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Abstract: The Nambu-Goldstone (NG) bosons of the SYK model are described by a

coset space Diff /SL(2,R), where Diff, or Virasoro group, is the group of diffeomorphisms

of the time coordinate valued on the real line or a circle. It is known that the coadjoint

orbit action of Diff naturally turns out to be the two-dimensional quantum gravity action

of Polyakov without cosmological constant, in a certain gauge, in an asymptotically flat

spacetime. Motivated by this observation, we explore Polyakov action with cosmological

constant and boundary terms, and study the possibility of such a two-dimensional quantum

gravity model being the AdS dual to the low energy (NG) sector of the SYK model.

We find strong evidences for this duality: (a) the bulk action admits an exact family of

asymptotically AdS2 spacetimes, parameterized by Diff /SL(2,R), in addition to a fixed

conformal factor of a simple functional form; (b) the bulk path integral reduces to a path

integral over Diff /SL(2,R) with a Schwarzian action; (c) the low temperature free energy

qualitatively agrees with that of the SYK model. We show, up to quadratic order, how to

couple an infinite series of bulk scalars to the Polyakov model and show that it reproduces

the coupling of the higher modes of the SYK model with the NG bosons.
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1 Introduction and summary

The Sachdev-Ye-Kitaev (SYK) model and other tensor models that have universal IR

properties [1–8], are quantum mechanical models of large N fermionic particles, described

by a Hamiltonian which, for Euclidean time τ = it, can be viewed alternatively as a one-

dimensional statistical model of fermions. The SYK model has random couplings Ji1i2...iq ,

representing disorder, and does not correspond to a unitary quantum mechanics. A different

version without the random disorder, but with the same leading large N behaviour, has

been proposed by Gurau [6, 9], Witten [7], and Klebanov and Tarnopolsky [8]. Here we are

interested only in the large N behaviour and will call the set of models SYK-type models.

More recently, higher dimensional generalizations of such models have also been a subject of

study with the expectation that various interesting properties that make such models a good

playground to study black hole physics can be carried over to the higher dimensions, [10–12].

SYK-type models have drawn a lot of attention in the literature recently (see, [1, 5–

8, 10–23] for a partial list of related developments), primarily because of the following

features in a large N limit:

(1) There is an infrared fixed point with an emergent time reparametrisation symmetry,

denoted henceforth as Diff.1 The symmetry is spontaneously broken, at the IR fixed

point, to SL(2,R) by the largeN classical solution, leading to Nambu-Goldstone (NG)

bosons characterized by the coset Diff /SL(2,R).2 At the IR fixed point all these are

precise zero modes of the action as one might expect from a one-dimensional CFT.

Slightly away from the IR fixed point, the Diff symmetry is explicitly broken, the

‘Nambu-Goldstone’ modes cease to be zero modes and their dynamics is described

by a Schwarzian term (which is the equivalent of a ‘pion mass’ term). It has been

conjectured that (see, e.g. [24]) that this situation is similar to a bulk model in which

the AdS2 symmetry is slightly broken (this is called a near AdS2 geometry, in the

sense of an s-wave reduction from higher dimensions, as in [25]).

(2) The possibility of a gravity dual is further reinforced by the fact that the Lyapunov

exponent in the SYK model saturates the chaos bound, which is characteristic of a

theory of gravity that has black hole solutions [23, 26, 27].

(3) The full model has an approximately linearly rising (‘Regge-type’) spectrum of con-

formal weights near the IR fixed point, with O(1) anomalous dimension even for

operators with spin higher than two. This behaviour is unexpected both from string

theory in the limit α′ → 0, or from Vasiliev theory (see, for example, [5]). Thus while

the dynamics of the soft modes appears to have a simple dual gravity description,

it is not clear if it can naturally incorporate the rest of the Regge-type spectrum

description. In this paper we primarily concern ourselves with a bulk gravity dual

which describes the soft modes. We leave the larger issue for later work.

1We use Diff to denote either Diff(R) or Diff(S1), depending on whether we are at zero temperature or

finite temperature. This group is alternatively called the Virasoro group.
2As explained later in more detail, unlike in higher dimensions where Nambu-Goldstone modes are zero

modes of the action promoted to spacetime fields, here they remain zero modes (do not acquire kinetic

terms) since they cannot be made dependent on any other dimension.
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The strategy we pursue for the proposed bulk dual is as follows.

As explained in [1, 5], the NG modes of the SYK-type model can be characterized by

Diff orbits of the classical solution G0 (at the IR fixed point J = ∞) or Diff orbits of G′
0

which is the deformed value of G0 after turning on a small value of 1/J (see figure 1). Any

given point on the Diff orbit can be obtained from the reference point, G0 or G′
0, by the

action of an appropriate one-dimensional diffeomorphism.

It is shown in [28, 29] that the space of coadjoint orbits of Diff can be quantized using a

natural symplectic form a la Kirillov [30], leading to Polyakov’s two-dimensional quantum

gravity action [31]. This observation is reminiscent of the emergent two-dimensional bulk

description from the c = 1 model, which is a matrix quantum mechanics. It was found

in [32, 33] that the semiclassical (large N) singlet configurations of the matrix quantum

mechanics, described by fermion droplets on a two-dimensional phase plane, could be

understood as coadjoint orbits of W∞ algebra generated by bi-local boson operators made

out of fermions. A representation of this algebra in c = 1 was found in [34]. The coadjoint

orbit action a la Kirillov [30] in the space of these configurations gave rise to a two-

dimensional action whose low energy sector reproduced the (massless) tachyons of two-

dimensional string theory.3 A similar approach was taken in [36] to arrive at a moduli

space action of LLM geometries [37] describing half-BPS giant gravitons.

Following the above examples, one might wonder whether such a two-dimensional

quantum gravity action, obtained by the coadjoint orbit method, naturally describes a

bulk dual to the SYK model. It turns out that a priori it is not possible since the gravity

action does not have a cosmological constant and it describes asymptotically flat spaces.

This prompts us to consider a generalization of the Polyakov action, which includes a

cosmological constant and boundary terms (the boundary terms are found by requiring

the existence of a well-defined variational principle; these are also the terms required by

consistency with the Weyl anomaly in a manifold with a boundary, see appendix G for

details). The new action, described in section 2, has asymptotically AdS2 geometries as

solutions (see section 4 and 3), which are all generated from AdS2 by the action of Diff.

The schematics of these solutions is described in the right panel of figure 1.

The main point of the paper is that the two-dimensional quantum gravity theory,

arrived at in this fashion, provides a bulk dual to the Nambu-Goldstone sector of the SYK

models. We find a number of strong evidences for this duality:

(a) the space on which path integral of the bulk theory is performed reduces to

Diff /SL(2,R), which is the same as that of the Nambu-Goldstone bosons in the

SYK model. In the bulk theory these degrees of freedom emerge as the space of

large diffeomorphisms (analogous to Brown-Henneaux diffeomorphisms in AdS3). In

addition to these, the bulk metric admits a fixed, non-dynamical conformal factor of

a simple functional form. In the SYK theory this parameterizes the departure from

strong coupling.

3The precise correspondence required some additional structure (‘leg-poles’); see [35] for some recent

insight.
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Figure 1. In the left panel, the top curve represents the Diff(R)-orbit (or a Diff(S1)-orbit at finite

temperature), at the IR fixed point J = ∞, of the classical large N solution for the fermion bilocal

G0(τ1, τ2) ∼ (τ1 − τ2)
−2∆; this represents the Nambu-Goldstones of Diff(R)/SL(2,R). The lower

curve represents the orbit of a deformed solution G′
0 slightly away from the IR fixed point, with

a small positive 1/J . In the right panel, the top curve represents the orbit of the AdS2 spacetime

(these are asymptotically AdS2 spacetimes, the two-dimensional equivalent of Brown-Henneaux

geometries, which we will describe explicitly in section 4). The bottom curve represents the orbit

of a slightly deformed AdS2 spacetime NAdS2, with a controlled non-normalizable deformation

(see section 4).

(b) The bulk path integral reduces to a path integral over Diff /SL(2,R) with a

Schwarzian action section 5, characterized by a non-zero overall coefficient coming

from the conformal factor.

(c) the low temperature free energy qualitatively agrees with that SYK model, section 5.

In the Discussion section, we show how to go beyond the low energy sector, and

describe the higher mass modes of the SYK model, by introducing bulk matter fields.

We show, up to quadratic order, how to couple an infinite series of bulk scalars to

the Polyakov model and show that it reproduces the coupling of the higher modes of

the SYK model with the NG bosons.

Our paper is organized as follows. In section 2 we present a motivation for our proposed

bulk action (2.7) from the viewpoint of coadjoint orbits of Diff /SL(2,R). In the two

subsequent sections, we analyze the theory in the conformal gauge ds2 = e2φd̂s2. In

section 3, we describe solutions of the equation of motion where d̂s2 represents pure AdS2
geometry; it turns out that the ‘Liouville mode’ φ gets completely fixed by the equations

of motion (in fact, by just the Virasoro constraints, as shown in appendix D), up to three

real parameters which define boundary conditions for the metric. In section 4 we find a

larger class of solutions, which represent large diffeomorphisms of AdS2 (similar to Brown-

Henneaux geometries in asymptotically AdS3 spacetimes). These are normalizable modes of

the metric (‘boundary gravitons’) and represent dynamical variables of the path integral,

which is described in section 4.1. In section 5 the effective action of these boundary

gravitons is obtained by an on-shell evaluation of the path-integral; it is found to be

given by a Schwarzian (5.17). Thus, the boundary gravitons are found to represent the

pseudo-Nambu-Goldstone modes of the SYK model. In section 6, we focus on a large

diffeomorphism which leads to a Euclidean black hole geometry (this turns the boundary

direction into a circle). On-shell action for this geometry reproduces the qualitative features

of the free energy of the SYK models. Detailed comparison with the SYK model is carried

out in section 7. Finally, in section 8, we discuss how to describe the ‘hard’ modes of
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the SYK model in terms of external probe scalars coupled to the metric. The appendices

contain detailed derivations of some formulae and supplementary arguments.

2 2D quantum gravity action

In this section, we briefly review some of the material on coadjoint orbits of Diff in [28,

29, 38], focussing on the emergence of 2D quantum gravity represented by the Polyakov

action [31].

As explained in [1, 5], and briefly mentioned in the Introduction, the zero modes of

the SYK model at the IR fixed point (we suggestively call these the Nambu-Goldstone

(NG) modes, although they differ somewhat from their higher dimensional counterpart,

as explained below) are given by Diff transforms of the large N condensate of the bilocal

‘meson’ variable G(τ1, τ2) = ψI(τ1)ψI(τ2),
4

G0(τ1, τ2) ∼
1

(τ1 − τ2)2∆
f∈Diff(R1)−−−−−−−→ G0[f ](τ1, τ2)

G0[f ](f(τ1), f(τ2)) ≡ G0(τ1, τ2)

(
∂f(τ1)

∂τ1

∂f(τ2)

∂τ2

)−∆

(2.1)

Here f : τ → f(τ) represents an element of Diff(R1). This orbit is represented pictorially by

the top curve in the left panel of figure 1. In case of finite temperature, the time direction

is considered Euclidean and compactified into a circle of size β = 1/T : in that case the

appropriate group of transformations is Diff(S1).

The second line of the above equation essentially says that G transforms as a bilocal

tensor of weight 2∆ under the diffeomorphism f . For later reference, we give the infinites-

imal version of this transformation as represented in the space of bilocal variables. (for

f(τ) = τ + ǫ(τ))

δǫG(τ1, τ2) = [∆ (∂τ1ǫ(τ1) + ∂τ2ǫ(τ2)) + ǫ(τ1)∂τ1 + ǫ(τ2)∂τ2 ]G(τ1, τ2) (2.2)

Note thatG0, as defined in the first line, is invariant under SL(2,R), i.e. under Diff elements

of the form h(τ) = (aτ+b)/(cτ+d), with ad−bc = 1. This implies that the orbit described

above parameterizes a coset Diff /SL(2,R), namely the set of Diff elements quotiented by

the identification f(τ) ∼ f(h(τ)).

An important issue in the context of the SYK model is the quantum mechanical realiza-

tion of the Diff algebra; in particular, it is an important question what the central charge

of the corresponding Virasoro algebra is. We will find below, in terms of the bulk dual de-

scribed by (2.7), that the central charge of the two-dimensional realization is proportional

to N .5

4We are using a generalized notation here, in which ‘I’ denotes the appropriate indices of a given

SYK/tensor model. For example, in SYK model it denotes the ‘flavour indices’ of fermions ψi, while in

Witten-Gurau model it denotes the tri-fundamental index the fermions carry.
5More precisely, the Diff group is realized here as a subgroup of a two-dimensional conformal algebra

which is unbroken by the presence of the boundary.
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In higher dimensions, such as in pion physics, the elements of the coset represent

Nambu-Goldstone bosons, with kinetic terms given by a nonlinear sigma model (see, e.g.

the discussion of pions in [39], chapter 19). The Nambu-Goldstone bosons are zero-modes

promoted to spacetime-dependent fields. In the SYK model, the zero-modes are described

by f(τ), or in the infinitesimal form ǫ(τ), (2.2). Their definition already uses up the only

dimension available in the model, and hence they cannot be made dependent on any other

coordinate and remain zero modes (do not pick any kinetic terms). As explained in [1, 5],

when we move away from the strict IR limit (i.e. when we turn on a small value of 1/J),

these cease to be zero modes and pick up a non-zero action, given in terms of the Schwarzian

derivative

Seff ∼ N

J

∫
dτ{f, τ}, where {f, τ} ≡ f ′′′(τ)

f ′(τ)
− 3

2

(
f ′′(τ)

f ′(τ)

)2

(2.3)

In spite of the appearance of the derivatives, the above is a ‘potential’ term for the zero

modes, similar to a pion mass term.6

2.1 Coadjoint orbits

The above discussion shows that the degrees of freedom of the low energy (NG) sector of

the SYK theory are characterized by elements of M= Diff /SL(2,R). In particular, the

free energy is given by a path integral over M with the above Schwarzian action.

