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the NMSSM scenario, a charge-breaking global minimum, with or without an accompanying

charge-conserving deeper minimum, could appear even with the tree-level Higgs potential

thanks to the presence of a charge-neutral scalar state which transforms as a singlet under
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1 Introduction

In scenarios with two Higgs doublets, a spontaneous breakdown of charge could occur when

the charged components of the doublets acquire vacuum expectation values (vev). The

desired (electroweak) symmetry breaking (DSB) vacuum conserves charge. In the presence

of a spontaneous breakdown of charge, the DSB vacuum can be, in general, accompanied

by both charge-conserving (CC) and charge-breaking (CB) minima [1]. Under such a

circumstance, a viable DSB vacuum is required to be either the global minimum of the

Higgs potential or, in case it is not (a metastable DSB vacuum), it has to have a slow

enough tunneling to the deeper CC or the CB minimum (the panic vacuum) thus becoming

cosmologically long-lived.

Crucially enough, for two Higgs doublet models (2HDM), it has been shown rigorously

that if the tree-level Higgs potential is attributed with a CC minimum, it has to be the

deepest (global) minimum [1, 2]. In other words, if the potential has got a CB minimum,

it can only be shallower than the CC minimum. Such a CB minimum is also found to

be invariably a saddle point [2]. Hence, if the CC minimum now happens to be the DSB

vacuum, this would be absolutely stable against tunneling to the CB minimum. However,

in the absence of a CB minimum, if there is another CC minimum apart from the DSB

one, it is to be seen if the latter still remains to be the deepest minimum. This is since

there is no general argument to prove or refute such a possibility [2]. Detailed studies

of (meta)stability of the DSB vacuum in generic 2HDM (including multi-HDM) had been

taken up earlier in references [3, 4] ([5]) and, more recently, in reference [6] in the context

of 2HDM. In any case, if the DSB vacuum ceases to be the global minimum, one needs to

check if it is long-lived enough so as to become viable.
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Presence of additional scalars in scenarios beyond the Standard Model (SM) invariably

gives rise to more complicated scalar potentials. In some such scenarios, one could thus

naturally expect the occurrence of potential-minima deeper than the DSB vacuum at the

tree-level itself. These may destabilize the latter as it may undergo quantum tunneling to

a deeper vacuum. Requiring a stable DSB vacuum, thus, puts stringent theoretical restric-

tions on the parameter space of the scenario. In this context, appearance of spontaneous

charge and color breaking (CCB) minima in various supersymmetric (SUSY) scenarios (as

the scalar partners of the SM quarks (squarks) and the leptons (sleptons) acquire vev) and

its implications for the stability of the DSB vacuum have been a much-studied area [7–17].

These general studies are only recently been followed up and improved [18, 19] within the

framework of the Minimal Supersymmetric Standard Model (MSSM) by precise treatments

of several indispensable issues thus yielding a more conclusive picture.

Interestingly enough, inclusion of even a singlet scalar excitation (in an otherwise

2HDM scenario) could turn the scalar potential rather nontrivial. Early studies [20–23] in

the framework of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) (which

is endowed with an additional scalar which is electrically neutral and which transforms as

a singlet under the SM gauge group), though restricted in their scopes, uncovered some of

the salient features of such a potential in reference to the stability of the DSB vacuum. A

recent in-depth study [24] has not only lent phenomenological credence to some of those

earlier observations but has also extended the ambit of such studies by revealing interesting,

new aspects and by detailed profiling of the vacua that appear.

In contrast, the possibility and the implications of a spontaneous breakdown of charge1

had attracted less attention. It may, however, be noted that such a possibility had earlier

been pointed out [25] in the context of the NMSSM. Subsequently, it has been studied how

such a CB minimum could appear in the so-called Next-to-Minimal 2HDM (N2HDM) [26,

27] in which the standard 2HDM is augmented with a real singlet scalar field. The mixing

among the doublet (Higgs) and the singlet scalars induced by a non-vanishing vev for the

latter could then result in a CB minimum deeper than the DSB vacuum.

Curiously enough, the possibility of a spontaneous breakdown of charge in the minimal

SUSY Standard Model (MSSM) had received even lesser attention, let alone a thorough

study of the same. To the best of our knowledge, the only (passing) mention of such a

possibility in the MSSM context can be found in reference [1]. The reason behind this

may be the fact that, similar to the case of a non-SUSY 2HDM scenario, a CC minimum,

when it exists for the MSSM potential, is its global minimum, albeit at the tree-level only

and when the scalar fields in the scenario, other than the neutral and the charged Higgs

states, do not develop any vev. Later, it was demonstrated in reference [3] that, at the tree

level, the MSSM Higgs potential could only have the DSB vacuum as the global minimum

with no accompanying local minimum. This happens to be a much stronger observation

when compared to what could happen in the standard 2HDM scenario discussed earlier.

1In this work, by a ‘spontaneous breakdown of charge’, we would refer to such an effect triggered only

by the charged Higgs states acquiring vevs. Charge-breaking associated with a spontaneous breakdown of

color/lepton-number and charge (CCB), as a result of the squark(s) and/or the slepton(s) acquiring vevs,

is not considered, unless otherwise indicated.
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Given that the MSSM is a much-constrained scenario and, in addition, the hypercharge

assignments of the two Higgs doublets are different from that of the standard 2HDM, such

an observation might not be entirely unexpected.

However, the one-loop contribution to the tree-level Higgs potential of the MSSM

could, in general, be significant because of the larger particle content of the scenario. Thus,

reference [1] pointed out that such a CC minimum (later found to be the only minimum

and which is also the DSB vacuum [3]) could cease to remain to be the global minimum

of the radiatively-corrected potential. Instead, in principle, a CC or a CB minimum could

emerge as its global minimum. This might render the DSB vacuum unstable with crucial

implications for the regions of the MSSM parameter space that would still remain viable.

Existing literature, however, does not carry any prediction on nature of this type of a

minimum arising from such a piece of effective Coleman-Weinberg potential [28]. This

is one particular area where the present work attempts to shed light on. Furthermore,

it is noted in reference [29] that a CC minimum deeper than the DSB vacuum could

indeed appear for a decoupled gluino and for a somewhat large value of the higgsino mass

parameter ‘µ’ when radiative corrections to the potential arising only from the quarks and

the squarks of the third generation are considered.

The study of a spontaneous breakdown of charge in the MSSM involves at least three

scalar fields (two neutral and one charged components of the doublet Higgs fields) devel-

oping vevs. Note that a suitable set of vevs for the neutral (doublet) Higgs fields is always

required to ensure the desired breaking of the electroweak symmetry. In the Z3-symmetric

NMSSM, in addition, one needs a nonvanishing vev for the singlet scalar field (S) as well

that dynamically gives rise to the ‘µ’ parameter, µeff , thus solving the well-known “µ-

problem” [30].

