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1 Introduction

The study of 3d N = 4 quantum field theories, their vacua, string embeddings and mirror

dualities is today a robust field of theoretical physics. Mirror duality was first discussed

in [1], and its Type IIB superstring realization was proposed very soon after in [2]. This

analysis has been able to thrive thanks to the use of quivers, the structure of hyperkähler

manifolds, 3D mirror symmetry, understanding of ’t Hooft monopole operators, algebraic

counting methods like the Hilbert series of the chiral ring, and the recent introduction of

a way of computing Coulomb branches employing monopole operators [3].

An analysis of the theory reveals that for any 3d N = 4 quiver gauge theory there

are two distinct vacuum phases: the Coulomb branch and the Higgs branch. The Coulomb

branch corresponds to the phase where only scalar fields that belong to vector multiplets

admit nonzero VEVs. Similarly, in the Higgs branch only scalar fields from the hypers

admit nonzero VEVs. Each phase is a different hyperkähler singular variety. Understand-

ing the geometry of these two spaces is crucial to discern various physical properties like

the structure of BPS states. The study also provides invaluable help in the endeavor to

characterize different families of QFTs.

In recent years, a new kind of hyperkähler singular spaces has gained relevance: the

closures of nilpotent orbits of Lie algebras. Given any nilpotent element1 in a Lie algebra g

over the complex numbers C, the orbit of this element under the action of the corresponding

group is a geometric space O. The closure of this space Ō is a hyperkähler singularity.

Texts in nilpotent orbits are [4–7].

Nilpotent orbits appear each time there is a problem which involves an embedding of

SU(2) into some group.2 For example, in the Nahm equations3 nilpotent orbits arise in a

natural way. In Fuzzy spheres there is another natural appearance of nilpotent orbits, etc.

Some selected but not complete set of examples can be found in [11–17].

Furthermore, Namikawa’s recent work [18] provides a new source of motivation. Nami-

kawa’s theorem states that if a Coulomb or Higgs branch is finitely generated by operators

with spin s = 1 under the SU(2) R-symmetry it has to be the closure of a nilpotent orbit of

the isometry group’s algebra. Following this theorem, closures of nilpotent orbits represent

1An elementX of a Lie algebra g is considered nilpotent if the operator related to it via any representation

map ρ(X) is nilpotent [4].
2In fact, we very recently realized that the calculation of the Witten index as Kac and Smilga did for an

arbitrary Lie group [8] is equivalent to the counting of distinguished nilpotent orbits of the group’s algebra.
3Nahm equations first appeared in the study of BPS monopoles [9]. For a review on this topic the reader

is directed to [10].
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the simplest non-trivial families of hyperkäler singularities that are Higgs and Coulomb

branches. Spaces with generators of the chiral ring with spin s > 1 can be thought as

deformations of closures of nilpotent orbits.

In this paper we study one aspect of the nilpotent orbits of classical algebras that

has been known for some decades among mathematicians [19] and is starting to appear

in physics [17]. We call it the Kraft-Procesi transition. We produce a systematic study of

the brane realization of the phenomenon and recover one of its mathematical features: the

minimal singularities that characterize each transition.

In doing so we hope to bring into physics a new approach on the way of understanding

geometrical spaces. This is the idea of Brieskorn [20] that the structure of a variety can be

understood by slicing it transversally to a maximal subvariety. We show how this can be

realized as a Higgs mechanism from the point of view of quantum field theory. From this

point of view, the Hasse diagram gives an interesting view on the set of all possible mixed

branches of a given quiver theory.

In section 2 we summarize the results of the present work. Sections 3 and 4 of the

paper aim to serve as an introduction to the main discussion. Section 3 contains an

overview of the basic mathematical concepts that are needed: hyperkähler singularities

and nilpotent orbits. Section 4 summarizes the required brane dynamics and quiver gauge

theory. The reader familiarized with either of these subjects is encouraged to skip those

sections and go directly to the new material in section 5. In section 5 we develop the

physical interpretation of the Kraft-Procesi transition. Section 6 introduces a formalism

which allows to perform the required computations in an efficient way. Section 7 displays

the results of such computations. Section 8 contains some conclusions.

2 Summary

The main motivation behind this paper is the discovery of a brane realization for the tran-

sition between nilpotent orbits described in [19]. The brane configurations and quivers cor-

responding to 3d N = 4 gauge theories with closures of nilpotent orbits as their Higgs and

Coulomb branches are currently known. We want to describe a new physical phenomenon,

a Higgsing mechanism, that establishes a relation among them. This phenomenon pro-

duces a transition between different theories, and this is precisely the transition developed

by Kraft and Procesi.

Each of the transitions in [19] is characterized by a singularity. We consider remarkably

interesting that these singularities arise naturally in the brane configurations for the quiver

gauge theories. They are the moduli generated by a minimal set of threebranes that can

be Higgsed away. For example, in the brane configuration corresponding to the Coulomb

branch of a theory, this is the minimal set of D3-branes that can be aligned with D5-branes,

split, and taken to the Higgs branch.

The Kraft-Procesi transition consists on Higgsing away these minimal singularities

until they are no longer part of the configuration. In the previous example where the D3-

branes are taken to the Higgs branch this corresponds to taking their coordinates in the

Higgs branch to infinity, fully removing the minimal threebranes from the brane system.

– 2 –
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The result of this transition is a new brane configuration that corresponds to a new

quiver gauge theory. If the Coulomb branch of the old theory is the closure of a nilpotent

orbit, the Coulomb branch of the new theory would be the closure of a nilpotent orbit

as well. They are both connected in the Hasse diagram of their algebra created in [19].

The link that connects them is labeled with the minimal singularity that is Higgsed away

during the transition.

In the present paper we go over many examples of these transitions. We also provide

a general description of the process. At the end, we develop a formalism that allows

very fast computations of the transitions. With our method, given as an input the quiver

corresponding to the closure of the maximal nilpotent orbit, the quivers for the closures

of all nilpotent orbits of the same algebra can be obtained, together with the minimal

singularities involved in each transition among them, and the superstring embedding of

both quivers and transitions.

3 Mathematical prelude

In this section we review mathematical concepts that are essential to our discussion. The

topics are: the ring of holomorphic functions over hyperkähler varieties and nilpotent orbits

of the sln algebra. The reader familiarized with either of those concepts is encouraged to

move directly to the next section. Our aim in this section is merely to point out some

key mathematical features. For a rigorous study on the first subject the reader is directed

to [21] or any other text in elementary algebraic geometry. On the second subject, [4] is

normally the preferred source and is the one we employ here.

3.1 Hyperkähler singularities and their Hilbert series

A hyperkähler singularity is a type of affine variety that arises naturally in the study of

moduli spaces. Kronheimer [22] describes it as: a hyperkähler manifold M with three

complex structures I, J,K that satisfy quaternionic relations, together with a Riemannian

metric h which is Kähler with respect to each of the complex structures. Out of the three

Kähler forms ωI , ωJ and ωK we can focus in one of them, say ωI , and the other two

combine into a holomorphic (2,0)-form under the complex structure I:

ωc = ωJ + iωK (3.1)

In all the cases encountered in physics, there is an SU(2) symmetry acting in the

hyperkähler variety that corresponds to the R-symmetry of the quantum field theory4 and

it is denoted by SU(2)R. The variety can be analyzed using the techniques of algebraic

geometry, by studying the ring of holomorphic functions with respect to ωI . Let us illustrate

these concepts with some examples.

4From the physics point of view, focussing in one complex form ωI corresponds to the choice of a

subgroup U(1)R ⊂ SU(2)R, and therefore the selection of a subalgebra with 3d N = 2 out of the 3d N = 4

supersymmetry algebra.
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3.1.1 Example: R4

Let us consider the affine variety R4. We say that there are four real coordinates:

{x1, x2, x3, x4} (3.2)

There are three different ways of establishing a complex structure by picking the three

possible pairs: (x1, x2)(x3, x4), (x1, x3)(x2, x4) or (x1, x4)(x2, x3). We choose the first one

of them that sets the following complex coordinates:

z1 := x1 + ix2

z2 := x3 + ix4
(3.3)

The variety can be thought now as C2. We call C[z1, z2] the ring of all holomorphic

functions that exist in C2. This will be the set of all polynomials of the variables z1 and

z2 with complex coefficients.

To determine the holomorphic ring, it is enough to find all linearly independent ho-

mogeneous polynomials. They can be graded according to their degree d. In this case

there is one polynomial of degree zero, the constant function. There are two polynomials

of degree d = 1: z1 and z2 (note that we could have chosen z1 and z1 + z2 as the two

linearly independent ones). There are three with d = 3: z21 , z22 and z1z2, for example. We

can characterize the variety by stating:

md = d+ 1 (3.4)

where md is the number of linearly independent polynomials of degree d that can be

constructed in the variety. md is called the Hilbert function of the variety C2.

We say that the two polynomials of degree one, z1 and z2 are the generators of the

holomorphic ring, since a generic linearly independent homogeneous polynomial of degree

d will have the form:

za1z
b
2 s.t. a+ b = d (3.5)

The Hilbert series H(t) is defined as a power series in the variable t with coefficients

determined by the Hilbert function:

H(t) =

∞∑
d=0

mdt
d (3.6)

The relation between H(t) and md is a discrete form on the Legendre transform. In

this sense, log(t) and d are conjugate variables, and one can characterize the system by

either a function of t or of d, according to convenience, or to the physics of the problem.

This is the source of the name fugacity to t, if one identifies d as a conserved charge and

log(t) as its chemical potential.

In the case of C2 we have:

HC2(t) =
∞∑
d=0

(d+ 1)td

=
1

(1− t)2

(3.7)
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where the two terms (1 − t) in the denominator correspond to the two generators of de-

gree d = 1.

3.1.2 Example: C2/Z2

Let us consider the singular variety C2/Z2 with the action (1, 1) of the finite group Z2 on

the variables {z1, z2} of C2. This means that the non identity element of the finite group

acts on both variables at the same time, in this case multiplying it by the number −1.

Therefore, only polynomials of C2 invariant under {z1, z2} → {−z1,−z2} are part of the

holomorphic ring of C2/Z2. There is one polynomial with d = 0, the constant function.

There are no polynomials with d = 1, since z1 → −z1 and z2 → −z2. There are three

polynomials with d = 2:

p := z21

q := z22

r := z1z2

(3.8)

We see that p, q and r can generate all other possible polynomials that are invariant

under Z2. Hence they are the generators of the holomorphic ring. To fully characterize the

space we need to mention that the three generators satisfy a relation at degree d = 4:

pq = r2 (3.9)

To find the Hilbert function we see that all polynomials of even degree that are present

in the holomorphic ring of C2 are also present in the ring of C2/Z2. No polynomials of odd

degree are allowed in the case of C2/Z2. Therefore its Hilbert function is just:

md = d+ 1 for d = 2n n ∈ N
md = 0 for d = 2n+ 1 n ∈ N

(3.10)

Hence, the Hilbert series takes the form:

HC2/Z2
(t) =

∞∑
n=0

(2n+ 1)t2n

=
1− t4

(1− t2)3

(3.11)

The three terms in the denominator of HC2/Z2
(t) correspond to the three generators

with d = 2, the numerator corresponds to the relation of degree d = 4. These identifications

are always possible when the variety is a complete intersection.

3.1.3 Classification according to the SU(2)R spin of the generators

For every hyperkähler variety of the type we are considering, the linearly independent

polynomials of the holomorphic ring can be embedded into multiplets of the symmetry

group SU(2)R. They are always assigned the highest weight in the SU(2)R multiplet. The

other weights in the multiplet are normally assigned to non-holomorphic polynomials.

– 5 –
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For example, in the variety C2 discussed before, the chosen polynomial with d = 0 can

be just the constant function f = 1. This does not transform, so it constitutes a singlet of

SU(2)R. The generator z1 will be rotated into z̄2, together they constitute the multiplet

(z1, z̄2) under SU(2)R, with the respective weights (1,−1). This is a representation with

spin s = 1/2. Similarly the generator z2 will be embedded in the spin s = 1/2 multiplet

(z2, z̄1) with respective weights (1,−1).

Tensor products of the two representations can be taken in order to obtain multiplets

containing all other holomorphic polynomials of the form za1z
b
2. For example, we can take

symmetric product of the multiplet γ1 = (z1, z̄2) to find:

Sym2(γ1) = (z21 , z1z̄2, z̄
2
2) (3.12)

with weights (2, 0,−2). Therefore it is an irreducible representation of SU(2)R with highest

weight 2, which is equivalent to saying that has spin s = 1. Hence, we say that the

holomorphic polynomial z21 is in the spin 1 representation.

Similarly, we could take representation γ2 = (z2, z̄1) and compute:

Sym2(γ2) = (z22 , z2z̄1, z̄
2
1) (3.13)

with weights (2, 0,−2). Therefore we say that also z22 is in the spin 1 representation.

For z1z2 we can take the tensor product:

γ1 ⊗ γ2 = (z1z2, z1z̄1, z̄2z2, z̄2z̄1) (3.14)

In Dynkin labels, this corresponds to:

[1]⊗ [1] = [2]⊕ [0] (3.15)

Therefore, the result is a reducible representation with weights (2, 0, 0,−2). Since we

assign the holomorphic polynomial to the highest weight, in this case we say that z1z2
carries weight 2. This means that it forms part of the irrep [2] in the r.h.s. of the tensor

product, i.e. of the irrep with spin s = 1. Hence we have seen that all linearly independent

holomorphic polynomials that can be constructed in C2 of degree d = 2 have spin s = 1

under SU(2)R.

Let us examine the case of the variety C2/Z2. We still have the polynomial of degree

zero, chosen to be the constant function f = 1, with spin s = 0 with respect to SU(2)R. The

generators p, q and r all carry spin s = 1, since they are inherited from the holomorphic

ring of C2.

In general, for every hyperkähler variety with an SU(2)R symmetry, the generators of

the holomorphic ring always carry a highest weight w inside an irreducible representation

with spin s = w/2. There is a classification for this kind of varieties whose holomorphic ring

is finitely generated. It sorts them according to the spin that is carried by their generators

under SU(2)R. The classification is:

• For every variety there is only one object that carries spin s = 0 and it is always the

constant function f = 1.

– 6 –
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• If some the generators carry spin s = 1/2, say 2n of them for some n, they generate

a product of n copies of C2.

• If the generators carry spin s = 1, they all transform under the adjoint representation

of an isometry group of the variety, see for example [23].