In this subsection, we address the question of possible quantization of this configuration

space. This question has a natural interpretation in terms of AdS/CFT correspondence,

since the bulk path integral can, in a sense, be regarded as a radial quantum evolution of

boundary data [40–42].7

The quantum theory envisaged above has a configuration space given by the group

of paths in M (the group of closed paths in M is called loop(M)). An action functional

on this space was formulated in [28, 29], using the formalism of coadjoint orbits and the

resulting symplectic form in M [30, 38]. Let us consider a path P(σ) in the space of Diff

elements, with P(0) = P0, P(1) = P1. Since each point of the path is represented by a

diffeomorphism, we can label the path as f(τ, σ) where the initial point P0 corresponds to

some diffeomorphism f0(τ) and the final point P1 to another diffeomorphism f1(τ). The

above mentioned action functional for such a path, also called the coadjoint orbit action

or the Kirillov action, is given by [28, 29] (where the symplectic form is Ω = dΘ)

SKirillov =

∫
dσΘ(σ, {f(τ, σ)})

=

∫
dσdτ

[
−b0({f(τ)}) f ′ḟ +

c

48π

f ′

ḟ

( ...
f

ḟ
− 2

f̈2

ḟ2

)]
(2.4)

6One way to appreciate this is to regard the Euclidean time as a discrete lattice and think of the ‘time’

derivatives in terms of discrete differences f ′(τ) ∼ fi+1−fi where f(τ) is regarded as a collection of constant

zero modes fi.
7See [43] for a detailed treatment of the boundary wavefunction which represents the CFT data accu-

rately.
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where ḟ = ∂τf, f
′ = ∂σf etc. Here c represents a possible central term in the coadjoint

representation of Diff [28, 29, 38]; b0 is an arbitrary functional, representing the choice of

a reference point on the orbit (different inequivalent orbits correspond to different inequiv-

alent choices of b0.)

It was observed in [28, 29] that, with the choice b0 = 0 (we discuss this more later),

the Kirillov action becomes the same as the two-dimensional quantum gravity action of

Polyakov [31]

S[g] =
c

24π

∫

Γ

√
gR

1

�
R (2.5)

where the metric is [28]8

ds2 = ∂σf dτdσ (2.6)

Here, R is the Ricci scalar of the geometry, 1
�
is a notation used for the inverse of the scalar

Laplacian in the geometry.

2.2 Two-dimensional quantum gravity action

It is rather remarkable that the two-dimensional quantum gravity action of Polyakov

emerges from the quantization of the Diff configuration space.9 Identifying such a quan-

tization with the holographic path integral, as mentioned in the previous subsection, one

would tend to identify (2.5) with a possible bulk dual for the Nambu-Goldstone sector of

the SYK model. This does not work, however, since the action (2.5) does not have a cosmo-

logical constant and therefore pertains to asymptotically flat spaces without a boundary.

To qualify as the bulk dual, the classical action must admit asymptotically AdS2 spaces as

solutions. Is there a natural generalization of the Polyakov action (2.5) which admits such

solutions?

It turns out that there is such an action, given by10

Scov[g] =
1

16πb2

∫

Γ

√
g

[
R

1

�
R− 16πµ

]
+

1

4πb2

∫

∂Γ

√
γK 1

�
R+

1

4πb2

∫

∂Γ

√
γK 1

�
K (2.7)

Here K is the extrinsic curvature of the boundary. The constant b2 = 3
2c is the dimensionless

Newton’s constant in two dimensions; we are interested in the classical limit b → 0. A bulk

cosmological constant, (−µ) < 0,11 is also included (to accommodate asymptotically AdS2
spaces). The boundary terms are dictated by the requirement of a well-defined variational

principle (see appendix C for derivation); these terms can also be independently derived

from the considerations of Weyl anomaly on manifolds with a boundary, see appendix G.

8The function f(τ, σ) here should be compared with F (x, t) of [28].
9In the foregoing discussion, the fact that the Diff symmetry is slightly broken does not appear to

be taken into account. Shortly we discuss how the broken Diff symmetry gets incorporated from the 2D

gravity perspective.
10One might wonder whether other non-local terms like

(

1
�
R
)n

, n ∈ Z
+ are allowed in the action. It can

be shown that including such higher order terms in general leads to equations of motion that do not admit

an asymptotically AdS2 spacetime.
11We have already incorporated a negative sign while writing the action, thus leaving µ > 0.
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We have presented a discussion of the quantum corrections contributing to the action in

appendix F.

We propose that the modified quantum gravity action (2.7) describes a bulk dual of the

low energy sector of the SYK model. In the rest of the paper, we present strong evidence

in favour of this duality.

In the next section, we will discuss more details of the above action. We will discuss

in the subsequent section the Diff orbit of AdS2 (asymptotically AdS2 metrics) in detail,

and show that they are solutions of the equations of motion. We should note that the

specific realization of this Diff orbit will differ somewhat from that of the above discussion.

The most important difference is that in the above discussion (which assumes spacetime

without a boundary) various points of the Diff orbit are actually diffeomorphic in 2D;

in our construction below, the Diff orbits involve large diffeomorphisms in 2D which are

nontrivial near the boundary, and hence constitute physically distinguished configurations.

It is important to emphasize the following points:

1. The action (2.5) involves the dynamical variables f(τ, σ) representing the loop space

L(Diff) (more precisely, L(M), M = Diff /SL(2,R)). It describes a quantization of

M , which is different from simply integrating over M . The latter emerges in the

description of the pseudo-Nambu-Goldstone modes of the SYK model. It is possible

to identify the quantization of M as the two-dimensional boundary dual to gravity

on AdS3 (see, e.g., [44]).12

2. In this work, however, we consider a different variant of the model, namely (2.7),

which, in addition to the term in (2.5) includes a negative cosmological constant

and boundary terms, and consequently defines a theory of gravity in asymptotically

AdS2 spaces.

3. As we will find, the only physical degrees of freedom of (2.7), reduce to M ,

parametrized by f(τ) (see, e.g. (4.7)) which lives on the boundary. The bulk-

boundary correspondence in this case essentially follows from two-dimensional

diffeomorphism (this is somewhat reminiscent of Chern-Simon theories on a manifold

with boundaries, or of AdS3/CFT2 duality). We will also find that the action

describing the modes f(τ) is the Schwarzian action of SYK-type model and that the

low temperature thermodynamics also have qualitative agreement with that of SYK.

4. We would like to emphasize that while (2.5), in the gauge (2.6), arises from a coadjoint

orbit action of Diff, we do not yet have an explicit proof that our proposed bulk dual,

described by (2.7), is also a coadjoint orbit action of Diff for asymptotically AdS2
geometries in some gauge. While this may eventually turn out to be true, the verifica-

tion of our proposed duality in the rest of paper is independent of such a connection.

12We thank D. Stanford and E. Witten for illuminating correspondences on these points.
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3 Solutions of equations of motion and the Liouville action

In this section we will first discuss the equations of motion from the action (2.7). We will

find that the solutions describe spacetimes of constant negative curvature, which include

AdS2 as well as a three-parameter ‘non-normalizable’ deformation, which correspond to

geometries whose boundary is displaced with respect to the original boundary of AdS2.

We will subsequently discuss the on-shell action.

3.1 Equations of motion

We now discuss the solutions of the above action, (2.7). We relegate the details of the

computations of the equations of motion to appendix C and summarize only the important

results here. The equations of motion are,

0=
1

16πb2

(
gµν(w)

(
2R(w)+8πµ

)
+

∫ x

Γ

[
−2∇(w)

µ ∇(w)
ν G(w,x)R(x)

]

+

∫ x

Γ

∫ y

Γ

[
∂G(w,x)

∂wµ

∂G(w,y)

∂wµ
− 1

2
gµν(w)g

αβ(w)
∂G(w,x)

∂wα

∂G(w,y)

∂wβ

]
R(x)R(y)

) (3.1)

It is more instructive to study the trace and traceless part of the equations separately,13

Trace part: R(x) = −8πµ (3.2)

Traceless part: 0 =

∫ x

Γ

[
−2

(
∇(w)

µ ∇(w)
ν G(w, x)− 1

2
gµν(w)�

(w)G(w, x)

)
R(x)

]

+

∫ x

Γ

∫ y

Γ

[
∂G(w, x)

∂wµ

∂G(w, y)

∂wµ
− 1

2
gµν(w)g

αβ(w)
∂G(w, x)

∂wα

∂G(w, y)

∂wβ

]

×R(x)R(y) (3.3)

Note that since µ > 0, the first equation, (3.2), signifies that the metric must have a

constant negative curvature, which of course includes AdS2. Does AdS2 also satisfy (3.3)?

What is the most general solution of both equations?

We will leave details to appendix C, and state the main results here. Let us write the

metric in conformal gauge around an AdS2 background, gαβ = e2φĝαβ , where

d̂s2 ≡ ĝαβdx
µdxν =

1

πµ(z + z̄)2
dz dz̄ =

1

4πµζ2
(
dζ2 + dτ2

)
(3.4)

Eq. (3.2) then becomes the same as Liouville equation of motion (see below for detail),

2�̂φ = R̂+ 8πµe2φ (3.5)

which has the general solution [45, 46],

φ =
1

2
log

[
(z + z̄)2

∂g(z)∂̄ḡ(z̄)

(g(z) + ḡ(z̄))2

]
(3.6)

13We will subsequently write the action, (2.7) itself as sum over the trace and traceless part.
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where g, ḡ are arbitrary complex functions, conjugate of each other.14 In the same gauge

and background, (3.3) gives us the following Virasoro constraints,

∂2φ(z, z̄)− (∂φ(z, z̄))2 + 2
∂φ(z, z̄)

z + z̄
= 0, ∂̄2φ(z, z̄)−

(
∂̄φ(z, z̄)

)2
+ 2

∂̄φ(z, z̄)

z + z̄
= 0 (3.7)

Solving (3.2) and (3.3) (or, equivalently (3.7)) simultaneously, we get solutions (3.6) with

following conditions on g, ḡ,

{g(z), z} = 0, {ḡ(z̄), z̄} = 0 ⇒ g(z) =
az + ib

icz + d
, ḡ(z̄) =

āz̄ − ib̄

−ic̄z̄ + d̄
, a, b, c, d ∈ C .15

(3.8)

Here, and subsequently in this paper we denote the Schwarzian derivative of a function,

f(τ), by {f(τ), τ} = f ′′′(τ)
f ′(τ) − 3

2

(
f ′′(τ)
f ′(τ)

)2
. Of these solutions, the choice a, b, c, d ∈ R corre-

sponds to SL(2,R) transformations of AdS2 coordinates, and are the exact isometries of

the geometry.

The remaining 3-parameter set of solutions, which corresponds to the point marked

NAdS2 in figure 1 are the solutions of our primary interest. These do not preserve the

boundary of AdS2. In general, the boundary of the spacetime is given by the curve,

g(z)+ ḡ(z̄) = 0, which for a general function of the kind, (3.8), is not the same as z+ z̄ = 0.

These solutions will subsequently be referred to as non-normalizable solutions following

the standard AdS/CFT language.

The set of non-normalizable solutions obtained above is clearly parameterized by

(a, b, c, d) ∈SL(2,C)/SL(2,R), which can be identified with a hyperboloid (see appendix D,

especially (D.7) for more details). The point (a, b, c, d) = (1, 0, 0, 1) corresponds to the

identity transformation g(z) = z in (3.8). We are interested in small non-normalizable

deformations near the identity transformation. It is possible to choose a set of coordinates

of SL(2,C)/SL(2,R), in which such deformations are given by

a = 1 + i δaI b = i δbI c = i δcI d = 1− i δaI , (3.9)

where δaI , δbI , δcI are real numbers. With these parameters, the solution for the metric

becomes

ds2 = e2φd̂s2 (3.10)

with d̂s2 given by the AdS2 metric (3.4), and φ, using (3.6) and (3.8) has the near-boundary

form

φ = −δg(iτ)

ζ
+O(δa2, δb2, δc2), −δg(iτ) = δbI + 2δaIτ + δcIτ2 (3.11)

Eventually, we will choose δaI = δcI = 0, so that δg = −δbI , and φ = δbI/ζ. We will

find that the δbI deformation (more precisely, −δbI) corresponds to the irrelevant coupling

14In Lorentzian signature, these functions can be chosen to be two independent real functions.
15Here the independent set of parameters are constrained by ad+ bc = 1, which is the same as SL(2,C).
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1/J of the SYK model. The other parameters δaI and δcI are physically distinct; it would

be interesting to explore their significance, which we leave for future work.