In the presence of the singlet scalar field ‘S’, a CB minimum could turn out to be the

global minimum of the Z3-symmetric NMSSM potential, already at the tree-level. This is

in sharp contrast to the MSSM case discussed earlier. However, finding all the minima and

hence determining the global one (which is crucial for the purpose) in a situation where

multiple scalar states could acquire vevs is expected to be a non-trivial exercise. The

problem has earlier been approached analytically in reference [31]. The task becomes even

harder when radiative corrections are to be necessarily included. To complicate things fur-

ther, the vevs for the charged Higgs fields (that trigger a breakdown of charge-conservation)

induce mixing among the fermions/sfermions [32], the notables ones being between the top

and the bottom quarks and among the top and the bottom squarks. Such mixings, in

turn, affect the radiative corrections to the Higgs potential. Furthermore, in the presence

of a deeper CB minimum, one needs to check the stability of the DSB vacuum against its

tunneling to the former.

For an optimal handling of such a set of rather involved tasks, one needs to resort to

a numerical approach to the problem. The package Vevacious (v1.2.02) [33] provides us

with such an elaborate computing framework. Vevacious uses the principle of homotopy

continuation via the package HOM4PS2 [34] for an exhaustive hunt for all possible minima of

the supplied potential. It further incorporates full 1-loop corrected effective potential using

inputs from SARAH (v4.12.1) [35, 36]-generated SPheno [37, 38] package. The package

– 3 –
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CosmoTransitions (v2.0.02) [39] is employed from within Vevacious to estimate the

tunneling time of the DSB vacuum to a possible deeper minimum.

Recently, some salient aspects and implications of a spontaneous breakdown of charge

in the NMSSM scenario have been discussed in the literature [40]2 using Vevacious. The

present study performs a thorough scan of the relevant parameter space using Vevacious.

It benefits from and broadly agrees with some specific observations made in reference [40],

within the scopes mentioned there, and extends beyond to obtain a detailed understand-

ing of the phenomenon in the Z3-symmetric NMSSM. Furthermore, we also undertake a

detailed study of the MSSM scenarios with a similar goal.

Vevacious also has the provision to consider the finite temperature (thermal) effects

to the potential which, in general, cannot be ignored [41–44]. Some recent studies have

concretely established its important role in deciding the fate of the DSB vacuum [18, 24].

We include the thermal contribution to the potential in our present study, at length. We

also subject our scans to the latest experimental constraints from the observed Higgs sector

by using packages like HiggsSignals (v1.4.0) [45] and HiggsBounds (v4.3.1) [46]. In

particular, a scenario like the NMSSM, which allows for mixing among the neutral doublet

Higgs states and the singlet scalar, is naturally much sensitive to these constraints.

The paper is organized as follows. In section 2 we first take up an analytical study of

various flat directions in the MSSM field space to check if a CB (and/or a CC) minimum

deeper than the DSB vacuum could appear for the tree-level Higgs potential. This is

followed by a scan of the MSSM parameter space using Vevacious which incorporates both

quantum and thermal corrections to the Higgs potential. We also present a corroborative

study based entirely on an alternate spectrum generator like FeynHiggs (v2.13.0) [48–53]

and our dedicated Mathematica [47] routine that is used for the analysis. Thus, we delineate

the regions of the MSSM parameter space where a minimum deeper than the DSB vacuum

appears and indicate its implications for the stability of the latter. Section 3 presents an

analytical study of various flat directions in a more involved field space of the NMSSM

along which a deeper CC and/or a CB minimum could appear. This is again followed by a

dedicated search for such deeper minima using Vevacious and then finding if these are of

the CC or CB types and further reflecting on how critical they could be to the stability of

the DSB vacuum. The role of thermal correction to the potential is discussed. All through,

regions compatible with an SM-like Higgs boson are indicated. In section 4 we conclude.

2 Spontaneous breakdown of charge: the MSSM case

As pointed out in the Introduction, the tree-level Higgs potential of the MSSM, a SUSY

variant of a generic 2HDM scenario, has an in-built robust protection against developing a

CB minimum deeper than the DSB (CC) vacuum, when the latter is present [1, 2]. However,

it remains to be seen if a deeper minimum could arise (and its nature (CB or CC or both))

when radiative correction to the potential is included. Natural directions along which

this might happen are the so-called flat directions for which the tree-level potential already

2This work came out while we had been halfway through the present study.
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possesses minima.3 In the following, we first study such flat directions of the tree-level Higgs

potential analytically and explore if these could give rise to deeper CB/CC minima. This is

followed by a general study of such a phenomenon via numerical means using the SPheno-

Vevacious and the FeynHiggs-Mathematica frameworks discussed in the Introduction.

Both the frameworks incorporate the full 1-loop correction to the Higgs (scalar) potential.

2.1 Analysis of the tree-level Higgs potential: the MSSM case

The Higgs potential involving both neutral and charged Higgs fields is given by

VHiggs =
(
m2
Hu

+ |µ|2
)(∣∣H0

u

∣∣2 +
∣∣H+

u

∣∣2
)

+
(
m2
Hd

+ |µ|2
)(∣∣H0

d

∣∣2 +
∣∣H−d

∣∣2
)

+
g2

1 + g2
2

8

(∣∣H0
u

∣∣2 +
∣∣H+

u

∣∣2 −
∣∣H0

d

∣∣2 −
∣∣H−d

∣∣2
)2

+
g2

2

2

∣∣H+
u H

0∗
d +H0

uH
−∗
d

∣∣2

+Bµ(H+
u H

−
d −H

0
uH

0
d) + h.c. , (2.1)

where m2
Hu

and m2
Hd

are the soft masses for the u- and the d-type Higgs excitations, g1 and

g2 are the U(1)Y and SU(2)L gauge couplings and Bµ is the soft term corresponding to the

µ-term in the MSSM superpotential. Note that successful electroweak symmetry breaking

(EWSB) requires Bµ > 0 given our convention of tan β > 0, where tan β = vu
vd

(> 1),

the ratio of the vevs of the neutral components of the two Higgs doublets. The tadpole

conditions corresponding to these Higgs fields are given by

TH0
u

=
∂VHiggs

∂vu
= 0 = g2vu(v2

u + v2
u+ − v2

d) + 2(m2
Hu

+ µ2)vu − 2Bµvd

+ vd−

(
g2

2 − g2
1

2
vuvd− + g2

2vdvu+

)
, (2.2a)

TH0
d

=
∂VHiggs

∂vd
= 0 = g2vd(v

2
d + v2

d− − v
2
u) + 2(m2

Hd
+ µ2)vd − 2Bµvu

+ vu+

(
g2

2 − g2
1

2
vdvu+ + g2

2vuvd−

)
, (2.2b)

TH+
u

=
∂VHiggs

∂vu+

= 0 = g2vu+(v2
u + v2

u+ − v2
d−) + 2(m2

Hu
+ µ2)vu+ + 2Bµvd−

+ vd

(
g2

2 − g2
1

2
vdvu+ + g2

2vuvd−

)
, (2.2c)

TH−d
=
∂VHiggs

∂vd−
= 0 = g2vd−(v2

d + v2
d− − v

2
u+) + 2(m2

Hd
+ µ2)vd− + 2Bµvu+

+ vu

(
g2

2 − g2
1

2
vuvd− + g2

2vdvu+

)
, (2.2d)

where vu, vd, vu+ and vd− are all considered to be real and represent constant field values

of the respective fields only at a minimum of the potential (i.e., the vevs). Equations (2.2a)

