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1 Introduction

The last year has seen a significant breakthrough in the construction of microstate ge-

ometries [1, 2]. In particular, microstate geometries corresponding to five-dimensional,

three-charge, supersymmetric black holes with arbitrarily small angular momenta have

been constructed. These solutions are horizonless and smooth and have an arbitrarily-long

BTZ-like throat that interpolates between an AdS3 × S3 asymptotic region and a long

very-near-horizon AdS2 region. Deep inside the AdS2 region, the throat caps off smoothly

just above where the black-hole horizon would be [1].

In the D1-D5-P frame these microstate geometries, known as “superstrata” [3, 4],

have been proposed as holographic duals of specific families of pure states of the D1-D5

CFT, involving particular left-moving momentum-carrying excitations [1],1 with charges

in the regime of parameters in which a large BPS black hole exists. Hence these solutions

correspond to microstates of a black hole with a macroscopic horizon. The momentum

excitations may be thought of as creating the long AdS2 black-hole-like throat; in the full

solution these momentum excitations are located deep inside that throat, and support its

macroscopic size. As one descends the AdS2 throat, to an excellent approximation it is

almost identical to a black hole throat until near the bottom, where one encounters the

momentum excitations, before the geometry caps off smoothly.

Given that we have a holographic understanding of these solutions, and that the pro-

posed dual CFT states live in the same ensemble as the states that give rise to the black

1A subset of these microstate geometries can be mapped to excitations of the MSW string that carry

momentum and angular momentum, via a sequence of solution-generating transformations and string

dualities [2].

– 1 –



J
H
E
P
1
1
(
2
0
1
7
)
0
2
1

hole entropy, it is important to identify the physical consequences of the fact that these so-

lutions lack horizons. One expects the classical black hole solution to give a thermodynamic

coarse-grained description of the physics, and for the bulk description of typical black hole

microstates to give the correct fine-grained description of the physics. For simple physical

processes, typical states should reproduce the thermodynamic coarse-grained physics (see

e.g. [5, 6]), and should also give rise to novel physics where the thermodynamic description

breaks down. Hence, we would like to understand how, for example, horizonless geometries

scatter and absorb incoming particles, and how this differs from the classical black hole

result. The states we will study are still somewhat atypical, and will have interesting dif-

ferences from the corresponding classical black hole; we hope the present study will inform

future studies of progressively more typical microstates.

Superstratum solutions are parameterized by arbitrary functions of (at least) two vari-

ables [4]. Generic superstratum solutions depend on all but one of the coordinates in six

dimensions, and hence may appear complicated and somewhat intimidating to the unini-

tiated. However, in this paper we will show that two particular asymptotically-AdS3 × S3

families, each parameterized by one positive integer, have much simpler physics than may

have been expected. One of these families, which we will call the (1, 0, n) family, has a

separable wave equation and a conformal Killing tensor.2 This implies that the equations

for null geodesics in these geometries are completely integrable: there is a complete set of

conserved quantities, that are linear or quadratic in velocities. Related work on geodesic

integrability in (two-charge) black hole microstate geometries and D-brane metrics can be

found in [7, 8].

We will also show that the metrics of the (1, 0, n) family, and of another family that we

will call the (2, 1, n) family, can be re-written in a form that they would take if they arose

from consistent truncations on S3 to (2 + 1)-dimensions. By this, we mean the following:

we can write each metric in terms of a (deformed) S3 fibration over a three-dimensional

base, K, where the metric on K depends only on the coordinates on K. Moreover, the

fibration and warp factors conform to the standard KK Ansatz for vector fields and Einstein

gravity on K.

In this paper we will restrict our attention to the metric degrees of freedom, and we

postpone a full analysis of the existence, or otherwise, of a complete consistent truncation

to future work. Such an investigation would require the inclusion of the six-dimensional

tensor gauge fields in the consistent truncation Ansatz, building upon the results of [9, 10]

to include more six-dimensional tensor multiplets. The purpose of the present work is to

elucidate the metric structure and how it takes the form it would take if it came from

a consistent truncation, since this is a remarkably strong constraint upon its structure.

The metrics of the (1, 0, n) and (2, 1, n) families also have several isometries, such that the

reduced metric on K, and the KK fields of the fibration, depend only on one coordinate

(which asymptotically becomes the radial coordinate of the AdS3). Thus, the analysis

of these metrics can, in principle, be carried out entirely using three-dimensional gravity

coupled to vector fields.

2This provides a quadratic conserved quantity for null geodesics.
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Unlike in the (1, 0, n) family, the wave equation is not generically separable in the

(2, 1, n) family, and the general geodesic problem does not appear to be completely inte-

grable. However, these microstate geometries come very close to having these properties:

for waves or geodesics that have zero SU(2)L angular momentum on the S3, one does have

separability of the wave equation and complete integrability of the null geodesic equations.

As we will discuss, complete integrability of geodesics may be both a blessing and

a curse. In particular, completely integrable systems have highly restricted spectra and

limited scattering behavior, and thus may not reveal some of the interesting physics of

generic microstate geometries. The complete set of conservation laws lead us to suspect that

the (1, 0, n) geometries will quickly eject infalling particles, and hence will not reproduce

the expected black-hole thermodynamic behavior. On the other hand, the absence of

integrability in the (2, 1, n) family will allow for more complicated dynamics, and possibly

the trapping of incoming particles, which is a step closer to the behavior one expects from

typical microstates. In a sense, the (2, 1, n) family provides an ideal setting for investigating

more complicated dynamics: one can probe the behavior of the non-integrable geodesics

by doing perturbation theory for waves and geodesics about the integrable (jL = 0) ones.

Thus one can probe quite non-trivial scattering properties in a controlled expansion.

There are three recent, seemingly unrelated, lines of investigation to which our results

should be relevant. The first is an argument that supersymmetric microstate geometries

should exhibit a non-linear instability [11] (see also [12–14]). This proposed non-linear

instability is related to the existence of stably trapped null geodesics deep inside the core

of microstate geometries, however so far this has only been explicitly analyzed for very

symmetric geometries, none of which have charges and angular momenta corresponding to

a black hole with a large horizon area. Our results should help elucidate whether or not

this proposed non-linear instability is an artifact of very symmetric microstate geometries.

The second line of investigation is the late-time behavior of correlation functions in

the D1-D5 CFT, and its connection to quantum chaos [15]. One expects chaotic systems

to exhibit late-time fluctuations that come from their underlying microscopic description,

and that are not visible in the thermodynamic approximation. Hence, one expects typical

bulk microstates to give rise to late-time fluctuations that are not visible in the classical

black-hole solution. For a set of two-charge black hole microstates these fluctuations have

been computed in the dual CFT [16, 17], but the corresponding computations in the bulk

are beyond the capability of present technology. We hope that our results will open the

way for a new testing ground for these questions.