For the Liouville factor e2φ not to destroy the asymptotic AdS2 structure altogether,

we will assume here that δg ∼< δ; this ensures that δg < ζ.16 Note that the expression for

the Liouville field in (3.11) is similar to that of the dilaton in [24], and plays a somewhat

similar role as we will see later. In the next section, we will generate more solutions from the

above three-parameter solutions by using large diffeomorphisms, which we cannot capture

staying within the conformal gauge.

3.2 Liouville action

We now show that the above analysis of equations of motion with separation into trace

and traceless parts also works for the classical action. Writing the induced gravity action

in a conformal gauge around an arbitrary fiducial metric, ĝαβ , we get the action,17

Scov[g] = − 1

4π b2

[∫

Γ

√
ĝ
(
ĝαβ∂αφ∂βφ+ R̂φ+ 4πµe2φ

)
+ 2

∫

∂Γ

√
γ̂K̂φ+

∫

∂Γ

√
γ̂n̂µφ∂µφ

− 1

2

∫

∂Γ

√
γ̂n̂µ ∇̂µ

(
φ
1

�̂
R̂

)]
+

1

16π b2

∫

Γ

√
ĝR̂

1

�̂
R̂+

1

4π b2

∫

∂Γ

√
γK̂ 1

�̂
R̂

= − 1

4π b2

[∫

Γ

√
ĝ
(
ĝαβ∂αφ∂βφ+ R̂φ+ 4πµe2φ

)
+ 2

∫

∂Γ

√
γ̂K̂φ+

∫

∂Γ

√
γ̂n̂µφ∂µφ

]

+
1

16π b2

∫

Γ

√
ĝR̂

1

�̂
R̂ (3.12)

In all the above equations, the coordinate dependence of the functions is understood. In

the second line above, we have dropped the terms boundary terms containing the Green’s

function, 1
�̂
, given the fall-off properties of the Green’s function. We identify the part of

the action in (3.12) which depends on φ field with Liouville action on a background with

metric ĝ.

SL[φ, ĝ] =− 1

4πb2

[∫

Γ

√
ĝ
(
ĝαβ∂αφ∂βφ+R̂φ+4πµe2φ

)
+2

∫

∂Γ

√
γ̂K̂φ+

∫

∂Γ

√
γ̂n̂µφ∂µφ

]

(3.13)

We are interested in computing the above action in the classical limit, b → 0. The classical

equation of motion for the φ field turns out to be exactly the same as (3.5), the trace part

of the equations of motion coming from the Polyakov action, as expected. We emphasize

the fact that if one chooses to study (3.12) as a theory of quantum gravity, then the trace of

background metric appearing there should not be treated as independent degree of freedom.

16There is a natural RG interpretation of this inequality in terms of the boundary theory. We will later

identify δg with ∼ 1/J (see (7.3)). Together with the natural identification of 1/ζ, for small ζ, with a

Wilsonian floating cut-off Λ (to be distinguished from the bare cut-off Λ0 = 1/δ, see [41, 42], also [43]), we

find δg/ζ ∼ Λ/J = 1/J̄ , where J̄ = J/Λ is the dimensionless coupling. Since J̄ grows large near the IR

cut-off, it follows that δg/ζ ≪ 1 near the IR cut-off.
17Later in this paper we will choose the fiducial metric from a class of Asymptotic AdS2 (AAdS2)

geometries. Although none of the analysis depends on the choice of this fiducial metric, it is only economical

for a classical analysis that we choose it to be one of the saddle point solutions.
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One-dimensional Liouville equation of motion has appeared in [13, 18, 47] in the context

of boundary dynamics. However, their connection to the induced gravity action that we

have discussed here is not clear.

No dynamical Liouville mode. It is important to note that in our problem there

are no dynamical Liouville modes at all. The Liouville mode is entirely fixed in terms of

three parameters which, furthermore, correspond to non-normalizable modes. These are

specified as boundary conditions of the path integral and are not dynamical variables. We

elaborate on this point further in appendix D where we show that the form of the Liouville

mode, with three real constants, is completely fixed by the Virasoro constraints alone.

4 Asymptotically AdS2 geometries

In this section, we will construct asymptotically AdS2 geometries as a Diff orbit of the

solutions constructed in (3.10) (see the orbits in the right panel of figure 1). To begin

with, we will construct these asymptotic geometries purely kinematically, from an analysis

of asymptotic Killing vectors (AKV) of AdS2 geometry (also see appendix E for some

details). Later, we argue that they solve the equations of motion and evaluate the on-

shell action for these configurations. AKV’s of AdS2 have been studied earlier in [48, 49]

in the near-boundary region, inspired by earlier work of Brown and Henneaux in one

higher dimension [50]. We show below that it is possible to integrate the infinitesimal

diffeomorphisms exactly to find the full nonlinear solution. This will lead to a class of

AAdS2 geometries that are related to each other by diffeomorphisms that become tangential

at the boundary. These geometries are dual to the conformally transformed states in the

1-D field theory.18 We mainly consider Euclidean metrics below.

Euclidean AdS2 metric in Poincare coordinates is defined by (3.4). The AAdS2 ge-

ometries are defined by the fall-off conditions [48–50],

gζζ =
1

4πµ ζ2
+O(ζ0), gζτ = O(ζ0), gττ =

1

4πµ ζ2
+O(ζ0) (4.1)

Variation of the metric under most general diffeomorphism is,

δgαβ = ∇αǫβ +∇βǫα =



−ǫζ(ζ, τ)− ζ∂ζǫ

ζ(ζ, τ)

2πµζ3
∂τ ǫ

ζ(ζ, τ) + ∂ζǫ
τ (ζ, τ)

4πµζ2

∂τ ǫ
ζ(ζ, τ) + ∂ζǫ

τ (ζ, τ)

4πµζ2
−ǫζ(ζ, τ)− ζ∂τ ǫ

τ (ζ, τ)

2πµζ3


 (4.2)

The asymptotic Killing vectors can be solved for by imposing on (4.2) the fall-off condi-

tions in (4.1), [48, 49]. However, we choose to work in Fefferman-Graham gauge which is

defined by,

δgζζ = 0, δgζτ = 0 (4.3)

18As indicated before, precisely at the conformal point, the stress tensor vanishes trivially; hence all states

are ground states. However, slightly away from the conformal point, the (broken) conformal transformations

lead to nontrivial states.
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The solution for the asymptotic Killing vectors is given in terms of an arbitrary function,

δf(τ),

ǫζ(ζ, τ) = ζδf ′(τ), ǫτ (ζ, τ) = δf(τ)− 1

2
ζ2δf ′′(τ) (4.4)

It is clear from the above solution, that the diffeomorphism is tangential at the boundary

of AdS2, ζ = 0. The integrated form of the coordinate transformations is,

τ̃ = f(τ)− 2ζ2f ′′(τ)f ′(τ)2

4f ′(τ)2 + ζ2f ′′(τ)2
, ζ̃ =

4ζf ′(τ)3

4f ′(τ)2 + ζ2f ′′(τ)2
(4.5)

Although we think that this choice of gauge should not be necessary and it should be

possible to integrate the diffeomorphisms more generally, we found it easier to do so with

this gauge choice. This was largely motivated by [51, 52] who performed similar integra-

tions of diffeomorphisms in AdS3 case. The details of this computation are presented in

appendix E.

The result of this diffeomorphism can be stated as follows. If we start with the AdS2
metric in the ζ̃-τ̃ coordinates

d̂s2 =
1

4πµ ζ̃2

(
dζ̃2 + dτ̃2

)
,

in the original ζ-τ coordinates it becomes

d̂s2 =
1

4πµ ζ2

(
dζ2 + dτ2

(
1− ζ2

{f(τ), τ}
2

)2
)

(4.6)

Recall that {f(τ), τ} = f ′′′(τ)
f ′(τ) − 3

2

(
f ′′(τ)
f ′(τ)

)2
is the standard notation for Schwarzian derivative

that we use throughout this paper. We want to emphasize that the class of geometries

given by (4.6) also have constant negative curvature, R̂ = −8πµ. As in AdS3, it should

be possible to identify these geometries as different sections of the global AdS2 geometry.

Some discussion of how various AdS2 geometries are related is provided in [49].

One can carry out the above diffeomorphism in the presence of the non-normalizable

solutions described in the previous section. To do this, we begin with the metric (3.10) in

the ζ̃-τ̃ coordinates:

ds2 = e2φ̃(x̃
µ)d̂s2, φ̃(x̃µ) =

δ̃g

ζ̃
+O(δa2, δb2, δc2), δ̃g = Im(δb) + 2 Im(δa)τ̃ + Im(δc)τ̃2

and transform to ζ-τ coordinates, yielding the metric

ds2 = e2φd̂s2, d̂s2 =
1

4πµ ζ2

(
dζ2 + dτ2

(
1− ζ2

{f(τ), τ}
2

)2
)
,

φ = − δg(iτ̃)

ζ̃(ζ, τ)
+O(δa2, δb2, δc2), −δg(iτ̃) = δbI + 2δaI τ̃ + δcI τ̃2, τ̃ = f(τ) (4.7)

In terms of the figure 1, the above solutions (4.6), (4.7) represent the Diff orbit of AdS2
and NAdS2 on the right panel.
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As remarked below (3.11), we eventually choose only the one-parameter deformation

parameterized by δbI , which will turn out to correspond to the 1/J deformation of the

strong coupling fixed point of the SYK theory. However, for the sake of generality, we will

for now continue with the more general form of δg.

4.1 Proper treatment of the bulk path integral

To this point we have not discussed the issue of gauge fixing inside the quantum mechanical

path integral. While we are largely interested in a classical computation in the bulk, where

the path integral measure due to gauge fixing is not important, we now shed some light on

this issue. The computation of the ghost action is discussed in detail in appendix F. The

gauge fixing δ-function and the corresponding Faddeev-Popov determinant is given by,

1 = ∆FP

[
ĝ[f(τ)], φ

]
×
∫

[Dǫ(s)][Dφ][Df(τ)] δ
(
gǫ

(s) − e2φĝ[f(τ)]
)

× δ
(
ǫ(s)(z1)

)
δ
(
ǫ(s)(z2)

)
δ
(
ǫ(s)(z3)

)
(4.8)

In line with the discussion of the previous sections, we gauge fix an arbitrary metric to

be conformally related to the AAdS2 metrics. In the choice of this gauge, there is an

additional SL(2,R) residual gauge freedom that has been fixed using the δ-functions that

anchor three arbitrary points in the geometry.19 Going through the standard procedure of

introducing the fermionic ghosts, we obtain a ghost action (F.3). This procedure should

not only capture the correct Jacobian required for the gauge fixing, but also for defining

an invariant measure on the space of f(τ) integrations.

With the above ingredients, the path integral is given by

Z =

∫ Df(τ)′

f ′(τ)
exp[−Shydro + . . .] (4.9)

where Shydro is the effective action (5.17), describing the hydrodynamic modes (see the next

section). The terms in the ellipsis denote subleading terms which get contribution from

the Faddeev-Popov determinant mentioned above and discussed in detail in appendix F.

The integration measure is the invariant integration measure in the space of f(τ) functions.

The prime on the measure denotes the exclusion of the integration over SL(2,R) degrees

of freedom due to the treatment of SL(2,R) modes discussed above.20

5 Action of hydrodynamics modes

We now compute the on-shell action of the above geometries to determine the contribution

of the large diffeomorphisms discussed in this section to the partition function of the system.

19This is the standard prescription followed in open-string path integral computations. See also the

relevant discussion in [5].
20This measure should appear from a proper treatment of the Faddeev-Popov procedure which is sketched

in appendix F. We leave details of this to subsequent work.
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5.1 Boundary action

We know from our analysis of equations of motion in appendix C that all of AAdS2 geome-

tries satisfy the bulk equations of motion. Thus we can safely anticipate that the major

contribution to the action of hydrodynamics modes will come from the boundary terms

in (3.12). The boundary terms of the action are given by,

Sbdy
L [φ, ĝ] = − 1

4π b2

[
2

∫

∂Γ

√
γ̂K̂φ+

∫

∂Γ

√
γ̂n̂µφ∂µφ

]
(5.1)

The second term above doesn’t contribute at the leading order. The contribution of this

term starts at, O(δg)2 and hence won’t contribute to the leading order answers that we

subsequently compute.

We also emphasize on the correct way to regulate the geometries for the subsequent

computations. To keep our notations unambiguous, we will denote the coordinates of AdS2
by ζ̃ , τ̃ and that of AAdS2 geometries by ζ, τ . We know that AAdS2 geometries are related

to AdS2 geometry by large diffeomorphisms. If we put a radial cut-off in AdS2 at ζ̃ = δ

and apply these large diffeomorphisms, then the cut-off at constant ζ̃ is mapped to some

wiggly-curves in ζ-τ coordinates,21

δ =
4ζf ′(τ)3

4f ′(τ)2 + ζ2f ′′(τ)2

⇒ ζ =
2 f ′(τ)

δ f ′′(τ)2

[
f ′(τ)2 −

√
f ′(τ)4 − δ2 f ′′(τ)2

] (5.2)

These are the same wiggles as discussed in [24]. To consider physically distinct geometries

in ζ-τ coordinates, we put a cut-off at ζ = δ and compare the action with that of geometry

corresponding to ζ̃ = δ.