3Directions along which the tree-level potential is unbounded from below could also develop a minimum

when radiative correction is included [29].
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and (2.2b) could be solved for m2
Hu

and m2
Hd

at the DSB vacuum, i.e., when vu = v0 sinβ

and vd = v0 cosβ, where v0 is the overall Higgs vev (v0 = 174 GeV) with which the

electroweak symmetry is broken. Thus, one finds

m2
Hu

= Bµ cotβ +
1

4
v0

2 cos(2β)
(
g1

2 + g2
2
)
− µ2 , (2.3a)

m2
Hd

= Bµ tanβ − 1

4
v0

2 cos(2β)
(
g1

2 + g2
2
)
− µ2 . (2.3b)

The DSB vacuum preserves charge. Hence vu+ = vd− = 0 at the DSB vacuum. Also, unless

otherwise specified, throughout this work, vu, vd, vu+ and vd− would stand for generic

vevs for the respective Higgs fields. The depth of the Higgs potential at the DSB vacuum

can now be found by substituting m2
Hu

and m2
Hd

from equation (2.3) into equation (2.1)

and is given by

V DSB
Higgs =

−g2

4
v4

0 cos2 2β , (2.4)

where g2 =
g2
1+g2

2
2 . A similar substitution but allowing also for nonvanishing vevs for the

charged Higgs fields yields the depth of the Higgs potential at a possible non-DSB (���DSB)

minimum and is given by

V�
��DSB

Higgs =

(
Bµcotβ+

g2

2
v2

0 cos2β

)
(v2
u+v2

u+)+

(
Bµtanβ− g

2

2
v2

0 cos2β

)
(v2
d+v2

d−)

+
g2

4
(v2
u+v2

u+−v2
d−v2

d−)2+2Bµ(vu+vd−−vuvd)+
g2

2

2
(vu+vd+vuvd−)2 . (2.5)

At this point, one needs to exercise caution before associating the non-vanishing vevs for the

charged Higgs states to a breakdown of charge. Since we are working in a 4-vev framework,

there is always an SU(2) rotation which one could apply simultaneously to both Higgs

doublets. Note that this issue is generic to a 2HDM setup without a direct reference to the

potential derived in equation (2.5).4 For the particular hypercharge asisgnments for the

Higgs doublets as in SUSY 2HDM, the rotated (by an angle θ) configurations for the set

of vevs

(
vu+

vu

)
and

(
vd
vd−

)
can then be given by

(
v′u+

v′u

)
=

(
vu+ cos θ − vu sin θ

vu+ sin θ + vu cos θ

)
and

(
v′d
v′d−

)
=

(
vd cos θ − vd− sin θ

vd sin θ + vd− cos θ

)
. (2.6)

Thus, one could always find a value of ‘θ’ which rotates away one of the charged vevs in

the new basis [5].5 By choosing v′u+ = 0, we find

v′u =
√
v2
u + v2

u+ , v′d =
vuvd − vu+vd−√

v2
u + v2

u+

and v′d− =
vu+vd + vuvd−√

v2
u + v2

u+

. (2.7)

4This is also true for the NMSSM case studied later in section 3.
5In this work we would continue to consider vevs for both the charged states explicitly.
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If vacua deeper than the DSB one were to appear, these will be most likely along some

(D-) flat directions in the field space which, from equation (2.5), are given by

vu+vd + vuvd− = 0 , (2.8a)

v2
u + v2

u+ − v2
d − v2

d− = 0 . (2.8b)

Note that along the D-flat direction of (2.8a), v′d− in equation (2.7) vanishes. Thus, along

such a direction both charged vevs get simultaneously rotated away. Hence the minimum of

the potential does not break charge even if, in the original basis, non-vanishing vevs appear

explicitly in the potential. This should be corroborated by a vanishing photon mass that

such a configuration of vevs leads to and which serves as a robust pointer to the phenomenon

of charge conservation. In fact, any CC minimum (including the DSB minimum) has to

exist only along this flat direction of equation (2.8a) when charged vevs are incorporated.

However, it still remains to be seen if such a direction could give rise to a deeper CC

minimum.

To this end, the D-flat direction of equation (2.8b) may be explored in conjunction.

Requiring a CC minimum along this direction would relate the vevs further. These relations

can be found by imposing the necessary condition of (2.8a) for having a CC minimum on

the vevs appearing in (2.8b) and are given by the following set of conditions:

vu = ±vd, vu+ = ∓vd− . (2.9)

In the MSSM context, in particular, this implies the trivial solution vu = vd = vu+ = vd− =

0 which corresponds to a minimum shallower than the DSB vacuum. Can a CB minimum

appear along the D-flat direction of equation (2.8b)? A priori, this cannot be ruled out.

Given that the minimal number of vevs required for a CB minimum to exist is two (one

neutral vev, along with a charged vev), we may expect to find such a CB minimum by

choosing v′u+ = v′d = 0 or v′d− = v′u = 0. The first choice can be directly plugged into

the expression of v′d in equation (2.7). Similarly, the second choice would work with an

expression for v′u from a set analogous to equation (2.7) that can be found by choosing

v′d− = 0 instead. In either case, this would result in

vuvd = vu+vd− . (2.10)

Equation (2.10) in conjunction with (2.8b) leads to

vu+ = ±vd, vd− = ±vu . (2.11)

As for the MSSM case, these relations are not compatible with the corresponding tadpole

conditions. Thus, at the tree-level, the MSSM Higgs potential cannot have a CB extremum.

This is in agreement with the findings in reference [3].

Again in the MSSM context, we turn back to see if the D-flat direction given by

equation (2.8a), which can always give rise to a CC minimum, could, by itself, develop a

deeper one this time. Using equations. (2.3) and (2.8a) one could simplify the set of tadpoles

– 7 –
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given in equations (2.2). In a rotated vev configuration with neutral vevs (v′u+ = v′d− = 0),

the tadpoles for H0
u (equation (2.2a)) and H0

d (equation (2.2b)) then reduce, respectively, to

v′u
2 − v′d

2
+ v2

0 cos 2β =
2

g2
Bµ

(
v′d
v′u
− cotβ

)
, (2.12a)

v′u
2 − v′d

2
+ v2

0 cos 2β =
2

g2
Bµ

(
tanβ − v′u

v′d

)
. (2.12b)

Given the identical expressions on the left hand side of these equations, two solutions for
vu
vd

(= tan β, cotβ) turn out to be consistent. However, the solution v′u
v′d

= cotβ gives rise to

complex vevs. We ignore this solution since it is in conflict with our original assumption.

Hence using the solution v′u
v′d

= tanβ with either of equations (2.12a) or (2.12b), we find

v′u
2

= v2
0 sin2 β and v′d

2
= v2

0 cos2 β , (2.13)

thus leading to

v′u
2

+ v′d
2

= v2
0 , (2.14)

This is exactly the DSB vacuum obtained in equation (2.4). This is again in agreement

with the findings of reference [3] which indicates that the DSB vacuum, when present, is

the global minimum of the tree-level MSSM Higgs potential. At this point, it is interesting

to note that, had we continued to work with all four vevs, we would have ended up with

an infinite number of vacua with non-vanishing charged vevs, which are all identical to

the DSB vacuum connected via SU(2) symmetry we discussed earlier. We will discuss its

artifact at the end of next subsection in the context of a Vevacious analysis.