The third line of investigation is the computation of four-point functions of two heavy

and two light operators; for a few examples, see [18–24]. Such calculations can be done in

the CFT and can be matched to the light-light two-point function computed holographically

in the microstate geometry dual to the heavy state [22, 23]. So far, the bulk calculation

has only been done in microstate geometries that are dual to very special heavy states (a

particular set of R-R ground states and spectral flows thereof [25]), essentially because of

the technical difficulty of solving the wave equation. The integrability of geodesics and the

separability of wave operators in the infinite families of microstate geometries we consider

should simplify the calculation of the two-point functions and vastly enhance the number
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of two-heavy-two-light four-point functions that can be computed in the bulk. Moreover,

since there is an explicit proposal for the CFT states dual to the microstate geometries we

study [1], these four-point functions could be compared to those computed in the CFT.

Furthermore, since our geometries can have long black-hole-like AdS2 throats and closely

resemble black holes far from the cap region, these four-point functions should shed light

on how unitarity is restored when replacing the black hole horizon with a fuzzball.

This paper is organized as follows. In section 2 we describe in more detail the special

properties of the metrics in the (1, 0, n) and (2, 1, n) families of microstate geometries. In

section 3 we give a brief description of these families of BPS solutions. In section 4 we

give the details of the metrics of the (1, 0, n) and (2, 1, n) families, separate variables in the

wave equation, and describe the conformal Killing tensor. Finally, in section 5 we discuss

the important features of the geometries described in this paper, and further discuss the

implications of our results.

2 Dimensional reduction, separability and Killing tensors

We work in Type IIB string theory on M4,1 × S1 × M, where M is either T4 or K3.

The circle, S1, is taken to be macroscopic and is parameterized by the coordinate y, with

radius Ry:

y ∼ y + 2πRy . (2.1)

We consider a bound state of D1-branes wrapped on S1, D5-branes wrapped on S1 ×M,

and momentum P along S1. The internal manifold, M, is taken to be microscopic, and

we assume that all fields are independent of M. Upon dimensional reduction on M, one

obtains a theory whose low-energy limit is six-dimensional N = 1 supergravity coupled

to two (anti-self-dual) tensor multiplets. This theory contains all fields expected from the

study of D1-D5-P string world-sheet amplitudes [26]. The system of equations describing

all 1
8 -BPS solutions of this theory was found in [27]; it is a generalization of the system

discussed in [28, 29]. Most importantly, this BPS system can be greatly simplified, and

largely linearized [30]. For supersymmetric solutions the six-dimensional metric is well

known to take the form [28]:

ds26 = − 2√
P

(dv + β)

(
du+ ω +

1

2
F (dv + β)

)
+
√
P ds24 (B) ≡ gMNdz

MdzN , (2.2)

where we take

u =
1√
2

(t− y) , v =
1√
2

(t+ y) . (2.3)

Supersymmetry requires that all fields be independent of u, but generic supersymmetric

solutions can depend upon all the other coordinates.

Upon taking the AdS/CFT decoupling limit [31], one obtains asymptotically AdS3×S3

solutions. We will work exclusively in the decoupling limit throughout this paper. We shall

study solutions whose tensor fields have explicit dependence on v, as well as on the S3.
These solutions are known as “superstrata” [1–4, 32]. In the solutions we study, the metric,
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ds24, on the four-dimensional base, B, is flat and we write it in the standard bipolar form:

ds24 ≡ g̃abdzadzb = Σ

(
dr2

(r2 + a2)
+ dθ2

)
+ (r2 + a2) sin2 θ dϕ2

1 + r2 cos2 θ dϕ2
2 , (2.4)

where

Σ ≡ (r2 + a2 cos2 θ) . (2.5)

At infinity, the sets of coordinates (u, v, r) and (θ, ϕ1, ϕ2) parametrize AdS3 and S3 re-

spectively. The superstratum solutions that we consider were constructed in [1], and they

have the property that the tensor fields depend explicitly on a single linear combination of

v, ϕ1 and ϕ2. We thus refer to them as single-mode superstrata. In these asymptotically

AdS3 × S3 solutions, this phase-dependence cancels in the energy-momentum tensor, and

hence in the metric.3 Thus the metric has isometries not just along u (as required by

supersymmetry) but also along v, ϕ1 and ϕ2. In this paper we shall exploit these enhanced

symmetries and examine the remaining, highly non-trivial dependence on (r, θ).

Our first goal is to re-write the general six-dimensional metric as a fibration of the com-

pact three-manifold, S, described by (y1, y2, y3) ≡ (θ, ϕ1, ϕ2), over a base, K, parametrized

by (x1, x2, x3) ≡ (u, v, r). Specifically, we re-cast (2.2) in the following form:

ds26 ≡ gMNdz
MdzN = Ω−2 ĝµνdx

µdxν + hij(dy
i +Bi

µdx
µ)(dyj +Bj

νdx
ν) , (2.6)

where ĝµν and hij are viewed as metrics on K and S respectively, and where Ω is defined

to be the volume of S divided by the volume of the S3 to which S limits at infinity:

Ω ≡
√
det(hij)√

det(hij)|r→∞
. (2.7)

In a general BPS solution, ĝµν , hij , B
i
µ and Ω can depend on all the coordinates, except u.

It is convenient to define the metrics:

ds21,2 ≡ ĝµνdxµdxν , ds23 ≡ hijdyidyj . (2.8)

At infinity, ds21,2 is asymptotic to the metric on AdS3, and ds23 is asymptotic to the metric

on S3. It is also useful to observe that one can invert the form of gMN in (2.6) explicitly:

gMN =

(
Ω−2 ĝµν + hkmB

k
µB

m
ν B

k
µ hkj

hik B
k
ν hij

)
,

gMN = Ω2

(
ĝµν −ĝµρBj

ρ

−Bi
ρĝ
ρν Ω−2hij + ĝρσBi

ρB
j
σ

)
.

(2.9)

In particular, we note that the inverse metric on the internal space, S, is a non-trivial

combination of the vector fields, Bi
µ, and the metrics ĝµν and hij .

The warp factor, Ω−2, in front of ds21,2 in (2.6) is precisely the factor needed for the

dimensional reduction from six dimensions down to the three-dimensional space time, K.

To be more specific, this is the warp factor needed to reduce the six-dimensional Einstein

action down to the three-dimensional Einstein action for ĝµν on K. In general, attempting

to perform such a dimensional reduction is of course not very useful, because ĝµν in (2.6)

will typically depend upon the yi.