In AdS2. On the boundary ζ̃ = δ,
√
γ̂K̂ = 1

δ

Sbdy
L [φ̃, g̃αβ ] = − 1

2π b2

∫

∂Γ

√
γ̂K̂φ̃

= − 1

2π b2

∫
dτ̃

[(
δg(iτ̃)

δ2
− 1

2
δg′′(iτ̃) +O(δ2)

)
+O

[
δg(iτ̃)2

]]
(5.3)

where, δg(τ̃) was defined in (3.11). To be able to compare with the AAdS2 answer later,

we do the coordinate transformation from τ̃ → τ coordinates,

Sbdy
L [φ̃, g̃αβ ] =− 1

2πb2

∫

∂Γ

√
γ̂K̂φ̃ (5.4)

=− 1

2πb2 δ

∫
dτ

∂τ̃(τ)

∂τ

[(
δg(iτ̃(τ))

δ
− δ

2
δg′′(iτ̃(τ))+O(δ2)

)
+O

[
δg(iτ̃(τ))2

]
]

τ̃ = f(τ)− f ′(τ)2

f ′′(τ)


1−

√
1−δ2

(
f ′′(τ)

f ′(τ)2

)2

 (5.5)

21There are two solutions for ζ satisfying ζ̃ = δ (because the second equation in (4.5) is a quadratic

in ζ), one of which doesn’t satisfy the boundary condition, ζ → 0 as δ → 0.
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Here, it is important to note that we need to implement the coordinate transformation at

the ζ̃ = δ slice. To this effect, we need to solve for ζ at ζ̃ = δ using the second equation

in (4.5) and substitute it back in the first equation there.

In AAdS2. On the boundary ζ = δ,
√
γ̂K̂ = 1

δ + δ {f(τ),τ}
2

Sbdy
L [φ, gαβ ] = − 1

2π b2

∫

∂Γ

√
γ̂K̂φ

= − 1

2π b2

∫
dτ

[
1

δ
+ δ

{f(τ), τ}
2

]
×
[(

1

δ

δg(if(τ))

f ′(τ)

− δ

(
− δg(if(τ))f ′′(τ)2 + 2f ′(τ)4δg′′(if(τ)) + 2if ′(τ)2f ′′(τ)δg′(if(τ))

)

4f ′(τ)3

+O(δ2)

)
+O

[
δg(if(τ))2

]
]

(5.6)

Hence,

δSbdy
L = Sbdy

L [φ, gαβ ]− Sbdy
L [φ̃, g̃αβ ]

=
1

2π b2

∫
dτ

[(
δg(if(τ))

δ2

(
f ′(τ)− 1

f ′(τ)

)
− δg(if(τ))

f ′(τ)
{f(τ), τ}

+O(δ2)

)
+O

[
δg(if(τ))2

]
]

(5.7)

The O(1/δ2) divergent term can be subtracted by introducing following counterterm in the

action (3.13),

Sct =
4
√
πµ

4π b2

∫

∂Γ

√
γ̂φ (5.8)

which essentially replaces
√
γ̂K̂ → √

γ̂(K̂ − 1).22 To the linear order in δg under considera-

tion here, this is the same as the fully covariant counterterm −4
√
πµ 1

4πb2

∫
∂Γ

√
γ 1

�
R. The

finite part of the answer is,

δSbdy
L = − 1

2πb2

∫
dτ

δg(if(τ))

f ′(τ)
{f(τ), τ} =

1

2πb2

∫
dτ̃ δg(iτ̃)

{
f̃(τ̃), τ̃

}
(5.9)

Here the third term is written in terms of the τ̃ coordinate, the boundary coordinate of

the unperturbed AdS2.
23 Also, note that we have defined f̃(τ̃) = τ as the reparametrized

coordinate starting with the unperturbed AdS2 coordinate τ̃ .24

22A similar counterterm is also implied in [5] in removing a quadratic divergence from their computation

of the Schwarzian term.
23In going from the second expression to the third term, we have first transformed to the time coordinate

τ̃ = f(τ), with τ = f̃(τ̃), f̃ ≡ f−1, and used the Schwarzian composition rule

{f̃(f(τ)), τ} = {f̃(f(τ)), f(τ)}f ′(τ)2 + {f(τ), τ} = {f̃(τ̃), τ̃}f ′(τ)2 + {f(τ), τ},

The l.h.s. equals {τ, τ} and vanishes.
24It is important to note that the large diffeomorphism f̃ is what corresponds to the pseudo-Nambu-

Goldstone mode f of the SYK model.
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The function δg(τ) is given by (3.11). As indicated below that equation, we will

henceforth choose δg = constant. One might wonder if one can absorb the τ and τ2

deformations in δg, parameterized by δaI and δcI , by a possible reparameterization of

the boundary coordinate τ ; this, however, turns out impossible for any value of these

parameters since the corresponding transformation turns out to be singular. Thus, the

δbI , δaI , δcI represent different physics, and we will find that it is only the δbI deformation,

that is, a constant δg, which will correspond to the SYK model. We will see that the non-

normalizable mode corresponding to constant δg, will correspond to the irrelevant coupling

1/J of the SYK model. As remarked before, it is an important open question what the

other parameters δaI and δcI correspond to.

In section 7 we will do the detailed matching with the boundary field theory. Note that

the SL(2,R) transformations that correspond to the ‘global conformal transformations’ of

one dimensional space remain the symmetry of this action. We have presented a discussion

of the correct measure of integration over the f̃(τ) modes in subsection 4.1 and appendix F.

5.2 Bulk action

The bulk part of the Liouville action is,

Sbulk
L [φ, ĝ] = − 1

4π b2

∫

Γ

√
ĝ
(
ĝαβ∂αφ∂βφ+ R̂φ+ 4πµe2φ

)

= − 1

4πb2

∫

∂Γ

√
γ̂n̂αφ∂αφ− 1

4πb2

∫

Γ

√
ĝ
(
−φ�̂φ+ R̂φ+ 4πµe2φ

)

= − 1

4πb2

∫

∂Γ

√
γ̂n̂αφ∂αφ− 1

4πb2

∫

Γ

√
ĝ

(
1

2
R̂φ+ 4πµe2φ(1− φ)

)

= − 1

4πb2

∫

∂Γ

√
γ̂n̂αφ∂αφ− µ

b2

∫

Γ

√
ĝ
(
−φ+ e2φ(1− φ)

)
(5.10)

here in the second line we have shifted the derivatives, while in the second term we have

used the equation of motion of the φ field, �̂φ = 1
2R̂ + 4πµe2φ. In the last line we have

substituted the value of R̂ = −8πµ. The first term in the above equation contributes at

subleading order, as argued under (5.1). Using the on-shell value of the φ we evaluate the

above action in AdS2 and AAdS2 backgrounds.

In AdS2. For AdS2 background metric, the action is given by,

Sbulk
L [φ̃, g̃αβ ] = − µ

b2

∞∫

−∞

dτ̃

∞∫

ζ̃=δ

dζ̃
√
g̃
(
−φ̃+ e2φ̃

(
1− φ̃

))

= − µ

b2

∞∫

−∞

dτ

∞∫

ζ>∂Γ

dζ
√
g
(
−φ+ e2φ(1− φ)

)
(5.11)

Here, in the second line we have used the coordinate transformations, (4.5) and the bound-

ary in ζ coordinates is now given by the wiggly curve, (5.2),

∂Γ ≡ ζ =
2

δ f ′′(τ)2

[
f ′(τ)3 −

√
f ′(τ)6 − δ2 f ′(τ)2 f ′′(τ)2

]
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Figure 2. The difference in bulk action between AdS2 and AAdS2 geometries gets contribution

only from the shaded region.

In AAdS2. Similarly for the AAdS2 background we have the action,

Sbulk
L [φ, gαβ ] = − µ

b2

∞∫

−∞

dτ

∞∫

ζ=δ

dζ
√
g
(
−φ+ e2φ(1− φ)

)
(5.12)

Thus we have,

δSbulk
L = Sbulk

L [φ, gαβ ]− Sbulk
L [φ̃, g̃αβ ] = − µ

b2

∞∫

−∞

dτ

ζ=∂Γ∫

δ

dζ
√
g
(
−φ+ e2φ(1− φ)

)
(5.13)

It is easy to approximate this expression close to the boundary of the geometry, i.e. when

δ → 0. In that case the difference between ζ = ∂Γ and ζ = δ reduces to a small strip as

shown in figure 2. Moreover (−φ + e2φ(1 − φ)) ∼ 1 + O[δ3, δg(iτ)2] so that part of the

integrand becomes trivial. Hence we can approximate the integrand by,

δSbulk
L =

1

4πb2

∞∫

−∞

dτ̃


1

δ

(
f̃ ′(τ̃)−1

)
+
δ

4




(
2f̃ ′(τ̃)−3

)
f̃ ′′(τ̃)2−2f̃ ′′′(τ̃)

(
f̃ ′(τ̃)−1

)
f̃ ′(τ̃)

f̃ ′(τ)3






(5.14)

The first term is linearly divergent,25 however while considering the coordinate transforma-

tions which approach identity transformations asymptotically this term integrates to zero.

In other words if we consider a transformation, f̃(τ̃) = τ̃ + ǫ(τ̃),26 then f̃ ′(τ̃) = 1 + ǫ′(τ̃).

25We thank Shiraz Minwalla for a crucial discussion on this point.
26Here ǫ(τ̃) is not necessarily small, but just a rewriting of the coordinate transformations.
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In this case the first term becomes,

1

4πb2

∞∫

−∞

dτ̃
1

δ
ǫ′(τ̃) =

1

4πb2 δ
[ǫ(∞)− ǫ(−∞)] (5.15)

Clearly a good coordinate transformation has to be monotonically increasing. Additionally

we require, for the transformation to remain invertible, that ǫ(∞) = 0 = ǫ(−∞). In fact,

the transformation that we use to map the theory on a line to a theory on a thermal circle

is not of this kind and the regulation scheme adopted in that case is explained in section 6.

Leaving aside the issue of the regulation, the reparametrization of a thermal quantum

mechanical theory can be achieved starting from a quantum mechanical theory in two

steps: firstly, the straight line is mapped to a thermal circle using the map τ̃ = tan
(
πθ̃/β

)
;

then, one reparametrizes the thermal circle with appropriate boundary conditions, ensuring

reparametrization doesn’t change the winding around the circle and is invertible. In this

case, the Schwarzian action becomes [5, 24]:

Sβ
hydro =

δg

2πb2

∫
dθ̃

{
β

2
tan

(
π
f(θ̃)

β

)
, θ̃

}
(5.16)

5.3 Summary

We thus find that the following low energy effective action (in the leading large 1/b limit)

for the ‘hydrodynamic modes’

Shydro =
δg

2πb2

∫
dτ̃

{
f̃(τ̃), τ̃

}
(5.17)

In section 7 we will compare this with the Schwarzian term which appears in the SYK-type

models.

It is important to mention that the bulk dual discussed in [24, 25], leads to a similar

Schwarzian term starting from a dilaton gravity model, while the bulk dual discussed in

this paper has only the metric field described by the Polyakov action. The source of the

hydrodynamic modes in both cases involves the large diffeomorphisms which are nontrivial

at the boundary. In a very recent paper [53], another proposal for a bulk dual has appeared

which has a Liouville field and the Almheiri-Polchinski action [25]. They also appear to get

a Schwarzian term rather differently, from the Liouville fluctuations similar to our functions

g(z), ḡ(z̄) in (3.6). However, as we found above, except for an SL(2,R) worth of degrees

of freedom (see (3.8), (3.9)), these Liouville fluctuations are frozen by the Virasoro gauge

conditions (3.7). It is also pertinent here to mention the theorems due to Schwarz and

Pick [54]; these restrict the class of conformal transformations that map the boundary of

Poincare half-plane to itself to only SL(2,R) transformations.

6 Thermodynamic partition function from bulk dual

In this section we compute the Euclidean bulk partition function in the classical limit for

a black hole geometry. We use the standard prescription of [55] to renormalize the bulk
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partition function by subtracting the partition function of thermal AdS2 geometry from

the Euclidean black-hole geometries that we describe below.27 Following [5, 24], we can

do a reparametrization of the Euclidean time to study a field theory defined on a thermal

circle of length β,

τ̃ = tan

(
πθ̃

β

)
(6.1)

Using (4.6), we can compute the Euclidean geometry that is dual to the thermal field

theory,

ds2 =
1

4πµ ζ̃2


dζ̃2 +

(
1− π2 ζ̃

2

β2

)2

dτ̃2


, τ̃ ∈

(
−β

2
,
β

2

)
and ζ̃ ∈

(
0,

β

π

)
(6.2)

This geometry is a capped AdS2 geometry in two dimensions. There is no deficit angle

near the horizon of the geometry, which can be easily checked by doing a near horizon

expansion, ζ̃ = β/π − ρ,

ds2 ∼ π

4µβ2

[
dρ2 + 4

π2

β2
ρ2dθ̃2

]

Analytically continuing this geometry to Lorentzian space we get,

ds2 =
1

4πµ ζ̃2


dζ̃2 −

(
1− π2 ζ̃

2

β2

)2

dt2


 (6.3)

which is a geometry with a horizon at ζ̃ = β/π.

To get the free energy of the theory, we compute the on-shell bulk action for this geom-

etry, but with a small non-normalizable deformation turned on (smallness is understood

as explained in the previous section).

