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1 Introduction

Over the last couple of decades, with the international efforts from the relativistic heavy-ion

collision experiments in SPS to LHC, we already have some profound signatures of the high

temperature deconfined phase of quantum chromodynamics (QCD), namely quark gluon

plasma (QGP). A locally equilibrated plasma is short-lived in the collision. However, there

are always some initial or final state interactions that may contaminate an observable one

is interested in. In this respect the electromagnetic emissivity of the plasma in the form of

real or virtual photon is particularly important. The very fact that they do not suffer from

final state interactions and carry least contaminated information of the local equilibrium

makes real or virtual photon production a desirable candidate for studying QGP. Real

photon escapes unperturbed and virtual photon decays into a lepton pair in the process.

This is why, the photon and dilepton production rates from QGP phase have been studied

vividly in the last three decades [1–32].

Even though the lepton pairs behave as free particles after production, but they are

produced in every stage of the collisions. The high mass dileptons are mostly produced due

to collision between hard partons and not particularly very informative about QGP. This

is because the Drell-Yan processes [33] and charmonium decays [34, 35] are the major pro-

cesses in that regime. On the other hand the low mass dilepton production is enhanced [36]

compared to all known sources of electromagnetic decay of the hadronic particles and the

contribution of a radiating QGP. So, the low mass dileptons (≤ 1 GeV) possibly indicates

some nonhadronic sources and the intricacies are discussed in the literature in a more phe-

nomenological way [15, 21, 25]. There also exists dilepton production [37] in intermediate

range of invariant mass (say 1–3 GeV) with optimized contribution from the QGP, which

is not dominated by hadronic processes, but still treated via perturbative methods. We
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emphasize that the higher order perturbative calculations [16, 30–32] of the dilepton rate

do not converge in a small strong coupling (g) limit. This is because the temperatures

attained in recent heavy-ion collisions are not so high to make perturbative calculations

applicable. However, the leading order perturbative quark-antiquark annihilation is the

only dilepton rate from the QGP phase that has been used extensively in the literature.

Nevertheless, this contribution is very appropriate at large invariant mass but not in low

and intermediate invariant mass. In this mass regime one expects that the nonperturbative

contributions could be important and substantial.

The nonperturbative effects of QCD are taken care by the lattice QCD (LQCD) com-

putations, a first principle based method of QCD. It has very reliably computed the non-

perturbative effects associated with the bulk properties (thermodynamics and conserved

density fluctuations) of the deconfined phase, around and above the deconfined tempera-

ture. Further, the efforts have also been made in lattice within the quenched approximation

of QCD [18–20, 38–40] and in full QCD [41, 42] for studying the structure of vector correla-

tion functions and their spectral representations. Nevertheless, such studies have provided

only critically needed information about various transport coefficients both at zero [38, 39]

and finite [40] momentum, and the thermal dilepton rate [18–20]. The computation of

these quantities proceed by first evaluating the Euclidean time correlation function only

for a finite set of discrete Euclidean times to reconstruct the vector spectral function in

continuous real time using maximum entropy method (MEM) [43, 44], thereby extract-

ing various spectral properties. Unfortunately the lattice techniques are solely applicable

in Euclidean spacetime, while the spectral function is an inherently Minkowskian object.

Though it can be obtained from the Euclidean correlator in principle, but the process of

analytic continuation in the regime of lattice is ill-defined. Because of this complication, in

LQCD the spectral function is not defined via eq. (1.3) but through a probabilistic method

MEM [43, 44], which is also in some extent error prone [45]. Nevertheless, because of its

limitations, LQCD data [18–20] also could not shed much light on the low and intermediate

mass dileptons as it is indeed a difficult task in lattice.

It is now desirable to have an alternative approach to include nonperturbative effects in

dilepton production. It is well known that the QCD vacuum has a nontrivial structure con-

sisting of non-perturbative fluctuations of the quark and gluonic fields. These fluctuations

can be traced via a few phenomenological quantities, known as vacuum condensates [46].

In standard perturbation theory for simplicity one works with an apparent vacuum and the

theory becomes less effective with relatively lower invariant mass. The vacuum expectation

values of the such condensates vanishes in the perturbation theory by definition. But in

reality they are non-vanishing [47, 48] and thus the idea of the nonperturbative dynamics of

QCD is signaled by the emergence of power corrections in physical observables through the

inclusion of nonvanishing vacuum expectation values of local quark and gluonic operators

such as the quark and gluon condensates. In the present calculation we intend to compute

intermediate mass (IM) dilepton production using nonperturbative power corrections.

In this context Shifman-Vainshtein-Zakharov (SVZ) first argued [49, 50] that Wilson’s

Operator Product Expansion (OPE) [51] is valid in presence of the non-perturbative

effects [52]. By using OPE judiciously one can exploit both perturbative and non-
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perturbative domains separately [53–55]. Unlike QED a favorable situation occurs par-

ticularly in QCD that allows us to do the power counting [56, 57]. OPE basically assumes

a separation of large and short distance effects via condensates and Wilson coefficients.

Also according to SVZ, the less effectiveness of ordinary perturbation theory at relatively

low invariant mass is a manifestation of the fact that nonperturbative vacuum condensates

are appearing as power corrections in the OPE of a Green’s function. So in view of OPE, in

the large-momentum (short-distance) limit, a two point current-current correlation func-

tion [49, 50, 58] can be expanded in terms of local composite operators and c-numbered

Wilson coefficients as

C(p) =
z→0 i

∫
eip·zd4z

〈
T {J(z)J(0)}

〉
=
∑
n

Wn(p2, ν2) 〈On〉D, (1.1)

provided p2 � Λ2, where Λ is the QCD scale and T is the time ordered product. On is

the D-dimensional composite operators (condensates) and have non-zero expectation val-

ues which were absent to all orders in perturbation theory. ν is a factorization scale that

separates long and short distance dynamics. The power corrections appear through the

Wilson coefficients W that contain all information about large momentum (short distance)

physics above the scale ν, implying that those are free from any infrared and nonperturba-

tive long distance effects. Alternatively, the factorization scale ν is chosen to minimize the

perturbative contributions to the condensates such that the physical observable should, in

principle, be insensitive to the choice of ν. We note that for computing a correlator in

vacuum(medium) one should first calculate it in a background of quark and gluonic fields

and then average it with respect to these fields in the vacuum(medium) to incorporate the

power corrections through relevant condensates.

