs
)2 g1g2YfsT

3
fs

y2
f
(′)
R

Table 1. Chiral fermion splitting functions dP/dz dk2T in the massless limit, with z (z̄ ≡ 1 − z)

labeling the energy fraction of the first (second) produced particle. The fermion helicity is labelled

by s. Double-arrows in Feynman diagrams indicate example fermion helicity directions. Prime

indicates isospin partner (u′
s = ds, etc, independent of s). Yukawa couplings are labelled by the

participating RH-helicity fermion. The state H0∗ is the “anti-H0”, produced when the RH fermion

is down-type and in the initial-state, or up-type in the final-state. Processes with B0 and W 0

implicitly represent the respective diagonal terms in the neutral gauge boson’s density matrix,

whereas [BW ]0 indicates either of the off-diagonal terms (see text). Anti-fermion splittings are

obtained by CP conjugation. The conventions for the couplings are given in B.1.

⇐

⇒

1

8π2

1

k2T

(

(1− zz̄)2

zz̄

)

1

8π2

1

k2T

(

z2 + z̄2

2

)

1

8π2

1

k2T
(zz̄)

→ WT WT fs f̄
(′)
-s φ+ φ− or H0 H0∗ φ+ H0∗ or φ− H0

VT 2g22 (V=W 0,±) Nfg
2
V (Q

V
fs
)2 1

4g
2
V

1
2g

2
2

[BW ]0T 0 Nfg1g2YfsT
3
fs

1
2g1g2T

3
φ+,H0 0

Table 2. Transverse vector boson splitting functions dP/dz dk2T in the massless limit, where

allowed by electric charge flow. Nf is a color multiplicity factor (Nf = 1 for leptons, Nf = 3 for

quarks). Other conventions as in table 1.

⇐

⇐

1

8π2

1

k2T

(

2z̄

z

)

1

8π2

1

k2T

(

1

2

)

→ V 0
T H [BW ]0T H W±

T H ′ uR ū
(′)
R d̄L d

(′)
L

or ēL e
(′)
L

H = φ+, H0 1
4g

2
V

1
2g1g2T

3
φ+,H0

1
2g

2
2 3y2u Nd,ey

2
d,e

Table 3. Scalar splitting functions dP/dz dk2T in the massless limit via gauge couplings and

Yukawa couplings. The symbol H in the column headings represents the appropriate state φ+, H0

for the given splitting, and H ′ represents the SU(2)L isospin partner (e.g., H0′ = φ+). Anti-particle

splittings are obtained by CP conjugation. Other conventions as in tables 1 and 2.
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Figure 2. Fixed-order differential emission rate for W± bosons off a massless fermion at Ef =

10TeV: (a) kT distribution at z = 0.2, (b) z distribution at kT = mW /2. The different curves

correspond to massless transversely-polarized W±

T (dotted curves), massive transversely-polarized

W±

T (solid curves), and massive longitudinally-polarized W±

L (dashed curves).

[BW ]0. Otherwise, processes involving B0 or W 0 alone implicitly represent the respective

diagonal term in the density matrix.

4 Splitting functions in spontaneously broken SU(2)L × U(1)Y

While the parton shower formalism of the electroweak theory in the symmetric phase has

much in common with that of SU(3)QCD × U(1)EM, care needs to be taken when dealing

with the broken phase and systematically accounting for the effects of the VEV (v). In a

sense, we must extract the “higher-twist” effects of the broken electroweak theory in terms

of powers of v/E. Although the regulating role of v in the shower is somewhat analogous

to that of ΛQCD, the electroweak theory remains perturbative at v, and the unbroken

QED shower continues into the deep infrared regime. The interplay between gauge and

Goldstone degrees of freedom within the shower can also seem obscure, both technically

and conceptually.

Most immediately, the splitting functions of the unbroken theory, already detailed in

section 3, must be adjusted to account for the physical masses of the gauge bosons, Higgs

boson, and top quark. To large extent, these constitute simple modifications, folding in

the kinematic effects discussed in section 2. As a straightforward example, in figure 2

we illustrate the fixed-order emission rate for W± bosons off a massless fermion at Ef =

10TeV. Both the collinear and soft singularities of the massless theory (dotted curves)

become regulated with mW ≈ 80GeV (solid curves), as seen in the transversely-polarized
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boson kT distribution in figure 2(a) and the z distribution in figure 2(b).13 Indeed, giving

the gauge bosons a mass is a common trick for regulating QCD and QED calculations. In

the electroweak theory, such regulated splitting functions become physically meaningful.

Figure 2 also shows a contribution from longitudinal gauge boson radiation off of a

massless fermion (dashed curves). This is a good example of an “ultra-collinear” pro-

cess which emerges after EWSB at leading power in v/E. In this case it has a splitting

probability of the form

dP ∼ m2
W

k2T

dk2T
k2T

. (4.1)

The rate is seen to be significant in the region kT ∼ mW , and it can be larger than

the conventional transverse emissions in the ultra-collinear region kT . mW as seen in

figure 2(a). We further show in figure 2(b) the z distribution at kT = mW /2, where we

can see the dominance of the longitudinal polarization (dashed curve) over the transverse

polarization (solid curve) for all values of z at weak-scale values of kT . Here we have

defined z as three-momentum fraction, employed a strict kinematic cut-off z > kT /E,

and multiplied the splitting rate by the W velocity to account for non-relativistic phase

space suppression.

Considering emissions from light initial-state fermions, the ultra-collinear origins of

these longitudinal weak bosons leads to quite distinctive PDFs [19–21]. Due to the existence

of an explicit mass scale mW ∼ gv, the resulting PDFs exhibit Bjorken scaling [67]. In

other words, they do not run logarithmically and do not exhibit the usual scaling violations

of conventional PDFs in massless gauge theories. Consequently, the ISR jets associated

with their generation are constrained to the region kT ∼ mW even for arbitrarily-energetic

hard processes. This observation has led to the concepts of “forward-jet tagging” [70–72]

for the WLWL scattering signal and “central-jet vetoing” [73] for separating the f →
WT f

′ backgrounds.

Such processes have no analogs in the unbroken theory. A naive application of the

Goldstone-boson Equivalence Theorem (GET) [21, 58] would have instructed us to identify

longitudinal vector bosons with the eaten scalars from the Higgs doublet, and would have

predicted zero rate because massless fermions have vanishing Yukawa couplings. More

generally, we expect to see a variety of large effects of EWSB at kT ∼ v, beyond simple

regulation of the unbroken-theory splitting functions. These will involve not only the

broken-phase masses of the SM particles, but also broken-phase interactions such as scalar-

vector-vector and the scalar cubics.

The more general role of Goldstone boson equivalence and its violations within the

parton shower are rather subtle. We expect that the high-kT showering of longitudinal

gauge bosons should closely follow the behavior of the scalars in the unbroken theory. But

even this simple identification is obscured by longitudinal polarizations that diverge with

energy and by the gauge/Goldstone boson propagators with gauge-dependent tensor and

13Note that in the region z . mW /E, theW s are non-relativistic, and collinear splitting function language

ceases to be strictly appropriate or reliable. This region could more rigorously be matched onto universal

soft Eikonal factors, e.g. as in [34, 35]. But in practice, our treatment here still yields approximately correct

rates for splitting angles . 1 when the splitting is defined in the hard scatter frame.
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pole structure. For processes with multiple emissions, as well as with the introduction of

the novel ultra-collinear emissions, complete isolation and removal of non-collinear gauge

artifacts can appear rather complicated. We are thus compelled to seek out a more efficient

treatment, such that the bad high energy behavior of the longitudinal gauge bosons is

alleviated and the key features of EWSB are made more transparent.

4.1 Longitudinal gauge bosons and Goldstone boson equivalence

The standard form for the polarization vector of an on-shell longitudinal gauge boson W

with a four-momentum kµW = EW (1, βW k̂W ) is

ǫµL(W ) =
EW

mW

(

βW , k̂W

)

=
kµW
mW

− mW

EW (1 + βW )
nµ, (4.2)

where we define the light-like four-vector

nµ ≡ (1,−k̂W ) . (4.3)

The second term in eq. (4.2) is of the order mW /EW , which could seemingly be ignored

at very high energies in accordance with the GET. However, there are caveats to this

picture, and understanding how pseudo-scalars and longitudinal vector bosons behave as

both external and intermediate states requires some care.

In the simplest approach, one would keep only the leading contribution, kµW /mW .

When contracted into scattering amplitudes, this piece effectively “scalarizes” the longi-

tudinal vector boson, realizing the GET. This can often be seen at the level of individual

Feynman diagrams. For example, in the decay of a heavy Higgs boson with mh ≫ 2mW ,

the vertex g mWhWµWµ simply leads to a scalar interaction (m2
h/v)hφ

+φ− after the sub-

stitution ǫµL(W ) → kµW /mW . In other cases, such as in couplings to fermion lines, the

naively bad high-energy behavior ∝ EW /mW is fully cancelled thanks to Ward identities,

up to possible chirality-flip effects that go like mf/EW . This reproduces the Yukawa cou-

plings of the unbroken theory. When longitudinal and Goldstone bosons appear as off-shell

intermediate states, it is also possible to show that neither the naively badly-behaved struc-

ture kµkν/m2
W (in unitarity gauge) nor spurious gauge/Goldstone poles (in more general

gauges) can lead to new collinear behavior at zeroth-order in the VEV. The unbroken

shower emerges as expected as long as kT ≫ mW .

The major complication to the GET picture is that the naively sub-leading effects from

EWSB can dominate in the relativistic ultra-collinear regime. Even if the kµW /mW piece

of an emitted gauge boson is removed by Ward identities, the O(mW /EW ) remainder of

ǫµL(W ) can still receive a compensating ultra-collinear power-enhancement in the region

kT ∼ mW . There may also be comparable EWSB contributions lurking within off-shell

propagators, including as well the propagators of Higgs bosons and massive fermions.

Disentangling all EWSB effects in an ultra-collinear parton splitting can be accom-

plished by isolating and removing all parts of a 1 → 2 splitting amplitude that go like

(Q2 −m2)/m2
W , where Q2 and m2 are respectively the squares of the four-momentum and

pole mass of the off-shell particle in the splitting. Once multiplied by the propagators,
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such contributions are explicitly not collinear-enhanced, and would need to be combined

with other non-collinear (and hence non-universal) diagrams from a hard process. Their

extraction can generally be accomplished via manipulations between kinematic quanti-

ties, polarization vectors, and couplings. However, carrying out this extraction procedure

process-by-process can be tedious, especially when multiple gauge bosons and/or nested

collinear emissions are involved, and the effects of EWSB are often not immediately obvi-

ous. Within the gauge/Goldstone boson sector, we expect that the kµW /mW piece of the

longitudinal polarization vector must generally reproduce the Goldstone scalar couplings,

whereas the effects of EWSB are captured by the remainder term in eq. (4.2). A more

convenient approach for tracking EWSB effects would be to keep the Goldstone scalar

contributions manifest, and treat the remainder polarization as a separate entity.

We point out that such a division can be enforced by judicious gauge-fixing. We do so

here via a novel gauge which we call Goldstone Equivalence Gauge (GEG). GEG is defined

by generalizing off-shell the light-like four-vector nµ that appears in eq. (4.2) and using it

to perform the gauge-fixing in momentum-space. Taking Wµ to represent any specific real

gauge adjoint, with contraction of gauge indices left implicit, we adopt the gauge-fixing

term (dropping here and below the “W” subscript on energy/momentum variables)

Lfix = − 1

2ξ

(

nµ(k)Wµ(k)
)(

nν(k)Wν(−k)
)

, (ξ → 0) . (4.4)

Taking the ξ → 0 limit effectively introduces an infinite mass term for the gauge polar-

ization associated with the collinear light-like direction n̄µ ≡ (1, k̂), aligned with the large

components of relativistic momentum modes. This reduces the naive number of dynamical

gauge degrees of freedom from four to three. The transverse modes (xy or helicity ±1) are

as usual, except that they gain a mass term after spontaneous symmetry breaking. The

remaining gauge degree of freedom “Wn” explicitly mixes into the Goldstone boson, and

becomes associated with exactly the remainder polarization in eq. (4.2).

GEG is essentially a hybrid of Coulomb gauge [74] and light-cone gauge [75], incorpo-

rating both the rotational-invariance of the former and the collinear boost-invariance of the

latter, while isolating spurious gauge poles/discontinuities away from physical regions.14

This approach can be contrasted with the more commonly-used Rξ gauges, in which indi-

vidual splitting diagrams often exhibit unphysical gauge artifacts scaling as 1/v, Goldstone

fields live purely off-shell, and Goldstone equivalence can become obscured.

Canonically normalizing such that the gauge remainder field Wn interpolates a lon-

gitudinal boson state with unit amplitude at tree level, its interaction vertices carry the

polarization factor

ǫµn(k) ≡
−
√

|k2|
n(k) · k nµ(k)

on-shell→ mW

E + |~k|

(

−1, k̂
)

. (4.5)

14GEG falls into a more general class of non-covariant but physical gauges that exhibit many similar

features in the broken phase. These include Coulomb [74], axial [76], and strict light-cone [75] (as well

as temporal, which has received little attention). In particular, splitting functions computed within GEG

and Coulomb gauge should agree at high energies, but the latter can exhibit artificial singularities at zero

three-momentum due to the residual gauge freedom.
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The Goldstone field remains an integral part of the description here, but in a manner quite

different from that in Rξ gauges. In particular, it interpolates onto the same external

particle as the remainder gauge field. This particle, which may alternately be viewed as

a “longitudinal gauge boson” or as a “Goldstone boson”, takes on a kind of dual identity

in interactions. Processes involving creation/annihilation of this particle are computed by

coherently summing over Feynman diagrams interpolated by both remainder gauge fields

and Goldstone fields.15

More details and example calculations are presented in appendices A and B. However,

we can summarize here the key features of GEG that are relevant for parton shower physics:

• Gauge artifacts proportional to E/mW are deleted from the description of the the-

ory at the outset, and appear neither in external polarizations nor in propagators.