Bulk action. We first compute the bulk part of the action given in (3.13). The bulk

part of the Liouville action is,

Sbulk
L [φ, ĝ] = − 1

4π b2

∫

Γ

√
ĝ
(
ĝαβ∂αφ∂βφ+ R̂φ+ 4πµe2φ

)

= − 1

4πb2

∫

∂Γ

√
γ̂n̂αφ∂αφ− 1

4πb2

∫

Γ

√
ĝ
(
−φ�̂φ+ R̂φ+ 4πµe2φ

)

= − 1

4πb2

∫

∂Γ

√
γ̂n̂αφ∂αφ− 1

4πb2

∫

Γ

√
ĝ

(
1

2
R̂φ+ 4πµe2φ(1− φ)

)

= − 1

4πb2

∫

∂Γ

√
γ̂n̂αφ∂αφ− µ

b2

∫

Γ

√
ĝ
(
−φ+ e2φ(1− φ)

)
(6.4)

here in the second line we have shifted the derivatives, while in the third line we have used

the equation of motion of φ field, �̂φ = 1
2R̂+ 4πµe2φ. In the last line we have substituted

the value of R̂ = −8πµ. The first boundary term in the last line combines with the

27Thermal AdS2 geometry is obtained simply by identifying the boundary time coordinate in (3.4) over

a period β.
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boundary term already present in (3.13). However, these terms are not important for our

analysis because they only contribute at O(δg3). We don’t have any leading contribution

coming from the δg modes from the bulk action,

Sbulk
L [φ̃, g̃αβ ] =

1

2b2
− β

4πb2 δ
− π δ

4b2 β
+O(δg3) (6.5)

As was the case with the previous Hydrodynamics calculation, all the divergent as well as

finite terms above are cancelled by subtraction of the thermal AdS2 partition function. This

is the standard prescription to regulate the partition function of the black hole geometries

(see [55]). Thus the bulk contribution starts only at O(δg3).

Boundary action. Computing the boundary terms of the action (3.13). Again, as ar-

gued above, the last term in (3.13) doesn’t contribute at leading order. The term containing

extrinsic curvature when evaluated on the boundary gives,

Sbdy
L [φ̃, g̃αβ ] =

δg

2b2 β
+

β δg

4π2b2 δ2
+O(δg2) (6.6)

In both the above expressions we have taken the boundary value of the δg(iτ̃) field to

be constant, as explained earlier, and have denoted it by δg. Again, the quadratically

divergent term is cancelled by inclusion of the counterterm discussed in (5.8).

One last piece that needs to be evaluated is the bulk term
∫ √

ĝR̂ 1
�̂
R̂ that depends only

on the background geometry. The Green’s function in hyperbolic spaces is a well studied

subject. In Green’s function can be evaluated by taking a limit of the ‘resolvent’ of the

Laplacian.28 The resolvent of the Laplacian on right half Poincare-plane, H, is given by,
(
−�̂z + 4πµs(s− 1)

)
RH(s; z, w) = 4πµδ(2)(z − w)

RH(s; z, w) =
1

4π

Γ(s)2

Γ(2s)

(
1 +

|z − w|2
4Re(z)Re(w)

)−s

2F1


s, s; 2s; 1

1 + |z−w|2

4Re(z)Re(w)


 (6.7)

Here, z, w are the complexified coordinates, z = ζ1+ iτ1 and w = ζ2+ iτ2. The s → 1 limit

of this function is,

G({ζ1, τ1}; {ζ2, τ2}) = − 1

4π
log

(
1− 4ζ1ζ2

(ζ1 + ζ2)2 + (τ1 − τ2)2

)
(6.8)

However, the above results are in H, while we are interested in solving the Green’s

function for the geometry in (6.2). The Green’s function can be obtained easily using the

coordinate transformations in (4.5) with the choice of function in (6.1). We get,

G=− 1

4π
log


1− 8π2β2ζ1ζ2

β4+π2β2
(
ζ21+4ζ1ζ2+ζ22

)
−(β2−π2ζ21 )(β

2−π2ζ22 )cos
(
2π(θ1−θ2)

β

)
+π4ζ21ζ

2
2




(6.9)

28A resolvent in defined as the classical Green’s function of the operator −� + 4πµs(s − 1). Thus the

required Green’s function is the s → 1 limit of the resolvent.
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With this Green’s function we solve the∫ √
ĝR̂

1

�̂
R̂ =

∫ √
ĝ(ζ1, τ1)

∫ √
ĝ(ζ2, τ2)R1G({ζ1, τ1}; {ζ2, τ2})R2

term for the geometry, (6.2). We get,
∫ √

ĝR̂
1

�̂
R̂ =

β

πb2δ
− 2

b2
log(β/δ) +

2 log(4π)− 3

b2
− πδ

3b2β
(6.10)

Again, the linearly divergent piece that appears above is cancelled by the contribution

coming from the thermal AdS2 partition function.29

Thus, the total action is

log(Z) = −βF = − 2

b2
log(β/δ) +

2 log(4π)− 3

b2
+

δg

2b2 β
+O(δg2) (6.11)

7 Comparison with field theory

In this section, we will make some remarks comparing our gravity dual we discussed above

and the SYK model.

7.1 Hydrodynamics and a double scaling

The gravity dual leads to the following low energy effective action

Shydro =
δg

2πb2

∫
dτ̃

{
f̃(τ̃), τ̃

}
(7.1)

while the SYK model has the following expression for the same quantity [1, 5]

Shydro = N
α(q)

J

∫
dτ

{
f̃(τ), τ

}
(7.2)

As we argued above, δg plays the role of the explicit symmetry breaking parameter 1/J

in the SYK model. Further, the classical limit in the bulk model corresponds to b → 0,

which, therefore corresponds to the limit N → ∞. Therefore, we identify these quantities

up to constants, thus:

1

b2
= c1N, δg = c2

1

J (7.3)

For the two hydrodynamic expressions above to match, we need to have c1c2 = α(q). A

q-dependence in the coefficients c1, c2 may appear strange; however, it may indicate the

existence of a double scaling in the theory. Note that at large q, α(q)a0/q
2 (a0=constant).

A possible choice of the coefficients is c1 = α(q), c2 = 1. In this case, we are essentially

identifying

1

b2
= a0N/q2, δg = c2

1

J (7.4)

Thus, if we take the limit N → ∞, and q2/N fixed (cf. [18] appendix B), the corresponding

scaled quantity corresponds to the bulk Newton’s constant:

q2/N = a0b
2

29It can be seen easily by doing a similar computation using the Green’s function, (B.12), on the thermal

AdS2 geometry as discussed in appendix B.
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7.2 Thermodynamics

At low temperatures, the bulk partition function is given by (6.11), with a divergence of

the form log(β/δ). With the logarithmically divergent term we might typically be left with

finite parts, say P0, after cancellation of the divergence. The low temperature partition

function will then be given by, ignoring subleading order terms in δg/δ,

log(Z) = −βF =
1

b2

[(
−2P0 +

4 log(4π)− 5

2

)
+

δg

2β
+O(δg2)

]
(7.5)

The corresponding expression in the SYK model is [5, 18, 19]

log(Z) = −βF = N

[
βJ 1

q2
+

1

2
log 2− π2

4q2
+

1

βJ
π2

2q2
+O

(
1

q4

)]
(7.6)

It is then possible that by suitably adjusting the finite part P0 and the constant c2 intro-

duced above, one can match the zero-temperature entropy and the low temperature specific

heat. The SYK zero-temperature entropy here does not seem to be universal; however, in

the double scaling limit mentioned above, the N/q2 term is universal.

A more detailed understanding of the low energy thermodynamics is clearly desirable

and is under investigation presently.

8 Discussion and open questions

In this work, we arrive at a proposal for a gravity dual of the low energy sector of SYK-type

models from symmetry considerations, more precisely from the fact that the coadjoint orbit

action of the Diff group is the Polyakov action (2.7). We solve the classical equations of

motion and find that the solutions are parametrized by a large diffeomorphism together with

a specific conformal factor (value of the Liouville mode) representing a non-normalizable

deformation. We compute the on-shell action which evaluates the classical contribution

to logZ. The computation leads to a Schwarzian action for the low energy hydrodynamic

modes and a specific heat which is linear at low temperatures. Thus, the low energy

behaviour of our proposed gravity dual reproduces that of SYK-type models.

We will end with some remarks about possible UV properties of the bulk dual. Recall

that in usual AdS/CFT, such as in the example ofN = 4 SYM theory on S3×R, states with

spin > 2 acquire very large anomalous dimensions γ ∼ (g2YMN)1/4 at strong coupling30 The

energy grows as E ∼ γ/RAdS and the corresponding bulk state is identified as a string state

with mass ms = (g2YMN)1/4/RAdS. This corresponds to the fact that the UV completion

of the gravity theory is string theory in AdS. In case of SYK-type models, the anomalous

dimensions of operators with spin higher than two, which form an approximately Regge

trajectory, remain O(1) even at strong coupling. From the point of the bulk dual, the usual

mass-dimension formula (which follows by using the relation between the AdS2 Laplacian

and Casimir of SL(2,R)) implies E ∼ ∆/RAdS (in our model, RAdS ∼ 1/
√
µ, see (3.2)). If

we wish to identify the ‘Reggeons’ with possible string states, this would imply that the

‘string length’ is of the same order as the AdS radius. It is not clear what such a dual

string theory of light strings is. On the other hand, the spectrum of these massive modes

30Primary operators with spin ≤ 2 retain O(1) anomalous dimensions. These correspond to spherical

harmonics of gravitons with E ∼ O(1)/RAdS.
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suggests that it may be possible to incorporate these states in our bulk dual by adding to the

Polyakov action (2.7) an infinite number of matter fields ηr minimally coupled to the metric

(see [24] for related ideas), with masses mr given in terms of the conformal dimensions ∆r.

In such a scenario, the Polyakov action (2.7) would still continue to represent the physics

of the ‘Nambu-Goldstone’ modes. The full action will have the structure

S = Scov[g] + Smatter[g, {ηr}] (8.1)

where Scov[g] is the Polyakov action, given by (2.7). The matter action

Smatter[g, {ηr}] =
1

2

∫

Γ

√
g

[∑

r

(
gαβ∂αηr∂βηr +m2

rη
2
r

)
+ . . .

]

=
1

2

∫

Γ

√
ĝ

[∑

r

(
ĝαβ∂αηr∂βηr +m2

re
2φη2r

)
+ . . .

]
(8.2)

where in the second step, we have used (4.7). Note that since the metric ĝ contains the

Nambu-Goldstone modes f (see (4.6)), the above action automatically incorporates a cou-

pling between these modes and the higher mass modes ηr; this fact plays an important

role in computing the chaotic growth of the out-of-time correlator. Using the action (8.1)

we can derive the exponentially growing behaviour of the out-of-time ordered 4-point func-

tions, 〈O(τ)O(0)O(τ)O(0)〉, which gives the Lyapunov exponent, 2π/β, consistent with

the bound on chaos derived in [26]. Note also the appearance of the Liouville factor in the

mass term (this is to be contrasted with proposed bulk duals based on Jackiw-Teitelboim

models, e.g. in [24]). This implies subleading correction to the mass term proportional to

1/J (see (4.7)). However, as shown in [5, 56] one doesn’t need to break the conformal sym-

metry explicitly to study the physics of these excited states. In fact, the 1/J corrections

for these states are truly subleading. The terms in the ellipsis above denote interaction

terms, which are suppressed in large N counting. Whether the procedure of incorporating

bulk fields outlined above can be consistently extended to an interacting level with local

interactions in the bulk, of course, remains an open question.
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A Some identities

For gαβ = e2φĝαβ

R = e−2φ
(
R̂− 2�̂φ

)
(A.1a)

� = e−2φ
�̂ (A.1b)

g := det(gαβ) = e4φĝ (A.1c)

nµ = eφn̂µ (A.1d)

nµ = e−φnµ (A.1e)

γ := det{γαβ} = e2φγ̂ (A.1f)

√
γK =

√
γ̂
(
K̂ + n̂µ∂µφ

)
(A.1g)

B Green’s function of Laplacian in AdS2

Green’s functions in hyperbolic spaces are well studied. Therefore, in this appendix, fol-

lowing [58], we only provide a quick review of some results that are important for this

paper. In the Poincare half plane, H, the Laplacian is given by,

�̂ = ζ2
(
∂2
ζ + ∂2

τ

)
(B.1)

We are interested in solving the Green’s function equation,

�̂G(~x, ~x′) = ζ2δ(2)(~x− ~x′) (B.2)

It is convenient to work with the coordinates, z = ζ + iτ, z̄ = ζ − iτ . Geodesic distances

between two points, z, z′, on H are given by,

d(z, z′) =
1√
4πµ

arccos

(
1 +

|z − z′|2
2Re[z] Re[z′]

)
(B.3)

Hyperbolic symmetry implies that the Green’s function depends only on the geodesic dis-

tance, G(z, z′) = f(d). Switching to geodesic polar coordinates centered around z′,

ds2 = dr2 + sinh2(2
√
πµ r)dθ2 (B.4)

In these coordinates, (B.2) becomes,
[

1

sinh
(
2
√
πµ r

) ∂r(sinh(2
√
πµ r)∂r)

]
f(r) =

δ(r)

sinh
(
2
√
πµ r

) (B.5)

We regulate the above equation by first solving the resolvent for the operator−�+4πµ s(s−
1), and then taking the limit, s → 1. Moreover, we first solve the homogeneous condition

and then impose an appropriate condition on the discontinuity of the resolvent at origin

to solve for the Green’s function. The solution to the regulated homogeneous equation,
[

1

sinh
(
2
√
πµ r

) ∂r(sinh(2
√
πµ r)∂r) + s(s− 1)

]
fs(r) = 0 (B.6)
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is given by,

fs(r) = a1Qs−1(cosh(2
√
πµ r)) + a2Ps−1(cosh(2

√
πµ r)) (B.7)

where, Ps, Qs are Legendre functions of first and second kind respectively, and a1, a2 are

some constant of integrations. To fix the normalization and the discontinuity at the origin,

we substitute (B.7) into (B.5) and integrate on both sides. This fixes the solution for the

resolvent to be,

fs(r)=− 1

2π
Qs−1(cosh(2

√
πµr))

Gs(z,z
′)=− 1

2π
Qs−1

(
1+

|z−z′|2
2Re[z]Re[z′]

)

=− Γ(s)2

4πΓ(2s)

(
1+

|z−z′|2
4Re[z]Re[z′]

)−s

2F1

(
s,s;2s;

(
1+

|z−z′|2
4Re[z]Re[z′]

)−1
)

(B.8)

Taking s → 1, the Green’s function is given by,

G(z, z′) =
1

4π
log

[
1−

(
1 +

|z − z′|2
4Re[z] Re[z′]

)−1
]

(B.9)

In terms of the ζ − τ coordinates, this is,

G({ζ1, τ1}, {ζ2, τ2}) =
1

4π
log

[
(ζ1 − ζ2)

2 + (τ1 − τ2)
2

(ζ1 + ζ2)
2 + (τ1 − τ2)

2

]
(B.10)

The Green’s function is quite instructive in this form. It is same as the flat space Green’s

function in 2-dimensions with an additional contribution coming from the ‘mirror charge’

at {−ζ2, τ2}. This is not surprising because AdS2 is Weyl scaled flat metric and hence has

the same Green’s function up to imposition of boundary conditions.