3Upon completing these solutions to asymptotically R1,4×S1 solutions, the metric depends explicitly on

the linear combination of v, ϕ1 and ϕ2 [33].
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However, the (1, 0, n) and (2, 1, n) single-mode families of BPS geometries both have

the property that:

(i) The metric ĝµν is only a function of r.

Moreover, the (1, 0, n) family also has the following remarkable feature:

(ii) On ds26, the massless wave equation and the Hamilton-Jacobi equation for null

geodesics are separable. The “massive” wave equation on ds26 is also separable if

the mass term is induced from a mass as seen by the (2+1)-dimensional metric ds21,2.

Finally, it is elementary to verify that the following is true for all metrics of the form (2.2):

(iii) If one computes
√
−g gMN for the six-dimensional metric, then the components of this

along the base defined by (r, θ, ϕ1, ϕ2) are identical to the components of
√
−g̃ g̃ab,

where g̃ab is the metric defined in (2.4).

Property (i), combined with equations (2.6) and (2.7), means that the complete six-

dimensional metric has the form it would take if it arose from a consistent truncation to

three-dimensional physics on K. This three-dimensional geometry is furthermore deter-

mined entirely by functions of r alone.

Property (ii), the separability of the massless wave equation and of the massless

Hamilton-Jacobi equation for null geodesics, implies the existence of a “hidden symme-

try”: there is another quadratic conserved quantity for the null geodesic equation [34, 35].4

That is, in addition to the usual conserved quantities along geodesics, there is a conformal

Killing tensor, ξMN , for which one has:

D

Dλ

(
ξMN

dzM

dλ

dzN

dλ

)
= F (λ)

(
gMN

dzM

dλ

dzN

dλ

)
, (2.10)

for some function F (λ) along each geodesic. In particular, the right-hand side vanishes for

null geodesics. Since the metrics we are considering have four Killing vectors, a conformal

Killing tensor and the usual conserved quadratic form from the metric, the null geodesic

problem is completely integrable: it has four conserved momenta that are linear in velocities

and two quadratic “energies,” one involving vr ≡ dr
dλ alone and the other involving vθ ≡

dθ
dλ alone.

Properties (ii) and (iii) together mean that not only is the massless wave equation

separable, but its separability properties are precisely those of the flat-space base metric

written in spherical bipolars (2.4). In particular, the angular modes on S are elementary:

they are simply the standard spherical harmonics on a round S3! Therefore the solutions of

the massless wave equation have an expansion in terms of functions of r alone, multiplied

by Jacobi polynomials in cos2 θ. Thus, most of the interesting physics is encoded in the

radial equation and in the functions of r alone that define ĝµν .

Finally, property (iii) suggests a rather interesting conjecture arising from the gen-

eral lore of consistent truncation of supergravity theories compactified on spheres. Typ-

ically, purely internal, higher-dimensional excitations reduce to scalar fields in the lower-

dimensional theory. Conversely, one of the most complicated aspects of obtaining “uplift”

4See also the recent review on geodesic integrability in black-hole backgrounds [36].
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formulae for consistent truncations is the way in which lower-dimensional scalars encode

the details of the higher-dimensional fields. For maximally supersymmetric theories on

spheres, there is now a large literature on this, but one of the earliest breakthroughs were

the metric uplift formulae [9, 10, 37, 38]. These formulae gave complete and explicit ex-

pressions, in terms of the lower-dimensional scalar fields, for the inverse metric projected

onto the internal manifold. One of the simple consequences of this formula is that if the

inverse metric retains its original round form, then it means that the lower-dimensional

scalars are essentially trivial.

This piece of lore suggests that in the solutions we are considering, there are no fun-

damental, lower-dimensional scalar excitations arising from the six-dimensional metric: all

the internal physics is encoded in the vector multiplets that descend from the Bi
µ.

There are several caveats that come with this comment. First, we have not analyzed

the tensor gauge fields to determine whether or not a complete, consistent truncation

containing the above solutions exists. Since these tensor fields have non-trivial dependence

on the S3 directions, they will descend to massive fields in three dimensions.

Moreover, while important results have been obtained in [10], the general consistent

truncation formulae have not been established for the S3 compactifications considered here.

In addition, the formulae that have been established in other reductions are based on mass-

less vector fields that descend through Killing vectors on the sphere. For the tensor fields

and for some of the metric components in the (2, 1, n) family, we will need to allow more

general classes of fields, Bi
µ, in which the internal components involve higher harmonics,

yielding massive vector fields on K. As we shall comment on below, it is not clear how

restricted an ansatz might be necessary in order to obtain a consistent truncation.

It is also important to note that, from the three-dimensional perspective, Abelian

vector fields can trivially be re-written as scalars. On the other hand, there are subtleties

in doing this for non-Abelian fields and with off-shell supermultiplet structure (see, for

example, [39]) and so the idea that there are only excitations of three-dimensional vector

fields, descending from metric modes on S3, may be given some more precise formulation.

The bottom line is that the supergravity lore on consistent sphere truncations suggests

that property (iii) might imply that the only degrees of freedom that are being activated in

our solutions are the vector fields encoded in Bi
µ and that there are no other independent

shape modes or lower-dimensional scalars coming from the six-dimensional metric.

3 Single-mode superstrata

In this section we review the construction of superstrata, before focusing on the set of such

solutions that involve a single-mode excitation. This will provide some background and

allow us to set up notation to be used when we present our main results in the next section.

3.1 D1-D5-P superstrata

The superstrata constructed to date have been obtained [1, 4, 32] by adding momentum

waves to the background of the circular supertube [40–44]. The starting point is therefore

– 7 –
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to take the vector field β to be that of the standard magnetic flux of the supertube:

β =
Ry a

2

√
2 Σ

(sin2 θ dϕ1 − cos2 θ dϕ2) , Θ(3) ≡ dβ . (3.1)

We use the following frames on the four dimensional base, B, with metric (2.4):

e1 =
Σ1/2

(r2 + a2)1/2
dr , e2 = Σ1/2 dθ , e3 = (r2 + a2)1/2 sin θ dϕ1 , e4 = r cos θ dϕ2 ,

(3.2)

and introduce a standard basis for the self-dual two forms:

Ω(1) ≡ dr ∧ dθ
(r2 + a2) cos θ

+
r sin θ

Σ
dϕ1 ∧ dϕ2 =

1

Σ (r2 + a2)
1
2 cos θ

(e1 ∧ e2 + e3 ∧ e4) ,

Ω(2) ≡ r

r2 + a2
dr ∧ dϕ2 + tan θ dθ ∧ dϕ1 =

1

Σ
1
2 (r2 + a2)

1
2 cos θ

(e1 ∧ e4 + e2 ∧ e3) ,

Ω(3) ≡ dr ∧ dϕ1

r
− cot θ dθ ∧ dϕ2 =

1

Σ
1
2 r sin θ

(e1 ∧ e3 − e2 ∧ e4) .