Physical longitudinal gauge bosons are no longer interpolated by a gauge boson field

WL and its associated O(E/mW ) polarization vector ǫµL, and no propagating compo-

nent of the gauge field serves a proxy for the eaten Goldstone bosons in high-energy

interactions via “scalarization.” Instead, only a remainder gauge field Wn may still

interpolate longitudinal gauge bosons. But it does so via the suppressed O(mW /E)

polarization vector ǫµn in eq. (4.5).

• The high-energy equivalence between longitudinal gauge bosons and Goldstone

bosons becomes trivially manifest at the level of individual Feynman diagrams. This

is because the Goldstone fields behave almost identically as in the unbroken theory

at high energies (v/E → 0). The equivalence extends off-shell, encountering neither

the usual fake gauge nor Goldstone poles. All propagators exhibit the physical pole

at mW or mZ with positive residue. This greatly simplifies the interpretation of an

“almost on-shell” boson as an intermediate state in a shower.

• Departures from Goldstone boson equivalence become organized in a systematic

power expansion in v/E factors. This allows general ultra-collinear splitting processes

to be viewed as simple sums of well-behaved 1 → 2 Feynman diagrams. EWSB con-

tributions in splitting matrix elements can come from remainder-longitudinal gauge

insertions, fermion mass terms in spinor polarizations, and a small set of standard

EWSB three-point vertices.

As a final remark of this section, we would like to point out that the GET has been

shown to be valid including radiative corrections [78–80]. Given the close relation be-

tween the GET and GEG, we suspect that GEG should also be adequate in dealing with

radiative corrections.

4.2 Splitting functions in the broken phase

4.2.1 Modifications to unbroken-phase splitting functions

The unbroken-phase splitting functions governed by the gauge and Yukawa couplings given

in tables 1 to 3 of section 3 are still valid for kT ’s and virtualities far above the masses

15For a different but related approach, see [77].
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of all of the participating particles, provided we make the identification between pseudo-

scalars and longitudinal gauge bosons in accordance with the GET. Indeed, in Goldstone

Equivalence Gauge, this correspondence is completely transparent. The splitting matrix

elements can be used largely unchanged as long as all of the particles are also relativistic,

with corrections that typically scale as O(g2v2/E2).

At kT ’s and virtualities approaching the physical masses, EWSB causes these splitting

functions to either smoothly shut off or to transition into resonance decays. The modi-

fications are captured by the propagator and kinematic effects outlined in section 2. In

particular, the propagator modifications effectively rescale the unbroken-phase splitting

functions of tables 1–3 as

dP
dz dk2T

→ k4T
k̃4T

dP
dz dk2T

where k̃2T = k2T + z̄m2
B + zm2

C − zz̄m2
A. (4.6)

Soft (1/z type) singularities also generally become regulated, though in the 1 → 2 collinear

splitting function language this regulation is somewhat convention-dependent. For kT ’s far

above the physical masses, soft singularities are anyway constrained by kinematics: z, z̄ &

kT /EA. For lower kT ’s, such that non-relativistic splitting momenta can be approached,

the kT suppression also sufficiently regulates any soft-singular behavior. But additional

soft phase space factors can also be applied to reduce artificial spikes in the differential

splitting rates. Minimalistically, this involves the product of velocities of the outgoing

products in final-state showers, and for initial-state showers involves the product of the on-

shell daughter’s velocity and the space-like daughter’s “velocity”. We have seen a simple

example in figure 2(b).

For the neutral boson states, the propagator factors become matrices. These may be

conveniently diagonalized by rotating from the interaction basis B0/W 0 and H0/H0∗ to

the mass basis γ/ZT and h/ZL. The former requires the usual rotation by θW in gauge

space. The latter is accomplished by a U(2) rotation into the standard CP-eigenstates. The

showering must still be performed coherently in order to capture nontrivial effects such as

the flow of weak isospin and Higgs number. The full treatment is detailed in appendix C.

One residual complication is that the off-diagonal terms in the splitting function matrices

are proportional to products of different propagator factors. E.g., for a γ/ZT state, the

appropriate modification factor for dPγZ would use instead

k̃4T → (k2T + z̄m2
B + zm2

C)(k
2
T + z̄m2

B + zm2
C − zz̄m2

Z) . (4.7)

We also note that our convention here is to align the phases of external ZL states with

those of the eaten scalar φ0. Consequently, terms like dPhZL
are pure imaginary.

The above modifications do not explicitly address possible running effects in the masses.

Indeed, the numerical impact of the mass terms in the shower is anyway highly suppressed

except at splitting scales ofO(v). Still, some cases, such as kinematics with kT ∼ v butQ ≫
v, might require special care in the inclusion of higher-order radiative corrections. Similar

considerations apply to the purely ultra-collinear splitting processes discussed below.
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⇐
⇐

φ/VL

⇐
⇐

h

⇐
⇒

1

16π2

v2

k̃4T

(

1

z

)

1

16π2

v2

k̃4T

1

16π2

v2

k̃4T

→ VL f
(′)
s (V 6=γ) h fs VT f

(′)
-s

fs=L

(

IVf (y2f z̄ − y2
f(′))z −QV

fL
g2V z̄

)2 1
4y

4
fz(1 + z̄)2 g2V z

(

QV
fR

yf z̄ −QV
fL
yf(′)

)2

fs=R

(

IVf yfyf(′)z2 −QV
fR

g2V z̄
)2 1

4y
4
fz(1 + z̄)2 g2V z

(

QV
fL
yf z̄ −QV

fR
yf(′)

)2

Table 4. Ultra-collinear fermion splitting functions dP/dz dk2T in the broken phase. Wavy lines

represent transverse gauge bosons, while the longitudinals/Goldstones and Higgs bosons are repre-

sented by dashed lines. The k̃4T symbol is defined in eq. (4.6). The IVf symbol is a shorthand for

the “charge” of a fermion in its Yukawa coupling to the eaten Goldstone boson, or equivalently the

fermion’s axial charge under the vector V . These are normalized to approximately follow the weak

isospin couplings, but are defined independently of the fermion’s helicity: IZu = 1/2, IZd/e = −1/2,

IW
±

u = IW
±

d/e = 1/
√
2. Other conventions are given in appendix B.

4.2.2 Ultra-collinear broken-phase splitting functions

The remaining task is to compute all of the ultra-collinear splitting functions, proportional

to the EWSB scale like in eq. (4.1). Generalizing the standard massless-fermion f →
WLf

′ calculation [19–21], we include the splittings involving arbitrary particles in the

SM. The electroweak VEV (v), to which all of these splitting functions are proportionate,

has been explicitly extracted, as well as universal numerical factors, the kinematic factor

k̃4T as in eq. (4.6) or eq. (4.7), and the leading soft singularity structure (1/z, 1/z̄, or

1/zz̄). These are obtained quite straightforwardly in GEG, where individual 1 → 2 ultra-

collinear matrix elements all scale manifestly as g2v, y2fv, or gyfv. See appendix B for

some explicit examples.

We present these “purely broken” splitting functions in tables 4–6, using similar logic

as in section 3, though now working exclusively in mass basis for the neutral bosons.

Unlike conventional collinear splittings, ultra-collinear splittings do not lead to collinear

logarithms. Instead, integrating the emissions at a fixed value of z yields a rate that

asymptotes to a fixed value as the input energy increases. However, they are also unlike

ordinary finite perturbative corrections, in that they are highly collinear-beamed, and

subject to maximally large Sudakov effects from the conventional parton showering that

can occur at higher emission scales.

Ultra-collinear emissions of longitudinal gauge bosons, when formed by replacing a

transverse boson in any conventional gauge emission by a longitudinal boson, retain soft-

singular behavior∼ 1/z. (Within GEG, the 1/z factors within the splitting matrix elements

become regulated to 2EW /(EW + kW ).) Fully integrating over emission phase space, these

still lead to single-logarithmic divergences at high energy. This result might seem at odds

with smoothly taking the unbroken limit. For f → WLf
′, as we dial v to zero at fixed

fermion energy, the emission rate for longitudinal bosons grows unbounded. However, the

spectrum of those bosons has a median energy fraction z ∼
√

mW /Ef , and also tends to
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φ/VL

1

16π2

v2

k̃4T

(

1

z

)

→ W±

L γT W±

L ZT ZL W±

T W+
L W−

T
or W−

L W+
T

W±

T e2g22 z̄
3 1

4c
2
W g42 z̄

(

(1 + z̄) + t2W z
)2 1

4g
4
2 z̄(1 + z̄)2 0

γT 0 0 0 e2g22 z̄

ZT 0 0 0 1
4c

2
W g42 z̄

(

(1 + z̄)− t2W z
)2

[γZ]T 0 0 0 1
2cW eg32 z̄

(

(1 + z̄)− t2W z
)

h ⇒

⇒

1

16π2

v2

k̃4T

1

16π2

v2

k̃4T

→ h VT (V 6=γ) fs f̄
(′)
s

VT
1
4zz̄g

4
V

1
2g

2
V

(

QV
fs
yf(′)z +QV

f-s
yf z̄

)2

[γZ]T 0 1
2egZy

2
fQ

γ
f

(

QZ
fs
z +QZ

f-s
z̄
)

Table 5. Ultra-collinear transverse vector splitting functions dP/dz dk2T in the broken phase. For

the off-diagonal incoming [γZ]T , the k̃4T symbol is defined in eq. (4.7). Other conventions are as in

table 4 and in appendix B.

zero. Moreover, in theories where the fermion has a gauge-invariant mass, such as QED,

the nominal ultra-collinear region kT . mW becomes subsumed by the usual emission dead

cone at kT . mf .

Many of the other (soft-regular) splitting functions are close analogs of the unbroken

splittings, but with “wrong” helicities. For example, there are processes where a fermion

emits a transverse gauge boson but undergoes a helicity flip, and also where a fermion

emits a Higgs boson without flipping its helicity. There are also new processes such as

h → hh where such an identification is not possible. Schematically, all of these processes

can be viewed as arising from 1 → 3 splittings in the unbroken theory, where one of the

final-state particles is a Higgs boson set to its VEV.

To make tables 4–6 more compact, and to make closer contact with practical applica-

tions, we have made one additional simplification by neglecting neutral boson interference

effects for outgoing particles. E.g., for an ultra-collinear process such as ts → (h/ZL)ts
(helicity non-flipping scalar emission), we treat the outgoing Higgs and longitudinal Z

states incoherently. For final-state radiation, such a treatment is easily justified, since, as

discussed in section 2.3.1, the particles produced out of an ultra-collinear splitting have
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suppressed secondary showering. And for PDF evolution starting from an initial-state

composed exclusively of light matter, there are simply no available ultra-collinear pro-

cesses where such interference effects can occur (e.g., there is GET-violating qs → ZLqs,

but not qs → hqs). At higher scales, where heavier particles begin to populate the PDFs,

further ultra-collinear splittings are again suppressed. Note, however, that we retain in-

terference effects for incoming neutral bosons, which can remain important for final-state

splittings like γ/ZT → W±
L W∓

T . We also re-emphasize that interference effects for outgoing

particles should still be retained for the conventional splitting functions, even in the broken

phase. This is particularly important for the generation of the mixed γ/ZT PDF.

5 Shower implementation and related new phenomena

We are now in a position to implement the splitting formalism and to present some initial

physics results. Our studies here involving PDFs have been generated using simple numer-

ical integration techniques. Our studies involving final-state radiation, which provide much

more exclusive event information, have been generated using a dedicated virtuality-ordered

weak showering code. Some technical aspects of this code can be found in appendix D.

We do not presently study the more technically-involved exclusive structure of weak ISR

radiation. More detailed investigations of specific physics applications will appear in fu-

ture work [63].

We first show some representative integrated splitting rates for an illustrative set of

electroweak splitting processes in table 7, at incoming energies of 1 and 10TeV, as well as

the leading-log asymptotic behavior. We have mainly focused on examples from sections 3

and 4 that exhibit single- or double-logarithmic scaling with energy. Unless otherwise

noted, the rates are summed/averaged over spins and particle species. (For instance,

q = uL, uR, dL, dR, and f denotes all twelve fermion types of either spin.) The symbols in

the parentheses denote the conventional collinear-enhanced (CL), infrared-enhanced (IR)

and ultra-collinear (UC) behaviors, respectively. Radiation of a VT boson exhibits the usual

CL+IR double-log behavior. Notably, the largest splitting rates occur for VT → VTVT , due

to the large adjoint gauge charge. Splittings of this type occur with roughly 35% probability

at 10TeV, a factor that is enormous for an “EW correction” and which clearly indicates

the need for shower resummation. We also see the analogous UC+IR process VT → VLVT ,

which only grows single-logarithmically, but which still represents a sizable fraction of

the total splitting rate (even more so if we focus on low-kT regions, similar to figure 2).