Before going into our calculation we would like note following points in OPE: the gen-

eral and important issue in OPE is the separation of various scales. At finite temperature

the heatbath introduces a scale T , and then OPE has three scales: Λ, T and p beside the

factorization scale1 ν. Based on this one can have2 either (i) Λ and T soft but p hard

(Λ ∼ T < p) or (ii) Λ soft but p and T hard (Λ < p ∼ T ).

1. The general belief [60, 61] that the Wilson coefficients W (p2, ν2) are c-numbered and

remain same irrespective of the states considered. This means if one takes vacuum

average 〈· · · 〉0 or thermal average 〈· · · 〉β of eq. (1.1), the Wilson coefficient functions,

W (p2, ν2), remain temperature independent whereas the temperature dependence

resides only in 〈O〉β . In other way, OPE is an expansion in 1/p where p is the

typical momentum scale. But thermal effects are essentially down by thermal factors

exp(−p/T ). For Λ ∼ T < p, this does not contribute to any order in 1/p in OPE. It is

like exp(−1/x) for which all coefficients in the Taylor expansion in x(= T/p) vanish.

2. There are also efforts to extend the OPE to a system with finite temperature [61–65].

At nonzero T the heatbath introduces perturbative contributions to the matrix el-

1One chooses the factorization scale ν as Λ ∼ T . ν � p above which the state dependent fluctuations

reside in the expectation values of the operators [59].
2We also note that there can be another one: Λ soft, p hard and T super-hard (Λ < p � T ). In this

case there is a double scale separation and one does not need it for OPE.
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ement in OPE, 〈O〉β in addition to the nonperturbative contributions of finite di-

mension composite operator. One needs to determine a temperature T ∼ p above

which the perturbative calculation of thermal corrections is reliable. Usually these

perturbative thermal corrections are incorporated by making the Wilson coefficients

temperature dependent through systematically resummed infinite order in the expan-

sion that comes out to be ∼ T (but not ∼ gT ). This means if one takes the thermal

average of eq. (1.1), then one requires contributions to infinite order in the expansion

to get W ’s temperature dependent, and it becomes an expansion of Λ/p whereas the

expansion in 1/(p/T ) is already resummed [62]. Nevertheless, this resummation is

appropriate when T & p, but QCD sum rule approach may break down and lose its

predictive power [63].

However, for low temperature (Λ ∼ T < p) such resummation does not make

much sense. Thus for low T the temperature acts as an infrared effect and cannot

change the Wilson coefficients. Since our calculation is intended for low temperature

(πT < p < ω), the temperature dependence is only considered in the condensates

based on the above point 1 vis-a-vis the scale separtion as in case (i).

Now the in-medium differential dilepton production rate [3, 4] is related to the elec-

tromagnetic spectral function as

dR

d4xd4p
=

αem

12π3M2
nB (ω)

∑
f

q2
f ρf (ω, |~p|), (1.2)

where nB(x) = (ex − 1)−1 is the Bose-Einstein distribution function, qf is the electric

charge of a given quark flavor f , αem is the electromagnetic fine structure constant and the

invariant mass of the lepton pair is M2 = p2 = ω2−|~p|2 with p ≡ (ω, ~p). The dilepton rate

in (1.2) is valid only at leading order in αem but to all orders in strong coupling constant

αs. The quark and lepton masses are neglected in (1.2).

The electromagnetic spectral function for a given flavor f , ρf (ω, |~p|), is extracted from

the timelike discontinuity of the two point correlation function as

ρf (ω, |~p|) =
1

π
Im
(
Cµµ
)
f
. (1.3)

The main aim of the present paper is to obtain the in-medium electromagnetic spectral

function incorporating the power corrections within OPE in D = 4 dimension and analyze

its effect on the thermal dilepton rate from QGP. To obtain the in-medium electromagnetic

spectral function one needs to calculate the two point correlation function via OPE corre-

sponding to the D = 4 gluonic and quark operators (condensates) in hot QCD medium.

The power corrections appears in the spectral function through the nonanalytic behavior of

the correlation function in powers of p−D/2 or logarithms in the Wilson coefficients within

OPE in D dimension.

The plan of the paper is as follows. In section 2 we outline some generalities needed for

the purpose. In sections 3 and 4 we discuss how in-medium quark and gluonic composite

operators in D = 4, respectively, can be included in electromagnetic polarization diagram.
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We then obtain the two point correlators in terms of Wilson coefficients and those composite

operators for the case of light quarks. We also demonstrate how the mass singularity

appearing in the correlator is absorbed by using minimal subtraction via operator mixing.

In section 5 we discuss about the thermal spectral function and it’s modification due to

incorporation of leading order power correction, particularly in the range of intermediate

invariant mass. As a spectral property the dilepton production is discussed in section 6

comparing our results with some other known perturbative and nonperturbative results

and then we conclude in section 7.