(3.3)

One may then write:

Θ(3) = dβ =

√
2Ry a

2

Σ2
((r2 + a2) cos2 θΩ(2) − r2 sin2 θΩ(3)) . (3.4)

In particular, Θ(3) is self-dual.

The first part of the solution is defined by three more potential functions, ZI , and

magnetic 2-forms, Θ(I), I = 1, 2, 4, that are required to satisfy the “first layer” of the

linear system of equations governing all supersymmetric solutions of this theory:

∗4D(∂vZ1) = DΘ(2) , D ∗4 DZ1 = −Θ(2) ∧ dβ , Θ(2) = ∗4Θ(2) , (3.5)

∗4D(∂vZ2) = DΘ(1) , D ∗4 DZ2 = −Θ(1) ∧ dβ , Θ(1) = ∗4Θ(1) , (3.6)

∗4D(∂vZ4) = DΘ(4) , D ∗4 DZ4 = −Θ(4) ∧ dβ , Θ(4) = ∗4Θ(4) . (3.7)

The operator, D, acting on a p-form with legs on the four-dimensional base (and possibly

depending on v), is defined by:

DΦ ≡ d(4)Φ− β ∧ ∂vΦ , (3.8)

where d(4) denotes the exterior derivative on B. The warp factor P in (2.2) is then deter-

mined by a quadratic form in the electric potentials:

P = Z1 Z2 − Z2
4 . (3.9)

The remaining metric quantities are determined by the “second layer” of BPS equa-

tions:

Dω + ∗4Dω + F dβ = Z1Θ
(1) + Z2Θ

(2) − 2Z4Θ
(4) ,

∗4D ∗4
(

(∂vω)− 1

2
DF

)
= ∂2v(Z1Z2 − Z2

4 )− ((∂vZ1)(∂vZ2)− (∂vZ4)
2)

− 1

2
∗4
(
Θ(1) ∧Θ(2) −Θ(4) ∧Θ(4)

)
.

(3.10)
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We will study solutions to the BPS equations with mode dependence of the form:

χk,m,n ≡
√

2

Ry
(m+ n) v + (k −m)ϕ1 −mϕ2 . (3.11)

We also define:

∆k,m,n ≡
ak rn

(r2 + a2)
k+n
2

sink−m θ cosm θ . (3.12)

The smoothness of the solutions requires k to be a positive integer and m, n to be non-

negative integers with m ≤ k. This restriction has a clear holographic interpretation in the

description of the dual CFT states [1, 4, 32].

The most general solution to the first layer is known for the single-bubble solutions

that are built upon the circular supertube [1, 4, 45–47]. This family of solutions can be

represented by a superposition of the following single-mode solutions for the pair (Z4,Θ
(4)):

Z4 = b4
Ry
Σ

∆k,m,n cosχk,m,n ,

Θ(4) = −
√

2 b4∆k,m,n

[(
(m+ n) r sin θ + n

(m
k
− 1
) Σ

r sin θ

)
sinχk,m,n Ω(1)

+ cosχk,m,n

(
m
(n
k

+ 1
)

Ω(2) + n
(m
k
− 1
)

Ω(3)
)]
,

(3.13)

with similar expressions for (Z1,Θ
(2)) and (Z2,Θ

(1)), with a priori independent coefficients.

The general families of regular solutions for the second layer have not been classified.

Classes of single-mode solutions are known [1, 2, 4, 32] and some multi-mode solutions

have been obtained [4]. Here we will focus entirely on the families of single-mode solutions

obtained in [1] and further studied in [2].

3.2 Coiffured single-mode solutions

In the maximally-rotating supertube solution, the data of the first layer of BPS equations

takes the following simple form:

Z1 =
Q1

Σ
, Z2 =

Q5

Σ
, Z4 = 0 , Θ(I) = 0 , I = 1, 2, 4 . (3.14)

To this solution we add a single fluctuating mode by taking Z4, Θ4 to be given by (3.13)

and by taking:

Z1 =
Q1

Σ

(
1+

b24
2a2+b2

∆2k,2m,2n cosχ2k,2m,2n

)
, Z2 =

Q5

Σ
, Θ(1) = 0 , (3.15)

Θ(2) =−b24
Ry√
2Q5

∆2k,2m,2n

[(
2(m+n)r sinθ+2n

(m
k
−1
) Σ

r sinθ

)
sinχ2k,2m,2nΩ(1)

+cosχ2k,2m,2n

(
2m
(n
k

+1
)

Ω(2)+2n
(m
k
−1
)

Ω(3)
)]
.

Observe that the Fourier frequencies appearing in (Z1,Θ
(2)) are twice those appearing in

(Z4,Θ
(4)) and that the Fourier coefficients of these modes have been tuned in terms of the
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square of the Fourier coefficients of (Z4,Θ
(4)). This is an example of the procedure known

as “coiffuring” [48, 49]. The problem is that generic fluctuations for the solutions to the

first layer of BPS equations typically lead to singular solutions in the second layer. This

may be related to the non-linear instabilities that have been suggested in [11–14]; this is

currently under investigation. Coiffuring solves this problem by tuning other excitations

to remove the singularities in the solutions to the second layer of BPS equations. For a

single mode the result is particularly simple: all dependence on (v, ϕ1, ϕ2) cancels in the

sources for the second layer of BPS equations and in the warp factor, P. As a result, for a

single mode, the entire metric (2.2) is independent of (v, ϕ1, ϕ2). All that remains of the

fluctuations is the “RMS values” proportional to b24.

The warp factor P now reduces to:

P =
Q1Q5

Σ2

(
1− b24

2a2 + b2
∆2k,2m,2n

)
. (3.16)

It was shown in [1] that this is positive definite for all r and θ.

Next, one must solve the second layer of BPS equations. Since the coiffured sources

are independent of (v, ϕ1, ϕ2), this means that we can use the following Ansatz:

ω ≡ ω1 dϕ1 + ω2 dϕ2 = ω0 + ω̂1(r, θ) dϕ1 + ω̂2(r, θ) dϕ2 , F = F(r, θ) , (3.17)

where ω0 the angular momentum vector of the round supertube:

ω0 ≡
Ry a

2

√
2 Σ

(sin2 θ dϕ1 + cos2 θ dϕ2) , (3.18)

and where ω̂1, ω̂2 and F are determined by solving (3.10), with the sources on the right-

hand side given by the fluctuating solution to the first layer of BPS equations described

above.

The general family of (k,m, n) single-mode superstratum solution was obtained in [1].