Similarly, the other ultra-collinear channels are smaller but not negligible.

We next present our numerical results for various exclusive splitting phenomena, paying

special attention to the novelties that arise in the EW shower.

5.1 Weak boson PDFs

We first revisit the classic calculation of weak boson PDFs within proton beams [19, 20].

The basic physical picture has been dramatically confirmed with the observation of the

Higgs boson signal via vector boson fusion at the LHC [22]. It is anticipated that at energies

in the multi-TeV regime, the total production cross section for a vector boson fusion process
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φ/VL

φ/VL

1

16π2

v2

k̃4T

(

1

zz̄

)

→ W+
L W−

L ZL W±

L /ZL

W±

L 0 1
16g

4
2

(

(z̄ − z)(2 + zz̄)− t2W z̄(1 + z̄)
)2

h 1
4

(

g22(1− zz̄)− λhzz̄
)2 1

8

(

g2Z(1− zz̄)− λhzz̄
)2

ZL
1
16g

4
2

(

(z̄ − z)(2 + zz̄ − t2W zz̄)
)2

0

[hZL]
i
8g

2
2

(

g22(1− zz̄)− λhzz̄
)

(z̄ − z)
(

2 + zz̄ − t2W zz̄
)

0

h

φ/VL

h

h

1

16π2

v2

k̃4T

(

1

z̄

)

1

16π2

v2

k̃4T

→ hW±

L /ZL h h

W±

L
1
4z

(

g22(1− zz̄) + λhz̄
)2

0

h 0 9
8λ

2
hzz̄

ZL
1
4z

(

g2Z(1− zz̄) + λhz̄
)2

0

[hZL] 0 0

⇐

⇒

1

16π2

v2

k̃4T

1

16π2

v2

k̃4T

→ γT W±

T ZT W±

T /ZT W+
T W−

T fs f
(′)
-s

W±

L 2e2g22z
3z̄ 1

2c
2
W g42zz̄

(

(z̄ − z) + t2W
)2

0
s=L : 1

2

(

y2f z̄ + y2f ′z − g22zz̄
)2

s=R : 1
2y

2
fy

2
f ′

h 0 1
4g

4
Zzz̄

1
2g

4
2zz̄

1
4y

4
f (z̄ − z)2

ZL 0 0 1
2g

4
2zz̄ (z̄ − z)

2
(

IZf y2f −QZ
fs
g2Zzz̄

)2

[hZL] 0 0 − i
2g

4
2zz̄ (z̄ − z) (−1)s i

2y
2
f (z̄ − z)

(

IZf y2f −QZ
fs
g2Zzz̄

)

Table 6. Ultra-collinear longitudinal vector boson and Higgs boson splitting functions dP/dz dk2T .

The Higgs quartic coupling λh is normalized such that m2
h = λhv

2/2. For the off-diagonal incoming

[hZL], the k̃4T symbol stands for (k2T + z̄m2
B + zm2

C − zz̄m2
h) · (k2T + z̄m2

B + zm2
C − zz̄m2

Z). Other

conventions are as in tables 4, 5 and in appendix B.
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Process ≈ P(E) (leading-log term) P(1 TeV) P(10 TeV)

q → VT q
(′) (CL+IR) (3× 10−3)

[

log E
m

W

]2
1.6% 7%

q → VLq
(′) (UC+IR) (2× 10−3) log E

m
W

0.4% 1.1%

tR → W+
L bL (CL) (8× 10−3) log E

m
W

2.5% 4%

tR → W+
T bL (UC) (6× 10−3) 0.6% 0.6%

VT → VTVT (CL+IR) (0.015)
[

log E
m

W

]2
7% 34%

VT → VLVT (UC+IR) (0.014) log E
m

W
2.7% 7%

VT → ff̄ (CL) (0.02) log E
m

W
5% 10%

VL → VTh (CL+IR) (2× 10−3)
[

log E
m

W

]2
0.8% 4%

VL → VLh (UC+IR) (2× 10−3) log E
m

W
0.5% 1%

Table 7. Representative electroweak splitting behaviors and integrated fixed-order splitting prob-

abilities for an illustrative set of processes at two parent energies E = 1, 10TeV. The symbols

in the parentheses denote the collinear (CL), infrared (IR), and ultra-collinear (UC) behaviors,

respectively.

V1V2 → X can be evaluated by convoluting the partonic production cross sections over the

gauge boson PDFs, originated from the quark parton splittings q → W±q′, q → γ/Zq.16

A useful intermediate object in this calculation is the parton-parton luminosity, consisting

of the convolutions of the PDFs from each proton. We write the cross section in terms of

the parton luminosity of gauge boson collisions as

σPP (V1V2 → X) =

∫ τhigh

τlow

dτ
dLV1V2

dτ
σ̂(V1V2 → X̂τ ) , (5.1)

and can approximate this luminosity at fixed-order using the concept of weak boson PDFs

of individual quarks within the proton:

dLV1V2

dτ
≃ 2

(δV1V2 + 1)

∫ 1

τ

dξ

ξ

∫ 1

τ/ξ

dz1
z1

∫ 1

τ/ξ/z1

dz2
z2

×
∑

q1,q2

fV1∈q1(z1)fV2∈q2(z2) fq1∈P (ξ)fq2∈P

(

τ

ξz1z2

)

. (5.2)

Here, τ = s/S is the ratio of the partonic and hadronic energies squared, and τlow and τhigh
the kinematic boundaries (e.g., defining a bin in a histogram). We assume τlow ≫ 4m2

W /S.

16It should be noted that a formal factorization proof for electroweak processes in hadronic collisions is

thus far lacking. For instance, it is not presently demonstrated whether contributions from gauge boson

exchanges between the two incoming partons are factorizable. Nonetheless, we expect that the factorized

PDF approach should furnish a reliable and useful calculation tool at very high energies at leading order,

as indicated by simple scaling arguments [81, 82].
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The objects fV ∈q are evaluated at fixed-order as

fV ∈q(z) ≈
∫ O(s/4)

0
dk2T

dPq→V q(′)

dz dk2T
(z, k2T ) , (5.3)

where the upper boundary of the kT integration is of order the partonic CM energy. For

example [19, 20],

fW±

T
∈u/d(z) ≃

αW

8π

1 + z̄2

z
log

(

s

4m2
W

)

, fW±

L
∈u/d(z) ≃

αW

4π

z̄

z
, (5.4)

where the PDFs have been integrated up to k2T = s/4, assumed to be much larger than mW .

We emphasize that in deriving these illustrative fixed-order weak boson PDFs, we

have not resummed the logarithmic enhancement, which remains explicit in eq. (5.4) for

the transverse bosons. There are also corresponding double- and single-log EW enhance-

ments in the virtual corrections for the sourcing quarks, arising from integrating over both

z and kT , which we have not accounted for. While these are of formally higher-order con-

cern in determining the weak boson PDFs, they would also be required for an all-orders

resummation of the leading-order effects. (We comment on other novel EW effects on the

quark PDFs at the end of this subsection.)

A related issue is that there are factorization scales implicit in the definition of the

sourcing quark PDFs. Since the weak coupling and log(E/mW ) factors are together still

below O(1) size at planned future machines, the choice of factorization scale might also

seem to be of strictly higher-order concern. However, the interleaving of the much faster

QCD evolution complicates the situation somewhat, especially at a large value of the

energy fraction z. We have already noted above that the longitudinal W/Z PDFs would

not continue to be sourced above mW , as their ultra-collinear generation is constrained to

the region kT ∼ mW . It is therefore important to fix a factorization scale of O(mW ) for the

quark PDFs from which the fixed-order WL PDFs are derived, even for processes where√
s ≫ mW [83]. However, the transverse W/Z PDFs are sourced continuously at all scales.

Higher-order calculations and/or full solution of the mixed QCD/EW DGLAP equations

would be required to more fully resolve the issue of scale choices for the transverse bosons.

Here we simply fix the scale for the sourcing quark PDFs to be the geometric mean of
√
s

and mW (e.g., O(1TeV) in a 10TeV process).17

Figures 3(a) and 3(b) show the predicted fixed-order luminosities for a variety of possi-

ble colliding partons, including quarks as well as polarized W± bosons and photons, at the

14TeV LHC and a 100TeV pp collider. At low scales, the “EW” PDFs are of course wholly

dominated by photons. However, at scales above mW , the W± PDFs are of comparable

size. This can be seen here by comparing the qγ and qW±
T parton luminosities, as well as

the W+
T γ and W+

T W−
T luminosities. Note that in this comparison, we have also derived

the photon PDF at fixed-order, sourced from quark PDFs. Attempts at fitting the photon

PDFs with LHC data have recently been made [84]. Some recent discussions regarding the

17This calculation uses only QCD evolution for the quark PDFs. The additional impact of electroweak

evolution effects on the sourcing of the electroweak PDFs should indeed be small. Note also that mixed pro-

cesses, such as VTVL → X would generally need a different factorization scale for each sourcing quark PDF.
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Figure 3. Representative parton luminosities in pp collisions at (a)
√
S = 14TeV, (b)

√
S =

100TeV, and (c) the ratio of luminosities between the two beam energies as a function of partonic

CM energy
√
s.

factorization scale uncertainties can be found in ref. [85]. More importantly, a complete

description will ultimately require including as well the ZT and mixed γ/ZT PDFs [63].

The PDFs and corresponding parton luminosities for longitudinal gauge bosons can be

seen to be significantly smaller than those of transverse bosons. Of course, these nonetheless

remain uniquely important for probing the nature of the electroweak sector beyond the

Standard Model [21, 58, 73, 86–88]. In figure 3(c), we show the ratios of the partonic

luminosities at the 100TeV collider and the LHC dL100(s)/dL14(s). The increase with

energy is largest for WLWL, with an enhancement factor about two orders of magnitude

for
√
s = 1–4TeV.

As discussed in section 2.2, some additional novel electroweak effects in the PDFs

involve the different gauge interactions of left-handed and right-handed chiral fermions,

and the isospin non-singlet nature of typical beam particles. The former leads to more

rapid evolution to low-x for left-handed fermions than for right-handed fermions. The
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latter leads to Bloch-Nordsieck violation [41, 45, 62]. In PDF language, this appears as a

self-correcting instability wherein the two LH isospin components of the beam flip between

one another at a progressively increasing double-logarithmic rate, via soft/collinear W±

emissions. Both effects contribute to spontaneous beam polarization. In particular, in

unpolarized proton beams the uL and dL PDFs will gradually split off from the uR and

dR PDFs, and begin to asymptotically merge together into a common “qL” PDF at high

energies. We investigate these phenomena in future work [63].

5.2 Final states with multiple gauge bosons

The collinear showering approximation allows us to estimate the leading contributions

for multiple EW gauge boson production at high energies. A major component is split-

tings amongst the gauge bosons themselves via their non-Abelian interactions, in analogy

with g → gg splittings in QCD. These have so far received little dedicated study in the

electroweak theory within a parton shower framework. For some earlier studies of the fixed-

order Sudakov effects in high-pT gauge boson production, see for example [28, 29, 31].18

As a simple illustration of the onset of shower-dominated behavior, we show in fig-

ure 4(a) a 2D kinematic distribution in fixed-order W±Z + q/g production at a 100TeV

proton collider, generated with MadGraph5 [89]. A single kinematic cut pT (q/g) > 3TeV is

applied. The horizontal axis is the ∆R separation between the W and Z, and the vertical

axis is the relative transverse momentum carried by the W : 2pT (W )/HT with HT defined

as the scalar sum of all object pT s. Several features are immediately apparent. Most of the

rate is concentrated along a curved band at low ∆R(W,Z), indicating W (q/g) production

with a secondary collinear W → ZW splitting, and with enhancements at high (low) rela-

tive pT for W (Z) events. A second clear concentration of events occurs at ∆R(W,Z) ≃ π

and near-maximal relative HT indicating Wq production with a secondary q → Zq split-

ting. A third, more subtle concentration is visible at ∆R(W,Z) ≃ π and low relative HT ,

representing Zq production with a secondary q → Wq′ splitting.

We can show how portions of this distribution arise within an available showering

framework by generating V j events within PYTHIA8, and applying its native weak parton

shower [47]. This shower currently includes only q → V q splittings, and does not model the

V → V V splittings responsible for the dominant rate near ∆R(W,Z) ≃ 0. The resulting

incomplete distribution is shown in figure 4(b).

As a step toward gaining a more complete picture, we show in figure 4(c) the same

distribution with hard V j events supplied by PYTHIA8 but dressed with our own EW FSR

treatment (appendix D), for the moment using fixed-order splitting functions and without

18As a simple cross-check of our shower framework, we can make a comparison to the pT -dependent

EW radiative corrections in Wj production, as computed to NLO and approximate NNLO [31]. Since our

shower is defined only for FSR, we study Wq production and square the inferred Sudakov factor for the

final-state quark. This approximately includes the Sudakov contribution of the initial-state quark. We

select events without W/Z emissions, but allow final-state photons. At pT = 1TeV, the EW correction to

(NLO,NNLO) order is computed to be −(27, 24)%, whereas our resummed shower Sudakov also predicts

−24%. At pT = 2TeV, the EW correction to (NLO,NNLO) order is computed to be −(42, 34)%, whereas

our resummed shower Sudakov predicts −33%. (Following the exponentiation pattern of the corrections,

the NNNLO contribution would be ∼ 1%.)
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Figure 4. Event population for exclusive WZ + j production in the plane of 2pT (W )/HT versus

∆R(W,Z) with pT (j) ≥ 3TeV at a 100TeV proton collider. (a) 2 → 3 fixed-order WZj production

generated with MadGraph; (b) 2 → 2 dressed with the PYTHIA weak shower, which includes only

q → V q splittings; (c) 2 → 2 Wj and Zj production dressed with fixed-order FSR splitting

functions; (d) 2 → 2 dressed with the full EW FSR shower, including all collinear final-state

Sudakov effects. QCD showering is not incorporated. An integrated luminosity of 10 ab−1 is used

for illustration.

