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1 Introduction

Astrophysical observations of neutron stars with masses up to two solar masses [1, 2]

imply that the Equation of State (EoS) relating the energy density ε and pressure p of

the matter inside the stars should be very stiff [3]. The stiffness can be measured by the

thermodynamic derivative1

v2
s =

(
∂p

∂ε

)
s

, (1.1)

where vs can be identified as the speed of propagation of sound waves, naturally obeying

the causal bound vs ≤ 1. According to our current understanding, the nature of this matter

1The symbol s denotes the entropy density here.
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ranges from a relatively dilute gas of nuclei immersed in a sea of electrons in the crust of

the star to dense nuclear and superdense neutron matter deep inside the star, expected to

reach at least a few times the nuclear saturation density, ns ≈ 0.16/fm3, in the cores of

the most massive stars. With the deconfinement transition of Quantum Chromodynamics

(QCD) expected to take place around these densities, it is at the moment still unclear,

whether quark matter should be present inside the stars or not.

There are a variety of nuclear matter EoSs that predict very high speeds of sound, some

of them even exceeding the speed of light [4]. In all of these cases, the region of validity of the

approach is, however, restricted to densities below (roughly) the nuclear saturation density,

so that a straightforward extrapolation of the results to the large densities met in the cores

of neutron stars is likely to suffer from uncontrollable systematic uncertainties (see [5] for

a discussion of this topic). In particular, there is no hope of extending the description of

these nuclear matter models to the quark matter phase, possibly relevant for the description

of the stellar cores. At the same time, it is equally clear that approaches based on weak

coupling expansions in the quark matter phase, such as perturbative QCD [6–9], cannot

be used to describe the transition region, and therefore the standard approaches for the

description of this regime typically include model calculations (see e.g. [10] and references

therein) and interpolations between the low- and high-density regimes [11].

Considering the above difficulties, there is clearly room for alternative approaches to

describing dense strongly interacting nuclear and quark matter. Such a novel approach

could be provided by the gauge/gravity, or holographic, duality [12–14], which offers a way

to relate problems in strongly coupled field theories in their large-Nc limit to calculations

performed in classical supergravity in a curved spacetime. An interesting observation

pointing towards neutron star matter indeed behaving like a strongly coupled system can

be seen from the so-called Taub inequality [15] (see also [16]),2 which states that in a

relativistic kinetic theory causality imposes the condition

ε(ε− 3p) ≥ ρ2 , (1.2)

where ρ stands for the mass density. For instance, it is easy to check that degenerate

fermionic matter satisfies Taub’s inequality for any value of the chemical potential. The

inequality clearly implies that ε ≥ 3p, which is saturated by conformal theories. As shown

in [3], such an EoS is, however, too soft to support the heaviest observed stars, which

clearly implies that one of the assumptions behind Taub’s inequality must fail. The most

likely culprit is the assumption of the validity of a quasiparticle description, which is far

from being guaranteed for the matter found inside neutron stars. In fact, it may well be

that the correct expansion point would be that of infinite (or very strong) coupling instead

of a system of weakly coupled quasiparticles.

The holographic approach has already been used to describe both the confined [17–24]

and deconfined [25–28] phases of QCD matter through the study of strongly coupled non-

Abelian gauge field theories containing fundamental matter with a global U(1) baryon

symmetry. In [27], we adopted the strategy of describing the low-density phase of QCD

2We thank Luciano Rezzolla for drawing our attention to this inequality.
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matter using the Chiral Effective Theory (CET) results of [29], supplemented by the ex-

trapolations provided in [5], and matching them with the EoS of N = 2 Super Yang-Mills

theory at finite baryon density, corresponding to a D3-D7 brane intersection on the gravity

side. While successful in providing a consistent description of dense QCD matter, this

setup led to the prediction that the deconfinement transition would always be of such a

strong first order type that the resulting hybrid stars become unstable as soon as even a

microscopic amount of quark matter is generated in their cores. The reason for this behav-

ior was found to be the soft nature of the holographic EoS, with v2
s < 1/3, in comparison

with the stiff low-density EoSs of [5].

The softness of the holographic EoS constructed in [27] came as no surprise; in fact,

already in [30, 31] it was conjectured that any field theory with a gauge/gravity dual can

have a speed of sound at most as large as that of a conformal theory, i.e. vs ≤ 1/
√

3.

In [28], we, however, showed that this conjecture is generically not valid at finite density

(even though it might hold in certain theories [31]), and more recently a violation of the

bound has been proposed even at zero density through the introduction of multitrace

deformations in the dual gauge theory [32]. However, in both cases the violation is not

nearly large enough to allow for the existence of quark matter inside neutron stars, and

the question remains, whether at least a moderate softness of the EoS of strongly coupled

deconfined matter is a universal prediction of holography. We should also note that a

bound on the speed of sound at fixed chemical potential has been proposed in [33], and

it seems to hold in holographic models that reproduce thermodynamic properties of QCD

computed using lattice techniques at small densities [34].

In the present work, we shall demonstrate that the speeds of sound obtained in

gauge/gravity models can be arbitrarily close to the speed of light by considering sev-

eral examples where this turns out to be the case. On the gravity side, the models consist

of Einstein-Maxwell theory minimally coupled to a scalar field, which can be either charged

or neutral. These models are dual to a strongly coupled gauge theory in its large-Nc limit.

The bulk gauge field is then dual to a global U(1) current on the field theory side, while

the scalar field is dual to a relevant scalar operator. A relevant deformation breaking

conformal invariance is introduced by turning on a coupling for the scalar operator. The

first example we will study has a string theory (top-down) realization with a known field

theory dual, while the rest of the cases considered form a family of bottom-up models.

Interestingly, we observe that the simplest scenario including a quadratic potential for a

canonically normalized scalar field does not lead to large enough values for the speed of

sound. To reach higher values, it is necessary for the scalar field to possess self-interactions,

which will be reflected in the properties of higher order correlators of the dual operator.

This point should be a very interesting one to investigate further in the future.

Our paper is organized as follows. In section 2 we introduce both the top-down and

bottom-up models we work with, and in section 3 we discuss a subtle issue related to

the spontaneous generation of a scale in the top-down model. After this, we move on

to presenting our main result, the EoS in both types of models, in section 4, which is

followed by a thorough analysis of the stability of our solutions in section 5. Conclusions

are finally drawn in section 6, while a number of computational details will be discussed

in the appendices of the paper.
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2 Holographic models

We will use holographic models as a tool to study the EoS of strongly coupled gauge

theories at finite density and temperature, although we will be more interested in low

temperatures. The models will be chosen in such a way that the theory is well defined in

the UV, in the sense that there is a fixed point at asymptotically large energies. If the

theory was conformal, the EoS would be fixed by symmetry; here, this will be avoided by

introducing a relevant deformation of the UV fixed point that breaks conformal invariance

explicitly. We will consider two cases in parallel: a top-down model with a well defined

string theory construction, and a family of phenomenological bottom-up models that allow

a wider analysis while keeping the main ingredients of the top-down model.

2.1 Top-down model

The first case we are going to consider is a deformation of N = 4 SU(Nc) super Yang-

Mills (SYM). The theory has a global SU(4)R ' SO(6)R R-symmetry group associated to

rotations of the supercharges. N = 4 SYM contains vector bosons, fermions, and scalars,

all in the adjoint representation of the SU(Nc) gauge group. They can be listed as

fields symbol SU(4)R representation

vector gauge bosons Aµ singlet

gauginos (fermions) λa 4

scalars φI 6

There are three mutually commuting U(1)i=1,2,3 ⊂ SU(4)R in the R-symmetry group. We

will study states with charge for the diagonal U(1) (equal charges for all of the U(1)i). Since

N = 4 SYM is a conformal field theory, we will also need to turn on additional couplings

that break explicitly conformal invariance. We will do this by introducing a mass for the

gauginos, i.e. we will add a term to the Lagrangian of the form

L = LN=4 +m0 tr λλ . (2.1)

As we are not adding similar mass terms for the scalars, this also breaks supersymmetry

explicitly.

In the Nc → ∞ limit and for very strong ’t Hooft coupling λYM � 1, the N = 4

SYM theory has a holographic dual description as type IIB string theory in a AdS5 × S5

geometry, at weak string coupling gs ∼ 1/Nc and large curvature radius compared to the

string scale L4/(α′)2 ∼ λYM . The leading order behavior of the theory is thus captured

by classical supergravity (SUGRA) in AdS5×S5 [12]. Turning on a charge density and/or

additional couplings in N = 4 SYM is realized in the holographic dual by turning on dual

fields that modify the background geometry.