• Generators of spin higher than s = 1 may be called baryons, and their intuitive role

is to increase the order of the singularity.

In the two cases above there is an isometry group SU(2) that acts on the variables

z1, z2 in the natural way. By this we mean that ζ = (z1, z2) is a doublet of SU(2). We see

by taking second symmetric product of this representation that we obtain:

Sym2(ζ) = (z21 , z1z2, z
2
2) (3.16)

In Dynkin labels this is written as irreducible representations:

Sym2[1] = [2] (3.17)

Therefore, the generators of the holomorphic ring for the variety C2/Z2 transform

under the adjoint representation of spin s = 1 of the SU(2) isometry group, in addition to

spin s = 1 under SU(2)R.

3.1.4 Classification from the point of view of quantum field theory

The classification above is inherited by the set of moduli spaces of quantum field theories

with hyperkähler moduli spaces. This is due to the existence of a one to one correspon-

dence5 between operators in the chiral ring of the theory and polynomials in the holomor-

phic ring of the affine variety. In the language of quantum field theory, the classification

takes the following form:

• For every moduli space there is only one operator that carries spin s = 0 under

SU(2)R: the identity operator.

• If some of the operators that generate the chiral ring carry spin s = 1/2, say 2n of

them for some n, they are free fields and form a decoupled sector in the theory. In

total there are n free hyper multiplets. Without loss of generality we can proceed

by assuming the remaining interacting theory has generators of the chiral ring with

spin s > 1/2.

• If some of the generators of the chiral ring carry spin s = 1, they all transform under

the adjoint representation of a flavor symmetry group acting on the moduli space [12].

• Generators of spin higher than s = 1 may be called baryons, and their intuitive role

is to increase the order of the singularity of the moduli space. It is interesting to

study their role and this is left for future study.

5We do assume that this is a one to one correspondence, as we are not aware of any counter example.

– 7 –
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3.2 Namikawa’s theorem

Namikawa’s theorem [18] further restricts the kind of hyperkähler variety that can have

generators with spin 1 under SU(2)R. The theorem can be understood as:

If all the generators of a hyperkähler singularity with SU(2)R symmetry have

spin s = 1 under the SU(2)R group, the variety is the closure of a nilpotent

orbit of the Lie algebra of its isometry group.

Therefore, any attempt to understand hyperkähler moduli spaces with generators with

spin s = 1 under SU(2)R should always be founded upon an understanding of the geometry

of nilpotent orbits. These singularities will either be the closure of a nilpotent orbit, or

a deformation of one, in the case when they also contain other generators of spin higher

than s = 1. From this perspective, closures of nilpotent orbits constitute the basis of all

hyperkähler singularities that exhibit an isometry.

3.3 Nilpotent Orbits

As in [19], we want to think of the spaces that are related to an element of a Lie algebra

via the adjoint action of the corresponding group. The word nilpotent stresses the fact

that we are only interested in orbits of the algebra where all the elements are nilpotent.

An element X of a complex semisimple Lie algebra g is said to be nilpotent if ρ(X)m =

ρ(X) ◦ · · · ◦ ρ(X) = 0 for some m > 0 and ρ : g 7→ End(V ) is the adjoint representation6 of

the algebra acting on a complex vector space V [4].

3.3.1 Definition for sln algebra

In the following paragraphs we present the definition given by [4], Section 3.1 Type A. The

first observation is that nilpotent orbits of the algebra g = sln are in one to one correspon-

dence with partitions of n. We can define a partition λ of n as a tuple (λ1, λ2, . . . , λk) of

integer numbers with properties:

λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and

k∑
i=1

λi = n
(3.18)

Exponential notation can be introduced. For example (32, 2, 15) = (3, 3, 2, 1, 1, 1, 1, 1)

is a partition of n = 13. We denote P(n) the set of all partitions of n, for example

P(3) = {(3), (2, 1), (13)}.

6It can be shown that a definition with a different finite representation of the algebra is equivalent to

this definition [4].
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We remember that an elementary Jordan block of order i ∈ Z+ is defined as the

i× i matrix:

Ji :=


0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

0 0 0 . . . 0 0

 (3.19)

Given a partition λ = (λ1, . . . , λk) of n we can form a nilpotent endomorphism of

Cn as:

Xλ =


Jλ1 0 . . . 0

0 Jλ2 . . . 0
...

...
. . .

...

0 0 . . . Jλk

 (3.20)

Hence, Xλ is a nilpotent element of the algebra sln.

The n × n matrix Xλ is in the adjoint representation of PSL(n) group.7 It generates

an orbit under the group called the nilpotent orbit:

Oλ := PSL(n) ·Xλ (3.21)

Note also that two different partitions give rise to two disjoint nilpotent orbits by the

uniqueness of the Jordan normal form. Therefore, for every different partition of n there

is a different nilpotent orbit of sln. Furthermore, a generic nilpotent element X ∈ sln has

a Jordan normal form Xλ for some λ ∈ P(n), i.e. it is PSL(n)-conjugate to Xλ. Therefore

it belongs to the nilpotent orbit Oλ.

3.3.2 Example: non-trivial orbit of sl2

Let us study a specific example for the algebra g = sl2. The set of all partitions of n = 2 is

P(2) = {(2), (12)} (3.22)

The partition λ = (12) corresponds to the trivial orbit, this is the orbit of the zero

element. The corresponding Jordan matrix is

X(12) =

(
0 0

0 0

)
. (3.23)

Therefore, X(12) is actually the only element in the orbit. The closure of the orbit

is equivalent to the orbit itself and defines an affine variety that only contains one point.

This is called the trivial nilpotent orbit.

7In [4] the adjoint group that defines the action of elements of sln on the algebra itself is PSL(n) =

SL(n)/Z where Z is the center of SL(n), this is the group that generates the nilpotent orbits acting on the

right and on the left on the matrix Xλ.

– 9 –
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The partition λ = (2) corresponds to the non-trivial orbit. Its Jordan matrix is:

X(2) =

(
0 1

0 0

)
(3.24)

In order to obtain the orbit we define the action of the group. A generic element

S ∈ SL(2) is:

S =

(
a b

c d

)
, ab− cd = 1 (3.25)

where a, b, c, d ∈ C.

We can define the nilpotent orbit as

O(2) := {M = S ·X(2) · S−1|S ∈ SL(2)} (3.26)

We see that the action of S on X(2) in this way gives the same element of the orbit

than the action of −S, so the group that is acting on the nilpotent element to generate the

orbit is actually PSL(2) = SL(2)/Z with Z = {I,−I}, where I is the identity matrix.

Any element M ∈ O(2) can be written explicitly as:

M =

(
−ac a2

−c2 ac

)
(3.27)

We can check that all matrices in O(2) are nilpotent, since M2 = 0. Note that the

matrix with all zero entries is not included in the orbit, since that would imply a = c = 0

and would contradict the condition ab − cd = 1. If we take the set of all matrices M ∈
O(2) together with the matrix with all zero entries we obtain an affine variety. This set

corresponds to Ō(2), the closure of the nilpotent orbit O(2).

The closure of the nilpotent orbit corresponding to partition λ = (2) is then a variety

with 3 generators of degree d = 2:

p := a2

q := c2

r := ac

(3.28)

and one relation of degree d = 4:

pq = r2 (3.29)

This defines the polynomial ring for the variety C2/Z2. Hence:

Ō(2) = C2/Z2 (3.30)

We can see that to obtain the closure we take the union with all nilpotent orbits with

lower dimension, in particular O(12), obtaining:

Ō(2) = O(2) ∪ O(12) (3.31)
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(2) 1

(12) 0

λ dim

Figure 1. Hasse diagram with the partial order of all closures of nilpotent orbits of the algebra

sl2. The numbers dim refer to the quaternionic dimension of the variety.

This will always be the case in general for other closures of nilpotent orbits. Notice

that this is also the case for the closure of the trivial nilpotent orbit:

Ō(12) = O(12) (3.32)

From the previous results we can infer an inclusion relation in the closures of both

nilpotent orbits:

Ō(12) ⊂ Ō(2) (3.33)

where ⊂ denotes that the l.h.s. is a subvariety of the r.h.s. variety. This relation induces

a partial ordering in the set of all closures of nilpotent obits of sl2. A Hasse diagram can

be plotted to represent such ordering. In this case there are only two varieties and said

diagram results extremely simple. However, we want to include it here, in figure 1, since it

constitutes the first step towards the characterization of the inclusion relation of closures

of nilpotent orbits for algebras of the form g = sln.

4 Branes

Now that some of the key mathematical aspects for the present discussion have been

revisited we would like to go over some physical arguments that lie at the core of our

problem. In this section we review the Type IIB superstring embedding for 3d N = 4

effective gauge theories from [2]. If the reader is already familiar with this description

we direct them to subsection 4.4, where the connection with closures of nilpotent orbits

is presented.

4.1 Brane configurations and 3d N = 4 quiver gauge theories

Let us start by constructing the simplest possible models. Out of the three introductory

examples discussed in this subsection, the first has the variety C2 as its Coulomb branch

and the trivial variety as its Higgs branch. The second corresponds to the mirror dual

model of the first one. Hence, its Higgs branch is C2 and its Coulomb branch is trivial.

The third model is self-mirror: both its Coulomb and its Higgs branches are described

by C2/Z2.
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~x

~w, t1 ~w, t2

Figure 2. In this picture vertical lines correspond to NS5-branes. The vertical direction corre-

sponds to directions ~m, spanned by the NS5-branes. The horizontal direction corresponds to x6,

so the different positions of ti of the two NS5-branes along this direction are evidenced in this

way. The third axis, perpendicular to the paper, would correspond to directions ~w, in this case

both NS5-branes are in the picture since their ~wi position coincides and a D3-brane with the same

position ~y = ~wi can be stretched between them.

4.1.1 First example: 3d N = 4 SQED with zero flavours

In this Type IIB superstring configuration there are only D3-branes, D5-branes and NS5-

branes. The D3-brane spans directions x1 and x2 and stretches between two fivebranes

along the x6 direction. In a vacuum configuration it has constant positions along the

remaining space directions {x3, x4, x5, x7, x8, x9}. We call ~x the position of the D3-brane

along {x3, x4, x5} directions and ~y the position along {x7, x8, x9}.
D5-branes span directions {x1, x2, x7, x8, x9}, and have positions along coordinates

~m = (x3, x4, x5) and x6. We denote by ~mi and zi the position of the ith D5-brane along

the directions ~m and x6 respectively.

Similarly, NS5-branes span directions {x1, x2, x3, x4, x5}, and have positions along co-

ordinates ~w = (x7, x8, x9) and x6. We denote by ~wj and tj the position of the jth NS5-brane

along the directions ~w and x6 respectively.

This kind of configuration preserves 8 out of the 32 initial supercharges [2]. In the

first example we set two NS5-branes at positions t1 6= t2 along direction x6 and same value

of ~w1 = ~w2. This allows a D3-brane with the coordinates ~y = ~w1 = ~w2 to be stretched

between them. Hence, there is a continuous and infinite set of positions ~x that the D3-brane

can have. The brane configuration is sketched in figure 2.

The low energy physics of this configuration is described by a 3d N = 4 effective

gauge theory living in the worldvolume of the threebrane. The effective gauge group is

G = U(1). There is one vector multiplet and no hypermultiplets. The gauge coupling of

the effective theory is proportional to the distance between the NS fivebranes. Up to a

universal multiplicative constant we have:

1

g2
= |t1 − t2| (4.1)

The three scalars on the vector multiplet correspond to the three real coordinates

of the position of the D3-brane, ~x. Since the vector field in the multiplet has only one

degree of freedom, it can be dualized into a real scalar field a that admits non zero vacuum

expectation value. Due to the boundary conditions imposed by the NS5-branes, it can take

any value on the circle S1. The radius R of the circle is proportional to the gauge coupling.
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We recover the non-compact variety R4 in the infrared, where all couplings are taken to

infinity. Therefore, in the low energy limit, the moduli space is (~x, a) ∈ R4. We write:

MC = C2 (4.2)

where MC is the Coulomb branch. Since there are no hyper multiplets, there is no Higgs

branch, we assign this to the trivial variety, the point.

4.1.2 Second example: 3d N = 4, one free massless hyper

Let us consider a theory with only one free massless hyper multiplet in three dimensions and

with 8 supercharges. There are 4 real scalars in the model, that admit any constant (non

space dependent) vacuum expectation value. Therefore the moduli space is the variety R4

or equivalently C2. We say that the Higgs branch of this theory is C2, while the Coulomb

branch is the trivial variety. We write:

MH = C2 (4.3)

where MH is the Higgs branch. Therefore we see that this model is mirror dual to the

previous example.

Mirror Symmetry. In terms of brane configurations, mirror duality corresponds to an

S-duality that effectively swaps D5-branes and NS5-branes. If we perform this duality on

the previous model, figure 2, we obtain a new model, depicted in figure 3. Three out of the

four real scalars in the model correspond to the position of the D3-brane ~y. To understand

the role of the fourth real scalar we need to think of the 4d N = 4 effective theory in

the worldvolume of the infinite D3-brane. This theory has a vector multiplet with a four-

dimensional vector field living in it. When the theory decomposes into a 3d N = 4 theory

the four-dimensional vector multiplet decomposes into a three-dimensional vector multiplet

and a three-dimensional hyper multiplet. The four-dimensional vector field also decomposes

into a three-dimensional vector field, that lives in the three-dimensional vector multiplet,

and a three-dimensional scalar field, that lives inside the three-dimensional hyper multiplet.

It is this three-dimensional scalar that does not correspond to the position of the brane ~y,

but can also admit a nonzero vacuum expectation value in the three-dimensional theory,

due to the boundary conditions imposed by the D5-branes [2].

4.1.3 Third example: 3d N = 4 SQED with 2 flavours

In the last example we consider a 3d N = 4 theory with gauge group G = U(1), one

vector multiplet transforming in the adjoint of such group, and two hypers transforming

in the fundamental of the gauge group. Let the two hyper multiplets transform under the

fundamental representation of the flavor group SU(2).

In the Coulomb branch of this theory all the hyper multiplets are massive and the vector

multiplet is massless. In the singular point where Higgs and Coulomb branch coincide both

hypers become massless. In the Higgs branch the vector multiplet becomes massive, eating

one of the hypers, and leaving one massless hyper multiplet. Hence, the theory has a
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~y

~m, z1 ~m, z2

Figure 3. In this picture the dashed vertical lines correspond to D5-branes. The vertical direction

corresponds to directions ~w, spanned by the D5-branes. The horizontal direction corresponds to

x6, so the different positions of zi of the two D5-branes along this direction are evidenced in this

way. The third axis, perpendicular to the paper, would correspond to directions ~m, in this case

both D5-branes are in the picture since their ~mi position coincides and a D3-brane with the same

position ~x = ~mi can be stretched between them.