– 31 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
3

# W and Z

0 1 2 3

fr
a

c
ti

o
n

 o
f 

e
v

e
n

ts

-5
10

-410

-3
10

-210

-110

1

VV→Vq and V→q

Vq unconstrained→q

Vq PYTHIA→q

Vq with back-reaction→q

-initiated shower, 10 TeV
L

d

(a)

# W and Z

1 2 3 4 5

fr
a

c
ti

o
n

 o
f 

e
v

e
n

ts

-5
10

-410

-3
10

-210

-110

1

VV unconstrained→V

back-reaction correction

angle veto

back-reaction & angle veto

-initiated shower, 10 TeV
+

TW

(b)

Figure 5. Normalized rates versus the number of multiple final-state W/Z emissions with a 10TeV

initial state particle, (a) dL-initiated showers for q → V q and V → V V splittings with full EW

FSR (solid histogram), q → V q splitting only (long-dashed), and q → V q without back-reaction

correction (short-dashed). Output from PYTHIA q → V q weak shower is also included for comparison

(dotted histogram). (b)WT -initiated showers for fully constrained FSR (solid histogram), compared

with various stages of approximations as labeled.

Sudakov evolution effects. Now including V → V V as well as V → V q, the agreement

becomes quite good in all of the collinear-enhanced regions where we expect splitting

functions to furnish a reliable description.19

Besides the simpler generation of high-multiplicity final-states in collinear regions, the

advantage of the parton shower is the ability to automatically fold in Sudakov corrections,

going beyond fixed-order predictions. We show the result of running the full parton shower

evolution figure 4(d), including as well important contributions such as V → ff̄ . Exclusive

W±Z(q/g) events are selected as including exactly one each of “on-shell” W and Z, defined

as lying within 10Γ of their pole mass, and we allow for multiple photon emissions. While

the distribution looks similar to that at fixed-order, the overall rates in the collinear regions

are reduced by several tens of percent due to the Sudakov corrections.

While formally any secondary parton splittings involve rate penalties of O(αW ), they

become progressively more log-enhanced at high energies. This is again in close analogy to

QCD. However, unlike in QCD, individual weak splittings in arbitrarily soft/collinear limits

are in principle both observable and subject to perturbative modeling. Figure 5 shows the

predicted number of W/Z generated from showering off a highly energetic particle with

E = 10TeV. In this calculation, we keep the weak bosons stable and include only the

19Physics parameters here and in the MadGraph simulation are evaluated at a fixed scale of mZ for

simplicity of comparison, using MadGraph’s defaults. The PDF set is CTEQ6L1, evaluated at a factorization

scale of 3TeV. The PYTHIA simulation does not track fermion chirality throughout the hard event, and

directly collapses γ/Z states into mass basis instead of providing a gauge-space wave function. We have

explicitly corrected for both of these effects in this comparison and below.
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splittings f → V f and V → V V . QCD showering is also turned off. We construct “weak

jets” by clustering particles with the anti-kT algorithm [90] with R = π/2, and count the

contained W/Z bosons. In figure 5(a), we show the results for a left-handed chiral fermion

(dL). Roughly speaking, we see that the emission of each additional gauge boson comes

with an O(10%) suppression factor, which can be compared to the naive (not log-enhanced)

O(1%) suppression typical of adding gauge bosons to lower-energy processes. The solid

histogram shows the total rate and the long-dashed histogram indicates the rate with non-

Abelian gauge splittings turned off. The difference indicates the large contribution from

the gauge boson self-interaction beyond the first emission. As a cross-check, we include as

well the prediction from the PYTHIA8 weak shower [47], as shown by the dotted histogram.

Our own shower by default includes a back-reaction correction, discussed in section 2.3.1,

which approximates the expected suppression of multiple emissions due to dead cone-like

effects for off-shell particles. To make a more direct comparison, we have also switched this

off, and plotted the result as the short-dashed histogram. The two showers, both modeling

unrestricted q → V q emissions, are then seen to be in close agreement.

In figure 5(b), we show the predicted number of W/Z contained in “weak jets” gen-

erated from showering off of a highly energetic transversely-polarized W± boson with

EW = 10TeV. As already indicated in table 7, the overall emission rates are much higher,

close to 40% for the first emission (including both photons and Z bosons). Here we have

again considered the effect of turning on/off back-reaction corrections. In addition, from

experience with QCD showers, it is known that coherence effects in emission amplitudes

lead to effective color-screening and approximate angular-ordering of nested emissions in

non-Abelian splittings. To test this, we have also turned on/off a strict angular-ordering

veto in our shower simulation. The results, visible in figure 5(b), are that both the back-

reaction correction and the angular ordering can have an O(1) effect at high multiplicities,

but that the two effects come with sizable overlap. Splittings with large opening angles

tend to exhibit large back-reaction effects, and vice-versa. This observation provides some

evidence that modeling of the high-multiplicity region might be made to quickly converge,

though more study is required.

It should be noted that at higher energy scales, the production of multiple gauge bosons

could be the characteristic signature in many scenarios for physics beyond the SM [91, 92].

5.3 EW showers initiated by top quarks

Top quarks are instrumental in searches for new physics related to the EWSB sector, and

for exotica such as resonances with large couplings to the third generation, as well as third-

generation squarks [93]. High-energy tops can be produced copiously at the LHC and at

future accelerators, and multi-TeV top quarks offer a particularly rich laboratory to study

the effects of weak showering.

We start by considering splittings that follow the same structure as the top quark’s

weak decay, t → W+b. Figure 6(a) shows the resulting Wb mass spectrum from applying

this splitting process to 10TeV top quarks of left-handed or right-handed helicities. One

immediate feature is the transition between shower and decay: the Breit-Wigner peak

centered at mt continuously matches onto a high-virtuality shower dominated either by
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Figure 6. Invariant mass distributions for EW splittings initiated by a 10TeV polarized top

quark (a) for tL → Wb (top curve), tR → Wb (middle curve) and a fixed-width Breit-Wigner for

unpolarized top decay without shower (lower curve); (b) for tR → htL/ZLtL, ZT tR (upper curves)

and to htR, ZLtR (lower curves), respectively.

WT emission from left-handed top quarks, or WL emission from right-handed top quarks.20

The former are simple manifestations of SU(2)L gauge showers with a larger rate (upper

curve), whereas the latter are a due to the Goldstone-equivalent Yukawa showers with a

smaller rate (middle curve). Ultra-collinear emissions are necessary for properly modeling

the shower/decay transition, as shown in more detail in appendix B (see figure 12). We

also show the unpolarized top decay with a fixed-width Breit-Wigner without shower (lower

curve in figure 6(a)). The events are understandably much more constrained to the region

M(Wb) ≃ mt. It is very important to appreciate the difference, for example since one must

properly model the properties of off-shell top quarks in searching for new physics [93–98]

associated with the top quark as well as the Higgs sector.

Top quarks may also radiate Higgs bosons and, analogously, longitudinal Z bosons.

Both of these Yukawa-showering processes occur with similar rates off of left-handed and

right-handed tops, and grow single-logarithmically with energy. In figure 6(b), we present

a 10TeV right-handed top quark splitting via the EW shower. The rates for tR → htL and

to ZLtL are governed by the Yukawa coupling and essentially the same, due to the GET.

The channel tR → ZT tR, shown for reference, is via the gauge coupling of nearly pure B0,

which is rather small. The other two channels tR → htR, ZLtR are helicity-conserving

scalar emissions and are of the ultra-collinear nature. The integrated splitting rates for

all the above channels are of similar size: P(tR → htL) ≃ P(tR → ZLtL) ≈ 7.2 × 10−3,

P(tR → htR) and P(tR → ZT tR) ≈ 4.5× 10−3, and P(tR → ZLtR) ≈ 2.3× 10−3. Notably,

20To improve the matching, we have distributed the “decay” events according to a Breit-Wigner distri-

bution weighted by Γt(Q)/Γt(mt). This constitutes approximately a 30% effect at the given matching scale

of 187GeV.
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Figure 7. Invariant mass distributions for W+W− produced in the EW splitting of a 2.5TeV

γ/Z neutral boson, initiated from (a) eL current with full coherent EW FSR (solid curve), fixed-

order FSR (dashed curve), and the hypothetical incoherent γ or Z splittings (lower curves); (b) eR
current with full coherent EW FSR (solid curve) and the hypothetical incoherent γ or Z splittings

(upper curve).

the rates for the ultra-collinear processes are concentrated toward smaller virtualities (and

correspondingly smaller kT s). Though the total splitting rate represented in figure 6(b) is

only a few percent, the fact that top quarks are produced through strong interactions can

lead to significant numbers of showered events at a hadron collider. On the other hand,

the splitting rates to a Higgs boson are in sharp contrast to the much smaller rate for an

on-shell top quark decay to a Higgs boson in the Standard Model [99], of the order 10−9.

In considering determination of the top-quark Yukawa coupling in the processes tt̄h/tt̄Z

at high energies [100], the qualitative features shown here should be informative.

5.4 EW showers initiated by neutral bosons

The neutral bosons γ, ZT , h, and ZL contain rich physics at high energies, but their

showering requires special treatment due to the presence of sizable interference effects.

5.4.1 γ/ZT coherence

For the γ/ZT system, these interference effects have two aspects: the mass basis is mis-

aligned with the gauge interaction basis, and even when viewed within the B0/W 0 interac-

tion basis, the existence of a preferred physical isospin basis for asymptotic states leads to

observable coherence between B0 and W 0 exchanges. A rigorous final-state shower must

address both of these aspects simultaneously by using Sudakov evolution based on density

matrices, as outlined in section 2.3.2. More specific details can be found in appendix C.

As a simple example of the basis alignment issue, consider high energy showering

of neutral bosons γ/Z → W+W−. A naive treatment would shower the photon and Z
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including the triple-vector processes γ → W+W− and Z → W+W−.21 However, depending

on the gauge charges of the initial sources, the interference between these two mass-basis

splitting channels can be O(1). In particular, for an energetic γ/Z emitted from a right-

handed chiral electron line, the SU(2)L content of the produced neutral gauge bosons is

practically zero, suggesting a near absence of collinear W+W− splittings in the final state.

We explicitly compute these splittings assuming either an e−L or e−R source, which radiate

off 2.5TeV γ/Z bosons (e.g., via neutral boson pair-production at a 5TeV e−e+ collider).

The results are displayed in figure 7. Our full EW FSR treatment is labeled as “coherent

shower,” contrasting with the hypothetical incoherent contributions from individual γ or Z.

For the γ/Z produced by left-handed electrons in figure 7(a), the W 0 fraction is prominent

from the constructive interference between γ/Z, leading to a total splitting rate of roughly

15% (black solid curve) and noticeable Sudakov distortions relative to a simple fixed-

order splitting calculation (dashed curve). Figure 7(b) shows the result for a right-handed

electron source, exhibiting the almost complete destructive interference between the γ and

Z channels, due to the fact that the produced boson is nearly pure B0 when viewed in

gauge basis. The small residual rate at high virtualities is actually dominated by the

unbroken-phase vector-to-scalar splitting B0 → φ+φ− ∼ W+
L W−

L . In our GEG approach,

this is simply computed as a distinct process, rather than due to a delicate cancellation.

Perhaps more subtle are the interference effects between different exclusive isospin

channels. Naively, we might expect to be able to treat SU(2)L × U(1)Y in a manner

analogous to SU(3)QCD×U(1)EM, wherein the showers of the two gauge groups are simply

run independently of one another. However, weak isospin quantum numbers are directly

correlated with electric charge, and are therefore usually experimentally distinguishable.

(Consider, e.g., the response of a detector to eL versus νL.) Therefore, weak isospin cannot

be summed/averaged like QCD color. As a consequence, observable rate asymmetries arise

due to interference between the SU(2)L and U(1)Y gauge boson exchanges. Although a

well-known effect, it has never been implemented in a parton shower framework. Again,

we illustrate this by the splittings of 2.5TeV γ/Z neutral bosons, here produced off of

a left-handed chiral electron line. This boson may subsequently split into a ℓ−ℓ+ or νν̄

pair. The splitting rates with/without interference effects are shown in figure 8.22 Besides

the full coherent EW evolution (solid curves), two hypothetical incoherent treatments are

shown using γ-Z mass basis (dashed curves) and B0-W 0 gauge basis (dotted curves). It

is instructive to see that Z → νLν̄R contribution alone gives the correct result as seen

in figure 8(a); B0 → ℓ−R ℓ̄
+
L alone also gives the correct result at high masses as seen

in figure 8(c), although it misses substantial destructive interference near mZ due to the

unequal γ and Z masses; and ℓ−L ℓ̄
+
R would need coherent treatment in the whole kinematical

regime as seen in figure 8(b). The same issues of course arise in hadron colliders, though

the numerical impact is often smaller because of the healthy admixtures of u/d flavors and

LH/RH chiralities, as well as the charge-rearranging effects of hadronization. Nonetheless,

21Such a simplification has been made in [51] for neutral bosons produced in dark matter annihilation.
22For the incoherent sum over mass or gauge eigenstates, we have evolved separate samples starting from

the individual pure-state density matrices, and recombined them according to their squared production

amplitudes. Sudakov evolution of these density matrices has been switched off.
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Figure 8. Invariant mass distributions for fermion pairs produced in the EW splitting of a 2.5TeV

γ/Z neutral boson, sourced by an eL current, for exclusive final states (a) νLν̄R, (b) ℓ−L ℓ
+
R, and

(c) ℓ−Rℓ
+
L . Three treatments of the showering neutral bosons are: hypothetical incoherent B0/W 0

(dotted), incoherent γ/Z (dashed), and the full coherent EW evolution (solid).

we strongly advocate for a consistent treatment based on matrix-valued splitting functions

and Sudakovs.