2.2 Scanning of the MSSM parameter space

In this section, we undertake a numerical study that sheds light on the regions of the

MSSM parameter space with viable DSB vacuum when only the Higgs fields could acquire

vevs. The dedicated package Vevacious is used for the purpose which, in turn, uses the

full 1-loop corrected effective potential with input parameters taken from SARAH-generated

SPheno. Since Vevacious employs a radiatively corrected Higgs potential, it might be

able to explore subtle and potentially crucial effects which do not show up with the tree-

level potential that we adhered to in our analytical study in section 2.1. Thus, it would

be interesting to see if a deeper minimum for the Higgs potential (of either a CC- or a

CB-type) appears having immediate implications for the stability of the DSB vacuum.

Furthermore, it has been correctly pointed out in reference [40] that it is not entirely

justified to assign the deeper minimum closest in the field space to the DSB vacuum to be

the panic vacuum, only to which tunneling of the former is considered, as is the case for

the publicly available version of Vevacious. Accordingly, we tweak Vevacious to check

all deeper minima to find the panic vacuum as the most dangerous one (with the fastest

tunneling time) of them all. In addition, as a corroborative measure, we use FeynHiggs to

generate the MSSM spectra and employ our dedicated Mathematica routine to minimize the

full 1-loop corrected potential. The analysis is further subjected to the constraints coming

from the observed Higgs sector via the use of packages like HiggsSignals and HiggsBounds.
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Figure 1. Scatter plots showing the regions with the DSB vacuum as the global minimum of

the potential (green) and with an accompanying non-DSB CC minimum as the global minimum

of the same (in blue) in the ytAt-µ plane. Plots in the left (right) panel are obtained from the

SPheno-Vevacious (FeynHiggs-Mathematica) framework. The top (bottom) panel corresponds to

mQ̃3
= mŨ3

= mD̃3
= 1 TeV (2 TeV). Other fixed parameters are as follows: M1 = M2 = 750 GeV

and M3 = 2 TeV, mA = 2 TeV, Ab = 0 and tan β = 25. The renormalization scale is set to

Q = √mQ̃3
mŨ3

. Regions in dark-green are compatible with the observed SM-like Higgs boson (at

∼ 95% C.L.) as reported by HiggsBounds and HiggsSignals.

The results of random scans over a relevant set of MSSM parameters showing the stability

pattern of the DSB vacuum are presented in figure 1. Given that the top squark sector

is expected to dominate in the radiative contributions to the potential, we choose the

ytAt-µ plane for illustration. In each row, the left plot results from a Vevacious analysis

of the spectra obtained from SARAH-generated SPheno where we indicate the regions that

correspond to either a stable DSB vacuum (global minimum; in green) or the presence

of an accompanying (non-DSB) global minimum (in blue). The corresponding right plots

present the results of a similar analysis using the same set of MSSM input parameters but

adopting the FeynHiggs-Mathematica framework. The top (bottom) panel corresponds

to m
Q̃3

= m
Ũ3

= m
D̃3

= 1 TeV (2 TeV). Ranges of various MSSM parameters that are

scanned over and the fixed values for the others are indicated in the figure caption.

No CB minimum emerges, irrespective of whether it is deeper than the DSB vacuum

or not. However, a deeper (panic) CC minimum, which is absent for the tree-level Higgs
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Figure 2. Stability status of the DSB vacuum in the presence of a deeper CC vacuum along with

an unavoidable deeper CCB vacuum for the cases presented in the left panel (SPheno-Vevacious

analyses) of figure 1. The left (right) plot corresponds to the top left (bottom left) plot of figure 1.

The color code adopted is as follows: green stands for a stable DSB vacuum (global minimum), blue

represents a metastable but cosmologically long-lived DSB vacuum, black indicates the presence of a

DSB vacuum which is unstable under quantum tunneling at zero temperature while red corresponds

to a DSB vacuum unstable against tunneling when the finite temperature corrections to the potential

are included. The vertical bands in dark-green again delineate the regions compatible with the

observed SM-like Higgs boson.

potential, might appear this time with its origin in the radiative correction to the said

potential (Coleman-Weinberg type). Such deeper CC minima, however, appear only along

the edges (in blue) of the displayed plane. A similar phenomenon associated with larger

values of ‘µ’, along with a decoupled gluino, has been observed in reference [29] which

incorporates corrections to the potential from the third generation quarks and squarks only.

Interestingly, as can be gleaned from figure 1, the inclusion of the full 1-loop correction

to the potential (as is the case with both SPheno and FeynHiggs) results in such a panic

CC minimum occurring even for relatively smaller values of ‘µ’ and At. However, such

regions of the MSSM parameter space appear to be not compatible with the observed mass

of the SM-like Higgs boson (given by the dark-green bands). This (mostly) pre-empts

the threat from an emerging deeper CC minimum destabilizing the DSB vacuum. The

horizontal, blank stripes about µ = 0 indicate the ranges of unacceptable µ-values dictated

by experimental constraints, primarily from the chargino searches.

In figure 2, we indicate the stability status of the DSB vacuum for the same set of

data points and in the same parameter plane as for figure 1 but this time we allow for the

colored sfermions assuming vevs. This is to check for likely appearances of deeper CCB

vacua that could have already been triggered by the large values of ytAt and/or ‘µ’ that

are necessary for a deeper CC vacuum to occur, as is seen in figure 1.
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Figure 3. Potential (∆V ) contours in the H0
d -H0

u plane showing the (equivalent) locations of the

DSB vacuum (blobs in green) and the accompanying global CC minimum (blobs in black-within-

red). The magnitudes of ∆V can be estimated from the color-palette displayed underneath. The

fixed MSSM parameters ‘µ’ and At are as indicated at the top of the plot. Other fixed parameters

are as in figure 1 with mQ̃3
= mŨ3

= mD̃3
= 1 TeV. See text for details.

We indeed find an onset of a deeper CCB minimum just away from the central regions

of these plots with much smaller values of ytAt and ‘µ’. This clearly indicates that long

before a deeper CC minimum originating purely in the Higgs potential could pose a threat

to the stability of the DSB vacuum, the scalar potential is inflicted with a dangerous CCB

minimum. This may perhaps be easily comprehended by noting that both deeper CCB and

CC minima are dominantly driven by the fermions and sfermions from the third generation;

however, while the former could well be a tree-level effect, the latter have a genuine origin

in the radiatively corrected potential.

In figure 3 we demonstrate the potential (∆V ) contours in the H0
d -H0

u plane, where

∆V is the relative depth with respect to the potential at the field origin. The location(s) of

the DSB vacuum (deeper minimum) are indicated by the green (black-in-red) blobs. Such

minima appearing in the first quadrant are the identical ones to those showing up in the

third quadrant because of the underlying reflection symmetry of the potential.