2 Setup

We briefly outline some generalities which are essential ingredients in our calculation. In

usual notation the nonabelian field tensor in SU(3) is defined as

Gaµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν ,

Gµν = Gaµνt
a,

Dα = ∂α − igtaAaµ, (2.1)

where a, b, c are color indices, ta are the generators and gµν = diag(1,−1,−1,−1). Conse-

quently in vacuum it satisfies the projection relation for composite operator〈
Gaµν(0)Gbαβ(0)

〉
=

1

96
δab(gµαgνβ − gµβgνα)

〈
GcρσG

c ρσ
〉
. (2.2)

Choosing the Fock-Schwinger aka the fixed point gauge (xµAaµ(x) = 0) for conve-

nience, the gauge field Aaµ(x) can be expressed easily in terms of gauge covariant quanti-

ties [56, 57, 66, 67] as

Aµ(x) =

1∫
0

σ dσ Gνµ(σx)xν =
1

2
xνGνµ(0) +

1

3
xαxνDαGνµ(0) + · · · ,

where first the gauge field G(y) has been Taylor expanded in the small σ limit and then

the integration over σ has been performed. Now in momentum space it reads

Aµ(k) =

∫
Aµ(x)eikxd4x

=
−i(2π)4

2
Gνµ(0)

∂

∂kν
δ4(k) +

(−i)2(2π)4

2
(DαGνµ(0))

∂2

∂kν∂kα
δ4(k) + · · · , (2.3)

where each background gluon line will be associated with a momentum integration as we

will see below. Using this one can now evaluate the effective quark propagator in presence

of background gluon lines [56, 57] by expanding the number of gluon legs attached to the

bare quark line as in figure 1. So, it can be written as

Seff = S0 + S1 + S2 + · · · , (2.4)
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k

iS(k) iS0(k)

k k k− l1

k k− l1 k− l1 − l2

l1

l1 l2

hijibiji

Figure 1. Effective quark propagator in the background gluon field.

where the bare propagator for massive quark reads as

S0 =
i

/k −m (2.5)

where m is the mass of the quark.

With one gluon leg attached to the bare quark (figure 1) the expression reads as

S1 =
−i

/k −m

∫
d4l1

(2π)4

/A(l1)

/k − /l1 −m

= − i
4
gtaGaµν(0)

1

(k2 −m2)2
{σµν(/k +m) + (/k +m)σµν}, (2.6)

where

σµν =
i

2
[γµ, γν ],

and the background gauge field /A(l1) is replaced by the first term of the gauge field as

given in eq. (2.3). Similarly for the diagram where two gluon legs are attached to the bare

quark, we get

S2 =
i

/k −m

∫
d4l1

(2π)4

/A(l1)

/k − /l1 −m

∫
d4l2

(2π)4

/A(l2)

/k − /l1 − /l2 −m

= − i
4
g2tatbGaαβ(0)Gbµν(0)

(/k +m)

(k2 −m2)5
(fαβµν + fαµβν + fαµνβ), (2.7)

where

fαβµν = γα(/k +m)γβ(/k +m)γµ(/k +m)γν(/k +m).

In presence of a medium, however, a four-vector uµ = (1, 0, 0, 0) is usually introduced to

restore Lorentz invariance in the rest frame of the heat bath. So, at finite temperature

additional scalar operators can be constructed so that the vacuum operators are generalized

to in-medium ones. The projection relation of composite operator in (2.2) gets modified in

finite temperature [54, 68–70] as〈
Gaµν(0)Gbαβ(0)

〉
T

=
[
gµαgνβ − gµβgνα

]
A−

[
(uµuαgνβ − uµuβgνα − uνuαgµβ

+ uνuβgµα)− 1

2
(gµαgνβ − gµβgνα)

]
B + iεµναβC, (2.8)

– 6 –
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Figure 2. OPE topologies corresponding to D = 4 composite quark operator that can contribute

to the power correction in the one-loop electromagnetic polarization. The composite quark operator

is denoted by two gray blobs separated by a gap in the internal quark line. Top left one contributes

to the leading order (LO:e2) whereas the remaining three are due to gluonic corrections contribute

to non-leading order (NLO: e2g2).

where A,B andC are, respectively, given as

A =
δab

96

〈
G2
〉
T
, B =

δab

12

〈
uΘgu

〉
T
, C =

δab

96

〈
E · B

〉
T

with E and B are, respectively, the electric and magnetic fileds. The traceless gluonic stress

tensor, Θg
µν , is given by

Θg
µν = −GaµρGaρν +

1

4
gµνG

a
ρσG

ρσ a. (2.9)

QCD vacuum consists of both quark and gluonic fields. We note that the composite

operators involving quark fields will be defined below whenever necessary.

3 Composite quark operators

In this section we would like to discuss the power corrections using composite quark opera-

tors (condensates) in OPE. In presence of quark condensate the leading order contribution

comes from the top left panel in figure 2 where one of the internal quark line is soft in the

polarization diagram represented by two gray blobs with a gap. We note that the diagrams

here are not thermal field theory diagrams but“OPE diagrams” with scales: Λ and T soft

but p hard (Λ ∼ T < p). The corresponding contributions can be obtained as[
CLO
µν (p)

]
q

= i

∫
eip·zd4z

〈
T {jµ(z)jµ(0)}

〉
= −NcNf

∫
eip·zd4zTr

[
ψ̄(z)γµS(z, 0)γνψ(0) + ψ̄(0)γνS(0, z)γµψ(z)

]
, (3.1)

where Nf is the number of quark flavor and Nc is the number of color for a given flavor.