5.4.2 Higgs splitting and h/ZL coherence

Analogous interference effects also occur between the Higgs boson and longitudinal Z boson.

In the high-energy gauge theory, these appear as different components of the same com-

plex scalar, and particular linear combinations carry a partially-conserved “Higgs number”

that flows through the shower. As a simple illustration, consider high energy production
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Figure 9. (a) W+W− invariant mass distributions from the EW splitting of a 10TeV

h/ZL (H0∗) → W+W−, labeled by the helicities and charges as T+L−, L+T−, T+T−, and L+L−.

The “incoherent T+L− or L+T−” curve shows the corresponding result from showering h and ZL

states independently. (b) Kinematic ∆R separation between the final state Higgs boson pair for

the ultra-collinear splitting process h → hh from a 1TeV Higgs boson.

of W+
T → (h/ZL)W

+
L . The coherently mixed h/ZL carries Higgs number of −1, and cor-

responds to the “anti-Higgs” state H0∗. This state preferentially splits into W+
T W−

L (or,

equivalently, W+
T φ−), as shown in the top curve of figure 9(a), labeled by the W helic-

ities and charges as T+L−. The charge conjugate state W+
L W−

T (labeled L+T−) carries

the opposite Higgs number and thus is highly suppressed. It arises only at low virtuality,

mainly due to the Higgs-Z mass difference. An incoherently-showered admixture of h and

ZL would instead distribute probability equally between these two different polarization

channels, as shown in the figure with the middle curve. (A similar charge-polarization

correlation also occurs in splittings to top quark pairs.)

The contributions from the other sub-leading ultra-collinear polarization channels are

shown by curves labeled L+L− and T+T−. Though not obvious from the virtuality dis-

tributions, we note that coherence effects also significantly influence these channels. In

particular, the ultra-collinear splitting H0∗ → W+
L W−

L inherits the soft divergence from

the regular gauge splitting H0∗ → W+
T W−

L , but only in the limit as the W+
L becomes soft.

Similarly for the CP-conjugate process. The individual h and ZL incoherent showers, on

the other hand, exhibit parts of the soft-singular behaviors of each of their H0 and H0∗

components. See table 6.

As a final novel example of neutral boson showering, we consider the purely ultra-

collinear splitting h → hh. This proceeds through the Higgs cubic interaction that arises

after EWSB, and it is the unique 1 → 2 splitting process in the SM that is strictly propor-

tional to Higgs boson self-interaction λh. Isolating the h component of a general energetic
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h/ZL state, the total splitting rate comes out to about 0.14% for E ≫ mh. We illustrate

in figure 9(b) the kinematic distribution ∆R(h, h), for an example initial Higgs energy

of 1TeV. The distribution peaks at roughly 2mh/E, which in this example is close to

0.25. Generally, the majority of the phase space for high-energy production hhX for any

X becomes dominated by such collinear configuration. While this ultra-collinear splitting

process lacks any log-enhancements, integrating the splitting phase space yields a total

rate relative to hX that scales like λh/16π
2, whereas the non-collinear regions contribute

a relative rate of order λ2
h/16π

2 × v2/E2. Therefore the “collinear enhancement” here

is E2/λhv
2 ∼ E2/m2

h, rather than a conventional logarithm. Though the splitting rate

is still quite small, for a 100TeV pp collider with 10’s of ab−1 integrated luminosity, we

expect thousands of such events arising from the (also novel) high-energy production pro-

cess qVL → q(′)(h/ZL) at pT ∼ 1TeV. In future precision Higgs physics [101], accurate

description of such Higgs splittings could serve an interesting role.

5.5 EW showers by a new heavy state: W ′ example

The possibility of multiple weak boson emissions in the same event, and indeed even from

the same parent particle, leads us inevitably to start considering final-states in terms

of “weak jets” rather than in terms of individual, well-separated EW-charged particles

(possibly dressed with QCD and EM radiation). Besides altering the energy spectra of

the particles emerging from a hard interaction, EW emissions can significantly alter the

multiplicity and flavor structure of an event. In particular, this new feature could have

major consequences for how a new physics signal would be detected and reconstructed.

While it is beyond the scope of this current paper to present detailed examples for

physics beyond the SM in high energy collisions [102], we study a simple case for illustration.

We consider the decay of a narrow heavy W ′+ resonance into νLℓ
+
R, with a left-handed

coupling and MW ′ ≫ mW . Nominally, the resonance is reconstructed from the charged

lepton and the missing transverse momentum using the transverse mass variableMT (ℓ, 6ET ),

which gives a Jacobian peak at MW ′ . When multiple EW emissions are taken into account,

various new flavor channels open up, as well as additional kinematic handles that can

facilitate more accurate resonance reconstruction. For example, in [60], it was pointed out

that collinear weak emissions ν → Zν can effectively reveal the neutrino’s direction-of-flight

when the Z decays visibly. For illustration here, we simply divide up the showered signal

by inclusive lepton multiplicity, focusing on channels up to three charged leptons. Quarks

and τ -leptons may be present in the secondary W/Z showering/decays, but are ignored

here for simplicity. Within each lepton multiplicity channel, we approximately reconstruct

the resonance using the “cluster transverse mass” variable MT cl, defined as [103]

M2
T cl =

(√

p2T,ℓ′s +M2
ℓ′s + 6ET

)2

− (~pT,ℓ′s + ~6ET )
2. (5.5)

The result of this analysis is displayed in figure 10(a), taking MW ′ = 20TeV. Solid curves

are those from the nominal EW shower for 1ℓ+X, 2ℓ+X and 3ℓ+X, where X represents

the rest of the particles in the event (mainly neutrinos and quarks). The dotted line

shows the result of the naive two-body decay calculation, without the parton shower.
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To focus on the weak-scale contributions, we have terminated the EW shower at a lower

virtuality of 50GeV. The showering reduces the total visible rate within 10% of the nominal

peak by about 10% due to the radiation. In this window, the relative contributions from

1-lepton, 2-lepton, and 3-lepton are respectively 0.81, 0.13 and 0.06. Although higher

lepton multiplicities are rarer, their MT cl distributions are also more sharply-peaked. It

is also instructive to compare these predictions to those of a simple fixed-order splitting

calculation, which captures the leading-log corrections but does not resum them. We find

that this calculation predicts 9% more 1-lepton events than the full EW shower in the

near-peak region.

Like eL and νL, left-handed top and bottom quarks live together in a weak isospin dou-

blet, and can also convert into one another through soft/collinear W± emissions. Similar

to the Bloch-Nordsieck violation effect discussed above for PDFs, the distinction between

tL- and bL-jets therefore becomes somewhat blurred at high energy [62]. This effect, which

is double-log enhanced at fixed order, is automatically resummed in the parton shower.

Consider again, as a simplified example, a narrow 20TeV W ′+ resonance, this time decay-

ing to tLb̄R of 10TeV each in energy. The final flavor content of two heavy quarks should

gradually average out. We show in figure 10 the mass spectrum of the two-quark system

resulting from the decay plus EW parton shower, individually in tb̄, bb̄, tt̄, and bt̄ channels.

(For this purpose, the threshold between the “shower” and “decay” of a top quark is set

to mt + 10Γt.) Respectively, these are dominated by unshowered events, events with a

single t → W+b splitting, events with a single b̄ → W−t̄ splitting, and events with one

of each such splitting. The relative rates of the four channels are about 0.77, 0.09, 0.12,

and 0.015. Within 10% of the W ′ mass peak, the nominal tb̄ signal would be reduced by

almost 30% from purely electroweak effects. Of course, this observation invites “weak jet”

reconstructions that add back in the emitted gauge and scalar particles, though inferring

the resonance’s charge becomes somewhat more complicated.

Finally, we can consider the interplay of EW and QCD radiation, which is shown in

figure 10(c) for the mass spectra of the quarks when t → gt and b → gb emissions are

also turned on. Again the shower is terminated at 50GeV virtuality to focus on effects

at and above the EW scale. The full Standard Model showering leads to dramatic distor-

tions in both mass and flavor distributions. Now the W ′ mass could be more accurately

reconstructed by adding back in both-the EW and QCD radiation, which practically may

overlap heavily since emitted weak bosons dominantly decay hadronically.

6 Summary and conclusions

At very high energies, far above the electroweak scale, the full gauge and Yukawa structure

of the Standard Model emerges, leading to an extremely rich set of parton showering

phenomena. As this full SM parton shower evolves down in scale, it ultimately passes back

through the electroweak scale. There it encounters additional showering phenomena that

arise uniquely from EWSB, and then finally transitions back into the SU(3)QCD ×U(1)EM
gauge showers familiar from the past several decades of theoretical and experimental work.
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Figure 10. Showered events from 20TeVW ′+ decays. (a)W ′+ → νLℓ
+
R cluster transverse mass dis-

tributions, running the full EW shower and breaking down the signal by inclusive lepton multiplicity

(solid curves), as well as the uncorrected two-body decay result (dotted curve). (b) W ′+ → tLb̄R
quark-pair invariant mass distributions, running the full EW shower, and (c) combining EW and

QCD showering.
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With an eye towards experiments in the next decade and beyond, in this paper we

have attempted lay out the above picture of electroweak showering in a more comprehen-

sive manner. We have systematically presented the electroweak collinear splitting func-

tions in the SM in the SU(2)L × U(1)Y symmetric phase as well as in the broken phase

after electroweak symmetry breaking. We discussed their general features in the collinear

and soft-collinear regimes and identified the general class of EWSB contributions that are

uniquely “ultra-collinear,” namely localized at kT ∼ v with appreciable rates, but otherwise

absent in conventional showering regimes. Effects of the ultra-collinear part of the shower

include counter-intuitive “violations” of the Goldstone-boson Equivalence Theorem. We

have also identified a convenient way to isolate EWSB effects within the shower, especially

by disentangling contributions from gauge bosons and Goldstone bosons at high energies,

using a novel gauge choice which we call Goldstone Equivalence Gauge (GEG). We further

implemented the full EW shower in a numerical monte carlo, and showed a number of new

results regarding its subtleties and practical impact in SM processes and beyond.

Our main observations and results are as follows:

• The splitting functions of the unbroken SU(2)L×U(1)Y theory, presented in section 3,

typically act as the leading contributions to showering processes at energies far above

the EW scale.

• At splitting scales kT ∼ gv and yv, the unbroken splitting functions become regu-

lated and the new ultra-collinear splitting functions arising from EWSB appear, as

presented in section 4. The latter is the analogue of “higher-twist” terms in terms

of the formal power counting. While they do not contribute to the leading logarith-

mic evolution, numerically they can be larger than the unbroken contributions at

low kT , and in some cases can also account for a sizable fraction of the integrated

splitting rates.

• Goldstone-boson equivalence ceases to hold in the ultra-collinear regime, allowing,

e.g., for emission of relativistic longitudinal bosons from massless fermions. This

effect is generalized here to all splitting functions in the SM, often involving nontrivial

interplays of EWSB effects in gauge, Yukawa, and scalar couplings.

• We introduced the Goldstone Equivalence Gauge (as detailed in appendix A) that

practically as well as conceptually disentangles the effects from the Goldstone bosons

and the gauge fields. Utilization of this gauge choice makes the GET transparent

and organizes its leading violations in a straightforward diagrammatic expansion

(see appendix B). The concept of a “nearly on-shell” gauge/Goldstone boson as an

intermediate state in the shower also becomes unambiguous.

• We implemented a practical EW showering scheme based on the calculated collinear

and ultra-collinear splitting kernels in a Sudakov formalism. As discussed in section 2,

some additional novel features in the implementation include matching between show-

ering and resonance decay, kinematic back-reaction corrections for multiple emissions

of massive particles, and a density matrix treatment for the mixed-state evolution of
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neutral bosons (γ/Z/h). Our treatment of EW showering is fully self-contained, and

far beyond the currently existing monte carlo simulation packages.

• We applied the EW showering formalism to a number of important physical processes

at high energies. They include: electroweak partons in PDFs as the basis for vector-

boson-fusion; EW FSR as a leading source of multiple gauge boson production, with

splitting probabilities at the level of 10s of percent; EW showers initiated by top

quarks, including Higgs bosons in the final state; and showers initiated by neutral

bosons γ/Z/h, for which care must be taken to obtain meaningful results. The

emergence of “weak jets” from high-energy new physics processes was illustrated

using a heavy W ′ as an example.