Regularity at r = 0, θ = π/2 (the “supertube regularity” condition) imposes the constraint:

Q1Q5

R2
y

= a2 +
b2

2
, b2 ≡

[(
k

m

)(
k + n− 1

n

)]−1
b24 . (3.19)

The explicit solutions for (k,m, n) = (1, 0, n) and (k,m, n) = (2, 1, n) were studied in detail

in [1] and [2] respectively, and we will exhibit them momentarily.

In [1] it was shown that the complete (k,m, n) solution has the following values of the

conserved five-dimensional angular momenta j, j̃, and y-momentum nP:

j =
N
2

(
a2 +

m

k
b2
)
, j̃ =

N
2
a2, nP =

N
2

m+ n

k
b2 , (3.20)

where N ≡ n1n5R
2
y/(Q1Q5), and n1, n5 are the numbers of D1 and D5 branes. It was

proposed in [1] that these solutions are holographic duals of coherent superpositions of

CFT states of the form:

(|++〉1)N1

(
(J+
−1)

m

m!

(L−1 − J3
−1)

n

n!
|00〉k

)Nk,m,n
, (3.21)
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for all values of N1 such that N1 +kNk,m,n = N . For an explanation of the above notation,

see [1]. The values of the conserved charges imply that, within the coherent superposition,

the average numbers of |++〉1 and |00〉k strands are given byNa2 andN b2/(2k) respectively.

4 The special families of superstrata metrics

We now examine the details of the solutions for which the parameters (k,m, n) take the

values (1, 0, n), (2, 1, n), and (2, 0, n). The solution for (k=2,m=0) is included simply to

illustrate that properties (i) and (ii) do not hold in general, since neither property holds for

this solution. We will therefore not discuss the details of this particular solution beyond

writing down the metric, and we will focus on the other two families.

For k=1, m=0 and general n > 0, the solution to the second layer of BPS equations

is [1]:

F = − b
2
4

a2

(
1− r2n

(r2 + a2)n

)
, ω = ω0 +

Ry b
2
4√

2 Σ

(
1− r2n

(r2 + a2)n

)
sin2 θ dϕ1 . (4.1)

For k=2, m=1 and general n > 0, we have [2]:5

F = − b
2

a2
+

b24 r
2n

4 (r2 + a2)n+2

(
Σ +

2 r2 (r2 + a2)

(n+ 1) a2

)
,

ω1 =
Ry√
2 Σ

[
(a2 + b2) sin2 θ − b24

2

r2n sin2 θ

(r2 + a2)n+1

(
r2

2 (n+ 1)
+ a2 cos2 θ

)]
,

ω2 =
Ry√
2 Σ

[
a2 cos2 θ +

b24
2

r2(n+1) cos2 θ

(r2 + a2)n+2

(
(r2 + a2)

2 (n+ 1)
+ a2 sin2 θ

)]
.

(4.2)

Finally, for k=2, m=0 the solution to the second layer of BPS equations is:

F =− b24
(n+1)2a4

[
na2−r2

(
1− r2n

(r2+a2)n

)
+

((
1− r2n

(r2+a2)n

)
(2r2+(2n+1)a2)−2na2− n2a4 r2n

(r2+a2)n+1

)
sin2 θ

]
,

ω1 =
Ry√
2Σ

{
a2 sin2 θ+

b24
(n+1)2

[
(n+1)

(
1− r2n

(r2+a2)n
− na2 r2n

(r2+a2)n+1

)
sin2 θ

−
(
r2

a2

(
1− r2n

(r2+a2)n

)
−n
)

cos2 θ

]
sin2 θ

}
,

ω2 =
Ry√
2Σ

[
a2 cos2 θ− b24

(n+1)2

[
r2

a2

(
1− r2n

(r2+a2)n

)
− nr2n+2

(r2+a2)n+1

]
sin2 θ cos2 θ .

(4.3)

Regularity requires that b and b4 are related via the general relation (3.19), which evalu-

ates to:

b2 = b24 for k = 1 and b2 =
b24

2(n+ 1)
for k = 2 . (4.4)

5To arrive at the following expression we have taken the results from section 6.1 of [2] and undone the

gauge transformations described in section 2.2 of that paper. We have thus ensured that (4.1) and (4.2)

are solutions in the conventions of this paper.
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Note that killing off all the non-trivial modes by setting b4 = b = 0 in (4.1)–(4.3) reduces

these expressions to ω0 in (3.18).

4.1 The (1, 0, n) family of solutions

4.1.1 Metric fibration

The value of P in the starting supertube solution is Q1Q5/Σ
2. It is convenient to factor

this off and introduce the quantity:

Λ ≡
√
P Σ√
Q1Q5

=

√
1− a2 b2

(2a2 + b2)

r2n

(r2 + a2)n+1
sin2 θ . (4.5)

The six-dimensional metric, (2.2), can then be re-written as:

ds26 =
√
Q1Q5

Λ

F2(r)

[
F2(r)dr

2

r2+a2
− 2F1(r)

a2(2a2+b2)2R2
y

(
dv+

a2 (a4+(2a2+b2)r2)

F1(r)
du

)2

+
2a2 r2 (r2+a2)F2(r)

F1(r)R2
y

du2
]

(4.6)

+
√
Q1Q5

[
Λdθ2+

1

Λ
sin2 θ

(
dϕ1−

a2

(2a2+b2)

√
2

Ry
(du+dv)

)2
+
F2(r)

Λ
cos2 θ

(
dϕ2+

1

(2a2+b2)F2(r)

√
2

Ry

[
a2(du−dv)−b2F0(r)dv

])2]
,

where the functions, Fi(r), are defined by:

F0(r) ≡ 1− r2n

(r2 + a2)n
, F1(r) ≡ a6 − b2 (2a2 + b2) r2 F0(r) ,

F2(r) ≡ 1− a2 b2

(2a2 + b2)

r2n

(r2 + a2)n+1
.

(4.7)

From (4.6) it is elementary to evaluate the determinant of the internal metric along S.

Recalling that (2.7) defines the warp factor required by dimensional reduction, we find:

Ω−2 =
Λ

F2(r)
. (4.8)

In (4.6) we have extracted this warp factor from the first part of the metric and so the

metric terms inside the first set of square brackets yield the metric, ĝµν , on K defined

in (2.6). The resulting three-dimensional metric is, indeed, purely a function of r,

ĝµν dx
µdxν =

√
Q1Q5

[
F2(r) dr

2

r2 + a2
+

2 a2 r2 (r2 + a2)F2(r)

F1(r)R2
y

du2

− 2F1(r)

a2(2a2 + b2)2R2
y

(
dv +

a2 (a4 + (2a2 + b2)r2)

F1(r)
du

)2
]
.