B.1 Green’s function for thermal AdS2

Thermal AdS2 is defined by periodic identification of τ coordinate over a length β. Thus

the metric remains same as pure AdS2 and so does the Laplacian given in (B.1). However,

now the Green’s function should be invariant under the shift ∆τ = τ1 − τ2 → ∆τ + nβ,

with n ∈ Z. This can be achieved by taking using the method of images,

Gthermal({ζ1, τ1}, {ζ2, τ2}) =
1

4π

∞∑

n=−∞

log

[
(ζ1 − ζ2)

2 + (∆τ + nβ)2

(ζ1 + ζ2)
2 + (∆τ + nβ)2

]
(B.11)

This sum can be computed explicitly,

Gthermal({ζ1, τ1}, {ζ2, τ2}) =
1

4π
log



cosh

(
2π(ζ1−ζ2)

β

)
− cos

(
2π∆τ

β

)

cosh
(
2π(ζ1+ζ2)

β

)
− cos

(
2π∆τ

β

)


 (B.12)

This Green’s function was used in the computations of the partition function in section 6

which was then subtracted from the partition function in black hole geometries discussed

in that section.
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C Variation of the induced gravity (Polyakov) action

In this appendix we will study the exact variation of the Polyakov action, (2.7). We haven’t

found a discussion of these covariant equations of motion anywhere in literature, we think

that it might have been worked out personally, they haven’t been presented in published

form. Since the action is non-local, so are the equations of motion.31 While we won’t be

solving the equations in full generality, we show,

1. That the diagonal part of the equations of motion are the same as the one we obtain

for the Liouville mode, φ, in conformal gauge. These is the equation of motion that

one obtains for Liouville field theory with a background metric, ĝ.

2. AdS2 and AAdS2 geometries that we have discussed in the paper satisfy the equations

of motion.

3. The most general solutions ([45, 46]) of the Liouville mode, φ, in AdS2 background,

φ =
1

2
log

[
(z + z̄)2

∂g(z)∂̄ḡ(z̄)

(g(z) + ḡ(z̄))2

]

obtain further constraints from the equations of motion. That is not surprising

because the above solutions were obtained from solving only the Liouville equation.

This also bodes well with the degree of freedom counting in 2d theory of gravity.

These constraints force the solutions of g(z), ḡ(z̄) to be SL(2,C) transformations

of complex plane, (3.8). However, the boundary conditions reduce it to SL(2,R)

transformations, which are the isometries of the geometries that we are interested in.

The remaining solutions that don’t satisfy the boundary conditions are what we call

non-normalizable solutions.

4. This exercise also justifies the boundary terms that we have introduced in (2.7) that

we have argued are required for a well defined variational principle.

We use following notations to avoid clutter in the forthcoming equations:

∫ x

Γ
≡

∫

Γ
d2x

√
g(x) (C.1a)

∫ s

∂Γ
≡

∫

∂Γ
ds
√
γ(s) where s is the boundary coordinate (C.1b)

G(x, y) is the Green’s function of the Laplacian satisfying, �(x)G(x, y) =
δ2(x− y)√

g(x)

(C.1c)

∇(x)
µ denotes the covariant derivative with respect to variable x (C.1d)

31This also makes this section pretty ugly in terms of the equations.
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Bulk term. We start with varying the bulk term in (2.7).

δSbulk
cov [g]

=
1

16πb2

∫

Γ

δ

(√
g

[
R

1

�
R−16πµ

])

=
1

16πb2

∫

Γ

d2x

∫

Γ

d2y δ
[√

g(x)
√

g(y)R(x)G(x,y)R(y)
]
+

1

16πb2

∫

Γ

d2x δ
[√

g(x)
]
(−16πµ)

=
1

16πb2

∫

Γ

d2x

∫

Γ

d2y
(
2δ

[√
g(x)R(x)

]√
g(y)R(y)G(x,y)+

√
g(x)R(x)

√
g(y)R(y) δ[G(x,y)]

)

+
1

16πb2

∫

Γ

d2x δ
[√

g(x)
]
(−16πµ)

Here, in the last equation on r.h.s. we have used the symmetry of Green’s function in x− y

coordinates to multiply the first term by 2. In the above equation, the first and last term

are very easy to compute while the second term is slightly more non-trivial. The variations

of the Ricci scalar and metric determinant are:

δ
[√

g(x)
]
= −1

2

√
g(x)gµν(x)δg

µν(x)

δ[R(x)] = Rµνδg
µν +∇µv

µ

where, vσ = gµν∇σ(δgµν)−∇α(δg
ασ)

Henceforth, we are dropping the overall factor of 1/16πb2 and will reinstate it at the end.

δSbulk
cov [g] = 2

∫ x

Γ

∫ y

Γ

(
Rµν(x)−

1

2
gµν(x)R(x)

)
δgµν(x)R(y)G(x,y)+2

∫ x

Γ

∫ y

Γ

∇(x)
µ vµR(y)G(x,y)

+

∫ x

Γ

∫ y

Γ

R(x)R(y) δ[G(x,y)]+

∫ x

Γ

8πµ gµν(x)δg
µν(x)

= 2

∫ x

Γ

∫ y

Γ

∇(x)
σ

[
gµν(x)∇σ

(x)(δg
µν(x))−∇(x)

α (δgασ(x))
]
R(y)G(x,y)

+

∫ x

Γ

∫ y

Γ

R(x)R(y) δ[G(x,y)]+

∫ x

Γ

8πµ gµν(x)δg
µν(x)

where, in the second line we have dropped the term containing Einstein tensor which is

identically zero in 2 dimensions. Subsequently, we integrate by parts, keeping track of all

the boundary terms that we pick in the process.

δSbulk
cov [g] =−2

∫ x

Γ

∫ y

Γ

[
∇σ

(x)(gµν(x)δg
µν(x))−∇(x)

α (δgασ(x))
]
R(y)∇(x)

σ G(x,y)

+2

∫ y

Γ

∫ x

Γ

∇(x)
σ [vσ(x)R(y)G(x,y)]+

∫ x

Γ

∫ y

Γ

R(x)R(y) δ[G(x,y)]+

∫ x

Γ

8πµ gµν(x)δg
µν(x)

=−2

∫ x

Γ

∫ y

Γ

[
∇σ

(x)(gµν(x)δg
µν(x))−∇(x)

α (δgασ(x))
]
R(y)∇(x)

σ G(x,y)

+2

∫ y

Γ

∫ s

∂Γ

n̂σ(s)v
σ(s)R(y)G(x,y)+

∫ x

Γ

∫ y

Γ

R(x)R(y) δ[G(x,y)]+

∫ x

Γ

8πµ gµν(x)δg
µν(x)

=−4

∫ y

Γ

∫ s

∂Γ

δKR(y)G(x,y)−2

∫ x

Γ

∫ y

Γ

∇σ
(x)

(
gµν(x)δg

µν(x)R(y)∇(x)
σ G(x,y)

)

+

∫ x

Γ

gµν(x)δg
µν(x)

(
2R(x)+8πµ

)
+2

∫ x

Γ

∫ y

Γ

∇(x)
α

(
δgασ(x)R(y)∇(x)

σ G(x,y)
)

−2

∫ x

Γ

∫ y

Γ

δgασ(x)∇(x)
α ∇(x)

σ G(x,y)R(y)+

∫ x

Γ

∫ y

Γ

R(x)R(y) δ[G(x,y)] (C.2)
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in the second line on r.h.s. , we have used the Gauss’s law to make the bulk integral into a

surface integral. The first term in the second line is also the term that needs to be cancelled

because it involves derivatives of variation of metric. Using n̂σvσ = −2δK, one can clearly

see that this term is cancelled by the variation of second term in (2.7). In the third line, we

have used integration by parts in the second term of the second line. We have obtained two

boundary terms in the process (2nd and 4th term in the third line), both of which involve

variation of the metric on the boundary, and under Dirichlet boundary condition, are zero.

They will be dropped from here onwards.

δSbulk
cov [g] =−4

∫ y

Γ

∫ s

∂Γ
δKR(y)G(x,y)+

∫ x

Γ
gµν(x)δg

µν(x)
(
2R(x)+8πµ

)

−2

∫ x

Γ

∫ y

Γ
δgασ(x)∇(x)

α ∇(x)
σ G(x,y)R(y)+

∫ x

Γ

∫ y

Γ
R(x)R(y) δ[G(x,y)]

(C.3)

Now we embark upon the computation of δ[G(x, y)]. The Green’s function in a curved

background is defined in a covariant manner by (C.1c). Varying this equation with respect

to metric,

δ�(x)G(x,y)+�
(x)δG(x,y)=

1

2
√
g(x)

gµν(x)δg
µν(x) δ2(x−y)

δG(x,y)=
1

2
gµν(y)δg

µν(y)G(x,y)−
∫ w

Γ
G(x,w)δ�(w)G(w,y)

(C.4)

Here in the second line we have integrated both sides with a Green’s function. The action

of Laplacian on a scalar is also given by, �(x)f(x) = 1√
g(x)

∂µ

(√
g(x)gµν(x)∂νf(x)

)
. Thus

the variation of the � operator is,

δ�(x) f(x)=
1

2
gµν(x)δg

µν(x)�(x)f(x)− 1

2
√

g(x)
∂µ

(√
g(x)gρσ(x)δg

ρσ(x)gµν(x)∂νf(x)
)

+
1√
g(x)

∂µ

(√
g(x)δgµν(x)∂νf(x)

)

=−1

2
gµν(x)∂νf(x)∇µ

(
gρσ(x)δg

ρσ(x)
)
+

1√
g(x)

∂µ

(√
g(x)δgµν(x)∂νf(x)

)

=−1

2
gµν(x)∂νf(x)∇µ

(
gρσ(x)δg

ρσ(x)
)
+∂µ(δg

µν(x)) ∂νf(x)+δgµν(x) ∂µ∂νf(x)

+
1

2g(x)
∂µ(g(x)) δg

µν(x)∂νf(x)

=−1

2
gµν(x)∂νf(x)∇µ

(
gρσ(x)δg

ρσ(x)
)
+∂µ(δg

µν(x)) ∂νf(x)+δgµν(x) ∂µ∂νf(x)

+Γσ
µσ δg

µν(x)∂νf(x)

⇒ δ�(x) f(x)=−1

2
gµν(x)∂νf(x)∇µ

(
gρσ(x)δg

ρσ(x)
)
+∇µ(δg

µν(x)) ∂νf(x)+δgµν(x)∇µ∂νf(x)

(C.5)

We have used chain rule of differentiation to come from the first line on r.h.s. to the

second line. We have also changed the normal derivative acting on gρσ(x)δg
ρσ(x) into a

covariant derivative because it is a scalar. In the fourth line we have used the identity,

∂µg(x) = 2g(x)Γν
µν . We have also converted some of the differentiations into covariant
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derivatives in last line. For our computations, the role of f in the above computations is

played by,
∫ y
Γ

√
g(y)R(y)G(w, y). Using (C.5) in (C.4) and substituting back into last term

of (C.3),

∫ x

Γ

∫ y

Γ
R(x)R(y) δ[G(x, y)]

=

∫ x

Γ

∫ y

Γ
R(x)R(y)

[
1

2
gµν(y)δg

µν(y) G(x, y)−
∫ w

Γ
G(x,w)δ�(w)G(w, y)

]

=
1

2

∫ x

Γ

∫ y

Γ
R(x)R(y)gµν(y)δg

µν(y) G(x, y)

+
1

2

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)G(x,w)

[
gµν(w)

∂

∂wν
G(w, y) ∇w

µ

(
gρσ(w)δg

ρσ(w)
)

− 2∇w
µ (δg

µν(w))
∂

∂wν
G(w, y)− 2δgµν(w) ∇w

µ

∂

∂wν
G(w, y)

]

=
1

2

∫ x

Γ

∫ y

Γ
R(x)R(y)gµν(y)δg

µν(y) G(x, y)

− 1

2

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)

[
G(x,w) �(w)G(w, y) gρσ(w)δg

ρσ(w)
]

− 1

2

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)

[
gρσ(w) g

µν(w)
∂

∂wµ
G(x,w)

∂

∂wν
G(w, y)

]
δgρσ(w)

+
1

2

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)∇w

µ

[
G(x,w)gµν(w)

∂

∂wν
G(w, y) gρσ(w)δg

ρσ(w)

]

−
∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)∇w

µ

[
G(x,w)δgµν(w)

∂

∂wν
G(w, y)

]

+

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)

[
∇w

µG(x,w)δgµν(w)
∂

∂wν
G(w, y)

]

+

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)G(x,w) δgµν(w) ∇w

µ

∂

∂wν
G(w, y)

−
∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)G(x,w)δgµν(w) ∇w

µ

∂

∂wν
G(w, y)

in the third line on r.h.s. , the first two terms cancel between themselves, while the last

two terms also cancel between themselves. The fourth and the fifth terms are total deriva-

tive terms that are essentially some boundary terms. These terms vanish since we are

working with Dirichlet boundary conditions such that the Green’s function vanishes on the

boundary.