In summary, we have derived the collinear splitting functions for the Standard Model

electroweak sector, including the massive fermions, gauge bosons, and the Higgs boson,

and implemented a collinear showering scheme in the Sudakov formalism for all SM par-

ticles at high energies. We have highlighted many novel features and the necessity to

include them for physics explorations in and beyond the SM at high energies, including

any physics at future colliders, as well as other processes in high energy regimes much

above the electroweak scale.

While our paper has explored collinear EW showering at a new level of detail compared

to earlier works, it leaves open several interesting issues that we intend to address in future

publications [63]. One such issue is a more comprehensive picture of PDF evolution, fold-

ing together QCD and EW effects into a unified set of DGLAP equations that incorporate

both quantum coherence effects and ultra-collinear effects, and allowing for a complete

QCD+EW ISR showering scheme. Implications for the exclusive structure of multi-TeV

VBF events would be particularly interesting to study. We also intend to address issues re-

lated to soft wide-angle EW exchanges, which lead to quantum entanglements between the

isospins of the beams and the final state at NLL. These entanglements represent a formally

subleading aspect of the notorious Bloch-Nordsieck violation, which naively implies double-

and single-logarithmic divergences in inclusive cross sections sourced by isospin-exclusive

initial states. The collinear formalism developed here would allow for simple LL resumma-

tion of the soft-collinear, double-logarithmic contributions. (See, e.g., section 5.5 for simple

examples in the final-state shower.) Capturing and resumming the remaining single-log,

quantum-coherent contributions, as well as motivating factorization of the initial state at

NLL, requires a more advanced formalism that uses the language of quantum ensembles.
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A Goldstone equivalence

As discussed in section 4, there are considerable conceptual and technical complications

in handling processes involving longitudinal gauge bosons at high energies. The behavior

of longitudinal gauge bosons in high energy scattering and showering, both as off-shell

intermediate states and as external particles participating in collinear splittings, becomes

most transparent in “physical” non-covariant gauges where gauge-Goldstone mixing is left

explicit, and the Goldstone fields remains capable of interpolating external particles [74–

76] (see also [77]). We propose a particularly convenient physical gauge dubbed “Gold-

stone Equivalence Gauge” (GEG), wherein the emergence of Goldstone equivalence and its

leading violations are manifest and easily calculable at tree-level, while maintaining some

residual Lorentz symmetry and avoiding unphysical gauge poles. In this appendix, we work

out the details of this gauge.

GEG is essentially a hybrid of Coulomb and light-cone gauges. It employs a light-like

gauge reference four-vector that rotates with momentum23

nµ(k) = (n0(k), ~n(k)) ≡ (1,−k̂ sign(k0)), nµnµ = 0. (A.1)

Representing a generic gauge adjoint component of a vector field by Wµ, we decompose

the gauge degrees of freedom as the components of Wn (Wn̄) aligned (anti-aligned) with

nµ and the two ±1 helicity (or “xy”) transverse modes, collectively WT :

Wµ(k) = WT (k) ǫ
µ
T (k) + Wn(k) ǫ

µ
n(k) + Wn̄(k) ǫ

µ
n̄(k) , (A.2)

with n̄µ ≡ (1,+k̂ sign(k0)). Since Wµ is a real vector field here, we have chosen the

above definition such that nµ(k)∗ = nµ(−k). Introducing the gauge-fixing Lagrangian in

momentum space as

Lfix = − 1

2ξ

(

n(k) ·W (k)
)(

n(k) ·W (−k)
)

, (ξ → 0), (A.3)

the large light-like component of the on-shell longitudinal polarization, Wn̄ field, ceases to

propagate because of its infinite “mass” 1/ξ. This is the key feature for GEG by design.

We are left with three physical degrees of freedom that can propagate. It is interesting

to note that GEG respects the rotational symmetry under SO(3) by construction. The

surviving polarization states are also invariant (up to a possible rescaling) under boosts

collinear to ~k.

Incorporating EWSB, neither the gauge boson mass nor the would-be-Goldstone field

φ are folded into the gauge-fixing procedure. The normalization of Wn and its associated

polarization vector ǫµn ∝ nµ can be chosen such that Wn will interpolate external particles

with unit amplitude:

ǫµn(k) ≡
−
√

|k2|
n(k) · k nµ(k)

on-shell→ mW

E + |~k|

(

−1, k̂
)

. (A.4)

23k0 can be negative for general off-shell modes. The given parametrization of nµ is not unique. For

example, (sign(k0),−k̂) and (sign(k0)|~k|,−~k) also serve the same purpose.
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This polarization vector is what remains of the standard longitudinal polarization ǫµL(k)

upon subtraction of the Goldstone-equivalence term (scalarization term) kµ/mW . Pre-

serving Hermiticity of the Wn field also necessitates introduction of a factor of i into the

polarization vector, such that (iǫµn(k))∗ = iǫµn(−k). This will also conveniently synchro-

nize the phase of states created by the Wn field and the φ field.24 Accounting for the

gauge-Goldstone mixing term, the quadratic Lagrangian can then be expressed as

LT (k) + h.c. = WT (k)
(

k2 −m2
)

WT (−k)

Lnφ(k) + h.c. =
[

Wn(k) φ(k))
]

(

|k2| −mW

√

|k2|
−mW

√

|k2| k2

)[

Wn(−k)

φ(−k)

]

(A.5)

Inverting yields the propagators

〈

WT (k)WT (−k)
〉

=
i

k2 −m2
W

,
〈

Wn(k)Wn(−k)
〉

=
i

k2 −m2
W

sign(k2),

〈

φ(k)φ(−k)
〉

=
i

k2 −m2
W

,
〈

Wn(k)φ(−k)
〉

=
i

k2 −m2
W

mW
√

|k2|
. (A.6)

These propagators are naively fully Lorentz-invariant, though choosing a polarization basis

in the first place has anyway tied us to a specific frame. They share a unique, common pole

at k2 = m2
W with residue +1. The mixed Wn and φ fields interpolate the same particle:

the “longitudinal gauge boson” or “Goldstone boson,” depending on perspective.25 Note

that the apparent spurious pole at k2 = 0 in the mixed propagator is purely an artifact of

our momentum-dependent field normalization, and does not lead to light-like gauge poles

in complete Feynman diagrams.26

Goldstone boson equivalence in the high-energy limit now emerges trivially, diagram-

by-diagram. For a process where |k2| ≫ m2
W for all internal gauge/Goldstone lines and

E ≫ mW for all external bosons, the mixed propagators and ǫn factors scale away, leaving

over only the Goldstone contributions. In addition, since there are no terms that go like

k/mW or E/mW , power-counting of corrections ∝ mW becomes straightforward at the

level of individual Feynman diagrams. Upon introduction of complete fermion and scalar

sectors, we may generalize to counting VEV factors associated with arbitrary masses and

interactions introduced by spontaneous symmetry breaking. Some simple examples for

splitting calculations are given in appendix B.

24When working in a complex gauge basis, as for W±, these polarization phase factors become simply ±1.

In all cases, care must be taken to rigorously define the orientation of momentum flows when computing

amplitudes, since ǫµn(−k) = −ǫµn(k), and the sign is often needed to determine the relative phase between

gauge-interpolated and Goldstone-interpolated diagrams.
25This may be seen in various ways. Probably the most intuitive is to incorporate the W ’s decay into

massless fermions, as actually occurs in the SM. A Wn/φ created from some hard process would then

coherently propagate and decay into the same final-state with the same amplitude.
26Such a pole arises in Lorenz-Landau gauge, where gauge-fixing on the light-cone is incomplete. Gen-

erally, gauge poles will cancel between gauge-exchange and Goldstone-exchange diagrams, but can lead to

spurious singularities in individual diagrams. In GEG, the only such gauge pole occurs at the zero-mode,

kµ = 0, and only in the mixed gauge-Goldstone propagator. The loop-level and renormalization properties

of this gauge could be interesting to study, assuming that there are no obvious analytic obstructions do

doing so. However, as we here confine ourselves to tree-level, we save this topic for future work.
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Figure 11. Schematic tree-level collinear factorization for an arbitrary process with a splitting

Goldstone/longitudinal in the final state.

We can also see how this gauge choice facilitates a factorized picture of longitudinal

gauge/Goldstone boson production and splitting in the parton shower, beyond the simple

Goldstone-equivalent picture at zeroth-order in the VEV. Figure 11 illustrates how this

works schematically in a final-state shower. A generic hard process produces an off-shell

gauge/Goldstone boson of virtuality k2 with m2
W ≪ k2 ≪ E2, and this boson subsequently

splits. There are four contributing classes of diagrams, corresponding to the four possible

propagator exchanges between the production and splitting processes. We would like to

approximate this as an on-shell production amplitude multiplied by a universal splitting

amplitude. The decomposition is trivial for the leading pure Goldstone exchange diagram,

but the other, subleading diagrams involve interplays between the propagators and the off-

shell polarization vectors ǫµn ∝ (
√
k2/E)nµ. For the mixed diagrams, the propagator factor

mW /
√
k2 can be combined with the polarization factor

√
k2/E to yield an approximate

on-shell polarization proportional to mW /E. Assuming that there is no large back-reaction

in the hard production matrix element (at least to O(m2
W )), contracting with the rescaled

off-shell polarization approximately reproduces the on-shell hard process. For the mixed

diagram where the gauge field contracts with the splitting process, this decomposition

would simply instruct us to compute the splitting amplitude with an effective on-shell ǫn.

The pure gauge exchange does not immediately fit this pattern, but it can be separated

into two pieces: 1/(k2 − m2
W ) = (m2

W /k2)/(k2 − m2
W ) + 1/k2. The former piece has the

correct structure to provide mW /
√
k2 factors to each gauge polarization. The latter piece

cancels the
√
k2’s from each polarization vector, but leaves over no poles or mass factors.

It therefore produces a non-collinear interaction that goes as 1/E2 instead of 1/(k2−m2
W ),

and can be grouped together with the neglected non-collinear diagrams. We can view all

of the remaining collinear contributions as a simple product of on-shell gauge+Goldsone

production and gauge+Goldstone splitting matrix elements, connected by the standard

scalar propagator i/(k2 −m2
W ).

Analogous results were obtained for the factorization of logarithmic virtual corrections

to external gauge/Goldsone bosons in [74] by working directly in Coulomb gauge, and

in [34, 35] by invoking the Goldstone Boson Equivalence Theorem in Feynman-’t Hooft

gauge. Our own approach directly exhibits the applicability of the Equivalence Theorem

in the corresponding real emission processes at tree-level, and extends them beyond the

strict Goldstone limit to O(mW /E).
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B Couplings and Feynman rules

B.1 Lagrangian, couplings, and charge conventions

In Goldstone Equivalence Gauge, each physical longitudinal gauge boson state is interpo-

lated by two fields: Vn and φV , where V = W±, Z. Unlike, e.g., in Rξ gauges, the relative

phases of Vn-mediated and φV -mediated processes must be explicitly kept track of. Here,

we first present the Lagrangian of the SM in GEG to set the conventions. Before elec-

troweak symmetry breaking (EWSB), the Lagrangian with the gauge fixing is written as

LGauge = −1

4
W aµνW a

µν −
1

4
(Bµν)

2 − 1

2ξ
(n ·W )2 − 1

2ξ
(n ·B)2,

Lfermion = iψ̄ /Dψ, (B.1)

LYukawa = −ydQ̄LHdR − yuǫijQ̄
i
LH

∗juR − yeL̄LHeR + h.c. ,

LHiggs = (DµH)†DµH − λh

4

(

H†H − v2

2

)2

,

LGhost = c̄anµDab
µ cb.

The flavor indices are suppressed since we do not consider the effects of flavor mixing. The

covariant derivative Dµ and SU(2)L field strength component W a
µν are defined as

Dµ = ∂µ − ig2W
a
µT

a − ig1Y Bµ, W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2f

abcW b
µW

c
ν . (B.2)

The gauge-fixing vector nµ of eq. (A.1) would here be treated as a differential opera-

tor of schematic form (1,−∂t~∇/

√

∂2
t
~∇ · ~∇). This becomes a well-defined operation in

momentum-space. We take the formal ξ → 0 limit in what follows.

After EWSB 〈H0〉 = v/
√
2, and particles acquire masses. The neutral gauge fields Wµ

3

and Bµ mixing to form mass eigenstates Zµ and Aµ. Gauge and fermion masses go as

mW =
1

2
g2v, mZ =

1

2

√

g21 + g22 v, mγ = 0, mf =
1√
2
yfv, (B.3)

with g1 ≈ 0.36 and g2 ≈ 0.65 at the weak-scale, yt ≈ 1, and v ≈ 246GeV. The Higgs field

self-coupling is normalized such that

m2
h =

1

2
λhv

2, (B.4)

such that λh ≃ 0.52 for mh ≃ 125GeV.