Rather than dealing with the full ten-dimensional SUGRA description of the theory, we

will restrict to a subsector that admits a consistent truncation to a simpler five-dimensional

theory. The truncation is explained in more detail in [28]. The action reduces to the one

of Einstein-Maxwell theory coupled to two real scalars

e−1L =
1

4
R− 1

g2
FµνF

µν +
1

4
(∂µφ)2 +

1

2
sinh2

(
φ√
2

)
(∂µθ − 2Aµ)2 − V (φ)

4
, (2.2)
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where e is the volume density and

V (φ) = −3g2

4

(
3 + cosh(

√
2φ)
)
, (2.3)

with the coupling constant g related to the AdS radius as g = 2/L. The bulk gauge field

Aµ is dual to the diagonal U(1) R-current Jµ and sources for the current.

We introduce the complex field,

Φ = tanh

(
φ

2
√

2

)
eiθ , (2.4)

in such a way that the action takes the form

e−1L =
1

4

[
R− L2F 2 −K(Φ)|DΦ|2 − V(Φ)

]
, DµΦ = (∂µ − iqAµ)Φ , (2.5)

with a charge q = 2 and kinetic and potential terms

K(Φ) =
8

(1− |Φ|2)2 , V(Φ) = − 12

L2

1 + |Φ|4

(1− |Φ|2)2 . (2.6)

For small Φ,

K(Φ) ' 8, V(Φ) ' − 12

L2

(
1 + 2|Φ|2

)
. (2.7)

Therefore, the canonically normalized scalar has a mass m2L2 = −3 which corresponds

to a field dual to an operator of conformal dimension ∆ = 3, the gaugino mass operator

O = tr λλ, and the associated coupling m0. Therefore, the five-dimensional action of the

truncated SUGRA subsector contains all the necessary ingredients for our analysis.

2.2 Bottom-up models

Taking the top-down model as a guide, we are going to consider a family of models with a

gravity dual consisting of Einstein-Maxwell theory minimally coupled to a scalar. Thereby,

we will be describing a subsector of the dual field theory including a global U(1) current

Jµ and a relevant scalar operator O. The usual large-Nc and strong coupling limits are

assumed to hold for the classical gravity approximation we take to be valid.

In order to obtain different EoSs, we will allow for some freedom in the choice of the

action for the scalar field. This means that in most cases the field theory dual, if it exists,

is not known. We will use these models as an exploratory mean to determine whether

holographic models can produce a stiff EoS, with the perspective of looking for proper

holographic duals with similar properties in the future. One can in principle allow the

kinetic term and the potential for the scalar to be generic functionals, although we will

fix their form to be able to do explicit calculations. The five-dimensional action for these

models will be as given in (2.5). For the bottom-up models we will take the charge to

be zero q = 0, as eventually we would like to identify the U(1) symmetry with baryon

symmetry, which is unbroken. For simplicity, we will fix the kinetic term to be canonically

normalized K(Φ) = 1 and the potential to be of the form

V(Φ) = − 12

L2
+m2|Φ|2 +

V4

2L2

(
|Φ|2

)2
. (2.8)
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Here, we will allow the masses to lie in the interval 0 > m2L2 ≥ −3, in such a way the

scalar field will be dual to a scalar operator of dimension in the interval 4 > ∆ ≥ 3. We

will study first the case with a purely quadratic potential V4 = 0 and then the behavior

when V4 is changed.

2.3 Charged black hole solutions in the top-down model

We take an Ansatz for the metric of the form

ds2 = L2 dr2

r2f(r)
+
r2

L2
e2A

[
−f(r)dt2 + dx2

1 + dx2
2 + dx2

3

]
, (2.9)

in such a way that it is asymptotically AdS at r → ∞. There is a black hole horizon at

r = rH , where f(rH) = 0. The scalar field and the time component of the gauge field are

also turned on and depend only on the radial coordinate, i.e. Φ0 = Φ0(r), A0 = A0(r).

The equations of motion and the near boundary behavior of the bulk fields are detailed

in appendix A. If the fields were decoupled, their expansion at the boundary would take

the form3

A0∼µ+
L4

r2
A0(0,2), f ∼ 1+

L8

r4
f(0,4), A∼ 0, Φ0∼

L2

r
φ(0,1)+

L6

r3

[
φ(1,3) log

( r
L

)
+φ(0,3)

]
.

(2.10)

We can identify µ with the chemical potential in the dual field theory and φ(0,1) with the

coupling of the dual operator. If it is nonzero, this amounts to introducing a relevant

deformation that breaks explicitly conformal invariance in the dual field theory. In this

case, φ(0,1) gives a mass to the gauginos. For ∆ = 3, φ(0,1) has dimension one, so we can

in fact identify it with a mass scale m0 ≡ φ(0,1). The coefficients A0(0,2), f(0,4), and φ(0,3)

determine the R-charge density, energy, and the expectation value of the scalar operator

(gaugino bilinear), respectively. The coefficient of the logarithmic term φ(1,3) is finally

proportional to m0.

For convenience when obtaining the numerical solutions, we will perform the variable

and gauge field redefinitions

u =
(rH
r

)2
, A0 → A0

rH
L2

, (2.11)

so that the AdS boundary is now at u→ 0 while the horizon is at u→ 1. This change im-

plies that in order to correctly match with the holographic renormalization scheme adopted,

carried out in the r coordinate, one must perform the shift

f(0,4) → f(0,4) + 16µ2m2
0 log

(rH
L

)
φ(0,3) → φ(0,3) −

(
4

3
m2

0 + 2µ2

)
m0 log

(rH
L

)
A0(0,2) → A0(0,2) + 8µm2

0 log
(rH
L

) (2.12)

3We use a notation where X(n,m) is the coefficient of (L2/r)m(log(r/L))n in the expansion of the field X.

– 6 –
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in such a way that the dependence on rH in the near-boundary series solution is absorbed.

Such a shift has to be applied also to the boundary operators (B.18). In the u coordinate,

the near-boundary fields read

Φ0∼αu1/2+
[
β̂ log(u)+β

]
u3/2, f ∼ 1+f̂(0)u

2, A∼ 0, A0∼
rH
L2

(a0+a1u) . (2.13)

The map between the coefficients in both coordinates is

m0 =
rH
L2
α, φ(0,3) =

r3
H

L6
β, µ =

rH
L2
a0, A0(0,2) =

r3
H

L6
a1, f(0,4) =

r4
H

L8
f̂(0) . (2.14)

Near the horizon we will impose regularity of the solution plus vanishing boundary condi-

tions for the warp factor and the gauge field. Then, at leading order, we have

A0 ∼ A0
(1)
H (1− u), f ∼ f (1)

H (1− u), A ∼ A(0)
H +A

(1)
H (1− u), Φ ∼ φ(0)

H , (2.15)

where the subleading terms can be found in appendix A.2.

It is convenient to define our thermodynamic variables (µ, T ) in units of the mass m0

µr =
µ

m0
, tr =

T

m0
, (2.16)

so that a0 = µrα. We will also normalize the thermodynamic potentials and expectation

values of the charge and scalar operators by the mass and a common factor N = L3

16πG5
,

such that

εr =
ε

Nm4
0

, pr =
p

Nm4
0

, vr =
〈O〉
Nm3

0

, nr =
n

Nm3
0

. (2.17)

After defining

W1 = κ1 − 8 log (m0L) , W2 = κ2 +
32

3
log (m0L) , (2.18)

and taking the renormalized expectation values (B.18), detailed in appendix B.2, we

then get

εr = −3f̂0

α4
− 8β

α3
+ log(α)

(
32µ2

r −
32

3

)
− 4µ2

r (κ1 + 3)− κ2 −
16

3

pr = − f̂0

α4
+

8β

α3
+ log(α)

(
32µ2

r +
32

3

)
− 4µ2

r (κ1 + 1) + κ2 +
16

3

vr = 32
β

α3
+

64

3
log(α)

(
3µ2

r + 2
)
− 8(κ1 + 4)µ2

r + 4κ2 +
32

3

nr = −8 [a1 − 8µr log(α) + (κ1 + 4)µr] .

(2.19)

We have computed the solutions by means of the shooting technique, thoroughly explained

in appendix A.3. We plot the results as a function of µr for a fixed temperature tr = 1

in figure 1.
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Figure 1. Coefficients of the numerical solutions defined in eq. (2.14) as functions of the reduced

chemical potential µr. From left to right and top to bottom, −a1, −f̂(0), α, and β.