We also note that the soft quark lines are represented by Heisenberg operators ψ(z) and

– 7 –
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ψ(0). In the large p limit, ψ(z) can be expanded as

ψ(z) = ψ(0) + zµDµψ(0). (3.2)

Now considering only the first term in the expansion of (3.2) in (3.1), one gets[
CLO
µν (p)

]1

q
= −NcNf

1

12

〈
ψ̄ψ
〉
Tr
[
γµS(p)γν + γνS(p)γµ

]
, (3.3)

which, as expected, vanishes in the chiral limit. This is because of the appearance of the

chiral condensate, 〈ψ̄ψ〉 which is proportional to the quark mass m. On the other hand,

choosing the second term in the expansion of (3.2) we get[
CLO
µν (p)

]2

q
= −NcNf

∫
eip·z d4z

× Tr
[
ψ̄(0)zρ

←−
DργµS(z, 0)γνψ(0) + ψ̄(0)γνS(0, z)γµz

ρ−→Dρψ(0)
]
. (3.4)

Now the most general decomposition of 〈ψ̄iDρψ〉 for the massless at finite temperature [68]

is given as

〈ψ̄iDρψ〉T =

(
− 1

12
γρ +

1

3
uρ/u

)
〈uΘfu〉T , (3.5)

where Θf
µν is traceless fermionic stress tensor and in the massless limit it is given by

Θf
µν = ψ̄γµiDνψ. (3.6)

Using (3.5) in (3.4), and performing z-integration one gets[
CLO
µν (p)

]2

q
= −NcNf

∂

∂pρ
Tr
[(
γµS(p)γν + γνS(p)γµ

)(
− γρ + 4uρ/u

)] 1

12

〈
uΘfu

〉
T
. (3.7)

Now treating the Wilson coefficients temperature independent, the LO contribution is

obtained as [
CµLO
µ (p)

]
q

=
[
CµLO
µ (p)

]2

Q
=

8NcNf

3p2

(
1− 4

ω2

p2

)〈
uΘfu

〉
T
. (3.8)

We note that the contributions from NLO order gluonic corrections (figure 2) to quark

vacuum condensates are already evaluated in [71]. Following the same prescription as LO

the total NLO in-medium contributions from remaining three diagrams in figure 2 in the

massless limit is obtained as[
CµNLO
µ (p)

]
q

=
8NcNf

3p2

〈
uΘfu

〉
T

(
1− 4

ω2

p2

)
2g2

9π2

(
1− ln

(−p2

Λ2

))
. (3.9)

We further note that the logarithmic correction appears from the radiative correction

diagrams in figure 2 when the ultraviolet divergences associated with them are regularized

through dimensional regularization [72]. The non-analytic behaviour of this logarithmic

term will generate the power tail in the spectral function.

Combining (3.8) and (3.9) one obtains power correction upto NLO due to quark oper-

ator in the electromagnetic correlation function at finite temperature as[
Cµµ (p)

]
q

=
8NcNf

3p2

〈
uΘfu

〉
T

(
1− 4

ω2

p2

)[
1 +

2g2

9π2

(
1− ln

(−p2

Λ2

))]
. (3.10)
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Figure 3. (Topology-I) Vertex correction where one soft gluon line is attached to each internal

quark line in the electromagnetic polarization diagram.

Figure 4. (Topology-II) Self-energy correction where two soft gluon lines are attached to one

internal quark line in the electromagnetic polarization diagram. A similar topology will also arise

when two soft gluon lines are attached to the other quark line.

4 Composite gluonic operators

In this section we compute the power correction to the electromagnetic correlation function

from the D = 4 composite gluonic operator by considering the soft gluon lines attached to

the internal quark lines in the electromagnetic polarization diagram. There are two such

topologies, as shown in figures 3 and 4, depending upon how the soft gluon line is attached

to the internal quark lines in electromagnetic polarization diagram.

Using eqs. (2.5)–(2.7), the contribution of the vertex correction diagram (topology-I)

in vacuum can be written as[
Cµµ (p)

]I

g
= iNcNf

∫
d4k

(2π)4
Tr
[
γµS1(k)γµS1(q)

]
= − iNcNf

16
g2tatb

〈
Gaρσ(0)Gbαβ(0)

〉
×
∫

d4k

(2π)4

Tr
[
γµ (σρσ(/k +m) + (/k +m)σρσ) γµ

(
σαβ(/q +m) + (/q +m)σαβ

) ]
(k2 −m2)2(q2 −m2)2

= −iNcNf

〈
g2G2

〉∫ d4k

(2π)4

k · q
(k2 −m2)2(q2 −m2)2

, (4.1)

where q = k− p and we have also used eq. (2.2) in the last step after evaluating the trace.

– 9 –
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Similarly, the contribution from the topology-II (including the one where two gluon

lines are attached to the other quark propagator in figure 4) in vacuum can be written as[
Cµµ (p)

]II

g
= 2iNcNf

∫
d4k

(2π)4
Tr
[
γµS2(k)γµS0(q)

]
=
iNcNf

4
g2tatb

〈
Gaρσ(0)Gbαβ(0)

〉
×
∫

d4k

(2π)4

Tr
[
γµ(/k +m)(fαβµν + fαµβν + fαµνβ)γµ

(
/q +m

) ]
(k2 −m2)5(q2 −m2)

= −iNcNf

〈
g2G2

〉∫ d4k

(2π)4

4m2(k · q − 2k2)

(k2 −m2)4(q2 −m2)
. (4.2)

Now, we would like to compute both topologies in presence of D = 4 composite gluonic

operators at finite T . For the purpose, unlike vacuum case one requires to use in-medium

gluon condensates as given in eq. (2.8). The vacuum contributions in eqs. (4.1) and (4.2)

are, respectively, modified at finite T as[
Cµµ (p)

]I

g,T
= − iNcNf

16
g2tatb

〈
Gaρσ(0)Gbαβ(0)

〉
T

×
∫

d4k

(2π)4

Tr
[
γµ
(
σρσ(/k +m) + (/k +m)σρσ

)
γµ
(
σαβ(/q +m) + (/q +m)σαβ

)]
(k2 −m2)2(q2 −m2)2

= −iNcNf

〈
g2G2

〉
T

∫
d4k

(2π)4

k · q
(k2 −m2)2(q2 −m2)2

+
4iNcNf

3

〈
g2uΘgu

〉
T

∫
d4k

(2π)4

(k · q − 4k0q0)