As for the gauge-fermion interactions in a general basis, we denote them using gV as

the gauge coupling constant for a vector boson V = B0,W 0,W±, γ, Z,

igV γ
µ

∑

τ=L,R

gVτ Pτ , (B.5)

where the chirality projection operators are PR/L = 1
2(1± γ5). They are all built up from

the underlying U(1)Y and SU(2)L gauge couplings. Specifically,

gB0 = g1, gW 0 = gW± = g2, gγ = e =
g1g2

√

g21 + g22
, gZ =

√

g21 + g22. (B.6)
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QB0

p = Yp QW 0

p = T 3
p QW±

p Qγ
p = QEM

p QZ
p = T 3

p −QEM
p s2W

p = uL 1/6 1/2 1/
√
2 2/3 1/2− (2/3)s2W

uR 2/3 0 0 2/3 −(2/3)s2W

dL 1/6 −1/2 1/
√
2 −1/3 −1/2 + (1/3)s2W

dR −1/3 0 0 −1/3 (1/3)s2W

νL −1/2 1/2 1/
√
2 0 1/2

eL −1/2 −1/2 1/
√
2 −1 −1/2 + s2W

eR −1 0 0 −1 s2W

φ+ 1/2 1/2 1/
√
2 1 1/2− s2W

H0 = h+iφ0
√
2

1/2 −1/2 1/
√
2 0 −1/2

Table 8. Gauge charges of chiral fermions and scalars in the Standard Model. For the fermions,

first generation is used, but charges for second and third generations follow the same pattern.

As usual, the weak mixing angle is defined as

cW ≡ cos θW =
g2
gZ

or sW ≡ sin θW =
g1
gZ

. (B.7)

We denote the gauge charge Q of a particle p (chiral fermion or scalar) under a given gauge

boson V by QV
p .

27 We list the full set of charges in table 8.

We now turn to the quadratic Lagrangian terms involving gauge fields and Goldstone

fields. The quadratic terms of Z and φZ Lagrangian are

LZ2 = −1

2
∂µZν∂µZν +

1

2
∂µZµ∂

νZν +
1

2
m2

ZZµZ
µ − 1

2ξ
(nµZµ)

2. (B.8)

LφZZ = −mZZ
µ∂µφZ , Lφ2

Z
=

1

2
(∂µφZ)

2. (B.9)

Note that the minus sign in LφZZ follows from the sign convention of the covariant

derivative, eq. (B.2), as well as our expansion of the Higgs doublet in eq. (3.1), namely

H0 → (v+h− iφ0)/
√
2. This in turn determines the phase factor of the polarization vector

Zn. (Though of course our convention choices ultimately have no effect on physical rates.)

For W±
µ /φ±, the unmixed kinetic and mass terms are analogous, and the quadratic mixing

term is given by

LWφ = −imWW+
µ ∂µφ− + h.c. (B.10)

B.2 External polarizations and propagators

We decompose all fermions and gauge bosons into helicity basis within the hard process CM

frame, including off-shell particles. We emphasize that in computing leading-order 1 → 2

splitting functions, all particle polarization states should be set on-shell, since the off-shell

27For V = W±, two different components of a left-handed doublet participate, but they can be assigned

a common charge of 1/
√
2, with either flavor plugged in.
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corrections are strictly non-collinear. An on-shell polarization can be associated with an

off-shell momentum, for example, by adjusting the three-momentum at fixed energy.

The fermion external spinors are as usual, though to facilitate extraction of O(v)

effects we Taylor expand in mf/E = (yf/
√
2)(v/E). Explicitly, for fermions moving ap-

proximately along the z-axis, possibly offset toward the x-axis by a small angle θ,

us=L ≃
√
2E













(

−θ/2

1

)

mf

2E

(

−θ/2

1

)













, us=R ≃
√
2E













mf

2E

(

1

θ/2

)

(

1

θ/2

)













. (B.11)

Propagators are also as usual, but given our approximate decomposition into on-shell spin

states, they fall into a factorizable form. For a generic off-shell kµ, we can build an effective

on-shell k̃µ by keeping k0 ≡ E fixed but changing

~k = k̂
√

E2 − k2 → k̂
√

E2 −m2
f = ~k +O((k2 −m2

f )/E). (B.12)

We may then rewrite the propagator as

/k +mf

k2 −m2
f

=
(/̃k +mf ) + O((k2 −m2

f )/E)

k2 −m2
f

=

∑

s=L,R us(k̃) ūs(k̃)

k2 −m2
f

+ non-collinear terms, (B.13)

exploiting the fact that the leading correction away from a factorized numerator is set

up to cancel the propagator’s denominator. We ignore possible coherence effects between

different spin channels.

Transverse gauge bosons are also assigned their standard polarization vectors

ǫµ± ≃ 1√
2

(

0; 1,±i,−θ
)

, (B.14)

with the complex-conjugate ǫµ∗± used for outgoing bosons. However, the longitudinal

gauge/Goldstone sector is treated somewhat unconventionally. Longitudinal gauge bosons

can be created by Goldstone/pseudo-scalar boson fields. We set our phase conventions so

that these creation and annihilation amplitudes are unity, maintaining continuity with the

unbroken theory. However, longitudinal bosons may also still be created by gauge fields, in

association with the “remainder” field component Vn expanded out in eq. (A.2). Synchro-

nizing these component fields such that they also create/annihilate external bosons with

unit amplitude, their associated polarization vectors then carry nontrivial phases:

incoming Z : iǫµn; outgoing Z : (iǫµn)
∗ = −iǫµn; incoming/outgoing : W± : ±ǫµn,

(B.15)

with ǫµn = − mV

n · kn
µ ≃ mV

2E

(

− 1; θ, 0, 1
)

. (B.16)
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The light-like gauge-fixing vector nµ is defined in eq. (A.1). The corresponding propaga-

tors are given in eq. (A.6). Photons are subjected to the same gauge conditions, but this

has little practical bearing on their showering behavior. As usual, they have purely trans-

verse external polarization states, and only their transverse modes contribute to collinear-

enhanced physics. As discussed in section 2.3.2, the transverse photon and Z propagators

should be treated coherently within a parton shower. The h and φ0/Zn propagators should

also be treated coherently. We will see an example of this, including the Zn component, in

appendix B.4.

B.3 Feynman rules for three-point couplings

Feynman rules in GEG are largely similar to those of standard gauges. We list below many

of the relevant three-point vertex rules. For brevity, we omit four-point interactions, which

do not play a role in 1 → 2 splittings at this order.

Wherever explicitly referenced, we reckon all four-momenta as flowing into the vertex.

We use the small arrows next to a particle line to indicate the flow of the momenta as well

as the electric charge, where relevant. When no arrows labelled for the charged particles,

charge conservation is implied at each vertex for the particles involved.

Gauge field polarization vectors ǫµ are kept explicit at the vertices here, and can take

on three possible values associated with the propagating gauge degrees of freedom: the

two spacelike transverse polarizations ǫµ± (or ǫµxy), and the lightlike polarization ∝ ǫµn.28

The on-shell values of these polarizations and a convenient phase convention have been

provided at the end of the preceding subsection as in eq. (B.15). The extension to off-shell

momenta follows immediately. However, some care should be taken with respect to how

these polarizations are oriented relative to momentum flows, whether a boson is reckoned

as “incoming” or “outgoing.” In particular, if the four-momentum k is measured outgoing

from a vertex, one should use ǫ(−k). (In many cases this is equivalent to ǫ(k)∗, but an

exception occurs for W±
n .) Including the polarization vectors in the vertices as such, the

vector boson propagators will not carry Lorentz indices, as given in eq. (A.6).

f f

γ

= ieQEM
f /ǫ

f f ′

W±

= i
g2√
2
/ǫPL

28An off-shell photon does not have a physical pole associated with its ǫn polarization, and the phase of

that polarization can be set arbitrarily since there is no associated phase with the creation/annihilation of

asymptotic states. A simple default would be to follow the same convention as for the Z boson.
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f f

Z

= igZ/ǫ
(

(T 3
f −QEM

f s2W )PL −QEM
f s2WPR

)

u

φ±

d

= i (−ydPL + yuPR)

d

φ±

u

= i (yuPL − ydPR)

f

φ0

f

= (δfu − δfd)
yf√
2
γ5

f

h

f

= −i
yf√
2

Z −→k1

W−

←
−k2

W+

←−k3
= ig2cW ǫijk(ǫi · ǫj)

(

ǫk · (ki − kj)
)

[ǫ123 ≡ 1]

γ −→k1

W−

←
−k2

W+

←−k3
= ie ǫijk(ǫi · ǫj)

(

ǫk · (ki − kj)
)
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h −→q

W±

φ∓←−
p

= ±i
g2
2
(q − p) · ǫ

h −→q

Z

φ0←−
p

=
gZ
2
(q − p) · ǫ

φ0 −→q

W±

φ∓←−
p

=
g2
2
(q − p) · ǫ

φ+ −→q

Z

φ−←−
p

= igZ
c2W
2

(q − p) · ǫ

φ+ −→q

γ

φ−←−
p

= ie(q − p) · ǫ

⊗

h

W−

W+

= ig2mW ǫW+· ǫW−

⊗

h

Z

Z

= igZmZ ǫZ1· ǫZ2
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⊗

h

φ−

φ+

= −i
λhv

2

⊗

h

φ0

φ0

= −i
λhv

2

⊗

h

h

h

= −i
3λhv

2

⊗

Z

φ±

W∓

= −ig2s
2
WmZ ǫZ · ǫW

⊗

γ

φ±

W∓

= iemW ǫγ · ǫW

The symbol ⊗ denotes the mass (or v) insertion from the EWSB.

B.4 Example calculations with GEG

Calculations in high energy processes involving longitudinal vector bosons can be compli-

cated in dealing with gauge artifacts, often exhibiting artificial “bad high energy behavior”

containing factors of E/v. Here we show some explicit examples to demonstrate how to

calculate ultra-collinear splitting amplitudes in GEG, where all such amplitudes are auto-

matically free of such artifacts and are simply proportional to the VEV. We focus in detail

on the specific massive fermion splitting ts → W+
L bs, where the fermion helicity s = L,R

is preserved. This calculation is also trivially adapted to cases where one or both fermion

is a massless flavor, such as the usual uL → W+
L dL, and is straightforward to extend to

ZL boson emission with appropriate replacements of couplings and remainder polarization

phases. We also outline below the diagrammatic construction of a few other processes

for illustration.
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We first reemphasize that the longitudinal gauge boson W+
L in GEG should be inter-

polated by both the Goldstone field φ+ and the remainder gauge field W+
n , leading us to

break up the splitting amplitude as

iM(ts → W+
L bs) = iM(ts → φ+bs) + iM(ts → W+

n bs). (B.17)

Applying the three-point Feynman rules in section B.3, and taking the exact collinear limit

(θ, kT → 0) to extract the leading behavior, we have for the LH process29

iM(tL → φ+bL) = i ū(bL)(ytPR − ybPL)u(tL)

≃ i yt
√

2Eb
mt√
2Et

− i yb
mb√
2Eb

√

2Et

≃ i v

(

y2t√
2

√
z̄ − y2b√

2

1√
z̄

)

,

iM(tL → W+
n bL) = i

g2√
2
ū(bL)

(

/ǫn(W )PL

)

u(tL)

≃ i
g2√
2
· 2
√

2Eb

(

− mW

2EW

)

√

2Et

= −i v
g22√
2

√
z̄

z
. (B.18)

The full LH splitting amplitude is then

iM(tL → W+
L bL) = i v

1

z
√
z̄

(

1√
2
(y2t z̄ − y2b )z −

1√
2
g22 z̄

)

. (B.19)

Plugging this in eq. (2.5), we have the splitting function

dPtL→W+
L
bL

dz dk2T
=

1

16π2

v2

k̃4T

(

1

z

)(

1√
2
(y2t z̄ − y2b )z −

1√
2
g22 z̄

)2

. (B.20)

As for the RH transition tR → W+
L bR, there is no analogous amplitude for Wn at O(v)

due to the absence of RH charged-currents, so the amplitude is dominated by the Yukawa

contribution,

iM(tR → W+
L bR) ≃ iM(tR → φ+bR)

= i ū(bR)(ytPR − ybPL)u(tR)

≃ i yt
mb√
2Eb

√

2Et − i yb
√

2Eb
mt√
2Et

= i v
ytyb√

2

(

1√
z̄
−
√
z̄

)

= i v
ytyb√

2

z√
z̄
, (B.21)

29Note that for the charge-conjugate process, producing W−
n , we would instead use the remainder polar-

ization vector times (−1): −ǫn.
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Figure 12. Invariant mass distributions for EW decay/splitting of a 10TeV polarized top quark

for (a) conventional-collinear tL → W+
T bL and ultra-collinear tL → W+

L bL, and (b) conventional-

collinear tR → W+
L bL and ultra-collinear tR → W+

T bL. Decay and shower are matched at 187GeV

(vertical dashed line). The conventional-collinear contributions correspond to the upper histograms,

while the ultra-collinear contributions correspond to the lower histograms.

and the splitting function is

dPtR→W+
L
bR

dz dk2T
=

1

16π2

v2

k̃4T
z

(

1√
2
ytybz

)2

=
1

16π2

v2

k̃4T

(

1

2
y2t y

2
bz

3

)

. (B.22)

Of course, given the small value of yb, this process ends up becoming highly suppressed in

practice. The results in eqs. (B.20) and (B.22) lead to some of the formulas in table 4.

When combined with conventional collinear top quark splittings, the ultra-collinear

splittings become important for modeling the approach to the top resonance peak. This

includes as well the process tR → W+
T bL. We show these individual shower contribu-

tions and their continuity with a simple Breit-Wigner model of top decay (weighted by

Γt(M(Wb))/Γt(mt)) in figure 12. Here we have taken 10TeV top quarks of either helic-

ity, zooming into near the top quark pole, and set a decay/shower matching threshold

of 187GeV. All polarizations are measured in “lab frame” (as opposed to the top’s rest

frame). QCD and other electroweak showering effects are not incorporated.