2.4 Charged black hole solutions in bottom-up models

In the bottom-up models, we will proceed in a similar manner to the top-down one. We

take an Ansatz for the metric of the form given in (2.9), and fix q = 0 for simplicity and

because the potential application to the physics of dense nuclear matter requires the U(1)

symmetry to be unbroken. The equations of motion and the near boundary behavior of the

bulk fields are detailed in the appendices of [28]. For ∆ = 3 the equations and expansions

take a similar form as in the top-down model (2.10). For ∆ 6= 3 only the expansion of the

scalar field at the boundary changes to

Φ0 ∼
L2(4−∆)

r4−∆
φ̃(0,0) +

L2∆

r∆
φ(0,0) . (2.20)

We can identify φ̃(0,0) with the coupling of the dual operator. If it is nonzero, this amounts

to introducing a relevant deformation that breaks explicitly conformal invariance in the

dual field theory. Similarly to the top-down model, we will introduce the mass scale

m0 = (φ̃(0,0))
1/(4−∆).

For convenience when obtaining the numerical solutions, we will perform the change to

the u coordinate (2.11). The near-boundary expansions of the fields are given by eq. (2.13),

except for the scalar field, which now reads

Φ0 ∼ αu(4−∆)/2 + βu∆/2 . (2.21)

The map between the coefficients in both coordinates is given by (2.14), except for the

scalar, which now takes the form

φ̃(0) =
(rH
L2

)4−∆
α, φ(0) =

(rH
L2

)∆
β . (2.22)

– 8 –
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Near the horizon we will impose regularity of the solution plus vanishing boundary condi-

tions for the warp factor and the gauge field as in (2.15).

It is convenient to define our thermodynamic variables (µ, T ) in units of the mass m0,

as in (2.16) and (2.17). The normalization of the expectation value of the scalar operator

reads in the general case

vr =
〈O〉
Nm∆

0

. (2.23)

Taking the renormalized expectation values detailed in the appendix of [28], we get

for ∆ = 3:

εr = −3f̂0

α4
− β

α3
+

(
1

3
+
V4

2

)
log(α)− κ2 −

1

12
− V4

8

pr = − f̂0

α4
+

β

α3
−
(

1

3
+
V4

2

)
log(α) + κ2 +

1

12
+
V4

8

vr = −2
β

α3
+ 2

(
1

3
+
V4

2

)
log(α)− 2κ2 −

1

3
− V4

2

nr = −8a1 .

(2.24)

We will fix κ2 = 0 in the following, since this parameter is irrelevant for the speed of sound.

This selects V4 = −2/3 as a special value, for which the logarithmic terms drop and the

conformal anomaly vanishes, although there are still terms contributing to the trace of the

energy-momentum tensor proportional to the expectation value of the scalar operator.

For ∆ 6= 3, we on the other hand get

εr = −3f̂0

α4
+ (∆− 4)(∆− 2)

β

α3

pr = − f̂0

α4
− (∆− 4)(∆− 2)

β

α3

vr = −2(∆− 2)
β

α3

nr = −8a1 .

(2.25)

We have computed the solutions using the same numerical methods as for the top-down

model. The results are plotted as functions of µr for a fixed temperature tr = 0.1 in figure 2.

3 Generation of a new scale in the top-down model

There are some subtleties entering the EoS of the top-down model that we shall presently

discuss. In (2.19), κ1 and κ2 are the coefficients of finite counterterms. These terms are

scheme dependent but once the renormalization scheme has been fixed, their values are

related to physical quantities such as the expectation value of the scalar operator and the

charge density. This implies that the theory is not completely determined by the bulk action

of the gravity dual, but it is necessary to specify the value of the finite counterterms as well.

– 9 –
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Figure 2. Coefficients of the numerical solutions in the bottom-up case as functions of the reduced

chemical potential µr at fixed temperature tr = 0.1 and different values of V4. From left to right

and top to bottom, −a1, −f̂(0), α, and β.

From the point of view of the field theory, consider that in addition to the N = 4 SYM

fields there is a decoupled scalar field ϕ and a Yukawa coupling Yϕ between the scalar and

the N = 4 SYM gauginos,

LY = Yϕϕ tr λλ . (3.1)

In the large-Nc limit, we can treat the scalar field as quenched, neglecting loop effects from

the N = 4 SYM theory. Nevertheless, this coupling breaks conformal invariance (even

though it is classically marginal) and will introduce a logarithmic dependence log(E/Λ) on

the energy scale E in physical observables, such as scattering cross sections. In particular,

a wave function renormalization of ϕ will show up in the kinetic term of the scalar field,

having the same form as the finite counterterm associated to κ1. The scale Λ that appears

inside the log depends on the scheme, but can be fixed by measurement. After this, the

value of Λ will be different in different schemes, but physical quantities will naturally have

the same values in each of them.

On top of the scale appearing due to logarithmic terms, if the scalar field acquires an

expectation value 〈ϕ〉 = m0, this will affect the N = 4 SYM theory as an explicit breaking

of conformal invariance. Note that in principle the scale of explicit breaking m0 and the

scale that determines the running of the coupling Λ would be completely independent, if

no further condition is imposed.
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To illustrate the above with an example, consider the computation of a one-loop con-

tribution to the self-energy of a scalar field due to a loop of a fermion field of mass m0.

There is a logarithmic UV divergence that in dimensional regularization in d = 4 − 2ε

dimensions becomes a pole as ε→ 0. Depending on the scheme, removing this divergence

leaves behind different finite terms, taking the forms

ΣMS(p2) ∼ βm2
0

(
−γE + log(4π) + log

√
−p2

Λ

)

ΣMS(p2) ∼ βm2
0 log

√
−p2

Λ̄

ΣFS(p2) ∼ m2
0

(
κFS + β log

√
−p2

m0

)
.

(3.2)

Here, β ∼ Y 2
ϕ is a scheme-independent factor, MS and MS denote the usual (modified)

minimal subtraction schemes with scale parameters Λ and Λ̄, and FS stands for a fixed scale

scheme with an arbitrary finite term κFS . The physical mass of the scalar M corresponds

to the position of the pole in the propagator

p2 + Σ(p2)
∣∣∣
p2=−M2

= 0 , (3.3)

where m0 is the bare mass. This can be viewed as fixing the arbitrary renormalization

scales of the MS and MS schemes and the constant in the FS scheme,

Λ̄ =
eγE

4π
Λ = Me−M

2/βm2
0 , κFS =

M2

m2
0

− β log
M

m0
. (3.4)

For a given scheme, changing the renormalization scale or the finite counterterm amounts

to a change of the physical scale and thus a modification of the theory.

In the holographic calculation we fix the scheme of holographic renormalization by

using L as the reference scale in the asymptotic expansion of the fields and m0 in the

definition of the finite counterterms. We could have chosen a different scale, say L′, in such

a way that

W1 = κ′1 − 8 log
(
m0L

′) , W2 = κ′2 +
32

3
log
(
m0L

′) . (3.5)

Physical results would be unchanged as long as we appropriately identify the values of the

finite counterterms in each scheme,

κ′1 = κ1 − 8 log(L/L′), κ′2 = κ2 +
32

3
log(L/L′) . (3.6)

We could also have changed the scheme by using a scale different from m0 in the logs

W1 = κ′1 − 8 log
(
m′L

)
, W2 = κ′2 +

32

3
log
(
m′L

)
, (3.7)

leading to a somewhat different relation between the finite counterterms in different

schemes,

κ′1 = κ1 − 8 log(m0/m
′), κ′2 = κ2 +

32

3
log(m0/m

′) . (3.8)
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This shows that an arbitrary scale can indeed be introduced through holographic

renormalization.

Once we have fixed our renormalization scheme (for instance one could choose schemes

where κ′1 = 0 or κ′2 = 0), different values of finite counterterms correspond to different val-

ues of physical quantities (i.e. renormalization group invariants). However, one can see that

the effect of κ2 is to add a term independent of the temperature or the chemical potential

that shifts the value of the vacuum energy. It is therefore unimportant for thermodynam-

ics, and a valid physical choice could be that the effective cosmological constant term in

the dual field theory vanishes. A similar term appears in the D3/D7 model [35], where

the counterterm is fixed by supersymmetry and gives a vanishing expectation value for the

scalar operator [36]. In principle, the dual field theory is supersymmetric with soft-breaking

terms (the gaugino mass in eq. (2.1)), and supersymmetry could then fix the value of the

finite counterterm κ2 at zero temperature and chemical potential. The value of κ1 might

also be fixed by similar considerations, but in the present context with a nonzero chemical

potential, it is not known how or whether the finite counterterm is to be fixed. To our

knowledge, this is still an open problem in holographic renormalization in general. This

implies that giving arbitrary values to the finite counterterms might spoil the identification

of the dual field theory corresponding to the consistent truncation. Nevertheless one could

interpret models with different values as extensions of the original supersymmetric model

with additional terms (similar to the one in eq. (3.1)) that introduce an explicit breaking

of supersymmetry.