(k2 −m2)2(q2 −m2)2
, (4.3)

and[
Cµµ (p)

]II

g,T
=
iNcNf

4
g2tatb

〈
Gaρσ(0)Gbαβ(0)

〉
T

×
∫

d4k

(2π)4

Tr
[
γµ(/k +m)(fαβµν + fαµβν + fαµνβ)γµ

(
/q +m

) ]
(k2 −m2)5(q2 −m2)

= −4iNcNfm
2
〈
g2G2

〉
T

∫
d4k

(2π)4

(k · q − 2k2)

(k2 −m2)4(q2 −m2)
+

32iNcNf

3

〈
g2uΘgu

〉
T

×
∫

d4k

(2π)4

k · q(2k2
0 − 1

2m
2) +m2(k2 − 4k2

0)− 2k0q0(k2 −m2)

(k2 −m2)4(q2 −m2)
. (4.4)

Now, in the short-distance or large-momentum limit of nonperturbative power correction,

one can work with massless quarks without loss of generality. In the massless limit eq. (4.3)

reduces to [
Cµµ (p)

]I

g,T

=
m→0 −iNcNf

〈
g2G2

〉
T

∫
d4k

(2π)4

k · q
(k2)2(q2)2

+
4iNcNf

3

〈
g2uΘgu

〉
T

∫
d4k

(2π)4

(k · q − 4k0q0)

(k2)2(q2)2
, (4.5)
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whereas for eq. (4.4) the coefficient for 〈g2G2〉T vanishes and it takes a simple form[
Cµµ (p)

]II

g,T

=
m→0

32iNcNf

3

〈
g2uΘgu

〉
T

∫
d4k

(2π)4

2(k · qk2
0 − k0q0k

2)

(k2)4(q2)
. (4.6)

Here we emphasize the fact that the vacuum correlation function corresponding to topology-

II (self-energy correction) in eq. (4.2) vanishes in the massless limit. But in medium, one

obtains a finite contribution in the massless limit as found in eq. (4.6) due to the in-

medium condensates. Now, the integrals in the above expressions can be expressed in

terms of standard Feynman integrals Imn, Iµmn and Iµνmn which have been evaluated in

appendix A. Using those results in appendix A, eqs. (4.5) and (4.6) in the massless limit

(p0 = ω), respectively, become[
Cµµ (p)

]I

g,T

=
m→0 −iNcNf 〈g2G2〉T

1

2
(2I12 − p2I22)

+
4iNcNf

3
〈g2uΘgu〉T

1

2
(2I12 − p2I22 + 8p0I0

22 − 8I00
22 )

= 〈G2〉T
g2NcNf

16π2p2
− 〈uΘgu〉T

g2NcNf

3π2p2

[
ω2

p2
− 1

4

]
, (4.7)

and [
Cµµ (p)

]II

g,T

=
m→0

32iNcNf

3
〈g2uΘgu〉T (2p0I0

31 − I00
31 − p2I00

41 )

= −g
2NcNf

9π2p2
〈uΘgu〉T

[
1

ε̃

(
1− 4ω2

p2

)
+ 2− 6

ω2

p2

]
. (4.8)

We note that eq. (4.8) has a mass singularity as 1/ε̃ = 1/ε − ln
(
−p2/Λ2

)
and the rea-

son for which could be understood in the following way: while computing the self-energy

correction corresponding to topology-II in figure 4, one actually overcounts a contribution

from quark condensate. This is because the quark line in-between two soft gluon lines

in figure 4 becomes soft, leading to quark condensate. So the actual contribution from

the gluonic operators can only be obtained after minimally subtracting the quark conden-

sate contribution [73, 74] which should cancel the mass singularity arising in the massless

limit [75–77].

To demonstrate this we begin by considering finite quark mass in which a correlator

containing quark condensates (Qk) can be expressed via gluon condensates (Gn) [78] in

mixed representation as

Qk =
∑
n

ckn(m)Gn, (4.9)

where, ckn(m) is an expansion in 1/m. Then one can also represent a correlator with gluon

condensates (Gn) as [
Cµµ (p)

]
g

=
∑
n

an(p2,m)Gn, (4.10)

whereas for quark condensates (Qk) it can be written as[
Cµµ (p)

]
q

=
∑
k

bk(p
2,m)Qk, (4.11)
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with an and bk are the corresponding coefficients for the gluon and quark condensates,

respectively. Now, in general a correlator with minimal subtraction using eqs. (4.9), (4.10)

and (4.11) can now be written as[
Cµµ (p)

]a

g
=
[
Cµµ (p)

]
g
−
[
Cµµ (p)

]
q

=
∑
n

an(p2,m)Gn −
∑
n,k

bk(p
2,m)ckn(m)Gn. (4.12)

We note here that after this minimal subtraction with massive correlators and then taking

the massless limit renders the resulting correlator finite. Since we are working in a massless

limit, one requires an appropriate modification [74, 79] of eq. (4.9). The difference between

a renormalized quark condensate and a bare one can be written as [78],

Qk −Qbk = −1

ε

∑
dn≤dk

mdk−dnγknGn, (4.13)

where dn and dk represents the dimensions of Gn and Qk and γkn are the mixing coefficients

of Qk with Gn. Now if one wants to go to m → 0 limit, Qbk vanishes because there is no

scale involved in it. Also only dn = dk term survives producing

Qk = −1

ε

∑
dn=dk

γknGn. (4.14)

Using eq. (4.14) in the first line of eq. (4.12) one can write[
Cµµ (p)

]a

g
=
[
Cµµ (p)

]
g

+
1

ε

∑
dn=dk

bk(p)γknGn, (4.15)

where, bk(p) is the coefficient of the quark condensate Qk in the massless limit, which is of

similar dimension as Gn.