~x

~m, z1 ~m, z2~w, t1 ~w, t2

Figure 4. In the phase depicted in this figure the two NS5-branes share the same position ~w

along directions {x7, x8, x9}, this makes the existence of a Couolomb branch possible. The two

crosses correspond to two D5-branes stretching along the perpendicular direction to the paper,

which corresponds to {x7, x8, x9}. They share the same position ~m along directions {x3, x4, x5},
which in the diagram is represented by the vertical direction, this makes the existence of a Higgs

branch possible. In the special point of the moduli where the D3-brane ~x position coincides with

the position ~m of the D5-branes the two hyper multiplets become massless due to fundamental

strings of length zero stretching between the D5-branes and the D3-brane.

four dimensional Coulomb branch, and a four dimensional Higgs branch, that intersect

in a singular point of the moduli space. The brane description of this theory is shown

in figure 4.

In the Coulomb branch the D3-brane ends in both NS5-branes. Its position ~x corre-

sponds to the three massless real scalar fields in the vector multiplet, and the boundary

conditions on the NS5-branes allow the scalar field a dual to the vector field in the super-

multiplet to admit a nonzero VEV. The Coulomb branch as seen in the brane picture has

four dimensions. The new feature of this model is the existence of a singular point in the

branch. The point where ~x = ~m. At this point two hyper multiplets become massless, this

is the intersection of the Higgs branch with the Coulomb branch. Therefore the Coulomb

branch must have four real dimensions and a singular point at which it is connected to

the Higgs branch. Any variety of the form C2/Γ where Γ ⊂ SU(2) is a finite subgroup of

SU(2) could be a good candidate. In this case the answer is the simplest nontrivial group

Γ = Z2 [2, 24].

At the point of the singularity we can use the Higgs mechanism to transition to the

Higgs branch. In the brane system this is realized in two steps:

1. The D3-brane aligns with the two D5-branes.
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~y

~m, z1 ~m, z2~w, t1 ~w, t2

Figure 5. The phase depicted in this picture corresponds to the Higgs branch of the 3d N = 4

SQED theory with two flavours. The vertical dashed lines correspond to D5-branes stretching along

directions {x7, x8, x9}. The circled crosses correspond to NS5-branes stretching along the directions

{x3, x4, x5}.

~y

~m, z1 ~m, z2~w, t1 ~w, t2

Figure 6. This is a depiction of the Higgs branch of the 3d N = 4 SQED theory with two flavours,

after the frozen D3-branes have been annihilated.

2. At that position, the D3-brane can split in three segments, each between two five-

branes. The rightmost and leftmost segments are frozen, since they are connecting

two fivebranes of different kind, they are indeed fixed at position (~x, ~y) = (~m, ~w).

The segment in the middle stretches between the two D5-branes. Its position along

the {x3, x4, x5} directions is fixed, ~x = ~m, but the position ~y can change freely, a

diagram of a phase with this configuration and ~y 6= ~w is displayed on figure 5.

After the two step transition described above the Higgs branch is reached. As in the

case with only one free hyper multiplet, there is a four dimensional moduli given by the

position ~y of the D3-brane and the scalar field b, such that (~y, b) ∈ R4. The main difference

is that there is a singular point, when ~y = ~w. The branch has to be four dimensional and

has one singularity. The answer in this case is also C2/Z2 [2]. The Higgs branch is identical

to the Coulomb branch and we write:

MC =MH = C2/Z2 (4.4)

This identity can be made manifest by performing two Hanany-Witten transitions. In

this phase transition the NS5-branes can go thought the D5-branes, annihilating the frozen

D3-branes that connected them. The result is shown in figure 6.

Since both the Higgs and the Coulomb branch are C2/Z2 we say that this model is

mirror dual to itself. To check this we can perform S-duality in the Coulomb branch brane

configuration, figure 4, as we did for the first example. The result is the Higgs branch

brane configuration, in figure 6.

This theory belongs to a family of models that are called quiver gauge theories. This

means that we can draw a graph (quiver) where nodes and edges represent the different
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Figure 7. Quiver of the model with U(1) gauge theory with 2 flavours.

particles in the model. In this case the quiver of the model is depicted in figure 7. The

circular node with the label n symbolizes a gauge group U(n), in this case n = 1. There

are always n2 vector multiplets transforming in the adjoint representation of such nodes.

In this case there is one vector multiplet transforming as a singlet. The square node with

a label k represents a flavor group U(k), in this case k = 2. There is a U(1) center of

mass factor that decouples, so the final flavor group will be SU(2). The edge corresponds

to bifundamental hyper multiplets. These are hyper multiplets transforming in the funda-

mental representation of both the gauge node and the flavor node. In this case there are

2× 1 = 2 hyper multiplets.

4.2 Generic example of a brane configuration for a quiver gauge theory

Let us see a more general example of a brane configuration, like the one in figure 8(a). In

this diagram, as in the previous examples and in the remaining figures of this paper, vertical

solid lines correspond to NS5-branes and horizontal solid lines correspond to D3-branes.

D5-branes are represented with crosses. The directions each brane spans are the same as

in previous examples, hence 8 supercharges are always preserved. Since all D3-branes that

are not fixed stretch between NS5-branes, their positions ~xi along {x3, x4, x5} directions,

together with the VEVs of the ai fields constitute the Coulomb branch of the theory. We

will call a brane configuration of this kind a Coulomb branch brane configuration, or for

short, a Coulomb brane configuration.

To obtain the Higgs branch brane configuration we can perform a phase transition

exactly in the same fashion as in the example of SQED with 2 flavors, we align all D5-

branes, so a total higgsing can be achieved, align the D3-branes with the D5-branes, and

them perform the splitting. To preserve supersymmetry we need to follow one constraint:

Constraint. Given any pair of NS5-brane and D5-brane in the system, there can only be

at most one D3-brane stretching between them.

After the splitting we have two kinds of D3-branes, those that stretch between an

NS5-brane and a D5-brane, whose position is fixed, and those that stretch between two

D5-branes, which can move freely along their ~yi positions. These last ones will generate

the Higgs branch of the theory. Therefore we call a brane configuration where there are

no D3-branes that can move along their ~xi the Higgs branch brane configuration, or Higgs

brane configuration for short. In this case it is depicted in figure 8(b).

We can see that in this example the Coulomb branch of the model has 8× 4 = 32 real

dimensions, since there are 8 D3-branes that generate the moduli in the Coulomb brane
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(a)

(b)

Figure 8. Brane configurations for the theory with linking numbers for the D5-branes ~ld =

(0, 0, 1, 2, 2) and linking numbers for the NS5-branes ~ls = (4, 4, 4, 4, 4). (a) shows the Coulomb

branch and (b) depicts the Higgs branch. In (a) the D5-branes are represented by crosses and the

NS5-branes by vertical solid lines. In (b) the D5-branes are represented by vertical dashed lines

and the NS5-branes by circled crosses. In both figures the D3-branes are represented by horizontal

solid lines.

configuration, and for each brane there are four real scalar fields (~xi, ai) that admit nonzero

VEVs. On the other hand, the Higgs branch has 4 × 4 = 16 real dimensions, since there

are only four D3-branes in figure 8(b) that are free to move and generate the moduli; for

each of them the real scalar fields (~yi, bi) admit nonzero VEVs.

The matter content of the model can be obtained from the Coulomb brane config-

uration. This can be summarized in a quiver. In order to do this, the first step is to

perform Hanany-Witten transitions to make sure that all frozen D3-branes have been an-

nihilated, then split the D3-branes that stretch between NS5-branes as much as possible.

The elements in the quiver are:

• For each interval between two consecutive NS5-branes, there is a gauge node with

label ni corresponding to a factor of the gauge group of the form U(ni), where ni is

the number of D3-branes stretching between said fivebranes.

• Between two consecutive gauge nodes there is one edge corresponding to hyper mul-

tiplets transforming in the fundamental representation of each node.

• For each interval between two consecutive NS5-branes that contains at least one D5-

brane, there is a flavor node with label ki connected to its respective gauge node by

an edge. The edge represents hypermultiplets transforming under the fundamental of

the flavor node and the fundamental of the gauge node. ki is the number of D5-branes

in said interval, and the flavor group is U(ki).

The final gauge group is G =
⊗

i U(ni). There is an overall U(1) center of mass factor

that decouples from the total flavor symmetry group,
⊗

i U(ki). If there are no flavors,

then there is an overall U(1) factor that decouples from the gauge group G. For the present

model we can read the quiver, it is depicted in figure 9.
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Figure 9. Quiver from the model with linking numbers for the D5-branes ~ld = (0, 0, 1, 2, 2) and

linking numbers for the NS5-branes ~ls = (4, 4, 4, 4, 4). The circular nodes represent vectorplets in

the three-dimensional N = 4 gauge theory on the worldvolume of the D3-branes. Each vectorplet

with label i on its node transforms on the adjoint representation of a different factor U(i) of the

gauge group of the theory G =
⊗

i U(i). Edges of the quiver represent hypermultiplets transforming

under the bifundamental representation of the group U(i) × U(j), where i, j are the labels on the

nodes connected by the edge. The square nodes with label k represent therefore global symmetries

U(k) of the hypermultiplets.

Conserved Quantities. Despite the multiplicity of brane configurations that correspond

to a single theory, there exist some quantities that are always preserved. Furthermore,

specifying these quantities fully characterizes the model and its effective quiver gauge

theory. The conserved quantities are: the number of NS5-branes in the system ns, the

number of D5-branes nd, and the linking number of each of the fivebranes.

The linking numbers, using the conventions in [12], are just the net number of D3-

branes ending on the fivebrane (D3-branes ending on it from the right minus D3-branes

ending on it from the left) plus the total number of fivebranes of the opposite kind to its

left (for example, if we are computing the linking number of a D5-brane with position z

along the x6 direction, we have to add the number of NS5-branes with position ti along

the same direction such that ti < z).

For the model in this example we have ns = nd = 5. Let us compute the linking number

of the NS5-branes, choosing the Coulomb brane configurationin figure 8(a), starting from

the leftmost NS5-brane:

• The 1st NS5-brane: it has 2 D3-branes ending on it from the right and none from

the left, so we obtain a factor of 2. Since there are 2 D5-branes to its left we have

another factor of 2 and the final linking number is 2 + 2 = 4.

• The 2nd NS5-brane: there are 3 threebranes ending on it from the right and 2 ending

on it from the left, this gives a factor of 1. We need to add 3 D5-branes to its left

and obtain a total linking number of 1 + 3 = 4.

• The 3rd NS5-brane: there are 2 D3-branes ending on it from the right and 3 from the

left, giving a total factor of −1. We need to add 5 D5-branes that appear at its left,

giving a total linking number of −1 + 5 = 4.

• The 4th NS5-brane: there is 1 threebrane ending on it from the left and two from the

right, giving a total factor of −1. We need to add 5 D5-branes to its left, obtaining

a linking number of 4.
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Figure 10. Brane configurations for the theory with linking numbers for the NS5-branes ~ls =

(0, 0, 1, 2, 2) and linking numbers for the D5-branes ~ld = (4, 4, 4, 4, 4). (a) shows the Higgs branch

and (b) depicts the Coulomb branch. In (a) the D5-branes are represented by vertical dashed lines

and the NS5-branes by circled crosses. In (b) the D5-branes are represented by crosses and the

NS5-branes by vertical solid lines. In both figures the D3-branes are represented by horizontal

solid lines.

• The 5th NS5-brane: there is only 1 D3-brane ending on it from the left, giving a

factor of −1. After adding the 5 D5-branes that are at its left we obtain the linking

number −1 + 5 = 4

Therefore all NS5-branes have the same linking number, 4. We can arrange all linking

numbers in a vector:

~ls = (4, 4, 4, 4, 4) (4.5)

Let us compute the linking number of the D5-branes, starting from the leftmost one

and going to the right. None of them have D3-branes ending on them, so we just need to

count the number of NS5-branes to their left: the first two have 0 NS5-branes to their left,

the third one has 1, and the fourth and fifth ones have 2. Therefore the linking numbers

of all of them, ordered in an array, are:

~ld = (0, 0, 1, 2, 2) (4.6)

We see that ns, nd, ~ls and ~ld are preserved in the Higgs brane configuration, figure 8(b).

Taking the mirror dual can also be understood as swapping ns with nd and ~ls with
~ld. We can see the mirror model of the present example in figure 10. The quiver can be

read from the Coulomb branch, figure 10(b), after doing Hanany-Witten transitions that

annihilate all frozen threebranes. After all these transitions there are one D3-brane in the

fourth interval between NS5-branes and 3 D3-branes in the fifth one. All D5-branes are

now in the fifth interval. The quiver takes the form of figure 11.

Global Symmetries and Linking Numbers. From this example we see that a very

interesting feature of the moduli space of the three-dimensional effective theories is already
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Figure 11. Quiver from the model with linking numbers for the NS5-branes ~ls = (0, 0, 1, 2, 2) and

linking numbers for the D5-branes ~ld = (4, 4, 4, 4, 4).

present in the linking numbers. This is the fact that the global symmetry of the Higgs

branch, and the global symmetry of the Coulomb branch are both determined in the linking

numbers of the fivebranes.

The general statement is as follows: for each integer number different from zero i ∈ Z+

that appears in ~ld (resp. ~ls) there is a factor U(ri) in the global symmetry group of the

Higgs branch (resp. Coulomb branch), where ri is the the number of times that i appears

in ~ld (resp. ~ls). The global symmetry group of the Higgs branch (resp. Coulomb branch) is:

GF = S ((U(r1)× · · · × U(rN )) (4.7)

where the S(. . . ) symbol denotes that an overall U(1) factor decouples and is removed from

the product.

In the current example with ~ls = (4, 4, 4, 4, 4) and ~ld = (0, 0, 1, 2, 2), the global sym-

metry of the Coulomb branch is SU(5) (there is only one integer number i = 4 different

from zero in ~ls, and it appears five times, hence r4 = 5). The global symmetry of the Higgs

branch is S(U(1)×U(2)), since the number i = 1 appears once in ~ld and the number i = 2

appears twice, giving r1 = 1 and r2 = 2.