Compared to κ2, κ1 has a more interesting and physical effect: it changes the argument

of logarithms of α according to

log(α) −→ log
(
αe−κ1/8

)
= log

(
a0e
−κ1/8

µr

)
≡ log

(
Λκ
µ

)
. (3.9)

This means that a new scale Λκ has been spontaneously generated in the dual field theory,

and that its relative size in comparison with the scale of the explicit breaking of conformal

invariance is controlled by κ1:

Λκ
m0

= a0e
−κ1/8 . (3.10)

In particular, for |κ1| sufficiently large, Λκ can be pushed towards the UV. In figure 3 we

plot Λκ as a function of the reduced chemical potential for various negative values of κ1.

When the red line crosses the other curves, Λκ = µr and the argument of the logarithm in

eq. (3.9) becomes unity. Note that the hierarchy is not parametrically large with N or the

’t Hooft coupling, so we will remain in the realm of classical supergravity. Furthermore, as

the hierarchy is introduced through finite terms in the boundary action, there is no change

in the bulk supergravity equations of motion and solutions; in particular the consistent

truncation is unaffected. It is still the same subset of operators in the dual field theory

that close under the OPEs.
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Figure 3. Λκ vs µr for different values of κ1 < 0. The crossings with the red line correspond to

points where Λκ = µr. From bottom to top, κ1 = −9.49, κ1 = −11.05, κ1 = −12.94, κ1 = −15.22,

κ1 = 17.99, κ1 = −21.38, κ1 = −25.53.

4 Equation of State

If a weakly coupled quasiparticle description is possible for the system under study, it is

appropriate to use kinetic theory to derive its Equation of State. In a relativistic theory

causality then imposes a constraint, Taub’s inequality [15]

τ =
ε(ε− 3p)

ρ2
≥ 1 , (4.1)

where ρ is the mass density. One can check for instance that for a degenerate (non-

interacting) Fermi liquid τ = τF ≥ 1, where

τF =
9

16(µ2
r−1)3

[
2µ6

r−3µ4
r+µ2

r+log2
(
µr+

√
µ2
r−1

)
−2
√
µ2
r−1µ3

r log
(
µr+

√
µ2
r−1

)]
(4.2)

and µr = µ/mF where mF is the mass of the fermions.

In a strongly coupled theory the above condition may easily be violated. A simple

example is the D3/D7 model [35] that is used to model flavor physics at strong coupling, and

that contains quarks and squarks with a mass mq. The EoS is known analytically [37–41],

and the pressure, energy density, and mass density at zero temperature read as functions

of the chemical potential

p = λ(µ2 −m2
q)

2, ε = λ(µ2 −m2
q)(3µ

2 +m2
q), ρ = 4λmqµ(µ2 −m2

q) , (4.3)

where λ is an unimportant constant factor. Defining the reduced chemical potential as

µr = µ/mq, one finds

τD7 =
3

4

(
1 +

1

3µ2
r

)
⇒ 1 ≥ τD7 ≥

3

4
. (4.4)
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Figure 4. Left plot: the function τ − 1 appearing in Taub’s inequality plotted as a function of

the chemical potential for a degenerate Fermi liquid (red), the D3/D7 model (green) and the top-

down model for κ1 = −12.86 (purple). Holographic models clearly violate Taub’s inequality τ ≥ 1.

At large values of µr, τ − 1 in the D3/D7 model approaches a negative constant corresponding

to τ = 3/4, while the supergravity curve keeps decreasing and reaches τ = 0 at µr ' 34. The

difference in behavior can be understood from the fact that ε − 3p ∼ m2
qµ

2 in the D3/D7 model,

while ε − 3p ∼ m2
0µ

2 log(m0/µ) in the supergravity model. On the right plot we show Taub’s

inequality for the top-down model for different values of κ1, spanning from −12.86 (upper curve)

to −5.18× 103 (bottom curve).

Taub’s inequality is obviously violated, which indicates that the theory is indeed strongly

coupled and that it possesses no good quasiparticle description. Note that there is, however,

a (weaker) bound that constrains the Equation of State. Indeed, as long as τ ≥ 0 we will

have a condition

ε ≥ 3p . (4.5)

4.1 Top-down model

We can compare the values of τ in the models we study here with those of the degenerate

Fermi liquid and the D3/D7 model, see figure 4. We observe that τ < 0 for a range of

values of the chemical potential (µr & 32 for κ1 = −10; for even more negative values of κ1

the curve of the top-down model goes further down). It thus appears that in these regions

the EoS is stiffer than in a conformal theory, but how stiff can it be? In order to answer

this question we would need to compute the adiabatic speed of sound (1.1). However, it is

technically easier to work at fixed temperature and compute the isothermal speed of sound

v2
s isot =

(
∂p

∂ε

)
T

=

(
∂pr
∂µr

)
tr(

∂εr
∂µr

)
tr

, (4.6)

which is closely related to the adiabatic one through the standard thermodynamic relations

v2
s isot =

ρr

µr

(
∂ρr
∂µr

)
tr

+ tr

(
∂sr
∂µr

)
tr

v2
s adiab =

1

µr

ρr

(
∂sr
∂tr

)
µr
− sr

(
∂sr
∂µr

)
tr(

∂ρr
∂µr

)
tr

(
∂sr
∂tr

)
µr
−
(
∂ρr
∂tr

)
µr

(
∂sr
∂µr

)
tr

.

(4.7)
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Figure 5. vs as a function of the reduced chemical potential at tr = 1 at different values of κ1.

The thin horizontal line corresponds to the value of the speed of sound in the conformal theory

vs = 1/
√

3. In the left plot the values of κ1 span from −12.84 (bottom curve) to −5.18×103 (upper

curve). In the right plot we have marked the points where µr = Λκ for different curves, which are

at the same values of κ1 than in figure 3.

If the pressure has an analytic expansion in T/µ for T/µ � 1 (as it will be the case in

our models) and the entropy goes to zero at zero temperature, one can neglect the terms

proportional to
(
∂sr
∂µr

)
tr

and the two speeds become the same. At non-zero temperature,

the difference is suppressed by a factor of at least O(T/µ). Moreover, in many practical

applications the temperature is taken to be zero as a good approximation. Therefore, we

will study the isothermal speed of sound in the following and drop the label.

The behavior of the speed of sound vs in the top-down model is depicted in figure 5.4

We observe that, for κ1 < 0, when |κ1| is increased the speed of sound becomes larger at low

values of the chemical potential, eventually becoming quite close to the speed of light, and

the region where the speed of sound is large also grows. A possible way to understand this is

to recall that the scale Λκ defined in (3.10) that controls the contribution of the logarithmic

terms in (2.19) increases with increasing |κ1|. When this happens, the logarithmic terms

become large in magnitude. If the logarithmic terms in (2.19) dominate, the EoS becomes

stiff but remains compatible with causality, as εr ∼ pr. Therefore, there is no fundamental

obstacle towards obtaining a stiff EoS for a large interval of chemical potentials, as long as

a significant separation of scales is present.

An important issue to consider is the possibility that the theory might become unstable

in the stiff regime. A necessary but not sufficient condition for thermodynamic stability is

that the charge susceptibility be positive,

χ =
∂2p

∂µ2
> 0 . (4.8)

In figure 6 we plot χ|tr=1 for different values of κ1. For large enough values of |κ1|, the

susceptibility is positive and the theory is thermodynamically stable with respect to density

fluctuations. There is a critical value κ1 = κc ≈ −6.44, for which the theory becomes

4These plots correspond to values of the chemical potential that are much below the regime of validity

of the probe approximation used in [28]. For tr = 1 one should go at least to values µr > 150 before we

reach the probe limit.
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Figure 6. The charge susceptibility χ as a function of the reduced chemical potential µr for

tr = 1 and for different values of κ1. From top to bottom, κ1 = −8 (black dotted line), κ1 = κc
(black dashed line) and κ1 = −6 (black solid line). The central curve marks the onset of the

thermodynamic instability, i.e., χ(0)|κ=κc = 0. For larger values of κ1, one gets χ < 0 up to some

finite µr.

unstable at low values of the chemical potential. Therefore, the models with a large speed

of sound are thermodynamically stable in the stiff regime. We will study their dynamical

stability in section 5.