So, for minimal subtraction of the quark condensate contribution overestimated in

eq. (4.8), the in-medium quark condensate (appearing in eq. (3.10)) has to be expressed in

terms of the in-medium gluon condensates of the same dimension as [80]

〈
ψ̄γµiDνψ

〉
T

=
〈

: ψ̄γµiDνψ :
〉
T

+
3

16π2
m4gµν

(
ln
µ2

m2
+ 1

)
− gµν

48

〈 g2

4π2
G2
〉
T

− 1

18
(gµν − 4uµuν)

(
ln
µ2

m2
− 1

3

)〈 g2

4π2
uΘgu

〉
T
, (4.16)

where the first term in the right hand side represents the normal ordered condensate. After

contracting eq. (4.16) by uµuν and applying eq. (3.6) we obtain,

〈uΘfu〉 = Other nonrelevant terms +
1

6

(
ln
µ2

m2
− 1

3

)〈 g2

4π2
uΘgu

〉
. (4.17)

Now comparing eqs. (4.17) and (4.14) we find

γkn =
1

6
, bk(p) =

8NcNf

3p2

(
1− 4ω2

p2

)
. (4.18)
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Therefore, the electromagnetic correlator with gluon condensates for self-energy correction

(topology-II) in the massless limit can now be written as[
Cµµ (p)

]II,a

g,T

=
m→0

[
Cµµ (p)

]II

g,T
+

1

ε

∑
dn=dk

bk(p)γknGn,

= −g
2NcNf

9π2p2
〈uΘgu〉T

[
1

ε̃

(
1− 4ω2

p2

)
+ 2− 6

ω2

p2

]
+

1

ε

g2NcNf

9π2p2

(
1− 4

ω2

p2

)
〈uΘgu〉T

= −g
2NcNf

9π2p2
〈uΘgu〉T

[
− ln

(−p2

Λ2

)(
1− 4ω2

p2

)
+ 2− 6

ω2

p2

]
. (4.19)

So, the minimal subtraction eventually cancels the divergence from the expression of gluonic

operators. Now combining eq. (4.7) and eq. (4.19), the final expression for the gluonic

contribution in the self-energy power correction is given by,[
Cµµ (p)

]
g,T

=
g2NcNf

π2p2

[
1

9

〈
uΘgu

〉
T

(
ln

(−p2

Λ2

)(
1− 4ω2

p2

)
+ 9

ω2

p2
− 11

4

)
− 1

16

〈
G2
〉
T

]
.

(4.20)

5 Electromagnetic spectral function

The correlation function with power corrections from both quark and gluonic composite

operators can now be written from eq. (3.10) and eq. (4.20) as[
Cµµ (p)

]
T

=
[
Cµµ (p)

]
g,T

+
[
Cµµ (p)

]
q,T

=
g2NcNf

π2p2

[
1

9

〈
uΘgu

〉
T

(
ln

(−p2

Λ2

)(
1− 4ω2

p2

)
+ 9

ω2

p2
− 11

4

)
− 1

16

〈
G2
〉
T

]
+

8NcNf

3p2

〈
uΘfu

〉
T

(
1− 4

ω2

p2

)[
1 +

2g2

9π2

(
1− ln

(−p2

Λ2

))]
. (5.1)

The contribution to spectral function comes from nonanlytic behavior of ln
(
−p2
Λ2

)
having a

discontinuity of 2π. Following eq. (1.3) the electromagnetic spectral function with leading

non-perturbative power corrections in the OPE limit πT < p < ω can be written as

ρpc
f (p) = −16Ncαs

9p2π

(
1− 4

ω2

p2

)[
8

3

〈
Θf

00

〉
T
− 1

2

〈
Θg

00

〉
T

]
, (5.2)

where the power corrections (pD/2) from the QCD vacuum, resides in the denominator of

the Wilson coefficient as we have considered the D = 4 dimensional composite operators.

Now, Θ00
g and Θ00

f are respectively the gluonic and fermionic part of the energy density E ,

and in the Stefan-Boltzmann limit given by〈
Θg

00

〉SB

T
=
π2T 4

15
dA,〈

Θf
00

〉SB

T
=

7π2T 4

60
dF , (5.3)
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where, dA = N2
c − 1 and dF = NcNf . So the leading correction to the electromagnetic

spectral function is O(g2T 4) and is in conformity with those obtained in ref. [59] using

renormalization group equations (RGE). Now the perturbative leading order (PLO) result,

or the free spectral function, is given by

ρPLO(p) =
NcNfTp

2

4π2|~p| ln

cosh
(
ω+|~p|

4T

)
cosh

(
ω−|~p|

4T

)
 . (5.4)

Now to have a quantitative estimate of the physical quantities considered, one needs the

in-medium values of those condensates appearing in eq. (5.2) in region of interest (πT <

p < ω). Unfortunately, the present knowledge of those in-medium condensates are not

available in the existing literature. The evaluation of the composite quark and gluon

operators (condensates) in eq. (5.2), 〈Θ00
g 〉T and 〈Θ00

f 〉T , respectively, at finite T should

proceed via nonperturbative methods of QCD. We expect that LQCD calculations would

be able to provide some preliminary estimate of them in near future. Since presently we

do not have any information of these in-medium condensates, we just use their Stefan-

Boltzman limits, as given in eq. (5.3), to have some limiting or qualitative information

even though it is not appropriate at the region of interest. For quantitative estimates

one should wait until actual estimates of these condensates, 〈Θ00
g 〉T and 〈Θ00

f 〉T , are made

avilable in the literature.