∫ x

Γ

∫ y

Γ
R(x)R(y) δ[G(x,y)] (C.6)

=

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)

[
∂G(w,x)

∂wµ

∂G(w,y)

∂wµ
− 1

2
gµν(w)g

αβ(w)
∂G(w,x)

∂wα

∂G(w,y)

∂wβ

]
δgµν(w)

– 29 –



J
H
E
P
1
1
(
2
0
1
7
)
0
4
6

Thus, the final expression of the variation of the bulk action is (with the reinstating of the

overall 1
16πb2

factor),

δSbulk
cov [g] =− 1

4πb2

∫ y

Γ

∫ s

∂Γ
δKR(y)G(x,y)+

1

16πb2

∫ x

Γ
gµν(w)δg

µν(w)
(
2R(w)+8πµ

)

− 1

8πb2

∫ x

Γ

∫ y

Γ
δgασ(w)∇(w)

α ∇(w)
σ G(w,y)R(y)

+
1

16πb2

∫ x

Γ

∫ y

Γ

∫ w

Γ
R(x)R(y)

×
[
∂G(w,x)

∂wµ

∂G(w,y)

∂wµ
− 1

2
gµν(w)g

αβ(w)
∂G(w,x)

∂wα

∂G(w,y)

∂wβ

]
δgµν(w) (C.7)

The bulk equations of motion are non local and given by:

0=
1

16πb2

(
gµν(w)

(
2R(w)+8πµ

)
+

∫ x

Γ

[
−2∇(w)

µ ∇(w)
ν G(w,x)R(x)

]

+

∫ x

Γ

∫ y

Γ

[
∂G(w,x)

∂wµ

∂G(w,y)

∂wµ
− 1

2
gµν(w)g

αβ(w)
∂G(w,x)

∂wα

∂G(w,y)

∂wβ

]
R(x)R(y)

) (C.8)

Now let us look at the trace part of the equations of motion. The last term in the above

equation doesn’t contribute in that case.

0 =

(
2[2R(w) + 8πµ] +

∫ x

Γ

[
−2�(w)G(w, x)R(x)

])

= R(w) + 8πµ

(C.9)

In conformal gauge, where gµν(x) = e2φ(x)ĝµν(x), this is same as, (3.5),

R̂(x)− 2�̂φ(x) = −8πµe2φ(x) (C.10)

which is also the equation of motion for the Liouville mode φ with background metric ĝ. In

AdS2 background (dŝ2 =
(
1/πµ(z + z̄)2

)
dz dz̄), the most general solution of this equation

is, [45, 46],

φ =
1

2
log

[
(z + z̄)2

∂g(z)∂̄ḡ(z̄)

(g(z) + ḡ(z̄))2

]
(C.11)

where, in Euclidean space, g(z), ḡ(z̄) are complex function which are complex conjugate of

each other. Equivalently, in Lorentzian space, they can be chosen to be two independent

real functions.

Solving (C.8) in full generality is a daunting task that we don’t undertake. We show

that AdS2 satisfies these equations of motion, and also provide an argument that AAdS2
geometries satisfy them too. Traceless part of (C.8) is,

0=

∫ x

Γ

[
−2

(
∇(w)

µ ∇(w)
ν G(w,x)− 1

2
gµν(w)�

(w)G(w,x)

)
R(x)

]

+

∫ x

Γ

∫ y

Γ

[
∂G(w,x)

∂wµ

∂G(w,y)

∂wµ
− 1

2
gµν(w)g

αβ(w)
∂G(w,x)

∂wα

∂G(w,y)

∂wβ

]
R(x)R(y)

(C.12)
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One way to check that AdS2 satisfies the on-shell equations of motion is to directly use

the (B.9) in the above expression and do the exact computation. However, it is much

easier if we think of AdS2 as Weyl scaling of flat space, gAdS
αβ = e2Ωηαβ , where for H,

Ω = − log
(√

πµ(z + z̄)
)
= − log

(√
4πµζ

)
. We use the formula for Ricci scalar, R(x) =

−2e−2Ω
�flatΩ(x) to write (C.12) as,

0= 4

∫

Γ
d2xe2Ω

[(
∇(w)

µ ∇(w)
ν G(w,x)− 1

2
gµν(w)�

(w)G(w,x)

)(
e−2Ω

�
(x)
flatΩ(x)

)]

+4

∫

Γ
d2x

∫

Γ
d2ye2Ω(x)e2Ω(y)

[
∂G(w,x)

∂wµ

∂G(w,y)

∂wµ
− 1

2
gµν(w)g

αβ(w)
∂G(w,x)

∂wα

∂G(w,y)

∂wβ

]

×
(
e−2Ω(x)

�
(x)
flatΩ(x)

)(
e−2Ω(y)

�
(y)
flatΩ(y)

)

=4

∫

Γ
d2x

[(
∇(w)

µ ∇(w)
ν �

(x)
flatG(w,x)− 1

2
gµν(w)�

(w)
�

(x)
flatG(w,x)

)
Ω(x)

]

+4

∫

Γ
d2x

∫

Γ
d2y



∂
(
�

(x)
flatG(w,x)

)

∂wµ

∂
(
�

(y)
flatG(w,y)

)

∂wµ

− 1

2
gµν(w)g

αβ(w)
∂
(
�

(x)
flatG(w,x)

)

∂wα

∂
(
�

(y)
flatG(w,y)

)

∂wβ


×Ω(x)Ω(y)

= 4

[
∇(x)

µ ∇(x)
ν Ω(x)− 1

2
gµν(w)�

(w)Ω(x)

]
+4

[
∂Ω(x)

∂wµ

∂Ω(y)

∂wµ
− 1

2
gµν(x)g

αβ(x)
∂Ω(x)

∂xα
∂Ω(y)

∂xβ

]

=0 (C.13)

In the second line we have used integration by parts to shift �flat on the corresponding

Green’s functions; we have dropped the vanishing boundary terms on our way. We also use

the fact discussed at the end of appendix B, that the Green’s function remain unchanged

for the Weyl scaled metrics, upto impositions of boundary condition. In this case the

boundary condition, G({ζ,τ}, {0, τ2}) = 0, is imposed by adding a contribution of a ‘mirror

charge’ at a point reflected across the boundary. Thus the flat space Laplacian acting on

this Green’s function gives two δ-functions, one each for the ‘original charge’ and ‘mirror

charge’.32 The δ-function of the mirror charge lies outside the region of integration and

hence doesn’t contribute.

The equations of motion (C.10), (C.12) are covariant equations under diffeomorphisms.

Thus they will also be satisfied for the class of geometries that we constructed in section 4.

We can still do slightly better and solve the equations of motion for Weyl scaled met-

rics around a given background. Around AdS2 background, from (C.12) we get following

Virasoro constraints for φ,

4




∂2φ(z, z̄)−(∂φ(z, z̄))2+2
∂φ(z, z̄)

z + z̄
0

0 ∂̄2φ(z, z̄)−
(
∂̄φ(z, z̄)

)2
+2

∂̄φ(z, z̄)

z + z̄


= 0 (C.14)

32The δ-function is a flat space δ-function.
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Solving (C.10) and (C.14) simultaneously, we get solutions of the type (C.11), but with

g, ḡ additionally restricted by the conditions,

0 =




2

(
g(3)(z)

g′(z)
− 3

2

g′′(z)2

g′(z)2

)
0

0 2

(
ḡ(3)(z)

ḡ′(z)
− 3

2

ḡ′′(z)2

ḡ′(z)2

)




(C.15)

which is basically the Schwarzian derivatives of g(z) and ḡ(z̄). This restricts g(z) to be of

the form,

g(z) =
az + ib

icz + d
(C.16)

for a, b, c, d ∈ C, and ḡ(z̄) is its complex conjugate. Imposing the boundary condition,

g(z) + ḡ(z̄)|z+z̄=0 = 0 further restricts a, b, c, d ∈ R. These precisely corresponds to the

isometries of the geometries that we are considering. However, more general choice of these

parameters gives us solutions that we call non-normalizable in this paper. These solutions

diverge as 1/ζ for small deviations around identity,

a = 1 + δa

b = δb

c = δc

d = 1− δa

(C.17)

Boundary term. A similar analysis for the variation of boundary terms in (2.7) gives,

δSbdy
cov [g] =

1

16πb2

∫

Γ
δ

(
4
√
γK 1

�
R

)

=
1

4πb2

∫ x

Γ

∫ s

∂Γ
δK(s) G(x, s)R(x)− 1

4πb2

∫ x

Γ

∫ s

∂Γ
δgµν(x)

[
∇(x)

µ ∇(x)
ν G(x, s)K(s)

]

+
1

4πb2

∫ s

∂Γ

∫ x

Γ

∫ w

Γ
δgµν(w)

×
[
∂G(w, x)

∂wµ

∂G(w, s)

∂wµ
− 1

2
gµν(w)g

αβ(w)
∂G(w, x)

∂wα

∂G(w, s)

∂wβ

]
K(s)R(x)

− 1

2πb2

∫ s

∂Γ

∫ s′

∂Γ
δK(s)G(s, s′)K(s′) (C.18)

Note that the first term in r.h.s. of (C.18) exactly cancels the last term in r.h.s. of (C.2).

Moreover, the last term in (C.18) exactly cancels the variation arising from the last term

in (2.7). Also in writing the above expressions we have made use of the fact that we are

imposing Dirichlet boundary conditions on the metric, δgµν |∂Γ = 0

D Analysing off-shell constraints

In this section we demonstrate that the constraints coming from the traceless part of the

equations of motion in the conformal gauge, viz. the ‘Virasoro constraints’ (3.7), do not

permit any off-shell degrees of freedom apart from those representing large diffeomorphisms

of AdS2 geometry.
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It is enough to carry out this analysis in absence of the large diffeomorphisms, with

d̂s2 as in (3.4). The generalization to (4.6) is obtained by applying the large diffeomor-

phism (4.5), in the manner explained in section 4.

Simplifying the holomorphic part of the constraints,

∂2φ(z, z̄)− (∂φ(z, z̄))2 + 2
∂φ(z, z̄)

z + z̄
= 0

⇒ ∂
(
(z + z̄)2 ∂

(
e−φ(z,z̄)

))
= 0 (D.1)

⇒ ∂
(
e−φ(z,z̄)

)
=

A(z̄)

(z + z̄)2

⇒ e−φ(z,z̄) = − A(z̄)

(z + z̄)
+B(z̄) (D.2)

Similarly, solving the anti-holomorphic part gives,

e−φ(z,z̄) = − C(z)

(z + z̄)
+D(z) (D.3)

In the above equations, the functions A,B,C,D are arbitrary and independent, to begin

with, as they appear as “constants’ of integration. However, they must satisfy the require-

ment that the two expressions (D.2) and (D.3) for the same quantity e−φ(z,z̄) must be (i)

equal to each other and (ii) real. Assuming a general power series form of each of the

functions, we find that these two requirements can only be met if A,C are quadratic and

B,D are linear, and, in particular, of the form

A(z̄) = az̄2 + 2ibz̄ + c, B(z̄) = az̄ + d+ ib

C(z) = az2 − 2ibz + c, D(z) = az + d− ib,
(D.4)

leading to the following solution for the Liouville field,

e−φ(z,z̄) =
azz̄ + (d+ ib)z + (d− ib)z̄ − c

z + z̄

⇒ φ(z, z̄) =
1

2
log

[
(z + z̄)2

(azz̄ + (d+ ib)z + (d− ib)z̄ − c)2

]
(D.5)

Here the constants a,b, c,d are real. Out of these four, only three are physical. The reason

is that the Virasoro constraints, expressed as in (D.1) (and the similar, antiholomorphic

equation) are homogeneous linear equations in the variable e−φ(z,z̄), which implies that

e−φ(z,z̄) → constant×e−φ(z,z̄) is a symmetry of the equations. Hence, the constants a,b, c,d

are only determined up to a (real) scale factor.