4.2 Bottom-up models

Moving again to the bottom-up models, we first consider the case without a quartic term

in the potential V4 = 0. The results are summarized in figure 7. We find that the speed of

sound can be larger than the one in a conformal theory, and that larger deviations occur

for operators of lower dimensions, close to ∆ = 3 for our allowed range. The left plot of

figure 7 reflects this: there, we have fixed the temperature, computed the speed of sound

as function of the chemical potential, and plotted the largest value we have found for each

dimension of the scalar operator. This behavior holds for a range of low temperatures. The

right plot of figure 7 shows the largest value of the speed of sound for a fixed dimension

∆ ∼ 3 as we vary the temperature. We see that the magnitude increases as we lower

the temperature, but it seems to saturate at an absolute maximum. The maximum value

is just slightly larger than the conformal value by some 3 %, while for phenomenological

purposes it should be at least ca. 30 % larger.

Next, we turn on the quartic term in the potential, i.e. let V4 6= 0. In figure 8 we plot

the speed of sound as a function of the chemical potential for a fixed temperature tr = 0.1

and different values of V4. We observe that making V4 more negative increases the value of

the speed of sound, while making V4 more positive has the opposite effect. It is possible to

reach values of the speed of sound 20–40 % larger than the conformal value for V4 ∼ −1.5

and µr ∼ 0.6–0.75. The speed of sound seems to be growing further at lower values of the

chemical potential. This shows that stiff phases are possible in generic holographic models.

However, in contrast to the top-down model, we find that in most cases there are

violations of causality (vs > 1) or thermodynamic instabilities (v2
s < 0) at small values of
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dimension. The isotherm was taken to be tr = 10−3. Right plot: maximum speed of sound as a
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Figure 8. The speed of sound as a function of the reduced chemical potential µr for fixed temper-

ature tr = 0.1. The charge and dimension of the dual scalar operator are q = 0 and ∆ = 3.

0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1.0

μr

v s

tr=0.01

tr=0.1

tr=0.15

tr=0.175

tr=0.1953

tr=0.21

tr=0.23

tr=0.5
0.1 0.2 0.3 0.4 0.5

0.5

0.6

0.7

0.8

0.9

1.0

μr

v s

tr=0.01

tr=0.05

tr=0.077

tr=0.09

tr=0.15

tr=0.5

Figure 9. The speed of sound as a function of the reduced chemical potential µr for different

temperatures and for a fixed quartic potential V4 = −1 (left) and V4 = −0.67 (right). The charge

and dimension of the dual scalar operator are q = 0 and ∆ = 3.

the chemical potential, so there is likely a phase transition between the high temperature,

zero density phase and the low temperature, non-zero density one. Nevertheless, as we

show in figure 9, for any given temperature there is a range of values of V4 where the

speed of sound remains in the physical range 1 ≥ v2
s ≥ 0. This happens around the special

value of V4 = −2/3, for which the conformal anomaly vanishes; we even observe that near

the special value the speed of sound becomes very close to its conformal limit and almost

independent of the chemical potential.
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Figure 10. The charge susceptibility χ as a function of the reduced chemical potential µr for

tr = 0.1 and for different values of V4.

To inspect thermodynamic stability, we have plotted the charge susceptibility in

figure 10. In the cases where v2
s < 0 we also find that the susceptibility becomes neg-

ative, although this appears to happen at lower values of the chemical potential, so it may

correspond to a different kind of instability. When the speed of sound becomes superlu-

minal there can also be a small interval with χ > 0 for V4 & −1. In the window where

1 ≥ v2
s > 0 for all values of the chemical potential we find that χ > 0, so these correspond

to thermodynamically stable phases. Numerically, it seems that the values of V4 for which

v2
s = 0 and χ = 0 at zero chemical potential coincide.

5 Stability

The aim of this section is to determine whether the stiff phases we have found are indeed

local minima of the free energy in the space of homogeneous configurations. To this end,

we will introduce a small time-dependent perturbation, expecting that if the equilibrium

configuration is unstable we will witness the exponential growth of some of the modes.

Otherwise, we expect the perturbation to oscillate and/or decay back to equilibrium. As

we are considering only homogeneous configurations, we can suppress the spatial depen-

dence. On the gravity side, this translates into studying a linear perturbation around the

previously obtained background solution5

Φ→ Φ(r) + δΦ(r, t), A0 → A0(r) + δA0(r, t), gµν → gµν(r) + δgµν(r, t) . (5.1)

Since our background is stationary, we can expand in plane waves of a given frequency ω,

δΦ(r, t) = ϕ(r)e−iωt, δA0(r, t) = a0(r)e−iωt, δgµν(r, t) = hµν(r)e−iωt . (5.2)

Dynamical modes are normalizable and satisfy an ingoing boundary condition at the hori-

zon. This is possible typically only for a discrete set of complex frequencies, the quasi-

normal frequencies ωn. If the imaginary part of the quasinormal frequency is negative or

zero, Imωn ≤ 0, the associated quasinormal mode decays in time or is oscillatory, and the

background is stable. On the other hand, if Imωn > 0 is positive, the quasinormal mode

grows exponentially in time and the background is unstable.

5We work in the δgrµ = Ar = 0 gauge.
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Figure 11. Left figure: det(M) at zero density as a function of the reduced temperature. Right

figure: det(M) as a function of the reduced chemical potential at tr = 1.

An important piece of information is that at zero chemical potential and high temper-

atures — µr = 0, tr � 1 — the model is known to be stable, as the quasinormal modes

should approximate those of a probe scalar in an AdS black hole background, all of which

are on the lower half of the complex frequency plane [42]. As the background changes con-

tinuously, a quasinormal mode has to cross the real axis to the upper half plane in order

to develop an instability. Physically we expect that if the background becomes unstable

there will be another stationary solution corresponding to the true vacuum of the theory.

In that case the crossing should happen at the origin of the complex plane. Therefore, the

onset of the instability can be determined from the appearance of a quasinormal mode at

zero frequency.

We study the appearance of a zero frequency quasinormal mode using the determinant

method of e.g. [43, 44] and standard techniques, most details of which can be found in

appendix C. First, we introduce gauge invariant combinations of the fields under diffeo-

morphisms that preserve the condition gµr = 0. There are two independent scalar modes

z1 = ϕ+ ϕ† − rΦ′0
1 + rA′

h

z2 = ω
(
ϕ− ϕ†

)
+ qΦ0

[
A0

f
h00 + 2a0 +

(
A0 +

r

1 + rA′

(
A′0 −

f ′

2f
A0

))
h

]
,

(5.3)

where h = δijhij/3 is the trace of the spatial components of the metric fluctuation. If

q 6= 0, the two modes are coupled

0 = z′′i +Aijzj + Bijz′j , i, j = 1, 2 , (5.4)

with coefficients Aij ,Bij that depend on the background fields. If q = 0, the off-diagonal

components of A and B are zero and the two modes decouple.

We impose that the solutions are ingoing at the horizon. There are two independent

solutions z
(I)
i , z

(II)
i corresponding to making z1 or z2 zero at the horizon. When these

solutions are taken to the boundary, a linear combination of them will be normalizable for

the values of the frequency corresponding to the quasinormal modes. In the u coordinate,
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Figure 12. Left figure: det(M) at zero density as a function of the reduced temperature for

the bottom-up model with quartic term (top to bottom) V4 = −0.5,−0.6777,−1,−1.5,−2. Right

figure: det(M) as a function of the reduced chemical potential at tr = 0.1.

the expansion of the solutions at the boundary u→ 0 is, to leading order,

zi ∼
√
u
(
z

(nn)
i + u z

(n)
i

)
, (5.5)

where we identify the coefficients of the non-normalizable (nn) and normalizable (n) solu-

tions. We arrange the solutions in a matrix with constant entries at the boundary

M = lim
u→0

1√
u

(
z

(I)
1 z

(I)
2

z
(II)
1 z

(II)
2

)
. (5.6)

M depends on the frequency, and a normalizable solution exists when M(ω) has a zero

eigenvalue, i.e. det(M(ω)) = 0.

For the top-down model we have computed the determinant at zero frequency ω = 0

first for a zero chemical potential µr = 0 starting at high temperatures and decreasing the

temperature to values tr < 1 (left plot in figure 11). As the determinant never vanishes, the

background is stable for µr = 0, tr = 1. We then repeat the same calculation but keeping

tr = 1 fixed and increasing the chemical potential µr. We find that the determinant is non-

vanishing in the range we are interested 0 ≤ µr ≤ 50 (right plot in figure 11). Therefore,

the theory remains dynamically stable in the regime where the EoS is stiff.

For the bottom-up model we do a similar stability analysis, we first compute the

determinant at zero frequency ω = 0 at zero chemical potential µr = 0 starting at high

temperatures and decreasing the temperature to values tr < 0.1 (left plot in figure 12).