(4.9)

We define the following one-forms on the three-dimensional base, K:

A(1) ≡ − a2

(2a2 + b2)

√
2

Ry
(du+ dv) , A(2) ≡ 1

(2a2 + b2)F2(r)

√
2

Ry
(a2(du− dv)− b2 F0(r)dv) .

(4.10)
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We now observe that the off-diagonal components, Bi
µ of the fibration form of the met-

ric (2.6) can be written as

Bi
µdx

µ = K(1)
i A(1) +K(2)

i A(2) , (4.11)

where K(1)
M = (0, 0, 0, 0, 1, 0) and K(2)

M = (0, 0, 0, 0, 0, 1) are the components of the Killing

vectors ∂/∂ϕ1 and ∂/∂ϕ2 respectively. This means that, under dimensional reduction,

the vector fields, A(1) and A(2) are massless electromagnetic potentials on K. Thus, not

only is the metric ĝµν independent of the coordinates on S3, but so are the dynamical

components of the metric on S. In light of Property (iii) and the comments made at the

end of section 2 about the absence of scalar excitations and shape modes, the dynamics of

the six-dimensional metric excitations in this solution reduces to dynamics of the metric

and massless vector fields on K. Of course, one should recall that in the complete six-

dimensional solution, the three-form fields depend upon v, ϕ1 and ϕ2, and so do not reduce

to massless fields in three dimensions. It is, however, still possible that such tensor gauge

modes give rise, in a consistent truncation, to a collection of massless and massive fields

on K. This possibility is currently under investigation.

4.1.2 Geodesics

Since the six-dimensional metric is independent of (u, v, ϕ1, ϕ2), this means that the cor-

responding momenta are conserved:

L1 = K(1)M
dzM

dλ
, L2 = K(2)M

dzM

dλ
, P = K(3)M

dzM

dλ
, E = K(4)M

dzM

dλ
, (4.12)

where the K(I) are the Killing vectors: K(1) = ∂
∂ϕ1

, K(2) = ∂
∂ϕ2

, K(3) = ∂
∂v and K(4) = ∂

∂u .

In addition, there is the standard quadratic conserved quantity coming from the metric:

ε ≡ gMN
dzM

dλ

dzN

dλ
. (4.13)

These conservation laws determine all the velocities except vr ≡ dr
dλ and vθ ≡ dθ

dλ .

In principle (4.13) allows exchange of energy between vr and vθ, and this could generate

interesting trapping of geodesics: as a particle falls in, some of its vr is traded for vθ and

thus the particle may lose radial momentum and be prevented from returning to where

it started.

However, at least for null geodesics in the (1, 0, n) family of metrics, there is a hid-

den symmetry: there is an additional conserved quantity, that is quadratic in momenta.

The additional conserved quantity can be found by separating variables in the massless

Hamilton-Jacobi equation, and takes the form:

Ξ ≡ ξMN
dzM

dλ

dzN

dλ
≡ Q1Q5 Λ2 v2θ +

L2
1

sin2 θ
+

L2
2

cos2 θ
. (4.14)

One can verify that for any geodesic one has

d

dλ
Ξ = Ry vθ

(
∂Λ

∂θ

)(
gMN

dzM

dλ

dzN

dλ

)
, (4.15)

which vanishes on null geodesics.
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Figure 1. Plot of F2(r) for a = 1, b = 4 and n = 1, 2, 3, 4. The curve with the largest dip has

n = 1 and, as (4.17) implies, the size of the dip decreases with n.

Were it not for the presence of Λ2 in (4.14), this conserved quantity would be the total

angular momentum on the round S3, and the motion on S would be essentially decoupled

from that on K. However, because of the factor of Λ2, these motions are not decoupled.

On the other hand, the factor of Λ2 only exerts a minor influence on geodesic motion. To

see this, first observe that

Λ2|r=0 = 1 , Λ2 → 1 as r →∞ , Λ2|θ=π
2

= F2(r) . (4.16)

In fact Λ2 is very close to 1 for most values of (r, θ), and its maximum deviation from 1 is

at θ = π
2 where it is given by F2(r). The function F2(r) is minimized at r = a

√
n, and has

a minimum value of

1− b2

2a2 + b2
nn

(n+ 1)n+1
>

3

4
. (4.17)

Moreover, as one can see in figure 1, the variation from 1 takes place in a short interval

around r = a
√
n. The region around r = a

√
n is also the region where the microstate

structure, in the form of momentum-carrying waves, is concentrated.

This means that vθ will increase briefly as it passes through r = a
√
n and this can, in

turn, change the value of θ and the value of vr. However, this effect is quite localized and

makes little difference to the asymptotic values or vr and r. A free particle falling in from

outside the throat will bounce off the center and escape the throat. The only geodesics

that are affected significantly by the microstate structure are the ones that are already

localized near r = a
√
n.

4.1.3 The wave equation

Consider the six-dimensional scalar wave equation

1√
− det (gMN )

∂

∂zP

(√
− det (gMN ) gPQ

∂

∂zQ
Φ

)
=

M2

√
Q1Q5 Λ

Φ , (4.18)
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where the factor of Λ−1 has been included in the “mass term” on the right-hand side for

reasons that will become apparent below.

Consider a generic mode for Φ of the form

Φ = K(r)S(θ) e
i
(√

2
Ry

ωu+
√
2

Ry
pv+q1ϕ1+q2ϕ2

)
. (4.19)

One then finds that the wave equation separates, yielding:

1

r
∂r

(
r(r2 + a2) ∂rK

)
+

(
a2(ω + p+ q1)

2

r2 + a2
− a2(ω − p− q2)2

r2

)
K (4.20)

+
b2ω

(
2a2p+ F0(r)

[
2a2(ω + q1) + b2ω

])
a2 (r2 + a2)

K = (λ+M2)K ,

1

sin θ cos θ
∂θ
(

sin θ cos θ ∂θS
)
−
(

q21
sin2 θ

+
q22

cos2 θ

)
S = −λS , (4.21)

for some eigenvalue λ.

Observe that the second equation (4.21) is the eigenvalue problem for the Laplace

operator on the round S3. The regular modes are therefore given in terms of Jacobi

polynomials:

S(θ) = sinq1 θ cosq2 θ P
(q1,q2)
j (cos 2θ) , (4.22)

where

P
(q1,q2)
j (x) =

(q1 + 1)j
j!