In the quiver, the global symmetry group of the Higgs branch corresponds to the flavor

symmetry group of the effective gauge theory, represented in the square nodes. In figure 9

we see two flavor nodes with ranks 1 and 2, corresponding to the global symmetry group in

the Higgs branch S(U(1)×U(2)). After performing mirror symmetry, the global symmetry

group in the Coulomb branch becomes the flavor symmetry group of the mirror quiver. In

figure 11, the mirror quiver, we see one flavor node with rank 5, corresponding to the global

symmetry group SU(5) of the Coulomb branch before mirror symmetry is performed.

4.3 One parameter family of theories: 3d N = 4 SQED with N flavours

Let us take this section to focus in a very important set of models that play a crucial role in

our following discussion of the Kraft-Procesi transitions. Actually the example with C2/Z2

Coulomb and Higgs branches is the first member of this family. As we said above, we can

fully characterize a model by specifying the values of ns, nd, ~ls and ~ld. Table 1 summarizes

these conserved quantities for each element in the family.

The Coulomb brane configuration for a generic member of this family is depicted

in figure 12(a). From the quiver, figure 12(b), we see that we are dealing with the one

parameter family of models with U(1) gauge group and N hypermultiplets that transform

under an SU(N) flavour symmetry.
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n ~l

D5 N (1, 1, . . . , 1)

NS5 2 (1, N − 1)

Table 1. This table fully characterizes all elements of the family of theories with U(1) gauge group

and N flavours. This is a one parameter family, for each value of N ∈ Z+ there is a different model.

N

(a)

1

N

(b)

Figure 12. (a) Coulomb brane configuration for the model with ns = 2, nd = N , ~ls = (1, N − 1)

and ~ld = (1, 1, . . . , 1). (b) Quiver obtained from brane configuration (a).

N

Figure 13. Higgs branch of the model with ns = 2, nd = N , ~ls = (1, N − 1) and ~ld = (1, 1, . . . , 1).

The Coulomb brane configuration only has one D3-brane that generates the moduli

space. Hence its real dimension 1 × 4 = 4. The first step in the analysis of the moduli

space is to align all D5-branes positions ~mi, we will always consider this configuration, since

it presents the maximum Higgsing. Actually in figure 12(a) the two NS5-branes are also

aligned ~w1 = ~w2. From now on we always consider ~m1 = · · · = ~mnd and ~w1 = · · · = ~wns .

Following the same reasoning as before we see that there is a singular point in the

space of positions ~x of the D3-brane. This is when it coincides with the D5-branes:

~x = ~m1 = · · · = ~mN (4.8)

At this point there are N hyper multiplets that become massless. Therefore this is

the point where the Coulomb and the Higgs branches meet. Once in this point we can

perform the splitting of the D3-brane to obtain the Higgs brane configuration. This phase

of the moduli space is depicted in fig 13. We see that now there are N − 1 D3-branes

that admit nonzero values of (~yi, bi). This corresponds to a Higgs branch where N − 1

hypermultiplets are massless. This is coherent with the fact that the vectorplet becomes

massive, and eats one out of the N hypermultiplets. We find that the Higgs branch has

real dimension (N − 1)× 4 = 4N − 4.
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n ~l

D5 2 (1, N − 1)

NS5 N (1, 1, . . . , 1)

Table 2. This data characterizes the mirror model of the theory with gauge group G = U(1) and

N flavours.

As before, in this case a good candidate for the Coulomb branch would be the variety

C2/Γ, with Γ a finite subgroup of SU(2). The final answer was computed by [24] and is

that Γ is the cyclic group of order N , i.e. Γ = ZN . We write:

MC = C2/ZN (4.9)

The family of varieties C2/ZN clearly generalizes the Coulomb branch of the self-dual

model with gauge group G = U(1) and 2 flavors, MC = C2/Z2. However, there is another

way of generalizing this variety. As we saw before, C2/Z2 is also the closure of the minimal

nilpotent orbit for the sl2 algebra. This is the same as the algebra for the flavor group

SU(2). The flavor group acts on the hyper multiplets, so it is a symmetry of the Higgs

branch. A generalization can be the Higgs branch being the closure of the minimal orbit

of the algebra corresponding to the flavor group. For a generic element of the family the

flavor group acting on the hyper multiplets would be SU(N), so a candidate for the Higgs

branch that generalizes the SU(2) case would be the closure of the minimal nilpotent orbit

of slN , corresponding to partition λ = (2, 1N−2). In the next section we show how the

Higgs branch can be computed and how this is indeed the correct guess.

In the literature the variety C2/ZN has been labeled as AN−1, and the closure of the

minimal nilpotent orbit of slN as aN−1. We write that for the model with N flavors:

MC = AN−1

MH = aN−1
(4.10)

Mirror model. Now we can ask for the mirror model, the one to withMH = AN−1 and

MC = aN−1. This will be the model described by table 2 (we just need to swap the two

rows of table 1).

To obtain the Coulomb brane configuration we take the Higgs brane configuration of

the previous model and swap the D5-branes with NS5-branes and vice-versa. The result is

given in figure 14(a). To read the quiver we can perform two Hanany-Witten transitions

to annihilate the frozen D3-branes: the result is given in figure 14(b). The quiver can now

be read, and is in figure 15.

4.4 Higgs branch computation

Let us take a pause for a moment to review how the Higgs branch computation can be

performed for the one parameter family of two node quivers. This can make manifest the

relation between the chiral ring and the ring of holomorphic functions in the affine variety.

It also shows how the closure of the minimal nilpotent orbit arises as a natural variety in

the context of moduli spaces. We follow the instructions by [25].
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(b)

Figure 14. Coulomb brane configuration for the model with ns = N , nd = 2, ~ls = (1, 1, . . . , 1)

and ~ld = (1, N − 1). (a) is the Coulomb brane configuration obtain via mirror duality. (b) is the

brane configuration without frozen D3-branes after performing two Hanany-Witten transitions, the

quiver can be read more easily from this configuration.

1 1

. . .

1 1

1 1

N

Figure 15. Quiver for the model with ns = N , nd = 2, ~ls = (1, 1, . . . , 1) and ~ld = (1, N − 1). The

brace indicates that there are N gauge nodes with label 1 in the sequence.

Let us focus on the set of quivers from the previous section, where we want to show that

the Higgs branch corresponds to MH = aN−1, figure 12(b). To compute the Hilbert series

of the Higgs branch as in [25] we count chiral operators. These chiral operators correspond

to holomorphic functions in the hyperkähler variety. First we need to identify all scalar

fields that admit nonzero VEV and that are contained in hyper multiplets. In order to do

this we focus in the description of the model from the point of view of 4 supercharges. For

each hyper multiplet with 8 supercharges there will be two chiral multiplets, they will be

supersymmetric multiplets under the subalgebra generated only by 4 supercharges. In the

quiver this can be realized in the following way: every edge turns into two directed edges,

with opposite directions. For every vector multiplet in the 8 supercharges description there

is a chiral multiplet and a vector multiplet under the 4 supercharges subalgebra. In the

quiver this is realized: every gauge node turns into a gauge node with a directed loop. The

4 supercharges version quiver of the model is shown in figure 16.

In this case the N hyper multiplets split into N chiral multiplets, with N complex

scalars Qi that transform under the fundamental representation of SU(N), [1, 0, . . . , 0],

and have charge −1 under the gauge group U(1), and N chiral multiplets, with N complex

scalars Q̃j , that transform under the antifundamental representation of SU(N), [0, . . . , 0, 1],

and have charge 1 under the gauge group U(1). There is also a complex scalar in the

vectorplet, φ, that transforms under the adjoint representation of U(1), i.e. the singlet

of charge 0.
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Qi

φ

Q̃j

Figure 16. Model with ns = 2, nd = N , ~ls = (1, N − 1), ~ld = (1, 1, . . . , 1). The figure represents

the quiver where particles are shown as representations of the subalgebra generated only by 4

supercharges.

To obtain the Higgs branch of the theory we need to find all operators made with the

scalar fields Qi and Q̃j that are gauge invariant and satisfy the zero energy condition. The

simplest combination of fields that is gauge invariant would be the combination of a Qi
and a Q̃j , we can see that the set of all operators of this type generates the rest of all other

invariant operators. We denote them with:

M j
i := QiQ̃

j (4.11)

M j
i generates a ring of operators. We can think of this ring as the set of all N × N

complex matrices with rank smaller or equal to 1:

{MN×N |M j
i ∈ C, rank(M) ≤ 1} (4.12)

Now the zero energy condition will impose some relations in this ring, giving a quotient

ring called the chiral ring. Let us see how this takes place.

Let W be the superpotential function over the chiral superfields that correspond to

each chiral multiplet. Let W (φA) be the same function but this time evaluated in the

complex scalar fields φA := {Qi, Q̃j , φ} that correspond to each chiral multiplet. The zero

energy condition is then

∂W

∂φA
= 0, ∀A (4.13)

Following the prescription in [25], in this model the superpotential is

W = φ
∑
i

QiQ̃
i (4.14)

The only relevant condition that can be applied to the chiral ring is the one derived

from taking partial derivative with respect to φ, this gives:∑
i

QiQ̃
i = 0 (4.15)

A consequence is:

Tr(M) = 0 (4.16)
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Another consequence is:

M2 = 0 (4.17)

Therefore the Higgs branch can be characterized as:

{MN×N |M j
i ∈ C, M2 = 0, T r(M) = 0, rank(M) ≤ 1} (4.18)

The Jordan condition is satisfied:

Tr(Mp) = 0 ∀p ∈ N⇔ all eigenvalues of M are 0 (4.19)

M can also be thought as endomorphisms on CN . In this way the matrices can be

identified as nilpotent elements of the adjoint representation of slN . Since all nilpotent

elements are classified into nilpotent orbits, we can use their Jordan normal form Xλ. We

see that the only Jordan normal matrix Xλ that fulfills

rank(Xλ) ≤ 1 (4.20)

is for the trivial partition λ = (1N ) and for the minimal partition λ′ = (2, 1N−2):

Xλ′ =


0 1 0 . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 0

0 0 0 . . . 0 0

 (4.21)

Due to the properties of the trace, the rank and the power of matrices, any element in

the nilpotent orbits Oλ = {S ·Xλ ·S−1|S ∈ SL(N)} for λ trivial and minimal will fulfill the

conditions to be part of the Higgs branch. Hence we can write all elements in the Higgs

branch as:

MH = O(1N ) ∪ O(2,1N−2)

= Ō(2,1N−2)

(4.22)

4.5 Brane systems for closures of nilpotent orbits of slN

To conclude the present section we introduce the brane models that give rise to 3d quiver

gauge theories whose Higgs branch is Ōλ, the closure of a nilpotent orbit of slN correspond-

ing to partition λ ∈ P(N). The conserved quantities that define such models are defined

as follows.

For a given algebra slN , the number of fivebranes of each type is ns = nd = N . The

linking numbers of the D5-branes are all the same, N − 1. The linking numbers of the

NS fivebranes depend on the partition λ ∈ P(N). In particular, each of the different NS5-

branes has a linking number corresponding to the different parts in λt. λt is the transpose

partition of λ.
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n ~l

D5 N (N − 1, N − 1, . . . , N − 1)

NS5 N λt

Table 3. This table fully characterizes all elements of the family of theories with Higgs branch the

closure of the nilpotent orbit denoted by partition λ of the algebra slN . ~ls should be the transpose

partition of λ, padded with zeroes; we also want to invert the order of the parts so the order of the

array corresponds to the linking numbers of the fivebranes ordered from left to right. For example,

if N = 4 and λ = (2, 12), then λt = (3, 1) and the linking numbers are ~ls = (0, 0, 1, 3).

To obtain the transpose partition λt in its exponential notation:

λt = (1m1 , 2m2 , . . . , NmN ) (4.23)

where m1 is the number of parts in λt that are equal to 1, m2 the number of parts that

are equal to 2, etc., we use the definition:

mi := λi − λi+1 (4.24)

where λi are the different parts of λ = (λ1, λ2, . . . , λk).

For example, if λ = (2, 1, 1), we have:

m1 = 2− 1 = 1

m2 = 1− 1 = 0

m3 = 1− 0 = 1

(4.25)

Therefore

λt = (31, 20, 11)

= (3, 1)
(4.26)

To obtain the linking numbers for the NS5-branes we pad λt with zeroes until it

contains N parts. Then, we invert the order of the parts so the order in ~ls corresponds to

linking numbers monotonically increasing from left to right. For example, if λ = (2, 12),

then λt = (3, 1) and the linking numbers are ~ls = (0, 0, 1, 3). This description is summarized

in table 3.

To obtain a 3d effective gauge theory with the Coulomb branch being the closure of a

nilpotent orbit Ōλ ⊂ slN for any λ ∈ P(N) we can perform a mirror symmetry. The result

is a model with linking numbers ~ls = (N − 1, . . . , N − 1) and ~ld equal to λt.

The 3d N = 4 low energy effective theories that are obtained with these brane con-

structions are known in the literature with the name Tλt(SU(N)), for linking numbers
~ld = (N−1, . . . , N−1) and ~ls equal to λt. The mirror theories are denoted by T λ

t
(SU(N)).

They belong to a bigger family of theories, T σρ (SU(N)), where ρ, σ ∈ P(N). For more de-

tails the reader is directed to [12, 15].
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D5 3 (2, 2, 2)

NS5 3 (1, 1, 1)

Table 4. This table shows the data for the theory with Higgs branch as the closure of the maximal

nilpotent orbit of sl3.

4.5.1 Example: closure of the maximal orbit of sl3 as Higgs branch

In the literature the maximal nilpotent orbit is the one whose closure has the highest

dimension. In the case of slN this corresponds to the orbit with partition λ = (N). This

is a very special case since the closure of this orbit is the union of all nilpotent orbits.

Therefore all closures of all nilpotent orbits are contained within this variety. Sometimes

this variety is also referred to as the nilpotent cone. The nilpotent orbit is also referred to

as the regular orbit.

The maximal orbit of sl3 corresponds to partition λ = (3). To obtain the transpose

partition we realize that the only part of λ different from zero is λ1 = 3, therefore

m1 = 3− 0 = 3

mi = 0 for i = 2, 3, . . .
(4.27)

Hence,

λt = (13) (4.28)

The model then is defined completely by table 4. We can then draw the Coulomb

brane configuration and read the quiver. Let us do it carefully step by step.