Before concluding this section, one observation regarding occasional numerical

(in)stability of the results obtained from Vevacious may be noted. While working with

two non-vanishing charged Higgs vevs, one encounters a CC minimum nearly degenerate

with the DSB vacuum and situated very close to the latter in the field space. Under such a

circumstance, due to limited floating point precision it uses, Vevacious may find it diffi-

cult to decide the fate of the DSB vacuum correctly. However, this is a direct consequence
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of not exploiting the freedom to rotate one of the charged Higgs vevs to start with. We

further checked this via our Mathematica analysis using a much larger precision that it

offers.

3 Spontaneous breakdown of charge: the Z3-symmetric NMSSM case

It has recently been noted [27] in the context of a singlet-extended 2HDM (N2HDM) that

the global minimum of the potential may not be a charge-conserving one at the tree-

level, unlike in the 2HDM. This is attributed to the neutral singlet scalar field of such a

scenario developing vev thereby mixing with the doublet Higgs states. Naturally, such an

observation bears relevance to a scenario like the NMSSM where a similar effect can be

investigated [31]. In this section, we first take an analytical look into how the Z3-symmetric

NMSSM Higgs potential could develop a global CB minimum. A numerical, random scan

of the NMSSM parameter space using Vevacious follows. This delineates the region of the

parameter space offering a viable DSB vacuum.

3.1 Analysis of the tree-level Higgs potential: the NMSSM case

The tree-level Higgs potential of the Z3-symmetric NMSSM is given by

VHiggs =
∣∣λ
(
H+
u H

−
d −H

0
uH

0
d

)
+ κS2

∣∣2

+
(
m2
Hu

+ |λS|2
)(∣∣H0

u

∣∣2 +
∣∣H+

u

∣∣2
)

+
(
m2
Hd

+ |λS|2
)(∣∣H0

d

∣∣2 +
∣∣H−d

∣∣2
)

+
g2

1 + g2
2

8

(∣∣H0
u

∣∣2 +
∣∣H+

u

∣∣2 −
∣∣H0

d

∣∣2 −
∣∣H−d

∣∣2
)2

+
g2

2

2

∣∣H+
u H

0∗
d +H0

uH
−∗
d

∣∣2

+m2
S |S|2 +

(
λAλ

(
H+
u H

−
d −H

0
uH

0
d

)
S +

1

3
κAκ S

3 + h.c.
)
. (3.1)

The set of (tree-level) tadpoles6 now includes the one for the singlet (neutral) scalar field

‘S’, over and above those for the doublet Higgs fields. All the tadpoles now involve vS , the

vev for the field ‘S’. Similar to the MSSM case presented in section 2.1, with Ti =
∂VHiggs

∂vi
,

where ‘i’ stands for the field with respect to which a partial derivative is taken, these

tadpoles are given by

TH0
u

= 0 = g2vu(v2
u + v2

u+ − v2
d − v2

d−) + 2(m2
Hu

+ λ2v2
s)vu + g2

2vd−(vuvd− + vu+vd)

+ 2λ2vd(vuvd − vu+vd−)− 2λvdvs(Aλ + κvs) , (3.2a)

TH0
d

= 0 = −g2vd(v
2
u + v2

u+ − v2
d − v2

d−) + 2(m2
Hd

+ λ2v2
s)vd + g2

2vu+(vuvd− + vu+vd)

+ 2λ2vu(vuvd − vu+vd−)− 2λvuvs(Aλ + κvs) , (3.2b)

TH+
u

= 0 = g2vu+(v2
u + v2

u+ − v2
d − v2

d−) + 2(m2
Hu

+ λ2v2
s)vu+ + g2

2vd(vuvd− + vu+vd)

− 2λ2vd−(vuvd − vu+vd−)− 2λvd−vs(Aλ + κvs) , (3.2c)

6Note in advance that HOM4PS2 might fail to find all possible minima of a given potential in the presence

of a collection of degenerate ones. To circumvent this problem in our numerical studies, we add very small

SU(2)-breaking terms to the tadpoles.

– 12 –



J
H
E
P
1
1
(
2
0
1
7
)
0
4
2

TH−d
= 0 = −g2vd−(v2

u + v2
u+ − v2

d − v2
d−) + 2(m2

Hd
+ λ2v2

s)vd− + g2
2vu(vuvd− + vu+vd)

− 2λ2vu+(vuvd − vu+vd−) + 2λvu+vs(Aλ + κvs) , (3.2d)

TS = 0 = λ2vs(v
2
u + v2

u+ + v2
d + v2

d−) + 2vs(m
2
S + κAκvs + 2κ2v2

s)

−2λ(Aλ + κvs)(vuvd − vu+vd−) , (3.2e)

where vu, vd, vu+ and vd− are as defined in section 2.1 and vS = µeff
λ . As before, we solve

for the squared soft masses (tree-level) for the neutral Higgs states (including the singlet

scalar) at the DSB vacuum. These are given by

m2
Hd

= −µ2
eff − λ2v2

u −
g2

1 + g2
2

4
(v2
d − v2

u) + µeff(Aλ + κvS ) tanβ , (3.3a)

m2
Hu

= −µ2
eff − λ2v2

d −
g2

1 + g2
2

4
(v2
u − v2

d) + µeff(Aλ + κvS ) cotβ , (3.3b)

m2
S = −κAκvS − 2κ2v2

S
− λ2(v2

d + v2
u) + 2λκvuvd + λ

vuvd
vS

Aλ . (3.3c)

By substituting the squared soft masses from equation (3.3) into the potential of equa-

tion (3.1), one finds the expression for the tree-level depth of the DSB vacuum as

V
DSB

Higgs|tree = −κ2v4
S
− 1

3
κAκv

3
S
− λ2v2

S
(v2
d + v2

u)− λvSvdvu(Aλ + 2λvS )

−g
2
1 + g2

2

8
(v2
d − v2

u)2 − λ2v2
dv

2
u . (3.4)

As earlier, to find possible deeper minima, we look for some flat directions in the field

space. The D-flat directions are given by the same set of equations as in equation (2.8).

In addition, there is now an F -flat direction given by

λ(vu+vd− − vuvd) + κv2
S

= 0 . (3.5)

A first study exploiting this flat direction has recently been discussed in reference [40].