2F1

(
−j, 1 +

1

2
(`+ q1 + q2) ; q1 + 1;

1

2
(1− x)

)
, (4.23)

and (y)j =
∏j
m=0(y − m) is Pochhammer’s symbol. The quantum numbers (`, j) are

defined by

λ = `(`+ 2) , j =
1

2
(`− q1 − q2) . (4.24)

For the modes (4.19) to be single-valued and regular, and for P
(q1,q2)
j to be a polynomial,

one must have

q1, q2, `, j ∈ Z , q1, q2 ≥ 0 , ` ≡ q1 + q2 mod 2 . (4.25)

The radial equation is considerably more involved, because of the presence of terms

proportional to b2, which encode the massless scattering from the detailed structure of the

superstratum. Note that setting r = a sinh ξ turns the differential operator part of (4.20)

to a more canonical form:

1

sinh ξ cosh ξ
∂ξ
(

sinh ξ cosh ξ ∂ξK
)
. (4.26)

Note also that in the limit b → 0, the background becomes the decoupling limit of the

circular supertube solution, and the radial equation simply becomes the hypergeometric

equation [50]. It has been known for some time that the massless scalar wave equation

is separable in the circular supertube solution [50], as well as in solutions obtained by

spectral flow thereof [25, 51, 52], and related black hole solutions [53]. The (1, 0, n) family
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of single-mode superstrata is considerably more complicated than these solutions, and so

it is quite remarkable that separability is preserved.

Finally, note that the mass term in (4.18) has descended to a mass term in three

dimensions, as is evident in (4.20). Indeed the total three-dimensional mass of the scalar

field is the sum of the explicit mass, M2, and the eigenvalue, λ.

4.2 The (2, 1, n) family of solutions

We now analyze the (2, 1, n) family of solutions. The warp factor, Λ, now takes the form:

Λ =

√
1− 2(n+ 1) a4 b2

(2a2 + b2)

r2n

(r2 + a2)n+2
sin2 θ cos2 θ . (4.27)

Note that, compared to the corresponding warp factor in the (1, 0, n) solutions, (4.5), the

warp factor involves a higher harmonic mode with a stronger fall-off at infinity. This means

that the non-trivial profile in Λ is even smaller than the profiles depicted in figure 1. The

profile is sharply peaked around

r =

√
n

2
a . (4.28)

We introduce the coordinates

ψ = ϕ1 + ϕ2 , φ = ϕ2 − ϕ1 , (4.29)

and the functions, Hi(r):

H0(r) ≡ 1− r2n+2

(r2 + a2)n+1
, H1(r) ≡ 1 +

a2 b2

2 (2a2 + b2)

r2n

(r2 + a2)n+1
,

H2(r) ≡ 1− a4 b2 (n+ 1)

2 (2a2 + b2)

r2n

(r2 + a2)n+2
.

(4.30)

In terms of these, the six-dimensional metric, (2.2), can be re-written as:

ds26 =
√
Q1Q5 Λ

[
dr2

r2 + a2
+

2 r2 (r2 + a2)

a4R2
y

dv2

− 2

a4 (2a2 + b2)2R2
yH2(r)

(
a4 (du+ dv) + (2a2 + b2) r2H1(r) dv

)2]
+
√
Q1Q5

[
Λ dθ2 +

H2(r)

4Λ

(
dψ + Â(ψ)

)2
+
H2(r)

4Λ
cos 2θ

(
dψ + Â(ψ)

)(
dφ+ Â(φ)

)
+

cos2(2θ)H2(r) + sin2(2θ)

4Λ

(
dφ+ Â(φ)

)2]
, (4.31)

where the vector fields Â(ψ) and Â(φ) are given by:

Â(ψ) =
2
√

2

Ry

[
−1

2
dv + cos 2θ

1−H2(r)

H2(r)

(
a2

2a2 + b2
(du+ dv) +

r2

a2
H1(r)dv

)]
,

Â(φ) =

√
2

Ry

[
2a2du− b2H0(r)dv

(2a2 + b2)

]
.

(4.32)
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As before, it is elementary to evaluate the determinant of the internal metric along S
and use (2.7) to obtain the warp factor required by dimensional reduction:

Ω−2 =
Λ

H2(r)
. (4.33)

The dimensionally-reduced metric on K, defined in (2.6), is then:

ds21,2 =
√
Q1Q5H2(r)

[
dr2

r2+a2
+

2r2 (r2+a2)

a4R2
y

dv2 (4.34)

− 2

a4 (2a2+b2)2R2
yH2(r)

(
a4 (du+dv)+(2a2+b2)r2H1(r)dv

)2]
,

which is, again, purely a function of r.

Like the (1, 0, n) vector fields in (4.10), the vector field Â(φ) is independent of the

coordinates on the S3 and, when incorporated in the metric, is multiplied by a Killing

vector. This means that it reduces to a massless Kaluza-Klein vector field on K. However,

Â(ψ), while also multiplying Killing vectors in the metric, has terms that are independent

of θ as well as terms proportional to cos 2θ. The former are constant multiples of dv and are

thus pure gauge. The latter also depend on r and therefore represent non-trivial profiles for

massive vector fields on K. The metric of the (2, 1, n) family thus produces both massive

and massless KK vector fields on K.

4.2.1 Geodesics and separability

For the (2, 1, n) family of solutions, the massless wave equation and the Hamilton-Jacobi

equation for null geodesics are separable only for either vanishing frequency, or for a specific

choice of angular modes on S3. Specifically, if one seeks modes of the form (4.19) then

one finds something very similar to (4.20)–(4.21) except for a single problematic term.

One finds:

1

K

[
1

r
∂r
(
r(r2 + a2) ∂rK

)]
+

1

S

[
1

sin θ cos θ
∂θ
(

sin θ cos θ ∂θS
)
−
( q21

sin2 θ
+

q22
cos2 θ

)
S

]
+ F (ω, p, q1, q2, n; r)− a2b2 (n+ 1)G(ω, q1, q2, n; r, θ) = 0

(4.35)

where F (ω, p, q1, q2, n; r) is a complicated function of the coordinate r and the mode num-

bers ω, p, q1, q2 and n. The function G(ω, q1, q2, n; r, θ) is given by:

G(ω, q1, q2, n; r, θ) ≡ ω (q1 + q2)
r2n

(r2 + a2)n+2
cos 2θ (4.36)

and expresses the failure of separability. Note that this term vanishes if ω = 0 or q2 = −q1.
Moreover, the function G is strongly peaked at the dimple of Λ, (4.28), and vanishes rapidly

as r → 0 and r →∞.