In order to obtain the Coulomb brane configuration and read the quiver of the model

we want the D3-branes to stretch only between NS5-branes. This means that the ~ld only

counts number of NS5-branes to the left of each D5-brane. Since ~ld = (2, 2, 2) all D5-branes

are placed in the interval between the second and the third NS5-branes, starting from the

left, see figure 17(a). In the general case, since ~ld = (N − 1, N − 1, . . . , N − 1), all D5-

branes are placed between the two rightmost NS5-branes. Now starting from the left we

add D3-branes between neighboring NS5-branes to ensure that ~ls is realized.

In this example, we start with the first leftmost NS fivebrane, since its linking number

is 1, a unique D3-brane is required to stretch between the NS5-brane and its neighbor to

the right. The second NS5-brane, the one in the middle, needs 2 D3-branes to be added to

its right, to obtain linking number 1. We can check that the last NS5-brane already has

linking number 3− 2 = 1, so the Coulomb brane configuration looks like figure 17(a). The

quiver can be read from it as usual and is depicted in figure 17(b).

Higgs Brane Configuration. A phase transition to the Higgs brane configuration can

be performed. As before, we align the D3-branes with the D5-branes, and then do a

maximal splitting of the D3-branes (we split them in the most general way). All the

resulting split D3-branes should be either fixed between a NS5-brane and a D5-brane or
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Figure 17. Model with ns = nd = 3, ~ls = (1, 1, 1) and ~ld = (2, 2, 2). (a) is the Coulomb brane

configuration. (b) is the quiver.

(a) (b)

Figure 18. Model with ns = nd = 3, ~ls = (1, 1, 1) and ~ld = (2, 2, 2). (a) represents the Higgs

branch as obtained by aligning the D3-branes in the Coulomb branch with the D5-branes and then

proceding to a maximal splitting. (b) is the same model after a phase transtition where all fixed

D3-branes have been annihilated. In this phase, the self-duality: MC =MH becomes manifest.

freely moving along their ~yi directions. Finally we could perform some Hanany-Witten

transitions to get rid of the fixed threebranes. The result right after the splitting is given

in figure 18(a). In figure 18(b) we have annihilated the fixed threebranes via Hanany-

Witten transitions.

We can see from figure 18 that the Higgs branch is a variety with three quaternionic

dimensions, i.e. 3 × 4 = 12 real dimensions, where 3 is the number of threebranes that

generate the moduli. This corresponds to the dimensions of the closure of the maximal

orbit of sl3. In fact the Hilbert series of the Higgs branch for this quiver has been computed

recently by [26]. As we explained before, this variety is:

Ō(3) = O(3) ∪ O(2,1) ∪ O(13) (4.29)

Where Oλ = PSL(3) ·Xλ are the orbits generated by all the Jordan normal matrices:

X(3) =

 0 1 0

0 0 1

0 0 0

 X(2,1) =

 0 1 0

0 0 0

0 0 0

 X(13) =

 0 0 0

0 0 0

0 0 0

 (4.30)

Therefore the Higgs branch MH = Ō(3) can be thought as the set of all possible 3× 3

Jordan matrices with complex entries. This is also the set of all possible 3 × 3 matrices

with zero eigenvalues, or the set of all possible 3 × 3 matrices, belonging to the adjoint

representation of sl3, with zero Casimir invariants:

MH = {M3×3| all Casimir invariants κi = 0} (4.31)
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Figure 19. Model with ns = nd = 3, ~ls = (2, 2, 2) and ~ld = (1, 1, 1). (a) is the Coulomb brane

configuration, obtained via mirror duality from the Higgs branch of the dual model. (b) is the

quiver as read from (a).

In the general case of the closure of the maximal orbit of slN , the quiver in figure 17(b)

generalizes to a quiver with gauge group:

G = U(1)×U(2)× · · · × U(N − 1) (4.32)

and a single SU(N) flavor node connected to the U(N − 1) gauge node. These quivers

and their Higgs branches where already known by [27]. In recent years, physicists have

recovered them under the name of T (SU(N)) theories [12], thanks to the work of [28].

Mirror model. Let us compute the mirror duality. After performing the S-duality in

the Higgs brane configuration we obtain figure 19(a). This gives the quiver in figure 19(b).

Now we see that this is exactly the same model we started with. Therefore we say that the

model is self-mirror and the Coulomb branch and Higgs branch have the same geometry:

MC =MH = Ō(3) (4.33)

This is once again a different generalization of the model with MC =MH = C2/Z2.

This was the A1 variety and also the a1, but it is also corresponds to the closure of the

maximal nilpotent orbit of sl2. In general, the family of models whose Higgs branch

corresponds to the closure of the maximal nilpotent orbit of slN is self-dual, and their

Coulomb branch is the same variety.

5 The Kraft-Procesi transition

We are ready to introduce the main novelty of this paper: the Kraft-Procesi transitions.

This physical process can be understood as a transition between different models. This

gives a structure for families of quiver gauge theories associated to different closures of

nilpotent orbits of the same algebra, via their moduli spaces. In this section we will discuss

the brane dynamics that characterize such structure and such transitions.

5.1 Example: sl3 transitions, maximal to minimal

Let us start directly by showing an example of the Higgs mechanism that produces a Kraft-

Procesi transition. We start by considering the model introduced in section 4.5.1. This is a
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Figure 20. (a) Moduli generated by one of the leftmost D3-branes in the Higgs brane configuration

depicted in figure 18(b). (b) is the S-dual moduli. It corresponds to the Coulomb brane configuration

for the quiver with one U(1) gauge node and one SU(3) flavour node. We have already mentioned

that the Coulomb branch for this quiver is the singularity A2.

self-dual model with MH =MC = Ō(3). It is defined by the linking numbers ~ld = (2, 2, 2)

and ~ls = (1, 1, 1). The Higgs brane configuration of the model is depicted in figure 18(b).

Let us start the transition to a new model by Higgsing away minimal singularities

(these are the minimal singularities found in [20]). To find the minimal singularity we

focus on only one of the D3-branes that can be Higgsed away and study what is the moduli

generated by it: this will be the minimal singularity, a singular subvariety of the Higgs

branch. By a D3-brane that can be Higgsed away we mean a threebrane that can align at

least with two NS5-branes, generating a massless vectorplet that admits nonzero vacuum

expectation values (~x, a). In figure 18(b), the two leftmost D3-branes fulfill this condition.

Hence, we focus on one of the leftmost D3-branes in the Higgs brane configuration and

freeze the other two, they are now spectators. The spectator threebranes can be anywhere

and still observe the same transition. Mathematically, the single D3-brane is called a

transverse slice, as its motion does not affect the behavior of the remaining D3-branes.

The moduli space generated by the single D3-brane can easily be found, it is depicted in

figure 20(a). We can see that it is the same variety as the Coulomb branch of a model with

gauge group G = U(1) and three flavors, therefore is

A2 := C2/Z3 (5.1)

This constitutes an explicit construction that shows how A2 ⊂ Ō(3) is a subvariety of

the closure of the maximal nilpotent orbit of sl3. This is part of the more general result

by Brieskorn [20], in which there is a minimal singular subvariety AN−1 ⊂ Ō(N) for the

algebra slN .

Let us see the Higgs mechanism that removes the minimal singularity A2 from the

Higgs branch. As usual we go to the singular point, where the ~y position of the D3-brane

coincides with the positions of the 3 NS5-branes:

~y = ~w1 = ~w2 = ~w3 (5.2)

Then we split the D3-brane. A maximal splitting splits the brane in 4 segments: the

leftmost and rightmost segments are fixed, since they have one end in a NS5-brane and

the other end in a D5-brane. The two intermediate segments can now move freely along

their ~xi directions, giving nonzero vacuum expectation value to two different massless

vector multiplets: (~x1, a1) and (~x2, a2). So far, this is just a phase transition to a mixed
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Figure 21. A2 Kraft-Procesi transition. (a) represents the Higgs branch of the model with ns =

nd = 3, ~ls = (1, 1, 1) and ~ld = (2, 2, 2). (b) represents the singular point when ~y = ~w1 = ~w2 = ~w3.

(c) represents the new model after taking ~x1 and ~x2 to infinity. The new linking numbers are
~ls = (0, 1, 2), ~ld = (2, 2, 2). This defines a new model which fulfils the prescription to have the Higgs

branch as the closure of the nilpotent orbit with λt = (2, 1), hence λ = (2, 1). This is the minimal

orbit of sl3.

phase of the model with some operators in the Higgs branch and some operators in the

Coulomb branch.

We can consider the remaining threebranes that are still in the Higgs branch and ask

what is the variety that they generate. We can transition to the model to which this is

just a pure Higgs branch, by completely removing the degrees of freedom in the mixed

Coulomb branch. By this we mean that we take the segments of the split D3-branes that

propagate along the ~x direction to infinity. Physically, this is equivalent to fixing a scale

for the scalar fields, such that all their nonzero VEVs consist of a dimensionless number

multiplying this scale. Then, we can flow the number of the VEVs in the mixed Coulomb

branch along the RG flow to the infrared, taking their values to infinity, while keeping all

other numbers for the VEVs in the mixed Higgs branch at order one. We consider that

these D3-brane segments that were in the mixed Coulomb branch do not belong to the

model any more, and we study what is the model whose Higgs brane configuration is the

result of this process. After removing the two D3-brane segments, the linking numbers

of the fivebranes have changed, and therefore we have a different model from the one we

started with. The whole process is described in figure 21.

The resulting model has a Higgs brane configuration as in figure 21(c). We can see

that the linking numbers for the D5-branes are still the same, ~ld = (2, 2, 2) but the ones for

the NS5-branes have changed. The first NS5-brane from the left now has linking number

of 0, since there is one D5-brane to its left, and there is a total of 1 D3-brane ending from

its left: 1 − 1 = 0. The second NS5-brane from the left has linking number 1, since there

is a D5-brane to its left and no D3-branes ending on it. The third NS5-brane has linking

number of 2, since there is one D5-brane to its left and 1 D3-brane ending on it from the

right: 1 + 1 = 2. Hence we write

~ls = (0, 1, 2) (5.3)

We see that this still falls into the family of models presented in the previous section

for which the Higgs branch is the closure of a nilpotent orbit Oλ ⊂ sl3. In this case λt = ~ls,

this means that each part λti of λt, will correspond to a linking number in ~ls, since the
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Figure 22. Model with ns = nd = 3, ~ls = (0, 1, 2) and ~ld = (2, 2, 2). (a) is the Higgs brane

configuration. (b) represents the Coulomb brane configuration. (c) represents the quiver.

(a) (b)

1 1

1 1

(c)

Figure 23. Model with ns = nd = 3, ~ls = (2, 2, 2) and ~ld = (0, 1, 2). (a) is the Higgs brane

configuration. (b) represents the Coulomb brane configuration. (c) represents the quiver.

parts equal to 0 can be neglected we have λt = (2, 1). Therefore λ = (2, 1). This is the

minimal orbit of sl3.

Minimal Orbit of sl3: 3d N = 4 SQED with 3 Flavours. Let us examine the

result of our first Kraft-Procesi transition. The linking numbers of the models are:

~ld = (2, 2, 2) (5.4)

~ls = (0, 1, 2) (5.5)

The Higgs branch is the closure of the minimal nilpotent orbit of sl3:

MH = a2 (5.6)

We know that the model with gauge group G = U(1) and 3 flavors has exactly this

Higgs branch and also

MC = A2 (5.7)

Let us show that this is in fact the model that we found. To show this we just need

to take the Higgs brane configuration of figure 21(c), perform a phase transition to the

Coulomb brane configuration and then read the quiver. The phase transition is performed

as usual, to make it more explicit let us perform some Hanany-Witten transitions still in the

Higgs brane configuration to obtain figure 22(a). After alignment and maximal splitting

we obtain the Coulomb brane configuration as in figure 22(b). The quiver can then be read

as figure 22(c). The mirror model can be computed as usual and is presented in figure 23.
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Figure 24. a2 Kraft-Procesi transition. (a) represents the Higgs branch of the Model with ns =

nd = 3, ~ls = (0, 1, 2) and ~ld = (2, 2, 2). (b) represents the singular point when ~y1 = ~y2 = ~w2 = ~w3.

(c) represents the new model after taking ~x to infinity. The new linking numbers are ~ls = (0, 0, 3),

ld = (2, 2, 2). This defines a new model which fulfils the prescription to have the Higgs branch as

the closure of the nilpotent orbit with λt = (3) and λ = (13). This is the trivial orbit of sl3.

5.2 Example: sl3 transitions, minimal to trivial

Let us explore one more example, but this time consider the model with MH = a2 and

MC = A2 as the starting point. We can look at the Higgs branch, that is a closure of a

nilpotent orbit, and perform a new Kraft-Procesi transition on it.

Let us first perform a phase transition on the Higgs brane configuration of figure 22(a)

to a brane configuration in which there are no fixed D3-branes. The result is figure 24(a).

Once again we would like to find a minimal singularity. There are no minimal singularities

of quaternionic dimension 1, since there is no single D3-brane that can be aligned with at

least 2 NS5-branes (remember that to be able to perform any Higgsing we need to align

and then split D3-branes to get at least one segment stretching between two D5-branes).

There are two D5-branes that could have a segment of D3-brane stretching between them:

the second and the third ones from the left in figure 24(a). This can be achieved if we

align both of the D3-branes with the two aforementioned D5-branes. This means that we

would be focusing in all the D3-branes to find the minimal singularity in the Higgs branch.

The moduli generated by these branes is the Higgs branch itself, and this is therefore the

physical realization of the fact that the minimal singularity in the variety a2 is a2 itself.

The singularity can be removed by applying the Kraft-Procesi transition as before, taking

the position ~x of the D3-brane segment that stretches between the two D5-branes after the

alignment and the splitting to infinity. This process is depicted in figure 24.

The resulting model has no D3-branes propagating in the Higgs brane configuration,

this means that its Higgs branch is the trivial variety (a single point). This actually cor-

responds to the closure of the trivial nilpotent orbit of sl3. The new model has linking

numbers ~ld = (2, 2, 2) and ~ls = (0, 0, 3). We obtain the partition λt = (3) and there-

fore λ = (13).

Hasse Diagram. We can summarize in figure 25(a) the transition between different

models in a Hasse diagram with the information: linking numbers, minimal transitions.