Along this F -flat direction the tadpole equation for the singlet scalar field ‘S’ has the

following two independent solutions

vS = 0 , (3.6a)

v2
u + v2

d + v2
u+ + v2

d− =
−2

λ2

[
m2
S + κvS (Aκ −Aλ + κvS )

]
. (3.6b)

Solution 3.6a, when plugged in into the tadpole conditions TH0
d

= 0 and TH−d
= 0, gives

vd = vd− = 0 as a trivial possibility. However, such a solution does not yield a CB minimum

since the only non-vanishing charged Higgs vev vu+ can now be rotated away in the presence

of a non-vanishing vu. Thus, by feeding vd = vd− = 0 to the tadpole conditions TH0
u

= 0

and TH+
u

= 0, we find, at the CC minimum,

v2
u + v2

u+ = −2
m2
Hu

g2
, (3.7)
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with its depth given by

V CC
Higgs(u) =

−m4
Hu

g2
. (3.8)

Clearly, the value of the potential at this CC minimum is negative. Also, for larger values of

m2
Hu

, the potential could turn out to be deeper than the DSB vacuum at the tree-level itself,

a possibility that is in clear contrast to the MSSM case. This is intimately connected to the

magnitude of µeff as can be seen from equation (3.3b). Note that we would have arrived

at the corresponding set of relations involving vd, vd− and mHd
had we, instead, chosen to

plug in the first solution (vS = 0) into the tadpole conditions TH0
u

= 0 and TH+
u

= 0, i.e.,

v2
d + v2

d− = −2
m2
Hd

g2
, (3.9)

with its depth given by

V CC
Higgs(d) =

−m4
Hd

g2
. (3.10)

A deeper CC minimum could also appear along a direction vs 6= 0, with all other

vevs set to zero, since such a configuration is always a solution to the tadpoles. The depth

of such a minimum is given by

V CC
Higgs

∣∣∣
v
S
6=0

= v2
sm

2
S + κ2v4

s +
2

3
κAκv

3
s . (3.11)

This can give rise to two non-zero minima with

vs =

{
−(Aκ +

√
A2
κ − 8m2

S)

4κ
,
−(Aκ −

√
A2
κ − 8m2

S)

4κ

}
. (3.12)

The corresponding depths can be shown to possess non-negative potential values if one of

the following conditions are satisfied [24]

Aκ < −3
√
A2
κ − 8m2

S or Aκ > 3
√
A2
κ − 8m2

S . (3.13)

As we will see later, in the presence of such a CC minimum with non-negative potential (and

hence not so deep), a CB minimum could eventually turn out to be the global minimum

(the effective panic vacuum) of the potential.

We now turn to a possible CB minimum. Its presence is conveniently studied in the

rotated basis (introduced in equation (2.6)) with v′u+ = v′d = 0 or v′d− = v′u = 0. Since the

F -flat direction mentioned in equation (3.5) yields vs = 0 as a solution, this is consistent

with the direction v′u+v
′
d− = v′uv

′
d. Choosing v′d− = v′u = 0, we obtain the following solutions

for v′d and v′u+ from the tadpole conditions in equation (3.2):

|v′d| =

√
−(g2

1 + g2
2)m2

Hd
+ (g2

2 − g2
1)m2

Hu

g1g2
, (3.14a)

|v′u+ | =

√
−(g2

1 + g2
2)m2

Hu
+ (g2

2 − g2
1)m2

Hd

g1g2
. (3.14b)
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The depth of the potential is given by

V CB
Higgs = −

[
g2

1(m2
Hd

+m2
Hu

)2 + g2
2(m2

Hd
−m2

Hu
)2

2g2
1g

2
2

]
, (3.15)

which is clearly always negative. For the vevs in equation (3.14) to be real, one requires

the following sets of inequalities to hold simultaneously:

g2
1 + g2

2

g2
2 − g2

1

m2
Hu

< m2
Hd

<
g2

2 − g2
1

g2
1 + g2

2

m2
Hu
, (3.16a)

m2
Hu

< 0, m2
Hd

< 0 . (3.16b)

For typical values of g1 and g2, the inequality in equation (3.16a) approximately reduces to

2m2
Hu

< m2
Hd

< 0.5m2
Hu
. (3.17)

At this point, using soft mass-squared terms mentioned in equations. (3.3a) and (3.3b),

for tan β >
√

2 and µeff > 0, we obtain the following approximate inequality:

v2
0

tanβ

µeff(1 + tan2 β)

(
λ2 − 0.4

tan2 β − 1

tan2 β − 2

)
−
(

tanβ

tan2 β − 2
+
κ

λ

)
µeff < Aλ

< v2
0

tanβ

µeff(1 + tan2 β)

(
λ2 − 0.4

tan2 β − 1

2 tan2 β − 1

)
+

(
tanβ

2 tan2 β − 1
− κ

λ

)
µeff , (3.18)

and for 1 < tanβ <
√

2 and µeff > 0, similarly, we find

Aλ < v2
0

tanβ

µeff(1 + tan2 β)

(
λ2 − 0.4

tan2 β − 1

2 tan2 β − 1

)
+

(
tanβ

2 tan2 β − 1
− κ

λ

)
µeff . (3.19)

The expressions for the lower and/or the upper limits of the inequalities in equations. (3.18)

and (3.19) swap their positions for µeff < 0. From these two equations, it is clear that

appearance of a CB minimum explicitly depends on the set of four parameters, i.e., {Aλ,

tanβ, κ
λ , µeff}. In addition, other parameters such as Aκ could work in tandem with a

chosen set of these four parameters to yield a consistent, non-tachyonic spectrum for the

DSB vacuum and in rendering the accompanying CB minimum global. It may also be

noted that a recent work [40] has addressed similar issues, guided by tan β ≈ 1. We have

checked that the inequality in (3.19), in the limit tan β → 1, leads to observations that

agree with those of reference [40]. On the other hand, the inequality in (3.18) that refers

to tanβ >
√

2, explores further regions in the NMSSM parameter space where a deeper

CB minimum could pose a genuine threat to the stability of the DSB vacuum.

It is thus clear from the above discussion that both CC and CB minima that are

deeper than the DSB vacuum could appear simultaneously for a tree-level NMSSM Higgs

potential. We have further checked that the inequalities pertaining to the CB minima

(expressions (3.18) and (3.19)) imply those to be deeper than a CC minimum arising

along the direction vS = 0 (always having a negative potential value; see equations (3.8)

and (3.10)). Note that the value of the potential at a CB minimum is always negative
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(see equation (3.15)). In the presence of a CB minimum deeper than the DSB vacuum,

the “globality” of the former is conservatively ensured if a CC minimum along vS 6= 0

(equation (3.11), singlet-only direction) has a positive potential. The latter is achieved

if Aκ can be constrained as in equation (3.13). The requirement of non-tachyonic Higgs

states further restricts the allowed ranges of Aλ and Aκ.

In the present analysis, we deal with a somewhat broader region of the NMSSM pa-

rameter space (when compared to reference [40]) that yields deeper CB minima. This

is facilitated by a relatively large radiative correction to the potential. Thus, guided by

equation (3.18), we expect to find regions with a global CB minimum even for relatively

low values of |µeff | when κ
λ > 1. In that case, |Aλ| can be larger than |µeff |. Furthermore,

we also take into account the effect of thermal correction to the potential.

3.2 Scanning of the NMSSM parameter space

In this section, we present and discuss the results of our scan over the NMSSM parameter

space using the package Vevacious. This would shed light on regions of the said parameter

space with diverse kind of stability properties of the DSB vacuum, without and with the

inclusion of thermal contributions to the potential. As has been noted in section 2.2,

we have tweaked Vevacious so as to find the most relevant ‘panic’ vacuum. It may be

mentioned here that we have not seen any significant impact of such a modification in

the MSSM case. However, reference [40] has recently pointed out that the issue becomes

important in the NMSSM case, an observation on which we concur.