One finds a similar result upon attempting to separate the massless Hamilton-Jacobi

equation:

gPQ
∂ S

∂zP

∂ S

∂zQ
= 0 . (4.37)
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Substituting

S = K(r) + S(θ) +

√
2

Ry
E u+

√
2

Ry
`0 v + `1 ϕ1 + `2 ϕ2 , (4.38)

one obtains an equation of the form:(
(S′(θ))2 +

`21
sin2 θ

+
`22

cos2 θ

)
+

(
(r2 + a2) (K ′(r))2 + F̂ (E, `0, `1, `2, n; r)

)
+ (n+ 1) a2b2 Ĝ(E, `1, `2, n; r, θ) = 0 ,

(4.39)

where

Ĝ(E, `1, `2, n; r, θ) ≡ E (`1 + `2)
r2n

(r2 + a2)n+2
cos 2θ . (4.40)

This is manifestly the direct parallel of (4.36). Moreover, if either E vanishes or `1 + `2
vanishes, then Ĝ ≡ 0 and Hamilton-Jacobi theory tells us that(

gθθ
dθ

dλ

)2

+
`21

sin2 θ
+

`22
cos2 θ

= Σ2 P
(
dθ

dλ

)2

+
`21

sin2 θ
+

`22
cos2 θ

(4.41)

is a conserved quantity. Note that one has

Σ2 P =
R2
y

2
(2a2 + b2)

(
1− 2(n+ 1) a4 b2

(2a2 + b2)

r2n

(r2 + a2)n+2
sin2 θ cos2 θ

)
=
R2
y

2
(2a2 + b2) Λ2 ,

(4.42)

where Λ is given in (4.27). Thus (4.41) is the analogue of the conserved quantity (4.14).

However, (4.41) is only conserved for E = 0 or `1 = −`2.
Recall that the momentum modes that underlie our solution depend upon the angles

according to (3.11), which now has the form:

χ2,1,n ≡
√

2

Ry
(n+ 1) v + (ϕ1 − ϕ2) . (4.43)

Thus the conservation and separation conditions, `1 = −`2 and q2 = −q1, mean that the

geodesic or wave must have the same angular dependence on the S3 as the underlying

momentum modes.

5 Discussion

In this paper we have found that two infinite families of superstratum solutions have quite

remarkable integrability properties for null geodesics. One of the families, the (1, 0, n)

family, has a separable massless Klein-Gordon equation and a complete set of conserved

quantities for null geodesics. The other family, the (2, 1, n) family, has a separable massless

Klein-Gordon equation and a complete set of conserved quantities only for a constrained

set of angular momenta on the S3. For the (2, 1, n) family (and for the (2, 0, n) family),

the failure of separation and failure of conservation is sharply localized in the region of the

solution where the momentum density is concentrated. We further found that the metrics
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of these families of solutions can be reduced to interesting sets of degrees of freedom in

(2 + 1)-dimensions.

The conservation laws and separability of the massless scalar wave equation for the

(1, 0, n) family means that this solution is readily amenable to detailed scattering calcula-

tions. On the other hand, because of its integrability, this solution is likely to exhibit some

quite atypical behavior, particularly when it comes to the spectrum.

An interesting question to investigate is whether, and in what regime of parameters, a

given microstate geometry can capture or trap incoming particles. It was recently argued

that given any supersymmetric microstate geometry in six dimensions, there should exist

a stably-trapped null geodesic passing through every point of the spacetime [11]. These

null geodesics have tangent vector ∂/∂u in our notation, so correspond to massless parti-

cles moving purely in the y direction. In the geodesic approximation, massless particles

following such geodesics do not fall (deeper) into the throat. The main heuristic argument

of [11] considers such a particle that is coupled to gravitational radiation and other massless

fields, such that the probe gradually radiates some of its energy into these other fields, thus

evolving to follow geodesics of progressively lower energy. In this way a massless particle

can, slowly, descend the throat.

However, within the geodesic problem, one can ask whether an infalling particle with

non-zero radial momentum, falling from outside the throat, can be deflected non-trivially

from the region of the metric at the bottom of the throat and, through this deflection,

remain in the throat for arbitrarily long periods of time, as seen from infinity. If the

“radial kinetic energy,” 1
2v

2
r , is the only kinetic energy term that appears in a particular

conservation law, then, just as in any orbit problem, an infalling particle falling from

outside the throat will simply rebound and escape: it will not be captured and trapped

deep within the throat. For such capture to occur, particles and waves must be able

to scatter “radial kinetic energy,” 1
2v

2
r , into “angular kinetic energy.” A complete set of

conserved quantities is thus largely antithetical to such behavior, although the conserved

quantity, (4.14), depends on both r and θ via (4.5) and so, in principle, it is possible

that changing θ along the trajectory can result in the loss of some radial kinetic energy.

However, in practice, in our solutions the θ dependence dies out extremely rapidly for

large r, and so changing θ will have only a minimal effect upon the return of the particle

to large distances.

If a given solution does allow a significant deflection of radial momentum to angular

momentum, the angular motion can potentially prevent the particle from escaping the

throat for a long time. Our results imply that the (1, 0, n) family of solutions is likely

the wrong place to look for such behavior. However, the conservation laws present for the

(1, 0, n) family are not present for generic (k,m, n) superstrata, so such solutions should

allow the scattering of vr into angular motion, and it would be interesting to investigate

whether this can lead to geodesics that describe infalling particles with non-zero radial

momentum, falling from outside the throat, becoming trapped deep inside the throat for

long periods of time. One way to study this behavior analytically could be to use the (2, 1, n)

family (for which geodesics/waves with `1+`2 = 0 or q1+q2 = 0 are integrable) and examine

perturbatively how waves are scattered into angular directions for small jL = `1 + `2 or
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small q1 + q2. It would be particularly interesting to investigate the timescale associated

with this trapping. This will depend on the depth of the throat, on how radial motion is

converted into angular motion, and on whether or not the trapping is chaotic. It might be

that the only way in which a particle can return to large distances after having scattered

off the microstate structure once is to scatter off it again in exactly the right manner as

to restore enough radial kinetic energy. This could lead to extremely large return times —

a desirable feature if one is to construct microstate geometries that describe typical black

hole states.

Finally, the results presented here underline the fact that the (1, 0, n) and (2, 1, n)

families have remarkably stringent constraints on their structure that suggests that the full

six-dimensional solutions might be written in a form that would come from a consistent

truncation to (2 + 1)-dimensions. In particular, the Fourier expansions of the (2 + 1)-

dimensional fields may only have non-trivial dependence on one variable, r. If such a

structure indeed exists, it would be very interesting to investigate the existence or otherwise

of a consistent truncation containing these solutions. In doing so, an interesting question

will be to determine whether or not any consistent truncation ansatz will require some form

of coiffuring to be built in. If a consistent truncation involving the modes of the tensor

gauge fields exists, then this could provide a powerful new route for the construction

non-supersymmetric solutions building on [54–56]: it would reduce the non-linear, non-

BPS supergravity dynamics in the system of [54, 56] from functions of two variables in

six dimensions to the far more tractable problem of functions of one variable in (2 + 1)-

dimensions. These questions are currently under investigation.
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