We then fix the temperature to tr = 0.1 and increase the chemical potential µr (right plot

in figure 12). We find that the determinant is non-vanishing for values of V4 where the

speed of sound remains in the physical window, even when the speed of sound is close to

the speed of light. Therefore, these models have sensible physical behavior and no obvious

instabilities even in the regime where the EoS is stiff.

6 Conclusions

In the paper at hand, we studied the thermodynamics of cold and dense strongly coupled

matter via simple holographic models. The models include the minimal ingredients of finite
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charge density and breaking of conformal invariance through a coupling for a relevant scalar

operator of conformal dimension 4 > ∆ ≥ 3. We find that for some of these cases it is

possible to find very stiff Equations of State, with the speed of sound almost reaching the

speed of light. A simple stability analysis of the models furthermore showed no obvious

thermodynamic or dynamic instabilities.

We observe that the simplest models possessing a quadratic action for the scalar field

do not reach speeds of sound significantly larger than the conformal limit of vs = 1/
√

3.

In bottom-up models with a quartic potential, the speed of sound can on the other hand

reach the speed of light if the quartic term has a negative coefficient V4 < 0 with large

enough magnitude. However, except for a small range of values around V4 = −2/3, the

isothermal speed of sound becomes superluminal or imaginary (indicating the presence

of an instability) at low values of the chemical potential. Concerning the superluminal

behavior, it should, however, be noted that when the chemical potential is of the same

order or smaller than the temperature, one should rather consider the adiabatic speed of

sound, which may affect to the range of values of V4, for which causality is respected.

In addition to the bottom-up models, we also studied a top-down model with a more

complicated action for the scalar, determined by a consistent truncation of supergrav-

ity. The issues of superluminal or imaginary speeds of sound do not appear in this case,

which suggests that adding higher powers of the scalar field to the scalar potential might

ameliorate the behavior of these quantities also in the bottom-up models. On the other

hand, a stiff EoS is achieved in the top-down model only when there is a large separation

between the scale of explicit breaking of conformal invariance and another scale that is

spontaneously generated due to logarithmic divergences. The conclusion seems to be that

although there is no fundamental obstruction to achieving a stiff EoS, this may not be

possible in the simplest models and/or for the most “natural” values of the parameters

of the system. On the positive side, the conditions required to achieve a stiff and phys-

ically consistent EoS may prove to be quite restrictive and thus turn out to be useful in

constraining possible holographic models of QCD.

An interesting question is if the increase in stiffness is due to some underlying physical

mechanism involving microscopic degrees of freedom in the dual field theory, at least for

the top-down model where the dual is known. However, microscopic fields are not gauge

invariant and therefore not directly accessible using the duality. So far we can just make

a broad qualitative statement, it appears that one needs a combination of explicit and

anomalous breaking of conformal invariance, with a hierarchy between these scales such

that the scale of anomalous breaking is the larger.

An obvious phenomenological application of our results lies in the physics of neutron

stars, where a holographic quark matter EoS has previously been matched to nuclear matter

EoSs in [27]. The fact that very stiff EoSs can be obtained from holography opens up the

possibility to construct matched EoSs exhibiting a weakly first order or even a cross-over

deconfinement transition, thus allowing for the existence of a macroscopic amount of quark

matter in the cores of the stars. Recalling the ease, with which quantities such as neutrino

emissitivities and transport coefficients can be computed in holography, this paves the way

for very interesting astrophysical studies.
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A Background solutions

Varying the action (2.5) of the top-down model (2.6) with respect to the bulk metric, gauge,

and scalar fields yields the equations of motion

0 =
Φ′

fr

[
f
(
4rA′ + 5

)
+ rf ′

]
− Φ2 + 1

Φ2 − 1

e−2AΦ

f2r4

(
3e2Afr2 +A2

0L
4q2
)

+
2Φ (Φ′)2

1− Φ2
+ Φ′′

0 = A′0

(
2A′ +

3

r

)
− 4A0q

2Φ2

fr2 (1− Φ2)2 +A′′0

0 = f ′
(

4A′ +
5

r

)
− 16e−2AA2

0L
4q2Φ2

fr4 (1− Φ2)2 − 4L4

r2
e−2AA′0

2 + f ′′

0 = A′′ +
A′

r
+

8

3 (1− Φ2)2

(
Φ′2 +

L4q2

f2r4
e−2AA2

0Φ2

)
0 = A′

(
3f ′

2f
+

12

r
+ 6A′

)
+

1

2fr2

[
2e−2AL4A′0

2 + 3

(
rf ′ − 4

1 + Φ4

(1− Φ2)2

)]
+

6

r2
− 4

(1− Φ2)2

(
Φ′2 +

L4q2

f2r4
e−2AA2

0Φ2

)
.

(A.1)

A.1 Near boundary series expansions

The near boundary behavior for the scalar field is

Φ ∼ L2

r
φ(0,1) +

L6

r3

[
φ(1,3) log

( r
L

)
+ φ(0,3)

]
. (A.2)

We shall assume the following series expansions for the other fields

f = 1 +
∑
n,m

L2n

rn
f(n,m) log

( r
L

)m
, A =

∑
n,m

L2n

rn
A(n,m) log

( r
L

)m
A0 = µ+

∑
n,m

L2n

rn
A0(n,m) log

( r
L

)m
, Φ =

∑
n,m

L2n

rn
φ(n,m) log

( r
L

)m (A.3)
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which upon implementing the equations of motion become

A0(r)∼µ+
L4

r2

[
A0(0,2)−8µφ2

(0,1) log
( r
L

)]
+

L8

3r4

{
2φ(0,1)

[
φ(0,1)

(
4A0(0,2)+9µ3

)
−8µφ3

(0,1)+6µφ(0,3)

]
+

24log
( r
L

)
µφ2

(0,1)

(
µ2φ2

(0,1)−2φ2
(0,1)

)}

f(r)∼ 1+
L8

r4

[
f0,4−16µ2L4φ2

(0,1) log
( r
L

)]
A(r)∼−

2L4φ2
(0,1)

3r2
− L8

9r4
φ(0,1)

{
9µ2φ(0,1)

[
2log

( r
L

)
+1
]
+φ3

(0,1)

[
12log

( r
L

)
+5
]
+9φ(0,3)

}

Φ(r) =
L2

r
φ(0,1)+

L6

r3

[
φ(0,1) log

( r
L

)(4

3
φ2

(0,1)+2µ2

)
+φ(0,3)

]
(A.4)

plus sub-leading terms that we do not put here.

A.2 Near horizon series expansions

As stated before, we will demand regularity of the solutions near the horizon. Thus, in the

u coordinate,

(Φ, A) =
∑
n=0

(
φ

(n)
H , A

(n)
H

)
(1− u)n, (f,A0) =

∑
n=1

(
f

(n)
H , A0

(n)
H

)
(1− u)n . (A.5)

Again, combining this with the equations of motion, we obtain

A
(1)
H =

1

f
(1)
H

 1 + φ
(0)
H

4(
φ

(0)
H

2 − 1
)

2
− 2

3
A

(1)
0H

2e−2A
(0)
H

− 1

2

A
(2)
H =

1

f
(1)
H

(
φ

(0)
H

2 − 1
)

2

[
−

4A
(1)
0H

2e−2A
(0)
H φ

(0)
H

2

3f
(1)
H

+
φ

(0)
H

4

2
+

1

2

]
−
A

(1)
0H

2e−2A
(0)
H

3f
(1)
H

−
φ

(0)
H

2

2f
(1)
H

2
(
φ

(0)
H

2 − 1
)

4

[
3φ

(0)
H

4

2
+ 3φ

(0)
H

2 +
3

2

]
− 1

4

A0
(2)
H =

1

6
A

(1)
0H

(
4A

(1)
0H

2e−2A
(0)
H − 6

f
(1)
H

+ 3

)
(A.6)
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and

f
(2)
H =

10

3
A

(1)
0H

2e−2A
(0)
H +

f
(1)
H

2
−

2
(
φ

(0)
H

4 + 1
)

(
φ

(0)
H

2 − 1
)

2
(A.7)

φ
(1)
H =

3
(
φ

(0)
H

2 + 1
)

4f
(1)
H

(
φ

(0)
H

2 − 1
)φ(0)

H

φ
(2)
H =

φ
(0)
H

(
φ

(0)
H

2 + 1
)

64f
(1)
H

2
(
φ

(0)
H

2 − 1
)

2

{
3
[
(8f

(1)
H + 9)φ

(0)
H

2 − 8f
(1)
H + 3

]
− 32e2A

(0)
H A

(1)
0H

2
(
φ

(0)
H

2 − 1
)}

plus higher-order terms.