The analysis presented in section 3.1 prompts us to divide the scan into two categories:

(i) one which is suited for exploring a deeper CB minimum guided by equations. (3.18)

and (3.19) and for which we take fixed values of µeff and κ while Aλ and Aκ are varied

and (ii) the other which is tailored to find (mostly) a deeper CC minimum, guided by

equation (3.13), for which Aκ is kept fixed while Aλ, µeff and κ are varied. Note that,

from equation (3.1), κ and Aκ govern the pure singlet contribution to the NMSSM Higgs

potential. Varying one or the other of these two parameters at a time would shed light

on how and to what extent the singlet sector carves out a CC or CB minimum, possibly

deeper than the DSB vacuum. For both cases, we hold λ and tanβ fixed at an optimal,

common set of values. We discuss these cases in the next two subsections. All through, we

keep track of the regions compatible with the observed SM-like Higgs boson by using the

packages HiggsSignals and HiggsBounds.

3.2.1 Hunt for deeper charge-breaking minima: case with fixed µeff and κ

In this subsection, we present the results of a random scan over a large region in the Aλ-Aκ
plane keeping µeff , κ and some other parameters fixed at suitable values. A closer look at

equation (3.15), in conjunction with equations. (3.3a) and (3.3b), would help us decide on

the strategy for scanning the NMSSM parameter space. As we have seen in section 3.1, one

of the dangerous directions (an F -flat direction) along which a CB minimum could appear

is vS = 0. Its appearance, however, is facilitated by ensuring, to start with, a shallower

potential at the DSB vacuum. From the inequalities in equations. (3.18) and (3.19) that

are required to be satisfied for CB minima to occur, we find that somewhat large values of
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Figure 4. Scatter plots obtained from a random scan over Aλ and Aκ and showing the stability

pattern of the DSB vacuum in the Aλ-Aκ plane for µeff = 300 GeV (3 TeV) in the left (right) plot.

The color code is summarized in table 1. Other important fixed parameters are mQ̃3
= mŨ3

=

750 GeV, At = 0, λ = 0.7 and κ = 1.

λ and µeff along with low values of tan β help. Hence we fix λ to a moderately large value

of 0.7 and take tan β = 2. In addition, we take a somewhat large value of κ = 1 which,

as discussed at the end of the last subsection, help ensure κ
λ > 1 thus enabling exploration

of a deeper CB minimum for somewhat larger values |Aλ|. To demonstrate the latter, we

choose two representative values of µeff . Furthermore, two sets of values of soft parameters

(m
Q̃3

= m
Ũ3

and At) in the top squark sector (yielding small/large masses/mixings) are

chosen for the purpose. These amount to a varied extent of radiative correction to the

potential. Such choices are expected to alter the spans of the parameter plane inflicted

with panic vacua of both CC and CB types.

In figure 4, we present the region in the Aλ-Aκ parameter plane which possesses a DSB

vacuum and may be accompanied by a CC and/or a CB minimum which are/is deeper than

the former. The color code described in table 1 indicates only the presence and nature (CC

or CB) of such ‘panic’ minima and not yet tells anything about whether such panic minima

are dangerous for the stability of the DSB vacuum. The figure represents the case with

low stop masses (≈ 750 GeV) and with µeff = 300 GeV (3 TeV) for the left (right) plot. It

may be noted that the ranges of Aλ and Aκ are much larger for the plot on the right with

µeff = 3 TeV when compared to the left plot with µeff = 300 GeV. This is since by increasing

µeff and hence κvS , one could accommodate large negative values of Aκ and Aλ consistent

with a non-tachyonic Higgs spectrum. We now find a deeper CB minimum appearing for

such large negative values of Aλ and Aκ. From equation. (3.18) and (3.19) we find that Aλ
is governed by −κ

λµeff for small values of tan β. For this figure, κλ > 1 and hence the region

of CB minima appears around Aλ < −µeff . Accordingly, this fixes the range of Aκ so that

tachyonic states are avoided, as pointed out above. Note that a flip of sign on µeff results in

altered signs on both Aλ and Aκ to find such regions with a deeper/global CB minimum.

– 17 –



J
H
E
P
1
1
(
2
0
1
7
)
0
4
2

Color Green Cyan Orange Brown Magenta Dark-green

Deeper vacua DSB only Deeper CC Deeper CC Deeper CB Deeper CB —

present No deeper CB Deeper CB No Deeper CC Deeper CC

Observation DSB Global CC Global CC Global CB Global CB Global Allowed by

Higgs data

Table 1. Color code used in figures 4 and 5 to indicate the presence of minima deeper than the

DSB vacuum, their nature (CC or CB) and the one that is the global minimum of the potential.
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Figure 5. Same as in figure 4 but for mQ̃3
= mŨ3

= 3 TeV, At = 1 TeV.

It would be now interesting to study the impact of a large radiative correction to

the potential. Such large corrections are easily achieved with larger values of masses and

mixings in the top squark sector. We thus fix m
Q̃3

= m
Ũ3

= 3 TeV and At = 1 TeV,

keeping other fixed parameters the same as in figure 4. Figure 5 illustrates the case. The

left plot (with µeff = 300 GeV) of figure 5 hints a shrinking of the region featuring a deeper

CB vacuum (in orange, red and magenta) when compared to the corresponding one of

figure 4. However, radiative effects are amplified for larger values of µeff (∼ m
Q̃3
, m

Ũ3
),

as can be seen by comparing the right plots of these two figures. It may be summarized

from figures 4 and 5 that a CB vacuum could turn out to be the global minimum of the

potential over an appreciable region of parameter space for relatively large values of Aλ, Aκ,

µeff and parameters in the top squark sector and for tan β on the smaller side. Under the

circumstances, the global CB minimum could either be the lone deeper minimum (in “red”)

or can be accompanied by a CC minimum which is shallower than it, but still deeper than

the DSB vacuum (in “magenta”). Note that with increased values of soft parameters in the
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Figure 6. Same as in figure 4 but in the √mQ̃3
mŨ3

-Aκ plane. The fixed parameters are also as

in figures 4 except for µeff = −Aλ = 3 TeV and At = mQ̃3
= mŨ3

.

Figure 7. Scatter plots showing the stability status of the DSB vacuum in the Aλ-Aκ plane in the

presence of a deeper CB minimum. Color code in use are as adopted for figure 2. The left (right) plot

corresponds to the same set of data points as used in the left plot of figure 4 (right plot of figure 5).

top squark sector a global CB minimum becomes increasingly compatible to observed Higgs

boson properties. Thus, a priori, such CB minima should be considered as dangerous for

the stability of the DSB vacuum. This warrants dedicated studies of vacuum configurations

of the potential by including vevs for the charged Higgs states.

The extent of the impact of radiative correction to the potential is further investigated

in the plane
√
m
Q̃3
m
Ũ3

— Aκ as illustrated in figure 6. Here, we consider µeff = 3 TeV

and Aλ = −3 TeV. Clearly, the larger the (soft) masses for the top squarks, the larger

is the region in the parameter plane that possesses a global CB minimum (without an
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accompanying deeper CC minimum (in red)) which remains to be compatible with the

observed Higgs data. Absence of a “green” region in this plot only indicates that the DSB

vacuum never becomes the global minimum of the potential for such a set of NMSSM

parameters and hence lives dangerously.