The linking numbers determine the partition and dimension of the nilpotent orbits of sl3
and vice-versa. If these are included in the diagram instead of the linking numbers the

resulting Hasse diagrams correspond to the ones developed by Kraft and Procesi [19],

figure 25(b). Note that [19] addresses all classical algebras, for the case of slN algebras

discussed here these diagrams appeared a year earlier in [29].
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A2

a2

(1, 1, 1) (2, 2, 2)

(2, 1, 0) (2, 2, 2)

(3, 0, 0) (2, 2, 2)

~ls ~ld

(a)

A2

a2

(3) 3

(2, 1) 2

(13) 0

λ dim

(b)

Figure 25. Hasse diagram for the models with Higgs branch being the closure of a nilpotent

orbit of sl3. figure (a) represents the brane configurations, where the linking numbers ~ls and ~ld are

provided for each orbit. figure (b) depicts the information of the orbits. With respect to the brane

configurations, λ is the transpose partition of ~ls, and dim is the number of D3-branes that generate

the Higgs branch in each model. This second diagram corresponds to the one developed in [19].

5.3 General definition

We can implement the Kraft-Procesi transition between closures of nilpotent orbits, as a

transition between models in Type IIB superstring theory, and by induction a transition

between their corresponding effective worldvolume quiver gauge theories. So far we have

focused on transitions performed in the Higgs brane configurations but a mirror duality

could see the transitions in Coulomb brane configurations in the exactly same fashion.

The general steps to perform this transition in the Higgs brane configuration of a model

whose Higgs branch is the closure of a nilpotent orbit of sln are:

1. Find all minimal singularities that are subvarieties of the Higgs branch MH . Each

of them corresponds to a different Kraft-Procesi transition. Choose one of them, let

us denote it with V ⊂ MH . The transition then inherits the name of the minimal

singularity, it will be called a V KP transition. If MH is the closure of a nilpotent

orbit of sln the variety V has to be a singularity of either Ak or ak type, where k < n.

2. Remove the singularity V from the Higgs branch MH via the Higgs mechanism.

Consider the resulting variety M′H as the Higgs branch of a new model. M′H will be

a closure of a nilpotent orbit of sln with dimension:

dim(M′H) = dim(MH)− dim(V) (5.8)

Let us go through both steps in more depth.

5.3.1 Finding all minimal singularities

As mentioned above, there are only two possible ways of doing a minimal Higgsing in a

Higgs brane configuration. One is to remove only one D3-brane in the Higgs branch, and

with it the Ak singularity that the threebrane generated (k+1 is the number of NS5-branes

that coincide with the D3-brane in the singular point). The other way is to remove a set

of D3-branes that align together to create a single D3-brane in the Coulomb branch, the
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moduli they generate in the Higgs brane configuration is always an ak variety, where k is

the number of D3-branes that are initially involved.

To find all such minimal singularities the first step is to perform a phase transition

that takes the model to a Higgs brane configuration where all fixed D3-branes have been

annihilated and only D3-branes with both ends in D5-branes remain. Once in this brane

configuration every NS5-brane will be in an interval between two D5-branes, with no D3-

branes ending on it. If we order such intervals from left to right with integer labels 1, 2, . . .

the linking numbers of the NS5-branes will be equal to the label of the interval they occupy.

To find all An subvarieties we look at all intervals with two or more NS5-branes in

them. For each of these intervals, an Ak will arise, where k + 1 will be the number of

NS5-branes in the interval.

To find all an varieties we look at the intervals with exactly one NS5-brane in them,

if there are two of these intervals adjacent, they correspond to an a2 singularity. If there

are two of these intervals with k − 2 intervals with no NS5-branes in between, they all

correspond to an ak singularity.

5.3.2 Removing the minimal singularity

Each of the subvarieties Vi ∈MH found in the previous section can give rise to their own

Vi KP transition. Let us choose one of them and denote it V. To remove it we just perform

a Higgsing mechanism that sends the D3-branes involved (one if it is an Ak singularity and

k of them if it is of the ak type) to the Coulomb branch. The difference is that this time,

instead of just sending them to the Coulomb branch, we will send the vacuum expectation

values of the scalar fields in the new massless vectormultiplets to infinity, thus removing

the D3-branes from the brane configuration, and producing a new pure Higgs branch M′H
that will correspond to a new quiver gauge theory.

5.4 Example: sl4 KP transitions

Let us study one more example that will further illustrate the KP transitions. This time

we show how starting with the self-dual model corresponding to the closure of the maximal

orbit of sl4 we can produce all other models that correspond to all other closures of nilpotent

orbits of the algebra.

The initial model, and all other models we reach via KP transitions, belong to the

Tλt(SU(4)) family of theories. The model with the closure of the maximal nilpotent orbit

as the Higgs branch is:

Tλt(SU(4)) = T(14)(SU(4)) (5.9)

since λ = (4) is the corresponding partition. Using table 3 we obtain the data for the

model: ~ld = (3, 3, 3, 3) and ~ls = (1, 1, 1, 1). With these linking numbers we can recover

the Coulomb brane configuration and read the quiver from it; we also get the Higgs brane

configuration. They are presented in figure 26.

In the model of figure 26,MH =MC = Ō(4). We choose the Higgs branch and decide

to perform the KP transitions on the Higgs brane configuration (if we choose the Coulomb
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(a) (b) (c)

Figure 26. Model with ns = nd = 4, ~ls = (1, 1, 1, 1) and ~ld = (3, 3, 3, 3). (a) is the quiver. (b)

represents the Coulomb branch. (c) represents the Higgs branch.

(a) (b) (c)

Figure 27. A3 Kraft-Procesi transition. (a) represents the Higgs branch of the Model with

ns = nd = 4, ~ls = (1, 1, 1, 1) and ~ld = (3, 3, 3, 3). (b) represents the singular point when ~y = ~w1 =

~w2 = ~w3 = ~w4. (c) represents the new model after taking ~x1, ~x2 and ~x3 to infinity. The new linking

numbers are ~ls = (0, 1, 1, 2), ~ld = (3, 3, 3, 3). This defines a new model which fulfils the prescription

to have the Higgs branch as the closure of the nilpotent orbit with λt = (2, 12) and hence λ = (3, 1).

This is the subregular orbit of sl4.

branch, then we obtain the mirror models of our results, which in the following discussion

are obtained by performing S-duality after each KP transition). The starting point, ac-

cording to the general prescription we perform Hanany-Witten transitions to annihilate all

fixed threebranes in figure 26(c), the result is figure 27(a).

Now we look for minimal singularities that are subvarieties of MH . As explained in

the previous section we look for intervals between D5-branes with one or more NS5-branes

in between. Since all the NS5-branes are in the first interval only this interval will host

minimal singularities. In this case, there are 4 NS5-branes, since this is bigger than one,

this corresponds to an An singularity, in particular A3 = C2/Z4. This is a singularity of

real dimension 4 that is generated by a single D3-brane moving freely in this first interval.

Since this is the only minimal singularity in the Higgs brane configuration we say that

there is only one possible KP transition from the closure of the orbit related to λ = (4),

and this is an A3 KP transition, reproducing the result of Brieskorn [20].

We can perform the A3 KP transition on the Higgs brane configuration, the process

is depicted in figure 27. The procedure is always the same, we select the singular point of

A3, this is when the D3-brane aligns with the four NS5-branes:

~y = ~w1 = ~w2 = ~w3 = ~w4 (5.10)

This is shown in figure 27(b). In this singular point there are three new vectorplets

that became massless and admit nonzero vacuum expectation values (~xi, ai) when the

previously massless hyper multiplet (~y, b) becomes massive, abandoning the Higgs branch.
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(a) (b) (c)

Figure 28. Model with ns = nd = 4, ~ls = (0, 1, 1, 2) and ~ld = (3, 3, 3, 3). (a) is the quiver. (b)

represents the Coulomb branch. (c) represents the Higgs branch.

2 2 1

2 1

(a) (b) (c)

Figure 29. Model with ns = nd = 4, ~ls = (3, 3, 3, 3) and ~ld = (0, 1, 1, 2). (a) is the quiver. (b)

represents the Coulomb branch. (c) represents the Higgs branch.

This corresponds to split the D3-brane into different segments that end in the NS5-branes.

The first and the last segments are fixed, since they will end on a D5-brane and a NS5-brane.

The three segments in the middle that end in two NS5-branes will correspond to the new

three massless vector multiplets. In order to obtain a new model, instead of just a different

phase of the model we started with, we need to remove completely those three segments.

To do this we take their ~xi positions to infinity. The result is shown in figure 27(c). This

results in a new model with linking numbers for the NS5-branes: ~ls = (0, 1, 1, 2).

Let us now study the resulting model. It has linking numbers ~ls = (0, 1, 1, 2) and
~ld = (3, 3, 3, 3). It corresponds to the model with Higgs branch being the closure of the

orbit of sl4 determined by λ = (3, 1), since ~ls is identified with the transpose partition

λt = (2, 12), and therefore λ = (3, 1). We write:

MH = Ō(3,1) (5.11)

Figure 27(c) is its Higgs brane configuration, performing a phase transition we obtain

its Coulomb brane configuration and read the corresponding quiver from it. The result of

this is displayed in figure 28.

We can perform a mirror duality on this model to obtain the theory withMC = Ō(3,1).

This can be performed in any of the ways explained before, for example, performing an

S-duality on the Higgs brane configuration to obtain the mirror Coulomb brane configura-

tion and read the quiver from it. The mirror model has ~ld = (0, 1, 1, 2) and ~ls = (3, 3, 3, 3).

Its quiver and brane configurations are depicted in figure 29.

So far we have found two models and their mirrors, corresponding to the closure of two

nilpotent orbits of sl4: the maximal orbit λ = (4), and the known as subregular λ = (3, 1).

We have also established the existence of an A3 KP transition that takes the model of the
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Figure 30. A1 Kraft-Procesi transition. (a) represents the Higgs branch of the Model with ns =

nd = 4, ~ls = (0, 1, 1, 2) and ~ld = (3, 3, 3, 3). (b) represents the singular point when ~y = ~w1 = ~w2. (c)

represents the new model after taking ~x to infinity. The new linking numbers are ~ls = (0, 0, 2, 2),
~ld = (3, 3, 3, 3). This defines a new model which fulfils the prescription to have the Higgs branch as

the closure of the nilpotent orbit with λt = (22), hence λ = (22). This is the next to minimal orbit

of sl4.

maximal to the model of the subregular. Let us continue, exploring now what are the KP

transitions that can be performed in the model correspondent to λ = (3, 1). Let us once

more choose the model with MH = Ō(3,1), its Higgs brane configuration should be taken

to the phase where all fixed threebranes have been annihilated. This can be achieved by

performing two Hanany-Witten transitions in figure 27(c). The result is figure 30(a).

Let us find all possible minimal singularities Vi ⊂ Ō(3,1). There are two NS5-branes in

the first interval between D5-branes starting from the left. This determines the existence

of a minimal singularity A1 and a subsequent A1 KP transition. There is one NS5-brane in

the second interval between D5-branes. This could be one end of an an minimal singularity,

however there are no other cases of intervals containing exactly one NS5-brane. Therefore

there is no such minimal singularity as a subvariety of the Higgs branch. The only minimal

singularity that can be found is therefore V = A1.

Hence, we can perform an A1 KP transition Higgsing away one D3-brane from the

leftmost interval between D5-branes. The process (see figure 30) is by now familiar, we

align the D3-brane that generates V with the 2 NS5-branes present in the interval:

~y = ~w1 = ~w2 (5.12)

We split the D3-brane into three segments, the middle one now stretches between

two NS5-branes, and its position ~x is part of a vectorplet that has become massless and

admits nonzero VEVs (~x, a) when the hyper containing the fields (~y, b) becomes massive.

By taking ~x to infinity we fully remove this D3-brane segment from the model and reach

a new model with new linking numbers for the NS5-branes ~ls = (0, 0, 2, 2).

The new model fulfills the conditions to haveMH = Ō(22). We have reached the closure

of a new nilpotent orbit of sl4. The Coulomb brane configuration and the quiver can be

computed as usual and are displayed in figure 31. The mirror model with ~ld = (0, 0, 2, 2)

and ~ls = (3, 3, 3, 3) and MC = Ō(22) can also be calculated and are shown in figure 32.

Now we have found the models for closures of orbits λ = (4), λ = (3, 1), λ = (22) and

their mirror duals. We have also found an A3 KP transition from λ = (4) to λ = (3, 1) and

an A1 KP transition from λ = (3, 1) to λ = (22). Let us explore next what KP transitions

can be performed on the model corresponding to λ = (22). We perform a phase transition
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Figure 31. Model with ns = nd = 4, ~ls = (0, 0, 2, 2) and ~ld = (3, 3, 3, 3). (a) is the quiver. (b)

represents the Coulomb branch. (c) represents the Higgs branch.

1 2 1

2

(a) (b) (c)

Figure 32. Model with ns = nd = 4, ~ls = (3, 3, 3, 3) and ~ld = (0, 0, 2, 2). (a) is the quiver. (b)

represents the Coulomb branch. (c) represents the Higgs branch.

(a) (b) (c)

Figure 33. A1 Kraft-Procesi transition. (a) represents the Higgs branch of the Model with ns =

nd = 4, ~ls = (0, 0, 2, 2) and ~ld = (3, 3, 3, 3). (b) represents the singular point when ~y = ~w1 = ~w2. (c)

represents the new model after taking ~x to infinity. The new linking numbers are ~ls = (0, 0, 1, 3),
~ld = (3, 3, 3, 3). This defines a new model which fulfils the prescription to have the Higgs branch

as the closure of the nilpotent orbit with λt = (3, 1) and hence λ = (2, 12). This is the minimal

orbit of sl4.

on the Higgs brane configuration on the model withMH = Ō(22), figure 30(c), to annihilate

all fixed threebranes. The result is 33(a).

In this Higgs brane configuration, the second interval between D5-branes starting from

the left is the only one containing NS5-branes. It contains two of them, so it corresponds

to a A1 minimal singularity of Ō(22). Therefore there is only one possible A1 KP transition

that can be performed.

The A1 KP transition is depicted in figure 33. The resulting model has linking numbers
~ls = (0, 0, 1, 3) and ~ld = (3, 3, 3, 3). Its Coulomb brane configuration and quiver can be

computed as usual, they are shown in figure 34. This is the model withMH = Ō(2,12) = a3
and MC = A3. The Higgs branch is therefore the closure of the minimal nilpotent orbit

of sl4. The mirror model is depicted in figure 35.
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Figure 34. Model with ns = nd = 4, ~ls = (0, 0, 1, 3) and ~ld = (3, 3, 3, 3). (a) is the quiver. (b)

represents the Coulomb branch. (c) represents the Higgs branch.