Also we use the one-loop running coupling

αs(Λ) =
12π

33− 2Nf
ln

Λ̄2
MS

Λ2
, (5.5)

with Λ̄MS = 176 MeV [81] and the renormalisation scale is chosen at its central value,

Λ = 2πT .

We now demonstrate the importance of the power corrections in the thermal spectral

function. Figure 5 displays a comparison between the perturbative leading order contri-

bution in eq. (5.4) and the power corrections contribution in eq. (5.2). As seen that the

nature of the two spectral functions are drastically different to each other as a function

of M/T , the scaled invariant mass with respect to temperature. While the perturbative

leading order result increases with the increase of M/T , the leading order power correction

starts with a very high value but falls off very rapidly. We, here, emphasize that the low

invariant mass region is excluded in the OPE limit, πT < p < ω. On the other hand

the vanishing contribution of the power corrections at large invariant mass (M ≈ 10T ) is

expected because of the appearance of p−2 due to dimensional argument as discussed after

eq. (5.2). So, at large invariant mass the perturbative calculation becomes more effective

as can be seen in figure 5.

In figure 6, a comparison (left panel) between the ρPLO in eq. (5.4) and ρPLO + ρpc

[eq. (5.4) + eq. (5.2)] and their ratio are displayed, respectively. From the left panel one

finds that in the intermediate mass regime, M ≈ 4T to 10T , i.e., (1 to 2.5) GeV, there

is a clear indication of enhancement in the electromagnetic spectral function due to the

leading order power corrections in D = 4 dimension. This is also reflected in the ratio plot

– 14 –
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Figure 5. Comparison of the electromagnetic spectral function betwen the perturbative leading

order (PLO) and power corrections from D = 4.
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Figure 6. Comparison between ρPLO in eq. (5.4) and ρPLO + ρpc in the left panel and their ratio

in the right panel.

in the right panel. Both plot assures that the power corrections becomes important in the

intermediate mass range of the electromagnetic spectral function.

For convenience the PLO spectral function in eq. (5.4) can be simplified in the OPE

limit as

ρPLO
sim (p) =

NcNfp
2

4π2
, (5.6)

and is also justified through figure 7.

The total spectral function with the power correction in the OPE limit can now be

written as

ρ(p)|OPE = ρPLO
sim (p) + ρpc(p)

=
NcNfp

2

4π2
− 16NcNfαs

9πp2

(
1− 4

ω2

p2

)[
8

3

〈
Θ00
f

〉
T
− 1

2

〈
Θ00
g

〉
T

]
. (5.7)

Now we note that the virtual photon will decay into two leptons and the features observed

in the electromagnetic spectral function will also be reflected in the dilepton production

rate, which will be discussed in the next section.
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Figure 7. Comparison between ρPLO in eq. (5.4) and simplified one ρPLO
sim in eq. (5.6).

6 Dilepton rate

The modified PLO differential dilepton production rate in presence of leading power cor-

rection in OPE with D = 4 is now obtained in a compact form by combining eqs. (6.1)

and (5.7) for Nf = 2 as

dR

d4xd4p

∣∣∣∣∣
OPE

=
5α2

em

27π2M2
nB (ω)

×
[
Ncp

2

4π2
− 16Ncαs

9πp2

(
1− 4

ω2

p2

)(
8

3

〈
Θ00
f

〉
− 1

2

〈
Θ00
g

〉)]
, (6.1)

where we have used
∑

f q
2
f = 5/9, for massless u and d quarks. The leading power correc-

tions within OPE in D = 4 dimension is of O(α2
emαs) to the PLO of O(α2

em).

In figure 8, a comparison is displayed among various thermal dilepton rates as a func-

tion of ω/T with T = 250 MeV and zero external three momentum. The various dilepton

rates considered here are Born (PLO) [9, 15], PLO plus power corrections within OPE

in eq. (6.1), LQCD [19, 20] and Polyakov Loop (PL) based models in an effective QCD

approach [21, 25]. The dilepton rate from PL based models and LQCD for ω/T > 4 be-

comes simply perturbative in nature whereas it is so for ω/T ≥ 10 in case of the PLO

with power corrections in OPE. For ω/T > 4, in PL based models the confinement effect

due to Polyakov loop becomes very weak whereas in LQCD the spectral function is re-

placed by the PLO one. On the other hand the enhancement of the dilepton rate at low

energy (ω/T < 4) for both PL based models and LQCD is due to the presence of some

nonperturbative effects (e.g., residual confinement effect etc) whereas in that region the

power corrections within OPE is not applicable.3 However, in the intermediate domain

3In principle one can approximate the dilepton rate in the low mass, ω/T ≤ 4, region by the results from

perturbative next-to-LO (PNLO) [30–32] and 1-loop hard thermal loop (HTL) resummation [12], which

agree to each other in order of magnitudes. We also note that in the low mass regime (soft-scale) the

perturbative calculations break down as the loop expansion has its generic convergence problem in the limit

of small coupling (g ≤ 1). On the other hand PLO, PNLO, HTL resummation and OPE agree in the hard

scale, i.e., in the very large mass ω/T ≥ 10.
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Figure 8. Comparison between different dilepton rates as a function of ω/T with T = 250 MeV,

obtained from Lattice simulations [19, 20], PL based model calculations [21, 25], Born rate and the

nonperturbative power corrections.

(4 < ω/T < 10) the dilepton rate is enhanced compared to PL based models and LQCD

due to the presence of the nonperturbative composite quark and gluon operators that in-

corporates power corrections within OPE in D = 4. We note that the power corrections in

OPE considered here may play an important role for intermediate mass dilepton spectra

from high energy heavy-ion collisions in RHIC and LHC.