Finally, the fate of the DSB vacua in the presence of a deeper minimum (CC or CB)

is determined by calculating how fast could the former tunnel to the latter. A viable DSB

vacuum is either the global minimum of the potential or its lifetime is comparable (or

larger) than the age of the Universe. In figure 7 we profile such regions in the Aλ-Aκ
plane on the basis of stability (viability) of the DSB vacuum against tunneling to a deeper

minimum. For a straightforward comparison, we choose the left (right) plot of this figure

to correspond to the left plot of figure 4 (right plot of figure 5). We observe that significant

portions of the parameter plane characterized primarily by large Aκ could get ruled out

due to fast tunneling of the DSB vacuum which is triggered by thermal effects. Such a

finding is in agreement with the observations made in reference [24] but now is generalized

to the case where CB minimum deeper than the DSB vacuum is a possibility.

It may be noted here that unlike in the case of the MSSM, a deeper CB minimum

could arise without a conventional CCB minimum being triggered. CCB directions, that

otherwise could be dangerous, can be avoided in the presence of singlet vevs since the

latter might contribute positively to the potential [21, 22]. In fact, our Vevacious scan

mostly indicates the region of parameter space for figure 6 to be CCB safe. We verify this

by allowing for vevs for the stops in our Vevacious analysis. For a rough understanding

of the phenomenon, we impose the relevant (tree level) criteria mentioned in [21, 22] on

our Vevacious outputs and find the above mentioned region is mostly CCB safe.

3.2.2 Hunt for deeper charge-conserving minima: case with a fixed Aκ

In this subsection, we present the results of a random scan in the Aλ-µeff plane keeping

Aκ fixed but allowing µeff and κ to vary over moderate ranges, as would suffice for the

purpose. We take Aκ = −1.5 TeV and set m
Q̃3

= m
Ũ3

= 1 TeV with At = 0. We stick

to the choice of λ = 0.7 and tan β = 2 made in the previous section. The scan is already

subjected to the scrutiny of HiggsSignals and HiggsBounds. Hence the results presented

would be straightaway compatible with the observed SM-like Higgs boson.

In the left plot of figure 8 we illustrate the stability status of the DSB vacuum in the

Aλ-µeff plane. The ranges of the parameters that are made to vary are indicated in the

figure caption. Regions I and II correspond to κ > 0 whereas region III has κ < 0. Region

I is found to have a stable DSB vacuum (in green) for larger values of Aλ. This can be

understood by looking at the Aλ-dependent term in equation (3.1). Furthermore, the same

term predicts that the situation could change dramatically if Aλ and µeff carry a relative

sign since the DSB vacuum could then become shallower relative to other non-DSB minima

of the potential that might be present. Region II represents such a situation. However, the

DSB vacuum is found to be mostly long-lived (in blue) over this region. We observe that

metastable DSB vacua could also appear for values of |µeff | < 1 TeV which are eventually

found to be thermally unstable (in red) thanks to a moderately large value of Aκ [24] that

we use. It may be noted that for such regions, µeff and Aλ carry the same sign. From what
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Figure 8. Scatter plots showing stability status of the DSB vacuum in the Aλ-µeff plane (left)

and in the vc-vn plane (right). Color code employed is as for figure 7. Ranges of various NMSSM

parameters that are randomly scanned over are |µeff | < 2 TeV, |κ| < 0.75 and |Aλ| < 3 TeV while the

fixed NMSSM parameters are λ = 0.7, tanβ = 2, mQ̃3
= mŨ3

= 1 TeV, At = 0 and Aκ = −1.5 TeV.

All data points pass the constraints coming from HiggsSignals and HiggsBounds.

we learn from the previous section, these are unlikely to be the CB minima and are merely

the deeper (and dangerous) CC minima. On the other hand, the metastable (blue) points

in region II could have either kind of minima. Region III has got negative κ and hence

requires both Aλ and µeff to be negative as well to ensure a non-tachyonic Higgs spectrum.

A corroborative insight into nature of these dangerous vacua can be drawn from the

right plot of figure 8. This is a scatter plot projecting the data points of the left plot in

the vc-vn plane, where vc =
√
v2
u+ + v2

d− and vn =
√
v2
u + v2

d. As has been discussed in

section 2.1, CC vacua could only appear along the D-flat direction mentioned in equa-

tion (2.8a). Deeper vacua that mostly conserve charge form circular patterns which can

be understood by looking at equations. (3.7) and (3.9). This is further corroborated

by a vanishing photon mass arising with such a system of vevs. A small arc of radius

(v2
c + v2

n ≈ 174 GeV) in green, close to the origin, represents an equivalent set of DSB

vacua connected via SU(2) transformations. Just beyond this, a narrow belt in red rep-

resents the vev combinations leading to deeper minima which make the DSB vacuum for

each case thermally unstable. Further away from the origin, a metastable DSB vacuum

survives tunneling and becomes long-lived (in blue).

4 Conclusions

In this work, we have studied the possibilities and the implications of a spontaneous break-

down of charge, triggered by the charged Higgs states acquiring vevs, in popular SUSY

scenarios like the MSSM and the NMSSM.
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It has been known for some time that in a generic 2HDM, in the presence of a charge-

conserving minimum, the tree-level Higgs potential cannot have a deeper minimum where

charge breaks spontaneously. The MSSM being a SUSY extension of such a scenario is

not an exception. In fact, rigorous studies from the past had already established that the

tree-level MSSM potential cannot even have a second minimum, either of CC or CB type,

once it offers a DSB vacuum. In the present work, we show that when quantum corrections

are included in the MSSM potential, a deeper CC minimum could arise along the D-

flat directions together with the DSB vacuum. A Vevacious-based thorough scan of the

MSSM parameter space reveals that such a deeper CC minimum is always accompanied

by a conventional CCB minimum. Furthermore, regions of the parameter space where

such a CC minimum appears are hardly ever compatible with the observed SM-like Higgs

boson. Hence, on both counts, such a deeper CC minimum cannot emerge as an exclusive

threat to the stability of the DSB vacuum. On the other hand, an accompanying deeper

CB minimum never shows up. These findings are further corroborated by our alternate

analysis using the FeynHiggs-Mathematica framework. The role of thermal correction to

the potential is also discussed.

The situation is characteristically different in the NMSSM thanks to the presence of

a neutral, SM-singlet scalar field. Here, a deeper CB minimum along with a CC one of a

similar nature could already occur with the tree-level Higgs potential. Thus, checking for

the stability of the DSB vacuum becomes a rather involved task, more so when radiative

corrections to the potential are included. The issue has also been recently studied in

reference [40]. We broadly agree with the inferences of that work. However, we further

note that there may be regions in the NMSSM parameter space, though a little remote

to the ones studied in reference [40], where a deeper CB minimum could arise. Unlike in

the case of the MSSM, there may not be any accompanying deeper CCB minimum. Hence

such a CB minimum could pose a genuine threat to the stability of the DSB vacuum and

hence should not get overlooked.

We also demonstrate that, in the process, thermal corrections to the potential are,

in general, crucial and ignoring them could lead to grossly incorrect information on the

stability of the DSB vacuum.
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