We have seen above how GEG allows us to organize the amplitude’s dependence

on EWSB by explicitly decomposing it into individual mass-insertion terms, or equiva-

lently VEV-insertion terms. External-state fermion mass insertions are found by Taylor-

expanding the fermion Dirac spinors, and external-state gauge boson mass insertions are

found via the remainder polarization ǫn. For more general processes, there may also be

three-point interactions that function as VEV-insertions, such as interactions between the

scalars or the hV µVµ vertices (listed in section B.3). Generally, we may rather straight-

forwardly construct any ultra-collinear amplitude at O(v) by adding together diagrams
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with exactly one mass-insertion or EWSB interaction. Besides helping to organize a cal-

culation, this approach serves as a convenient tool for visualizing where different EWSB

contributions arise in a given amplitude. Figures 13 provide several examples, including

• figure 13a: tL → W+
L bL, representative calculation for table 4;

• figure 13b: W±
T → W±

L ZT , representative calculation for table 5;

• figure 13c: ZL → W+
L W−

L , representative calculation for table 6;

• figure 13d: h → W+
L W−

L , representative calculation for table 6.

C Coherent showering

Showering involving superpositions of different particle species can be described using den-

sity matrix formalism. The initial value of the density matrix is proportional to the outer

product of production amplitudes

ρij ∝ M(prod)∗
i M(prod)

j ,

tracing out over other details of the rest of the event. Here, the indices run over the

species. We nominally assign the state its smallest possible kinematic mass (zero for γ/Z,

mZ for h/ZL), and subsequently reweight/veto the splitting probability and adjust the

global kinematics as necessary (see section 2.3.1). This prescription specifically becomes

relevant when evolving near kinematic thresholds.

The probability for an initial mixed quantum state to subsequently split into a specific

exclusive final state, e.g. γ/Z → e−Le
+
R or νLν̄R, must be computed by generalizing the

splitting functions to Hermitian splitting matrices dPij . The exclusive splitting rates are

then computed by tracing against the normalized density matrix:

dP =
ρij dPji

tr[ρ]
. (C.1)

If a boson is not split, the Sudakov evolution of ρ proceeds analogous to mixed-state

radioactive decay:

dρij = −1

2

∑

channels

(ρikdPkj + dPikρkj). (C.2)

As usual, this just represents the wave-function running, now applied to multi-component

states. The splitting matrices for an initial mixed quantum state are computed from outer

products of splitting amplitudes, convolved with the mixed propagators. Representing

the propagator matrix as Dij , and the amputated splitting amplitudes as M(split)
i , the

generalization from single-state evolution is

dP ∝ 1

q4
|M(split)|2 → dPij ∝ M(split)∗

k D∗
kiDjlM(split)

l . (C.3)
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(a) tL → W+
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T
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L
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=
⊗

+ ⊗

(b) W±

T → W±

L ZT
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W−
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=
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L

h
W+

L

W−
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=
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+
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(d) h → W+
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L

Figure 13. Representative ultra-collinear splittings with multiple contributing diagrams. The

effects of the VEV are indicated schematically by the symbol ⊗.
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Using the relativistic approximation q2 ≃ (k2T + z̄m2
B + zm2

C)/zz̄ for final-state splitting,

this modifies eq. (2.5) to the more complicated form

[

dPA→B+C

dz dk2T

]

ij

≃ 1

16π2

1

zz̄
M(split)∗

k D∗
kiDjlM(split)

l . (C.4)

In the massless limit with unmixed propagators, Dij = iδij/q
2, the form of the splitting

matrix reduces to dPij ∝ M(split)∗
i M(split)

j /q4.

In more complete generality, a mixed state can split into another mixed state, leading

to an enlarged set of indices for the splitting matrices. However, in most cases, the final-

state density matrices are fully determined by the initial-state density matrices, such that

in practice a single pair of indices suffices.

While the formalism is basis-independent, we default to some standard bases in our

EW shower approach. Within the unbroken phase (section 3), we present neutral gauge

and scalar splitting functions in the interaction basis (B0,W 0), (H0, H0∗). In the broken

phase (section 4), we present them in the mass basis (γ, Z), (h, ZL). The corresponding

propagator matrices in the unbroken-phase basis, including the effects of EWSB, are30

DB0B0 =
i cos2 θW

q2
+

i sin2 θW
q2 −m2

Z

, DW 0W 0 =
i sin2 θW

q2
+

i cos2 θW
q2 −m2

Z

,

DB0W 0 = DW 0B0 =
i cos θW sin θW (−m2

Z)

q2(q2 −m2
Z)

(C.5)

for the gauge bosons (θW is the weak mixing angle), and

DH0H0∗ = DH0∗H0 =
i/2

q2 −m2
h

+
i/2

q2 −m2
Z

,

DH0H0 = DH0∗H0∗ =
i/2

q2 −m2
h

− i/2

q2 −m2
Z

, (C.6)

for the neutral scalars. In the mass basis, the matrices are diagonal and have entries

corresponding to the usual poles:

Dγγ =
i

q2
, DZZ =

i

q2 −m2
Z

, DγZ = DZγ = 0 (C.7)

Dhh =
i

q2 −m2
h

, DZLZL
=

i

q2 −m2
Z

, DhZL
= DZLh = 0. (C.8)

Similar considerations apply in the application and generation of PDFs [43]. The γ/Z

and (in principle) h/ZL PDFs should each properly be treated as 2× 2 matrices, and hard

process cross sections sourced by these PDFs computed by tracing against the hard matrix

elements. The PDF evolution equations involve matrix-valued splitting functions. In the

30The shower formalism automatically accounts for logarithmic running effects in the wavefunction factors

for these propagators. We do not attempt to account for mass renormalization effects, as the masses are

anyway of power-suppressed importance at very high virtualities. Additional perturbative corrections near

the weak scale are also neglected.
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high-kT /high-virtuality limit, these follow straightforwardly from the splitting functions

presented in the section 3. However, unless working well above the TeV-scale, mass effects

can still be important. The above propagator modifications must then be applied at the

(spacelike) virtual leg emerging from a splitting.

D Final-state shower simulation

In order to facilitate studies of final-state weak showering at the level of exclusive rates,

we have programmed a variation of the PYTHIA6 [68] timelike virtuality-ordered parton

shower. Basic collinear QCD is included by default, extended to the massive showering

formalism outlined in section 2, and including purely ultra-collinear processes. In addition,

the full set of weak showering processes described in this paper has been added, with a

number of novel features compared to standard showering programs, outlined in the main

text. In particular, see section 2.3. Here we describe a few additional technicalities of the

implementation.

Splitting functions in the virtuality-ordered shower are simple to relate to those in the

kT -ordered shower, which we have used by default for most of the presentation. Using the

relativistic/collinear approximation for a splitting A → B + C, we get

Q2 ≃ 1

zz̄
(k2T + z̄m2

B + zm2
C) . (D.1)

Working in logQ, we can build the translation

dP
dz d logQ2

≃ 1

zz̄

Q2

(Q2 −m2
A)

2

(

k̃4T
dP

dz dk2T

)

. (D.2)

The function in parentheses goes either as k2T or as v2. For given Q, z, and daughter

masses, the former is simple to derive either by inverting the approximate eq. (D.1) or

by using exact kinematics. For the energy-sharing variable z, we use CM-frame three-

momentum fraction |~kB|/(|~kB|+ |~kC |). To approximately model the phase space effects in

the nonrelativistic limit, we further weight the splitting probabilities by a velocity factor

|~kB||~kC |/EBEC . We also suppress splittings at angles larger than θ ≈ π/2, where the

collinear shower would be highly untrustworthy.

As in PYTHIA6, the input to the shower is a “hard” partonic configuration with some

characteristic virtuality scale, assumed here to be large compared to the weak scale. Evo-

lution is based on a simple recoiler method, whereby particles are showered in pairs. (At

the current level, no dipole coherence effects or color/isospin flows are incorporated, nor

are they strictly necessary at leading-log level, but they would be possible to include in

more advanced approaches.) Each particle in a pair undergoes a trial QCD/EW Sudakov

evolution, defined in the hard event’s rest frame, and ignoring the possible evolution of

its sister. In general, each particle may undergo a 1 → 2 splitting and acquire an off-

shell mass. Kinematics are then adjusted within the pair’s rest frame, by boosting each

showered system along the pair’s axis to preserve momentum and energy. If the summed

masses from the trial evolutions exceeds the original pair’s mass, the more off-shell splitting
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is vetoed, and that particle’s evolution restarted. The procedure is easily recursed to build

up completely showered events, with the two daughters from a given splitting serving as

paired sisters in subsequent evolution.

Kinematic back-reaction effects are also incorporated, as discussed in section 2.3.1 and

parametrized in eq. (2.9). The kinematic re-arrangments required by setting a daughter off-

shell through its secondary showering can have a sizable effect on the mother’s splitting rate.

We introduce this back-reaction factor as an additional weight multiplying the daughter’s

splitting probability. In our virtuality-ordered implementation, the virtuality of the mother

(invariant mass of the daughter pair) remains unchanged, so Q∗ = Q. The Jacobian for

the transformation is then simply |dz∗/dz|, and its explicit form is tied to our kinematic

prescription above. Within the mother splitting A → B + C, assume that particle B with

momentum-fraction z is the one to be set off-shell: B → B∗. Within the A rest-frame, the

direction of B (C) is held at a fixed angle Θ (π − Θ) relative to A’s boost axis from the

CM-frame. The angle Θ has a one-to-one mapping to both the old z and the new z∗, and is

a useful intermediate variable. Another useful intermediate variable is the ratio Y ≡ z2/z̄2,

and the analogous Y ∗. The Jacobian can then be built up in pieces as

∣

∣

∣

∣

dz∗

dz

∣

∣

∣

∣

=

∣

∣

∣

∣

dY ∗

dz∗

∣

∣

∣

∣

−1 ∣

∣

∣

∣

dY ∗

dΘ

∣

∣

∣

∣

∣

∣

∣

∣

dY

dΘ

∣

∣

∣

∣

−1 ∣

∣

∣

∣

dY

dz

∣

∣

∣

∣

, (D.3)

where,
dY

dz
=

2z

z̄3
(D.4)

and
dY

d cosΘ
=

A(B̄ − B) cos2Θ+ 2A(C̄ − C) cosΘ + (BC̄ − B̄C)
(A cos2Θ+ B̄ cosΘ + C̄)2 . (D.5)

The symbols A, etc, here are shorthand for various quantities built out of A’s velocity

βA, and daughter kinematics in its rest-frame: the A-frame three-momentum magnitude

of either of the daughters P , and their individual A-frame energies and kinematic masses

EB, EC , mB, mC . We have

A ≡ β2
AP

2 , B ≡ 2βAPEB , B̄ ≡ −2βAPEC ,

C ≡ P 2 + β2
Am

2
B , C̄ ≡ P 2 + β2

Am
2
C .

(D.6)

Analogous formulas hold with Y ∗ and z∗, defining the coefficients A, etc, using the A-frame

kinematic quantities redefined with B set off-shell. (Prescriptions yielding simpler analytic

formulas than ours almost certainly exist.) The differential splitting function of the mother

must also be re-evaluated using the off-shell daughter kinematics. This is much simpler, as

there the main effect is just the change in z. Explicit EWSB mass factors for the daughters,

which appear in the numerators of the ultra-collinear splitting functions, are not adjusted

from their on-shell values.

Angular-ordering may also be invoked. If the showering pair was itself produced from

a splitting, the event-frame angles of each daughter splitting and mother splitting can be

compared, and the former splitting(s) vetoed if it has a larger angle. This veto may be

applied selectively depending on the nature of the splitting and its parent splitting.
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In our approach, parton shower evolution is automatically matched onto decay for

W±, Z, Higgs, and top. This matching is particularly simple in the virtuality-ordered

shower. Particles that survive down to their decay/shower matching scale are assigned

masses drawn from a Breit-Wigner distribution and final-state flavors assigned according

to known branching fractions. In practice, we also weight the Breit-Wigner distribution

accounting for the different available decay phase space at different off-shell virtualities.

Similar to a shower splitting, the decays are then further weighted with back-reaction

factors, if the decaying particle was itself produced in a splitting. The back-reaction factor

here is applied as a simple probabilistic veto.

Finally, we re-emphasize that the neutral bosons γ/ZT and h/ZL are produced and

evolved as general quantum mixed states. They are assigned initial kinematic masses of

zero and mZ , respectively, and given nontrivial 2 × 2 density matrices that evolve via

matrix-valued Sudakov factors. There is one major practical difference in implementing

these Sudakovs relative to simple number-valued Sudakovs. In the latter case, a given

particle’s wavefunction decreases in magnitude as its evolution proceeds, but the surviving

probability is an automatic outcome of the differential splitting rates integrated via monte

carlo. In practice, these splitting rates are integrated over z with the expedient of over-

estimator functions, and vetoed-down to the true rates. In the matrix-valued case, however,

the wavefunction can also rotate, and capturing this effect using over-estimator functions

and a veto algorithm does not appear to be as straightforward. Instead, we use explicit

formulas for the z-integrated splitting matrices at each virtuality step. These formulas are

necessarily approximate, but we have verified that they yield results similar to what would

be obtained by costly brute-force numerical integration.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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