1 1 1

1 1

(a) (b) (c)

Figure 35. Model with ns = nd = 4, ~ls = (3, 3, 3, 3) and ~ld = (0, 0, 1, 3). (a) is the quiver. (b)

represents the Coulomb branch. (c) represents the Higgs branch.

(a) (b) (c)

Figure 36. a3 Kraft-Procesi transition. (a) represents the Higgs branch of the Model with ns =

nd = 4, ~ls = (0, 0, 1, 3) and ~ld = (3, 3, 3, 3). (b) represents the singular point when ~y1 = ~y2 = ~y3 =

~w1 = ~w2. (c) represents the new model after taking ~x to infinity. The new linking numbers are
~ls = (0, 0, 0, 4), ~ld = (3, 3, 3, 3). This defines a new model which fulfils the prescription to have the

Higgs branch as the closure of the nilpotent orbit with λ = (14). This is the trivial orbit of sl4.

So far we have found models corresponding with the closures of the nilpotent orbits

λ = (4), λ = (3, 1), λ = (22), λ = (2, 12) and their mirror models. We also found KP

transitions A3, A1 and A1 between each of the orbits. Let us study the KP that can

be performed in the model corresponding to the closure for the minimal nilpotent orbit

λ = (2, 12). Once more we find the Higgs brane configuration in which there are no fixed

threebranes for the model with MH = Ō(2,12). This is depicted in figure 36(a).

Let us find the minimal singularity. There is one NS5-brane in the first interval between

D5-branes starting from the left, together with the NS5-brane in the last interval and the

empty intervals in between give rise to an an singularity, where n is the number of intervals.

In this case it is an a3 minimal singularity. This is the only possible minimal singularity

and in this case it also corresponds with the Higgs branch. Therefore there is an a3 KP

transition that can be performed in the closure of the orbit a3. This transition is depicted

in figure 36. The result is a model with no D3-branes, in the Higgs branch. Therefore
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A1

a1

a3

(1, 1, 1, 1) (3, 3, 3, 3)

(0, 1, 1, 2) (3, 3, 3, 3)

(0, 0, 2, 2) (3, 3, 3, 3)

(0, 0, 1, 3) (3, 3, 3, 3)

(0, 0, 0, 4) (3, 3, 3, 3)

~ls ~ld

(a)

A3

A1

a1

a3

(4) 6

(3, 1) 5

(22) 4

(2, 12) 3

(14) 0

λ dim

(b)

Figure 37. Hasse diagram for the models whose Higgs branch is the closure of a nilpotent orbit of

sl4. (a) represents the brane configurations, where the linking numbers ~ls and ~ld are provided for

each orbit. (b) depicts the information of the orbits. With respect to the brane configurations λ is

the transpose partition of ~ls, and dim is the number of D3-branes that generate the Higgs branch

in each model. This second diagram also corresponds to the one found in [19].

a Higgs branch with dimension zero, just one point, the trivial variety. This corresponds

with the closure of the orbit with λ = (14).

This was the last remaining partition of N = 4. Therefore we have found models

corresponding to the closures of all nilpotent orbits of sl4, their mirror duals and all the KP

transitions. All of them were found just by starting with the self-dual model corresponding

to the closure of the maximal partition, performing all possible KP transitions on it, then

performing all possible KP transitions in the resulting models, etc., iterating until the

trivial orbit was reached. This procedure can always be implemented, starting with the

model corresponding to the closure of the maximal nilpotent orbit of any algebra of the

form slN . We can summarize once more all models that we found in this case and all KP

transitions between them in a Hasse diagram, figure 37.

6 The matrix formalism

It was shown in the previous section that KP transitions can be used to find all models

such that either its Higgs branch or its Coulomb branch is the closure of a nilpotent orbit

of slN . This can be done by starting with the self-dual model corresponding to the closure

of the maximal nilpotent orbit MC = MH = Ō(N). In this section we present a way

to perform this KP transitions in an efficient way, encoding the data of the Higgs brane

configurations into 2× (N + 1) matrices M with integer elements.

6.1 The formalism

The first step to turn the Higgs brane configuration into a matrix is the same as the first

step in a KP transition: take the Higgs brane configuration to a phase where all fixed

threebranes have been annihilated.
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Once this is done a 2×(N+1) matrix M can be written,8 such that M1j is the number

of NS5-branes contained in the jth interval between D5-branes, starting from the left, and

assigning j = 1 to the section to the left of the leftmost D5-brane and j = N + 1 to the

section to the right of the rightmost D5-brane. Similarly, M2j is the number of D3-branes

in the jth interval between D5-branes.

For example, the Higgs brane configuration for the self-dual model corresponding to

the closure of the maximal orbit of sl3, with partition λ = (3), depicted in figure 21(a),

has matrix:

M(λ) =

(
0 3 0 0

0 2 1 0

)
(6.1)

More generally, for the self-dual model corresponding to the closure of the orbit of the

maximal nilpotent orbit of slN with λ = (N) we have:

M(λ) =

(
0 N 0 . . . 0 0 0

0 N − 1 N − 2 . . . 2 1 0

)
(6.2)

6.2 An KP transition

We only need to consider the elements in the first row that are different from zero in

order to find the minimal singularities. This is because there would be NS5-branes in that

interval that we can use to perform the Higgsing.

The An transition is always performed on a single interval, let us consider the minimal

singularity on its own, its matrix is:

M(An) =

(
0 (n+ 1) 0

0 1 0

)
(6.3)

The An KP transition removes the D3-brane, and two of the NS5-branes can move to

the right and to the left of the interval, passing through the right and left D5-branes and

annihilating fixed threebranes via Hanany-Witten transitions. The matrix of the resulting

model is:

M =

(
1 (n− 1) 1

0 0 0

)
(6.4)

Therefore, whenever we find this as part of the nilpotent orbit matrix, this transition

can be performed, removing one D3-brane, and moving away two NS5-branes to annihilate

the fixed D3-segments and obtain a new phase that can be encoded in a matrix. For a

generic nilpotent orbit λ of the algebra slN , any element of the matrix M(λ) of the form

M1j > 1 such that j is neither 1 or N + 1 gives rise to an An transition where n = M1j−1.

For example in the maximal orbit of sl3, with partition λ = (3) and matrix:

M(λ) =

(
0 3 0 0

0 2 1 0

)
(6.5)

8One should not mistake these matrices with the matrices defined in section 4.4. They are entirely

different objects.
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we find that there is an A2 singularity of the form:

M(A2) =

(
0 3 0

0 1 0

)
(6.6)

embedded on the second column of M(λ). If we remove it, by performing an A2 KP

transition, we find:

M(λ′) =

(
1 1 1 0

0 1 1 0

)
(6.7)

The linking numbers of the NS fivebranes have changed to ~ls = (0, 1, 2), corresponding

to λ′t = (2, 1). Therefore the new matrix corresponds to partition λ′ = (2, 1). We can easily

check that this corresponds with the brane configuration in figure 24(a). To summarize,

this matrix manipulation corresponds to the A2 KP transition depicted in figure 21.

6.3 an KP transition

This type of transition always involve only two NS5-branes. If they are in the same interval

we say it is a1 = A1, if they are in adjacent intervals we say it is a2, etc.

Since a1 is already accounted for, we only need to be concerned about an KP transitions

with n > 1. The minimal singularity has a matrix of the form:

M(an) =

(
0 1 0 . . . 0 1 0

0 1 1 . . . 1 1 0

)
(6.8)

where there are n − 2 columns with 0s in the first row and 1s in the second, between the

two columns with 1s in the first row. The transition is to:

M =

(
1 0 0 . . . 0 0 1

0 0 0 . . . 0 0 0

)
(6.9)

where the n D3-branes have been removed. For an with n > 1 to be a minimal KP

singularity the NS5-branes have to be alone in their intervals, i.e. we cannot use a NS5-

brane from an interval with M1j > 1 to perform an an different from a1 if we want to

restrict the transitions to minimal KP singularities.

For example, there is an a2 singularity in the brane system for λ = (2, 1):

M(λ) =

(
1 1 1 0

0 1 1 0

)
(6.10)

The result after performing an a2 KP transition is:

M(λ′) =

(
2 0 0 1

0 0 0 0

)
(6.11)

The model represented by the matrix M(λ′) has linking numbers ~ls = (0, 0, 3), correspond-

ing to λ′t = (3). Therefore the new matrix corresponds to partition λ′ = (13). This is the

trivial orbit. This corresponds to the KP transition described in figure 24.
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6.4 Example: KP transitions for all nilpotent orbits of sl4

Let us now illustrate once more the matrix formalism by showing the computation for the

already familiar Tλt(SU(4)) theories. Remember that if we wanted to obtain the quivers

we only need to recover the Higgs brane configuration from the matrix of each orbit.

The starting matrix corresponds to λ = (4):

M(λ) =

(
0 4 0 0 0

0 3 2 1 0

)
(6.12)

All the elements in the first row are zero, except for M12 = 4. Since it is bigger than 1

it corresponds to an An transition, with n = M12 − 1, i.e. to A3. So there is only one KP

transition, of type A3, that can be performed on the maximal orbit. After performing it

we obtain:

M(λ) =

(
1 2 1 0 0

0 2 2 1 0

)
(6.13)

This matrix corresponds to linking numbers ~ls = (0, 1, 1, 2), giving λt = (2, 12) hence

λ = (3, 1).

Now we repeat the same process, starting by looking at all the elements in the first row

of the matrix that are different from 0. The first and the last columns correspond to NS5-

branes outside of any interval between D5-branes. In the second column, corresponding

to the first and leftmost interval, there are 2 NS5-branes. They form an A1 minimal

singularity with one of the D3-branes in the interval. Hence, an A1 KP partition can be

performed. In the third column there is 1 NS5-brane, indicated by M13 = 1, this could

give rise to an an, but it does not, since there is no other column with only 1 NS5-brane

that it could pair with.

Therefore, there is only one A1 KP transition available form the matrix of λ = (3, 1).

After performing it the result is:

M(λ) =

(
2 0 2 0 0

0 1 2 1 0

)
(6.14)

with linking numbers ~ls = (0, 0, 2, 2), giving λt = (22), hence λ = (22).

We once again look for KP minimal singularities: only the third column could be a

candidate. There are 2 NS5-branes, together with one of the D3-branes make up for a A1

singularity. Therefore an A1 KP transition can be performed, the result is

M(λ) =

(
2 1 0 1 0

0 1 1 1 0

)
(6.15)

with linking numbers ~ls = (0, 0, 1, 3), giving λt = (3, 1), hence λ = (2, 12).

Looking for singularities we find M12 = 1, this is a candidate for an an singularity with

n > 1. In this case we can pair it up with the NS5-brane in interval 4, i.e. M14 = 1. Hence,

– 44 –



J
H
E
P
1
1
(
2
0
1
6
)
1
7
5

sl2

A1

Matrix Partition dim(
0 2 0

0 1 0

)
2 1

(
1 0 1

0 0 0

)
1,1 0

Table 5. Results obtained applying the matrix formalism to sl2.

both NS5-branes, from intervals 2 and 4, and the three D3-branes, from intervals 2, 3 and

4, make up an a3 singularity. Removing the singularity via an a3 KP transition we obtain

M =

(
3 0 0 0 1

0 0 0 0 0

)
(6.16)

with linking numbers ls = (0, 0, 0, 4), giving λt = (4), λ = (14). This is the minimal orbit

and it marks the end of the iteration.

If we make a diagram where the nodes are the orbits, and there are edges connecting

them where we found a KP transition we recover the KP Hasse diagram from figure 37(b).

Note that in this formalism the quaternionic dimension is just:

dim :=
∑
j

M2j (6.17)

7 Results

With the matrix formalism we can write a computer algorithm that is able to calculate all

matrices (i.e. all brane configurations and all quivers) and KP transitions for all nilpotent

orbits of any slN algebra, starting from the matrix of the maximal nilpotent orbit.

7.1 Tables with results from the matrix formalism

In this section we present all the results that have been produced with this algorithm. For

each value of N we include a table that contains all matrices for all models of the form

Tλt(SU(N)). The corresponding partition and quaternionic dimension can be read from

the matrix and are also included. The quivers for both Tλt(SU(N)) and T λ
t
(SU(N)) can

easily be recovered from the matrices, as was shown in the example in the next section.