7 Conclusion

QCD vacuum has a nontrivial structure due to the fluctuations of the quark and gluonic

fields which generate some local composite operators of quark and gluon fields, phenomeno-

logically known as condensates. In perturbative approach by definition such condensates

do not appear in the observables. However, the nonperturbative dynamics of QCD is evi-

dent through the power corrections in physical observables by considering the nonvanishing

vacuum expectation values of such local quark and gluonic composite operators. In this

paper we, first, have made an attempt to compute the nonperturbative electromagnetic

spectral function in QCD plasma by taking into account the power corrections and the

nonperturbative condensates within the framework of the OPE in D = 4 dimension. The

power corrections appears in the in-medium electromagnetic spectral function through the

nonanalytic behavior of the current-current correlation function in powers of p−D/2 or loga-

rithms in the Wilson coefficients within OPE in D = 4 dimension. The c-numbered Wilson

coefficients are computed through Feynman diagrams by incorporating the various con-

densates. In the massless limit of quarks, the self-energy diagram involving local gluonic
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operator (topology-II in figure 4) encounters mass singularity. By exploiting the minimal

subtraction through operator mixing this mass singularity cancels out, which renders the

Wilson coefficients free from any infrared singularity and hence finite. This result is in

conformity with the RGE analysis.

The lepton pairs are produced through the electromagnetic interaction in every stage

of the hot and dense medium created in high energy heavy-ion collisions. They are con-

sidered to be an important probe of QGP formation because they leave, immediately after

their production, the hot and dense medium almost without any interaction. As a spectral

property of the electromagnetic spectral function, we then evaluated the differential dilep-

ton production rate from QCD plasma in the intermediate mass range to analyze the effects

of power corrections and nonperturbative condensates. The power correction contribution

is found to be O(α2
emαs) to the PLO, O(α2

em). Further, we note that the intermediate

mass range is considered because the low mass regime (M ≤ 4T ∼ 1 GeV; T = 0.25 GeV)

is prohibited by OPE whereas high mass regime (M ≥ 10T ∼ 2.5 GeV) is well described

by the perturbative approach. The intermediate mass range (4T ≤ M ≤ 10T ) dilepton in

presence of power corrections is found to be enhanced compared to other nonpertubative

approaches, i.e., LQCD and effective QCD models. However, we note that the power cor-

rections in differential dilepton rate through OPE considered here could be important to

describe the intermediate mass dilepton spectra from heavy-ion collisions.

Finally, we would like to note that there is no estimate available in the present lit-

erature for the composite quark and gluon operators (condensates), 〈Θ00
g 〉T and 〈Θ00

f 〉T ,

respectively, at finite T . Since the present knowledge of these in-medium operators are very

meagre in the literature, we have exploited the Stefan-Boltzmann limits for these composite

operators to have some limiting information of the nonperturbative effects in the electro-

magnetic spectral function and its spectral properties. We expect that in near future the

computation of such phenomenological quantities should be possible via nonperturbative

methods of QCD in lattice and some definite estimation of the power corrections within

OPE can only be made for spectral function and its spectral properties.
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A Massless Feynman integrals

While computing the electromagnetic polarization tensor with gluon condensates, the fol-

lowing Feynman integrals for massless quarks have been used:

Imn =

∫
ddk

(2π)d
1

(k2)m((k − p)2)n
,

Iµmn =

∫
ddk

(2π)d
kµ

(k2)m((k − p)2)n
,

Iµνmn =

∫
ddk

(2π)d
kµkν

(k2)m((k − p)2)n
.

The primary integrals can be represented as follows,

Imn =
i

(16π2)
d
4

(−1)−m−n(−p2)−m−n+ d
2

Γ[m+ n− d
2 ]

Γ[m]Γ[n]
B

(
d

2
− n, d

2
−m

)
, (A.1)

Iµmn =
i

(16π2)
d
4

(−1)−m−n(−p2)−m−n+ d
2

pµ

{
Γ[m+ n− d

2 ]Γ[1 + d
2 −m]Γ[d2 − n]

Γ[m]Γ[n]Γ[1 + d−m− n]

}
, (A.2)

Iµνmn =
i

(16π2)
d
4

(−1)−m−n(−p2)−m−n+ d
2{

p2gµν
Γ[m+ n+ 2− d

2 ]Γ[1 + d
2 −m]Γ[1 + d

2 − n]

2Γ[m]Γ[n]Γ[2 + d−m− n]

+ pµpν
Γ[m+ n− d

2 ]Γ[2 + d
2 −m]Γ[d2 − n]

2Γ[m]Γ[n]Γ[2 + d−m− n]

}
. (A.3)

Now putting d = 4 − 2ε, we obtain required results of Imn, Iµmn and Iµνmn for some given

values of m and n needed for our purpose:

I12 = µ−ε
i

16π2

1

p2

(
−1

ε̃

)
,

I22 = µ−ε
i

16π2

1

p4
2

(
−2

ε̃
− 2

)
,

I0
22 = µ−ε

i

16π2

p0

p4

(
−1

ε̃
− 1

)
,

I0
31 = µ−ε

i

16π2

p0

p4

(
− 1

2ε̃
− 1

2

)
,

I00
22 = µ−ε

i

16π2

1

p4

[
p2

2
+

(
−1

ε̃
− 2

)
(p0)2

]
,

I00
31 = µ−ε

i

16π2

1

(p2)2

[
p2

(
− 1

4ε̃
− 1

4

)
+

(p0)2

2

]
,

I00
41 = µ−ε

i

16π2

1

(p2)3

[
p2

(
1

12ε̃
− 1

12

)
+ (p0)2

(
− 1

3ε̃
− 1

2

)]
,
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where

µ = e
γE
2

Λ2

4π
,

1

ε̃
=

1

ε
− log

(−p2

Λ2

)
,

with µ as the renormalization scale, Λ as MS renormalization scale and γE as Euler-

Mascheroni constant.
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