A.3 Numerical integration

We will solve the system of equations (A.1) through the shooting technique to determine

the independent boundary and horizon constants. At given values (µr, tr), one starts with

a trial set of independent boundary and horizon data,

X =
(
A0

(1)
H , A

(0)
H , A0(0,2), α, β, φ

(0)
H

)
, (A.8)

Note that f
(1)
H can be fixed in terms of tr and A

(0)
H alone and the constrain fixes the value

of A
(1)
H .

The algorithm is as follows: we compute the numerical solution and construct some

object made out of the fields and their derivatives

V (u) =
(
f,A0, φ, A,A

′
0, φ
′) , (A.9)

note that it is not necessary to account for the derivatives of f or A0 since their equa-

tions of motion turn out to be first order. We perform the numerical integration from

some near horizon value uhor, using as boundary conditions the near-horizon series expan-

sions from (A.6) and (A.7), down to some intermediate point u∗. Evaluating the fields

and their derivatives at this point produces a vector V (u∗)|hor→bulk. Repeating the anal-

ogous procedure, this time employing the near-boundary series as boundary conditions,

from some near-boundary value uboun down to the same intermediate point u∗ produces

V (u∗)|boun→bulk.6 The mismatch vector M is constructed by the difference

M(X) = V (u∗)|hor→bulk − V (u∗)|boun→bulk . (A.10)

The correct choice of X must lead to M = 0. By thinking of M(X) as a vector-valued

function, the problem becomes a root finding in six dimensions. We apply the Newton-

Raphson method. It works by a generalization of the familiar one-dimensional method of

6Nevertheless, both for the near horizon and near boundary series expansions, in order to enhance the

accuracy and shorten the overall integration time, we have truncated the series at a much larger order.
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tracking tangent lines. For a guess X, compute the Jacobian J of partial derivatives of the

mismatch vector. The new vector X shall be

X = Xguess − J−1M . (A.11)

The Jacobian is computed through finite differences, once the solutions in a neighbor-

hood of the guess point (on each direction on the constants space) are known. In particular,

as step in the Jacobian we will take 10−10. On each numerical integration, uhor = 1 − ε0,

uboun = ε0, ε0 being some sensitive cut-off; we use 10−8 and u∗ = 1/2. As for the ini-

tial data Xguess, a sensitive choice for mild reduced chemical potential and temperature is

the solution inherited from the scalar field in probe approximation, wherein the geometry

reduced to an AdS-RN [28],

Xguess = XAdS-RN =
(
µ, 0, 0, αP , βP , φPH

)
, (A.12)

where
(
αP , βP

)
are obtained from integration of the scalar equation in this approximation,

once φPH is set. If the norm of the mismatch ||M || lies above some threshold fixed a

priori, the iteration starts once again, but taking X as the new starting point and stops

if otherwise. In our computations, we will fix the threshold to be 10−9. Our attempt to

connect the model to neutron star physics implies that we will focus in regimes at which

XAdS-RN works not very well, but luckily, thanks to the smoothness of the solutions, if for

some choice X(µ0,t0), ||M || < 10−9, then we can take this vector as initial guess on the next

computation, i.e., X(µ0,t0) → Xguess
(µ0+δµ,t0).

B Calculation of thermodynamic quantities

B.1 On-shell action

For the holographic models we consider, one can write Einstein’s equations in the form

RMN = T
(A)
MN + T φMN +

1

2
gMN

(
L2

3
F 2 +KΦ|Dφ|2 +

5

3
VΦ

)
. (B.1)

From the trace of these equations, we find that the Ricci scalar reads

R =
L2

3
F 2 +KΦ|Dφ|2 +

5

3
VΦ , (B.2)

implying that the on-shell action (2.5) evaluates to

Son−shell =
1

16πG5

∫
d5x
√
−g
[

2

3
VΦ −

2

3
L2F 2

]
. (B.3)

Let us now use the fact that for our solutions

Γαµν = Γrrν = Γαrr = 0 , Γrµν = − 1
√
grr

Kµν , Γαµr =
√
grrK

α
µ , Γrrr =

1

2
grr∂rgrr , (B.4)

where

Kµν =
1

2
√
grr

∂rgµν (B.5)
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is the extrinsic curvature and Kα
µ = gαβKβµ, K = gµνKµν . Using also the simple result

∂r
√
−g√
−g

= Γrrr +
√
grrK , (B.6)

we can write

gµνRµν = − 1√
−g

∂r

(√
−g
√
grr

K

)
= − 1√

−g
∂r
(√
−γK

)
. (B.7)

Here, we defined γµν = gµν as the boundary metric and used
√
−g =

√
grr
√
−γ.

On the other hand, from Einstein’s equations we obtain

gµνRµν = −2L2

3
F0rF

0r +
4

3
VΦ + q2g00KΦA

2
0φ

2 , (B.8)

where we only focused on the nonzero components of the solutions. Solving now for VΦ

and introducing the result in the on-shell action, one gets

Son−shell =
1

16πG5

∫
d5x
√
−g
[
− 1

2
√
−g

∂r
(√
−γK

)
−L2Fr0F

r0− q
2

2
g00KφA2

0φ
2

]
. (B.9)

Finally, we use the equation of motion for the gauge field,

4L2∂r
(√
−gF r0

)
= 2q2√−gg00KφA0φ

2 . (B.10)

We can then replace the q2 term in the action by a derivative term and write the action as

a total derivative:

Son−shell =
1

16πG5

∫
d5x

[
−1

2
∂r
(√
−γK

)
− L2√−g∂rA0F

r0 − L2A0∂r
(√
−gF r0

)]
=

1

16πG5

∫
d5x ∂r

[
−1

2

√
−γK − L2√−gA0F

r0

]
=

1

16πG5

∫
d4x

[
1

2

√
−γK + L2√−gA0F

r0

]r=rΛ
r=rH

. (B.11)

B.2 Holographic renormalization

In order to be able to read off the speed of sound, we need the energy density ε and pressure

p, which can be read from the diagonal components of the expectation value of the stress

energy tensor, 〈Tµν〉. We can decompose the line element (2.9) into its transverse and

longitudinal components,

dS2 = N2dr2 + γµνdx
µdxν , N2 =

L2

r2f
. (B.12)

We will now determine, which counterterms we need to consider in order to obtain finite

one point correlation functions. Together with the cosmological constant term

IΛ = − 1

8πG5

∫
d4x
√
−γΛ , (B.13)
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which will cancel out the volume divergence, we need to include also the Gibbons-Hawking

term,

IGH =
1

8πG5

∫
d4x
√
−γK . (B.14)

The details of the holographic renormalization of bottom-up models can be found in [28].

In the following we focus on the top-down model, that present some small differences due

to the more complicated form of the kinetic term and the potential for the scalar field.

From the near boundary behavior of the metric field,

γ00 = − r
2

L2
+

4

3
L2φ2

(0,1) +
L6

9r2

{[
2φ(0,1)

(
9µ2φ(0,1) + φ3

(0,1) + 9φ(0,3)

)
− 9f0,4

]
+ 12φ2

(0,1)

(
15µ2 + 2φ2

(0,1)

)
log
( r
L

)}

γii =
r2

L2
− 4

3
L2φ2

(0,1) −
2L6

9r2

{
φ(0,1)

(
9µ2φ(0,1) + φ3

(0,1) + 9φ(0,3)

)
+ 6φ2

(0,1)

(
3µ2 + 2φ2

(0,1)

)
log
( r
L

)}
,

(B.15)

we note that it is necessary to add the following counterterm that will cancel out divergences

due to the backreaction of the scalar field,

Ic = − 1

8πG5

∫
d4x
√
−γ

{
32

4
L|DΦ|2 log

( r
L

)
−
[
8 +

32

3
Φ2 log

( r
L

)] Φ2

L

}
. (B.16)

Another counterterm may also be added,

If = − L

8πG5

∫
d4x
√
−γ
[
W1|DαΦ|2 +

W2

L2
Φ4

]
, (B.17)

which will introduce non-trivial finite contributions to our QFT.