The algorithm can also provide the nature of the KP transition that is required in each

step. These have been added to the matrix data in the form of Hasse diagrams.9

9Note that there is an equivalence a1 = A1.
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sl3

A2

a2

Matrix Partition dim(
0 3 0 0

0 2 1 0

)
3 3

(
1 1 1 0

0 1 1 0

)
2,1 2

(
2 0 0 1

0 0 0 0

)
1,1,1 0

Table 6. Results obtained applying the matrix formalism to sl3.

sl4

A3

A1

a1

a3

Matrices λ dim(
0 4 0 0 0

0 3 2 1 0

)
4 6

(
1 2 1 0 0

0 2 2 1 0

)
3,1 5

(
2 0 2 0 0

0 1 2 1 0

)
2,2 4

(
2 1 0 1 0

0 1 1 1 0

)
2,1,1 3

(
3 0 0 0 1

0 0 0 0 0

)
1,1,1,1 0

Table 7. Results obtained applying the matrix formalism to sl4.
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sl5

A4

A2

a1

A1

a2

a4

Matrices λ dim(
0 5 0 0 0 0

0 4 3 2 1 0

)
5 10

(
1 3 1 0 0 0

0 3 3 2 1 0

)
4,1 9

(
2 1 2 0 0 0

0 2 3 2 1 0

)
3,2 8

(
2 2 0 1 0 0

0 2 2 2 1 0

)
3,1,1 7

(
3 0 1 1 0 0

0 1 2 2 1 0

)
2,2,1 6

(
3 1 0 0 1 0

0 1 1 1 1 0

)
2,1,1,1 4

(
4 0 0 0 0 1

0 0 0 0 0 0

)
1,1,1,1,1 0

Table 8. Results obtained applying the matrix formalism to sl5.
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sl6

A5

A3

a1

A2

A1

A2

a2

a1

a2

A1

a3

a5

Matrices λ dim(
0 6 0 0 0 0 0

0 5 4 3 2 1 0

)
6 15

(
1 4 1 0 0 0 0

0 4 4 3 2 1 0

)
5,1 14

(
2 2 2 0 0 0 0

0 3 4 3 2 1 0

)
4,2 13

(
2 3 0 1 0 0 0

0 3 3 3 2 1 0

)
4,1,1 12

(
3 0 3 0 0 0 0

0 2 4 3 2 1 0

)
3,3 12

(
3 1 1 1 0 0 0

0 2 3 3 2 1 0

)
3,2,1 11

(
3 2 0 0 1 0 0

0 2 2 2 2 1 0

)
3,1,1,1 9

(
4 0 0 2 0 0 0

0 1 2 3 2 1 0

)
2,2,2 9

(
4 0 1 0 1 0 0

0 1 2 2 2 1 0

)
2,2,1,1 8

(
4 1 0 0 0 1 0

0 1 1 1 1 1 0

)
2,1,1,1,1 5

(
5 0 0 0 0 0 1

0 0 0 0 0 0 0

)
1,1,1,1,1,1 0

Table 9. Results obtained applying the matrix formalism to sl6.
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sl7

A6

A4

a1

A3

A2

A2

A1

A1

a2

A2

A1

a3

A1

a2

a2

a4

a6

Matrices λ dim(
0 7 0 0 0 0 0 0

0 6 5 4 3 2 1 0

)
7 21

(
1 5 1 0 0 0 0 0

0 5 5 4 3 2 1 0

)
6,1 20

(
2 3 2 0 0 0 0 0

0 4 5 4 3 2 1 0

)
5,2 19

(
2 4 0 1 0 0 0 0

0 4 4 4 3 2 1 0

)
5,1,1 18

(
3 1 3 0 0 0 0 0

0 3 5 4 3 2 1 0

)
4,3 18

(
3 2 1 1 0 0 0 0

0 3 4 4 3 2 1 0

)
4,2,1 17

(
4 0 2 1 0 0 0 0

0 2 4 4 3 2 1 0

)
3,3,1 16

(
3 3 0 0 1 0 0 0

0 3 3 3 3 2 1 0

)
4,1,1,1 15

(
4 1 0 2 0 0 0 0

0 2 3 4 3 2 1 0

)
3,2,2 15

(
4 1 1 0 1 0 0 0

0 2 3 3 3 2 1 0

)
3,2,1,1 14

(
5 0 0 1 1 0 0 0

0 1 2 3 3 2 1 0

)
2,2,2,1 12

(
4 2 0 0 0 1 0 0

0 2 2 2 2 2 1 0

)
3,1,1,1,1 11

(
5 0 1 0 0 1 0 0

0 1 2 2 2 2 1 0

)
2,2,1,1,1 10

(
5 1 0 0 0 0 1 0

0 1 1 1 1 1 1 0

)
2,1,1,1,1,1 6

(
6 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

)
1,1,1,1,1,1,1 0

Table 10. Results obtained applying the matrix formalism to sl7.
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sl8

A7

A5

A1

A3

A4
A2 A1

a2 A2

A3

A3

A1

A1

A1

A1

A1

A1

a3

A2 a2

a3

a2 A1a4

A1

a3

a5

a7

Matrices λ dim(
0 8 0 0 0 0 0 0 0

0 7 6 5 4 3 2 1 0

)
8 28(

1 6 1 0 0 0 0 0 0

0 6 6 5 4 3 2 1 0

)
7,1 27(

2 4 2 0 0 0 0 0 0

0 5 6 5 4 3 2 1 0

)
6,2 26(

2 5 0 1 0 0 0 0 0

0 5 5 5 4 3 2 1 0

)
6,1,1 25(

3 2 3 0 0 0 0 0 0

0 4 6 5 4 3 2 1 0

)
5,3 25(

4 0 4 0 0 0 0 0 0

0 3 6 5 4 3 2 1 0

)
4,4 24(

3 3 1 1 0 0 0 0 0

0 4 5 5 4 3 2 1 0

)
5,2,1 24(

4 1 2 1 0 0 0 0 0

0 3 5 5 4 3 2 1 0

)
4,3,1 23(

3 4 0 0 1 0 0 0 0

0 4 4 4 4 3 2 1 0

)
5,1,1,1 22(

4 2 0 2 0 0 0 0 0

0 3 4 5 4 3 2 1 0

)
4,2,2 22(

4 2 1 0 1 0 0 0 0

0 3 4 4 4 3 2 1 0

)
4,2,1,1 21(

5 0 1 2 0 0 0 0 0

0 2 4 5 4 3 2 1 0

)
3,3,2 21(

5 0 2 0 1 0 0 0 0

0 2 4 4 4 3 2 1 0

)
3,3,1,1 20(

4 3 0 0 0 1 0 0 0

0 3 3 3 3 3 2 1 0

)
4,1,1,1,1 18(

5 1 0 1 1 0 0 0 0

0 2 3 4 4 3 2 1 0

)
3,2,2,1 19(

5 1 1 0 0 1 0 0 0

0 2 3 3 3 3 2 1 0

)
3,2,1,1,1 17(

6 0 0 0 2 0 0 0 0

0 1 2 3 4 3 2 1 0

)
2,2,2,2 16(

6 0 0 1 0 1 0 0 0

0 1 2 3 3 3 2 1 0

)
2,2,2,1,1 15(

5 2 0 0 0 0 1 0 0

0 2 2 2 2 2 2 1 0

)
3,1,1,1,1,1 13(

6 0 1 0 0 0 1 0 0

0 1 2 2 2 2 2 1 0

)
2,2,1,1,1,1 12(

6 1 0 0 0 0 0 1 0

0 1 1 1 1 1 1 1 0

)
2,1,1,1,1,1,1 7(

7 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

)
1,1,1,1,1,1,1,1 0

Table 11. Results obtained applying the matrix formalism to sl8.
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sl9

A8

A6

A1
A4

A5

A2

A2

a2

A4

A2
a3

A3

a4

A2

a5

A1

a6

a8

A3A3

A1

A2

A1

A2

A1

a2

A2

a2

A1

a3

a2

a4

A1

A1

a2

a2

A1

a3

a2

A1

A1

Matrices λ dim(
0 9 0 0 0 0 0 0 0 0

0 8 7 6 5 4 3 2 1 0

)
9 36(

1 7 1 0 0 0 0 0 0 0

0 7 7 6 5 4 3 2 1 0

)
8,1 35(

2 5 2 0 0 0 0 0 0 0

0 6 7 6 5 4 3 2 1 0

)
7,2 34(

2 6 0 1 0 0 0 0 0 0

0 6 6 6 5 4 3 2 1 0

)
7,1,1 33(

3 3 3 0 0 0 0 0 0 0

0 5 7 6 5 4 3 2 1 0

)
6,3 33(

3 4 1 1 0 0 0 0 0 0

0 5 6 6 5 4 3 2 1 0

)
6,2,1 32(

4 1 4 0 0 0 0 0 0 0

0 4 7 6 5 4 3 2 1 0

)
5,4 32(

4 2 2 1 0 0 0 0 0 0

0 4 6 6 5 4 3 2 1 0

)
5,3,1 31(

3 5 0 0 1 0 0 0 0 0

0 5 5 5 5 4 3 2 1 0

)
6,1,1,1 30(

5 0 3 1 0 0 0 0 0 0

0 3 6 6 5 4 3 2 1 0

)
4,4,1 30(

4 3 0 2 0 0 0 0 0 0

0 4 5 6 5 4 3 2 1 0

)
5,2,2 30(

4 3 1 0 1 0 0 0 0 0

0 4 5 5 5 4 3 2 1 0

)
5,2,1,1 29(

5 1 1 2 0 0 0 0 0 0

0 3 5 6 5 4 3 2 1 0

)
4,3,2 29(

5 1 2 0 1 0 0 0 0 0

0 3 5 5 5 4 3 2 1 0

)
4,3,1,1 28(

6 0 0 3 0 0 0 0 0 0

0 2 4 6 5 4 3 2 1 0

)
3,3,3 27(

4 4 0 0 0 1 0 0 0 0

0 4 4 4 4 4 3 2 1 0

)
5,1,1,1,1 26(

5 2 0 1 1 0 0 0 0 0

0 3 4 5 5 4 3 2 1 0

)
4,2,2,1 27(

6 0 1 1 1 0 0 0 0 0

0 2 4 5 5 4 3 2 1 0

)
3,3,2,1 26(

5 2 1 0 0 1 0 0 0 0

0 3 4 4 4 4 3 2 1 0

)
4,2,1,1,1 25(

6 0 2 0 0 1 0 0 0 0

0 2 4 4 4 4 3 2 1 0

)
3,3,1,1,1 24(

6 1 0 0 2 0 0 0 0 0

0 2 3 4 5 4 3 2 1 0

)
3,2,2,2 24(

5 3 0 0 0 0 1 0 0 0

0 3 3 3 3 3 3 2 1 0

)
4,1,1,1,1,1 21(

6 1 0 1 0 1 0 0 0 0

0 2 3 4 4 4 3 2 1 0

)
3,2,2,1,1 23(

7 0 0 0 1 1 0 0 0 0

0 1 2 3 4 4 3 2 1 0

)
2,2,2,2,1 20(

6 1 1 0 0 0 1 0 0 0

0 2 3 3 3 3 3 2 1 0

)
3,2,1,1,1,1 20(

7 0 0 1 0 0 1 0 0 0

0 1 2 3 3 3 3 2 1 0

)
2,2,2,1,1,1 18(

6 2 0 0 0 0 0 1 0 0

0 2 2 2 2 2 2 2 1 0

)
3,1,1,1,1,1,1 15(

7 0 1 0 0 0 0 1 0 0

0 1 2 2 2 2 2 2 1 0

)
2,2,1,1,1,1,1 14(

7 1 0 0 0 0 0 0 1 0

0 1 1 1 1 1 1 1 1 0

)
2,1,1,1,1,1,1,1 8(

8 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

)
1,1,1,1,1,1,1,1,1 0

Table 12. Results obtained applying the matrix formalism to sl9.
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7.2 Quivers obtained from the matrices

From the matrices M(λ) that we just found, the Higgs brane configuration can be recovered.

We can then obtain a quiver for a model withMH = Ō(λ) by performing a phase transition

to the Coulomb brane configuration and reading the quiver. We can obtain the mirror

quiver withMC = Ō(λ) by swapping the D5-branes with NS5-branes and vice-versa in the

Higgs brane configuration obtained form M(λ) and reading the quiver.

Alternatively, one can say that the matrix M(λ) obtained in each step of the matrix

formalism fixes the linking numbers ~ls and ~ld of a new model. This fully determines

the quiver of the gauge theory. The mirror model is obtained by swapping ~ls and ~ld.

Consequently, each matrix M(λ) fully characterizes two different quivers, one corresponding

to a model with MH = Ō(λ), and the mirror, with MC = Ō(λ).

In the following tables we explicitly show the Higgs brane configuration corresponding

to some of the matrices and the respective quivers.

(2)

sl2

Branes QH QC

(12)

A1

1

2

1

2

2

0

Table 13. Hasse diagram with the partial order of all closures of nilpotent orbits of the algebra sl2.

The brane configurations can be obtained from the matrices that result from the matrix formalism

computations. From each brane configuration we can obtain the quiver of the corresponding theory,

labeled QH , for which the Higgs branch is the closure of the corresponding nilpotent orbit, and

the quiver for the mirror model, denoted QC . For the mirrror model, the Coulomb branch is the

closure of the nilpotent orbit.

– 52 –



J
H
E
P
1
1
(
2
0
1
6
)
1
7
5

(3)

sl3

Branes QH QC

(2,1)

(13)

A2

a2

1 2

3

2 1

3

1

3

1 1

1 1

3

0 0

Table 14. Hasse diagram with the partial order of all closures of nilpotent orbits of the algebra sl3.

The brane configurations can be obtained from the matrices that result from the matrix formalism

computations. From each brane configuration we can obtain the quiver of the corresponding theory,

labeled QH , for which the Higgs branch is the closure of the corresponding nilpotent orbit, and

the quiver for the mirror model, denoted QC . For the mirrror model, the Coulomb branch is the

closure of the nilpotent orbit.
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(4)

sl4

Branes QH QC

(3,1)

(2,2)

(2, 12)

(14)

A3

A1

a1

a3

1 2 3

4

3 2 1

4

1 2

4

2 2 1

2 1

2

4

1 2 1

2

1

4

1 1 1

1 1

4

0 0 0

Table 15. Hasse diagram with the partial order of all closures of nilpotent orbits of the algebra sl4.

The brane configurations can be obtained from the matrices that result from the matrix formalism

computations. From each brane configuration we can obtain the quiver of the corresponding theory,

labeled QH , for which the Higgs branch is the closure of the corresponding nilpotent orbit, and

the quiver for the mirror model, denoted QC . For the mirrror model, the Coulomb branch is the

closure of the nilpotent orbit.
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(5)

sl5

Branes QH QC

(4,1)

(3,2)

(3, 12)

(22, 1)

(2, 13)

(15)

A4

A2

a1

A1

a2

a4

1 2 3 4

5

4 3 2 1

5

1 2 3

5

3 3 2 1

3 1

1 3

5

2 3 2 1

1 2

1 2

5

2 2 2 1

2 1

2

5

1 2 2 1

1 1

1

5

1 1 1 1

1 1

5

0 0 0 0

Table 16. Hasse diagram with the partial order of all closures of nilpotent orbits of the algebra sl5.
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8 Conclusions and outlook

We want to recapitulate by emphasizing once more the extremely simple and yet powerful

nature of the Kraft-Procesi transition. This is a physical process that has been developed

during the study of moduli spaces that are closures of nilpotent orbits. However, it can now

be applied to any generic model, as a way to systematically finding all minimal singularities

in the moduli and establishing transitions to other models.

The next logical step in this research direction is to introduce O3-planes [30] in the

brane construction and apply the Kraft-Procesi transitions to models whose Higgs or

Coulomb branch is the closure of a nilpotent orbit of the son or the spk algebra. We

have already developed this approach and hope to be able to release a note on it soon.

Many interesting mathematical features that are not present in nilpotent orbits of sln, like

non-special orbits or the collapse of the partitions arise in this context.

Another natural application of the matrix formalism can be to Type IIB superstring

brane configurations on a circle. These are very similar configurations to the ones we have

seen here, with the difference that the spacial direction x6 is considered to be a circle S1.

The computing algorithm can be straightforwardly modified to obtain a periodic pattern

of KP transitions, starting for any given brane configuration with high enough number of

D3-branes. We believe that the periodic Hasse diagrams that can be generated this way

might be related to some notion of nilpotent orbits in affine Lie algebras.10
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