It is important to check that the solution (D.5) of the Virasoro constraints satisfies the

equation of motion (3.5). This can be done in two ways:

(i) By direct substitution of (D.5) into (3.5), we find that (3.5) is satisfied up to a term

proportional to ac + (d + ib)(d − ib) − 1. By using the scale symmetry mentioned

above, we can clearly make this vanish, e.g. by treating a,b and d as independent vari-

ables and fixing c = (1− (d+ ib)(d− ib)) /a (this is equivalent to choosing a gauge).
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(ii) Alternatively, one can match (D.5) with the solution (3.6). We find that the param-

eters of the two solutions are related as follows

āc− ac̄ = −ia, b̄d− bd̄ = −ic, b̄c+ ad̄ = d− ib (D.6)

The SL(2,C) conditions ad+ bc = 1 translate to the condition

ac+ (d+ ib)(d− ib) = 1, (D.7)

As mentioned before, on this surface (D.5) solves the equation of motion (3.5). Further-

more, in the analysis of (3.6), we found that the SL(2,R) subgroup, parameterized by

real values of a, b, c, d, correspond to trivial isometries of AdS2, and did not generate a

new solution; there is a natural interpretation of this fact according to (D.6): real a, b, c, d

translate to a = b = c = 0, d = 1, leading to the trivial solution φ = 0. Thus the variables

a,b, c,d, given by (D.6) actually parameterize the nontrivial coset SL(2,C)/SL(2,R). In

fact, the hyperboloid (D.7) parameterizes this coset.

As mentioned before, the above analysis can be generalized to the case of the reference

metric (4.6) by applying the large diffeomorphism (4.5) to the solution (D.5).

Conclusion. The Virasoro constraints completely fix the Liouville field φ (up to three

real constants). As explained in the text (see section 4), the three constants need to be fixed

as boundary conditions for the path integral (since they correspond to non-normalizable

deformations). Thus, there are no off-shell variables (i.e. variables appearing in the path

integration) that come from the Liouville field φ. The only off-shell variables are represented

by the large diffeomorphisms as in (4.9).

E Exact computation of asymptotic AdS2 geometries

We use the knowledge of exact asymptotically AdS3 geometries to construct AAdS2 ge-

ometries. In AdS3 the space of solutions of spacetimes with constant negative curvature is

given by, [51, 52],

ds2 = L2
(AdS3)

(
dζ2 + 2dxdx̄

ζ2
+ L(x)dx2 + L̄(x̄)dx̄2 − ζ2

2
L(x)L̄(x̄)dxdx̄

)
(E.1)

where, L(x), L̄(x̄) are holomorphic and anti-holomorphic functions, and related to the

holographic stress tensor, [59]. In the above references it is discussed how following large

diffeomorphisms generate the above class of geometries from the Poincare AdS3 geometry

(ds2 = L2
(AdS3)

(du2 + 2dydȳ)/u2),

y = f(x) +
2ζ2f ′(x)2f̄ ′′(x̄)

8f ′(x)f̄ ′(x̄)− ζ2f ′′(x)f̄ ′′(x̄)

y = f̄(x̄) +
2ζ2f̄ ′(x̄)2f ′′(x)

8f ′(x)f̄ ′(x̄)− ζ2f ′′(x)f̄ ′′(x̄)

u = ζ

(
4f ′(x)f̄ ′(x̄)

)3/2

8f ′(x)f̄ ′(x̄)− ζ2f ′′(x)f̄ ′′(x̄)

(E.2)
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In general, in any arbitrary dimensions, it is not difficult to solve for the asymptotic

Killing vectors for any spacetime. The special feature of AdS3 is the fact that these

infinitesimal diffeomorphisms can be integrated to non-linear order. AdS2 being a more

constrained geometry, also enjoys this same feature. Here, we use the known results of

the exact non-linear diffeomorphisms in AdS3 to construct the class of asymptotic AdS2
solutions. In Cartesian coordinates, y = (x + iτ)/

√
2, ȳ = (x − iτ)/

√
2, one can obtain

AdS2 as a reduction of AdS3 b y restricting to x = 0 slice. Restricting ourselves to those

transformations that keeps this AdS2 slice invariant, i.e., for f(x) + f̄(x̄)|x+x̄=0 = 0, we

find that the following coordinate transformations are precisely those which generate large

diffeomorphisms in AdS2, (4.5), while keeping us within Fefferman-Graham gauge,

τ̃ = f(τ)− 2ζ2f ′′(τ)f ′(τ)2

4f ′(τ)2 + ζ2f ′′(τ)2
, ζ̃ =

4 ζf ′(τ)3

4f ′(τ)2 + ζ2f ′′(τ)2

These transformations map the AdS2 metrics, ds2 = (dζ̃2 + dτ̃2)/(4πµ ζ̃2) to AAdS2 ge-

ometries, ds2 =

(
dζ2 +

(
1− ζ2

2 {f(τ), τ}
)2

dτ2
)
/(4πµ ζ2).

F Quantum corrections to the classical action

In this section we discuss the issue of gauge fixing the action (2.7). The idea and Faddeev-

Popov procedure to arrive at the same: we introduce a functional delta-function in our

path integral using the Faddeev-Popov prescription. The corresponding determinant is

then written in terms of fermionic ghosts, which gives rise to new ghost-graviton interaction

vertices.33

The Faddeev-Popov determinant is defined in terms of the gauge-fixing δ-function as

follows,

1 = ∆FP

[
ĝ[f(τ)], φ

]
×
∫

[Dǫ(s)][Dφ][Df(τ)] δ
(
gǫ

(s) − e2φĝ[f(τ)]
)

× δ
(
ǫ(s)(z1)

)
δ
(
ǫ(s)(z2)

)
δ
(
ǫ(s)(z3)

)
(F.1)

Here, we are denoting the small diffeomorphisms (these are the gauge-symmetry of the

theory) by ǫ(s). In the subsequent discussion we will drop the (s) superscript to conciseness.

φ denotes the Weyl degree of freedom and will eventually become the Liouville mode. Since

our theory is not Weyl-invariant, unlike in String theory, we don’t factor out these degrees

of freedom. Finally, f(τ) denotes the degree of freedom due to large diffeomorphisms

that is discussed in section 4. We are gauge fixing (using only small diffeomorphisms)

an arbitrary metric to a metric that is Weyl equivalent to metrics (4.6). This procedure

will give us the Jacobian corresponding to change of integration ‘variable’ from [Dg] to

[Dφ][Df(τ)]. The δ-functions have been included in the above expression to fix the residual

gauge symmetry corresponding to our gauge choice. This is precisely the SL(2,R) isometry

of the geometries (4.6), and hence we choose to fix three arbitrary points in the interior

33In the subsequent discussion in this particular appendix, we call the f degree of freedom of section 4

corresponding to large diffeomorphisms of AdS2 as ‘gravitons’.
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of AAdS2 geometries. The path integral that we are interested in computing is formally

written as,

Z =

∫
[Dg]

Vǫ
e−S[g], Vǫ is the volume of the symmetry group

and inserting (F.1) into this path integral, we get,

Z =

∫
[Dg][Dǫ][Dφ][Df(τ)]

Vǫ
×∆FP

[
ĝ[f(τ)],φ

]
δ
(
gǫ−e2φĝ[f(τ)]

)
×e−S[g]×(δ-functions)

=

∫
[Dg̃][Dǫ][Dφ][Df(τ)]

Vǫ
×∆FP

[
ĝ[f(τ)],φ

]
δ
(
g̃−e2φĝ[f(τ)]

)
×e−S[g̃]×(δ-functions)

=

∫
[Dǫ][Dφ][Df(τ)]

Vǫ
×∆FP

[
ĝ[f(τ)],φ

]
×e−S[e2φĝ[f(τ)]]×(δ-functions)

=

∫
[Dφ][Df(τ)]×∆FP

[
ĝ[f(τ)],φ

]
×e−S[e2φĝ[f(τ)]]×(δ-functions) (F.2)

In the second line on r.h.s. , we have changed integration ‘variables’ from Dg to Dg̃, where,

g =: g̃ǫ
−1

and used the fact that action and measure are both gauge invariant. In the third

line we have integrated over the metric degrees of freedom using the δ-function. In the last

line we have used the fact that the integrand of third line doesn’t depend on ǫ anymore,

integration over which simply gives us the volume of the symmetry group.

Faddeev Popov determinant can be easily written in terms of the b and c ghosts as,

∆FP

[
ĝ[f(τ)], φ

]
=

∫
Dcα Dbαβ Dfα exp

[
−
(
bαβ(P̂ c)αβ − bαβ(P̂ f)αβ

)]

×
[

c(z1)c(z2)c(z3)

(z1 − z2)(z2 − z3)(z3 − z1)

]
(F.3)

here, c-insertions are equivalent to the δ-functions appearing in the previous expressions.

bαβ is a symmetric-traceless tensor, and thus has only 2 degrees of freedom. We have

defined operator P̂ such that,

(P̂ x)αβ := (f)∇(αxβ) − ((f)∇ · x) ĝ[f(τ)]αβ
(f)∇ is the covariant derivative w.r.t. geometries in (4.6). f is defined in terms of the

fermionized large diffeomorphisms (4.4) as,

f =
(

ζ k′(τ)
k(τ)− ζ2

2 k
′′(τ)

)

where again, k are the fermionized ghost counter-part of the field appearing in (4.4). The

above action can be expanded and written in terms of the components:

P̂ f=




1

({f(τ),τ}ζ2−2)3

[
−2ζ4 ∂τ

(
{f(τ),τ}

)
k
′′(τ)

+4ζ2 ∂τ

(
{f(τ),τ}

)
k(τ)+2ζ2 ({f(τ),τ}ζ2−2)k(3)(τ)

+({f(τ),τ}ζ2−2)({f(τ),τ}({f(τ),τ}ζ2−8)ζ2+8)k′(τ)
]

(ζ2{f(τ),τ}+2)(ζ2
k
′′(τ)−2k(τ))

ζ(ζ2{f(τ),τ}−2)

(ζ2{f(τ),τ}+2)(ζ2
k
′′(τ)−2k(τ))

ζ(ζ2{f(τ),τ}−2)

1
4{f(τ),τ}ζ2−8

[
16k′(τ)+2ζ4∂τ

(
{f(τ),τ}

)
k
′′(τ)

−ζ2{f(τ),τ}({f(τ),τ}ζ2−6)({f(τ),τ}ζ2−4)k′(τ)

−4ζ2∂τ

(
{f(τ),τ}

)
k(τ)−2ζ2({f(τ),τ}ζ2−2)k(3)(τ)

]




(F.4)
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P̂ c=




1

ζ({f(τ),τ}ζ2−2)3

[
4ζ3 ∂τ

(
{f(τ),τ}

)
cτ (ζ,τ)

−4ζ ({f(τ),τ}ζ2−2)c(0,1)τ (ζ,τ)

+ζ ({f(τ),τ}ζ2−2)
3
c
(1,0)
ζ

(ζ,τ)

−4({f(τ),τ}ζ2−2)
2
cζ(ζ,τ)

]

(

c
(0,1)
ζ

(ζ,τ)+c(1,0)τ (ζ,τ)
)

−2
(ζ2{f(τ),τ}+2)cτ (ζ,τ)

ζ(ζ2{f(τ),τ}−2)

(

c
(0,1)
ζ

(ζ,τ)+c(1,0)τ (ζ,τ)
)

−2
(ζ2{f(τ),τ}+2)cτ (ζ,τ)

ζ(ζ2{f(τ),τ}−2)

1
4ζ({f(τ),τ}ζ2−2)

[
−4ζ3 ∂τ

(
{f(τ),τ}

)
cτ (ζ,τ)

+4ζ ({f(τ),τ}ζ2−2)c(0,1)τ (ζ,τ)

+4({f(τ),τ}ζ2−2)
2
cζ(ζ,τ)

−ζ ({f(τ),τ}ζ2−2)
3
c
(1,0)
ζ

(ζ,τ)

]




(F.5)

G Weyl anomaly in manifolds with boundary

In this section we compute the most general boundary term for Weyl anomaly in 2-

dimensions on a manifold with a boundary allowed by the Wess-Zumino consistency con-

dition. Let us start with the variation of (2.7) under a Weyl transformation,

δWScov (G.1)

=− 1

4πb2

∫

Γ

√
g(R+8πµ)δω+

1

4πb2

∫

∂Γ

√
γ(s)

∫

Γ

√
g(x) δω(s)R(x) n̂µ(s)

∂

∂yµ
G(x,y)|y=s

+
1

2πb2

∫

∂Γ

√
γ(s1)

∫

∂Γ

√
γ(s2) δω(s2)K(s1) n̂

µ(s2)
∂

∂yµ
G(s1,y)|y=s2−

1

2πb2

∫

∂Γ

√
γ(s) K(s)δω(s)

Under a second Weyl transformation

δW2(δW1Scov) = − 1

2πb2

∫

∂Γ

√
γ(s) ∂µδω(s) ∂µδω2(s)−

4µ

b2

∫

Γ

√
g δω2(x) δω1(x) (G.2)

+
1

2πb2

∫

∂Γ

√
γ(s1)

∫

∂Γ

√
γ(s2) δω1(s1)δω2(s2) n̂

µ(s1)n̂
ν(s2) ∂µ∂νG(s1, s2)

therefore, since all the terms in the above equation are symmetric in δω1 and δω2, we have,

δW2(δW1Scov)− δW1(δW2Scov) = 0 (G.3)

Thus the boundary terms that we have introduced are consistent with the Wess-Zumino

conditions. All the boundary terms that we have introduced are consistent with the general

analysis in [60].
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