After varying the action with respect to the boundary metric, and inserting the near

boundary series expansions (A.4), we get the boundary vev’s

〈
T 00
〉

= ε = − L3

16πG5

[
3f(0,4) + 8φ(0,1)φ(0,3) + 4µ2φ2

(0,1)(W1 + 3) + φ4
(0,1)

(
W2 +

16

3

)]
〈
T ii
〉

= p = − L3

16πG5

[
f0,4 − 8φ(0,1)φ(0,3) + 4µ2φ2

(0,1)(W1 + 1)− φ4
(0,1)

(
W2 +

16

3

)]
〈O〉 = v = − 2L3

πG5

[
φ(0,3) −

1

4
µ2φ(0,1)(W1 + 4) + φ3

(0,1)

(
W2

8
− 2

3

)]
〈
j0
〉

= n = − L3

2πG5

[
A0(0,2) + µφ2

(0,1)(W1 + 4)
]
,

(B.18)

which satisfy

〈Tµν〉 ηµν = −〈O〉φ(0,1) +A , (B.19)
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with the anomaly

A =
L3

πG5
φ2

(0,1)

(
µ2

2
+

2

3
φ2

(0,1)

)
. (B.20)

Combining expressions (B.18) and (B.25), one can straightforwardly verify that the

thermodynamic relation

ε+ p = nµ+ TS (B.21)

holds. Moreover, the renormalized action at the boundary is equal to the free energy in

the macrocanonical ensemble,

Sren = Son−shell + IΛ + IGH + Ic + If

= Ω =
L3

16πG5

[
f0,4−8φ(0,1)φ(0,3)+4µ2φ2

(0,1)(W1+1)−φ4
(0,1)

(
W2+

16

3

)]
= −p ,

(B.22)

where we have made use of (B.27) when expressing Son−shell at the horizon rH in terms of

the boundary coefficients.

We can now examine the equations of motion in order to see if some sort of relation

between the near boundary/horizon coefficients can be set. If we define

β(r) = e4Ar5f ′ − 4L4e2Ar3A′0A0 , (B.23)

we notice that due to equations (A.1), this quantity is independent of the radial coordinate.

It is convenient to evaluate it at the horizon, r → rH , giving

β(rH) = e4A(rH)r5
Hf
′(rH) ≡ βH . (B.24)

Note also that the temperature and entropy density are given by

T =
r2
Hf
′(rH)

4πL2
eA(rH) , s =

1

4G5

r3
H

L3
e3A(rH) , (B.25)

so that

βH = 16πG5L
5Ts . (B.26)

The above steps enable us to find the relation

f̂(0) = α
(

2µra1 + 4µ2
rα

3 − πe3A
(0)
H tr

)
. (B.27)

Moreover, another relation can be obtained from the constraint equation in the bulk,

A
(1)
H =

1

f
(1)
H

 1 + φ
(0)
H

4(
φ

(0)
H

2 − 1
)

2
− 2

3
A

(1)
0H

2e−2A
(0)
H

− 1

2
. (B.28)

Both relations (B.27) and (B.28) can be employed to enhance the numeric integration of

the set of equations (A.1).
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C Fluctuations

C.1 Equations for gauge invariant combinations

We will use radial gauge δgµr = δar = 0. At zero spatial momentum fluctuations split in

decoupled sectors according to their representation under the group of spatial rotations.

There are three sectors:

• Tensor: hij − 1
3δijδ

klhkl .

• Vector: ai, h0i .

• Scalar: ϕ, ϕ†, h00, a0, h = δijhij/3 .

In principle we expect instabilities to be related to changes in the scalar, thus we will

restrict the analysis to the scalar sector. We see that there are five components of the

fields in the scalar sector. The equations of motion (Einstein, Maxwell, and the equation

of motion for the scalar) include a second order (dynamical) equation for each mode plus

three first order (constraints) equations. This adds up to eight coupled equations for the

five modes. However, the actual number of independent dynamical modes is just two and

the system can be reduced to two coupled differential equations (of second order). We will

do this in the following.

In the radial gauge there are residual diffeomorphisms ξM (x) and gauge transforma-

tions λ(x). The linear variations of the fields are

δΦ = ξM∂MΦ + iqΦλ

δΦ† = ξM∂MΦ† − iqΦ†λ
δAM = ξN∂NAM + ∂Mξ

NAN + ∂Mλ .

(C.1)

For homogeneous fluctuations we can expand in plane waves ξM = e−iωtηM (r), λ = e−iωtχ(r),

in such a way that the allowed transformations are

ηr = c0r
√
f, η0′ = −iωc0

L4e−2A

r3f3/2
, χ′ = iωc0

L4e−2A

r3f3/2
A0, ηi = ci , (C.2)

where c0, ci are arbitrary functions of the frequency. We can construct a basis of two

independent combinations of the scalar components that are invariant under these gauge

transformations z1, z2; these are the expressions given in (5.3). The equations of motion

can be found in a straightforward way by taking radial derivatives of zi and using the

equations of motion of the scalar modes. They take the generic form (5.4). The result

with q 6= 0 is quite cumbersome, so we will give here expressions for the bottom-up models

with q = 0 and canonical kinetic term, but generic potential. The off-diagonal coefficients
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vanish A12 = A21 = B12 = B21 = 0 and the diagonal ones take the values:

A11 = A22 = −4A′ − f ′

f
− 5

r

B11 = −e
−2AL4ω2

f2r4
+

4Φ0Φ′0∂VΦ

3fr2A′ + 3fr
− 2rf ′ (Φ′0) 2

3f (rA′ + 1)
− 8

3

(
Φ′0
)

2

+
∂VΦ + 2Φ2

0∂
2VΦ

fr2
+

2r2 (Φ′0) 4

9 (rA′ + 1)2

B22 =
∂VΦ

fr2
− e−2AL4ω2

f2r4
.

(C.3)

C.2 Solutions

The method that we will follow here to find a solution for the quasi-normal modes is

valid for any number of coupled or decoupled linear differential equations. Expanding the

system (5.4) around u→ 1,

0 = z′′j −
z′j

1− u
+

e−2A
(0)
H ω2

4f
(1)
H (1− u)2

zj , (C.4)

we infer that the leading order behavior at the horizon is given by

zj |u→1 ∼ z(out)
j (1− u)iωcI + z

(ing)
j (1− u)−iωcI (C.5)

with cI = eA
(0)
H /2f

(1)
H , and we have labeled the outgoing and infalling pieces as z

(out)
j and

z
(ing)
j , respectively. Imposing causality means that we pick the ingoing solution. From here,

we can construct a solution valid throughout the whole bulk,

zj ∼ (1− u)−iωcIzj(reg) , (C.6)

with

zj(reg) =
∑
m=0

z
(m)
j (1− u)m , (C.7)

regular at the horizon. At leading order and taking ω = 0,

z1(reg) = z
(1)
1 (1− u) + · · ·

z2(reg) = z
(0)
2 −


(
φ

(0)
H

2 − 1
)(

φ
(0)
H

2 + 1
)

2
(
φ

(0)
H

4 + 1
)
fH (0)

z1
(1)e−2AH

(0)
A0H

(1)

+
3
(
φ

(0)
H

8 + 8φ
(0)
H

4 − 1
)
z2

(0)

4
(
φ

(0)
H

2 − 1
)

2
(
φ

(0)
H

4 + 1
)
fH (0)

 (1− u) + · · · .

(C.8)

A normalizable solution at u→ 0 can be obtained by means of the determinant method.

First, we choose a set of linearly independent boundary conditions at the horizon, that is,{
z1(reg), z2(reg)

}
=
{

(1, 0) , (0, 1)
}
, (C.9)
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and for each of these boundary conditions, we solve numerically the system (5.4) by means

of a single shooting from the horizon, where we impose

zj(1− ε0) = zj(reg)(1− ε0), z′j(1− ε0) = zj(reg)
′(1− ε0) , (C.10)

to the boundary, taking as cutoff the same as in the background computation (ε0 = 10−8),

although there is a high robustness against this choice. Furthermore, since we now deal

with a linear differential equation system, there is no need to demand the same accuracy

as for the background computation, so we set m = 2 in eq. (C.7). Near the boundary, the

solutions have the following expansion to leading order,

z1,2 ∼
√
u
(
z

(nn)
1,2 + u z

(n)
1,2

)
, (C.11)

where we identify the non-normalizable (nn) as the leading term while the normalizable (n)

as the sub-leading one. Normalizable solutions will have z
(nn)
1 = z

(nn)
2 = 0. The numerical

solutions can be arranged as elements of a matrix M ,

M =
1√
u

(
z

(I)
1 (reg) z

(I)
2 (reg)

z
(II)
1 (reg) z

(II)
2 (reg)

)
, (C.12)

which, if evaluated at the AdS boundary gives zero determinant, then, a normalizable

solution exists. This will happen at a certain frequency ω ∈ C, for fixed chemical potential

and temperature. If we were about to determine such frequency, the problem amounts to

find the root of a certain equation, det(M(ω)) = 0, which can be searched using Newton’s

method. Nevertheless, this might not even be necessary, since we can dial the chemical

potential and compute the determinant at zero frequency.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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