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1 Introduction

In this paper we consider unitary superconformal field theories (SCFTs) in 3 ≤ d ≤ 6

spacetime dimensions.1 Our main result is a classification of their possible relevant, ir-

relevant, and marginal operator deformations that preserve the non-conformal Poincaré

supersymmetries and Lorentz invariance, but not necessarily conformal symmetry. These

deformations are tabulated in section 3, which is self-contained. The classification utilizes

the fact that the deforming operators reside in unitary representations of the superconfor-

mal symmetry, which are much more constrained that representations of Poincaré super-

symmetry.2 Since we only rely on general properties of these representations, our results

are model independent and do not require a Lagrangian.

1.1 Deformations of conformal field theories

Quantum field theories can be thought of as renormalization group (RG) flows from short

distances in the UV to long distances in the IR. The endpoints of such flows are RG fixed

points, and hence scale invariant. In relativistic theories, it is common to further assume

that the fixed-point theory is a conformal field theory (CFT), whose spacetime symmetry

is enhanced to the conformal algebra so(d, 2).3 In addition to free CFTs, which exist in

every dimension, there is compelling evidence for a vast landscape of interacting CFTs in

diverse dimensions.4 Many of these theories are non-Lagrangian, i.e. they do not possess

a known presentation in terms of fields and a Lagrangian, and in some cases the existence

of such a presentation is believed to be unlikely.

Given a CFT, we would like to analyze the nearby quantum field theories that can

be obtained by deforming it, i.e. we would like to analyze the possible RG flows in the

vicinity of the corresponding fixed point. Broadly speaking, such deformations fall into

three classes:

1.) Adding local operators to the Lagrangian: this is the most common way to modify

the dynamics of a theory, where the Lagrangian L is deformed as follows,

δL = gO . (1.1)

Here g is a (typically running) coupling constant and O is a local operator in the

original, undeformed CFT at g = 0. Note that the deformation δL in (1.1) can

always be defined using conformal perturbation theory,5 even if the original CFT is

non-Lagrangian and L is not known, or perhaps does not exist.

1SCFTs also exist in d = 1, 2. They are particularly well-studied in d = 2, where the superconformal

algebra is typically enhanced to a super-Virasoro algebra.
2As we will discuss below, one consequence of this fact is that deformations of SCFTs constitute a proper

subset of the deformations that can arise in more general supersymmetric theories.
3In d = 2 spacetime dimensions, this enhancement follows from unitarity and Poincaré invariance [1, 2].

See [3] for a review of what is known in other spacetime dimensions, and [4–9] for developments in d = 4.
4There are no known interacting CFTs in d > 6.
5Conformal perturbation theory should be valid in a sufficiently small neighborhood of the CFT. In

general, we expect it to break down eventually, and it is not clear to what extent it provides a non-

perturbative definition of the deformed theory. See however the discussion in [10].
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2.) Gauging a global symmetry: in the most familiar case, the symmetry is a continuous

flavor symmetry with a conserved one-form current jµ, but it could also be discrete

or a higher-form global symmetry (see for instance [11] and references therein). The

gauging procedure involves projecting out some degrees of freedom from the original

theory (those that are not gauge invariant) and adding new ones, which arise from

the gauge fields, and it typically involves a choice of continuous or discrete coupling

constants. Gauging a global symmetry may be obstructed by anomalies or lead to a

theory with a Landau pole that is not UV complete. Note that gauging cannot be

understood as an operator deformation (1.1). A similar comment applies to Chern-

Simons terms, which are not gauge-invariant local operators.

3.) Moving onto a moduli space of vacua: in d > 2 non-compact spacetime dimen-

sions, a CFT may possess a non-trivial moduli space of vacua, which is continuously

connected to the conformal vacuum at the origin. This is the case for many super-

conformal theories. Deforming away from the conformal vacuum involves tuning the

boundary conditions at spatial infinity and leads to vacuum expectation values for

some fields, which generate a scale and break conformal symmetry spontaneously.

Unlike the deformations in 1.) and 2.), which modify the dynamics of the theory at

short distances, moving along a moduli space of vacua represents a modification in

the deep IR, via boundary conditions. Nevertheless, one can consider an RG flow

that interpolates between the UV physics of the CFT at the origin and the IR physics

on the moduli space of vacua.

In this paper, we will almost exclusively focus on deformations of type 1.), i.e. adding local

operators to the Lagrangian as in (1.1).

The local operators must reside in representations of the conformal algebra so(d, 2).

They can be labeled by their weights under the maximal compact subalgebra so(d)×so(2).

Here the so(d) weight specifies the (Wick-rotated) Lorentz representation, and the so(2)

eigenvalue is related to the scaling dimension ∆, see e.g. [12–14] for more detail. All uni-

tary irreducible representations of so(d, 2) possess an operator O, known as the conformal

primary, of lowest scaling dimension ∆O. It transforms in an irreducible representation LO

of the Lorentz algebra so(d). The conformal primary O is thus annihilated (as an operator

at the origin xµ = 0, or as a state in radial quantization) by the special conformal genera-

tors Kµ, which have scaling dimenion −1. All other operators in the same so(d, 2) multiplet

are conformal descendants of O, which are obtained by acting on it with an arbitrary num-

ber of spacetime derivatives Pµ ∼ ∂µ of scaling dimension +1. By contrast, the conformal

primary O cannot be written as a total derivative of a well-defined, local operator.

There is a natural inner product on all CFT operators, which is defined by their

two-point functions in flat space, or equivalently by the inner product on the Hilbert

space of states in radial quantization. In unitary theories, all primary and descendant

operators must nave non-negative norms with respect to this inner product. This leads to

unitarity bounds for the scaling dimension ∆O in terms of the Lorentz representation LO,

see e.g. [12, 14, 15]

∆O ≥ f (LO) . (1.2)

– 2 –
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When the bound is saturated, the representation has null states, i.e. zero-norm descendants

that can be consistently removed from the representation.

The possible operator deformations (1.1) can be understood using the structure of

unitary so(d, 2) representations. First note that the deformation O should be a conformal

primary. Descendants are total derivatives of well-defined operators, and adding them to

the Lagrangian leads to boundary terms that do not modify the bulk dynamics. Similarly,

we do not consider deformations by the identity operator 1, since these only modify the

vacuum energy, but not the dynamics. If we further restrict O to be an so(d) scalar, as we

will do throughout most of this paper, then the deformation preserves Lorentz symmetry.

In this case the strongest unitarity bound (1.2) comes from demanding that the norm of

the descendant �O be non-negative,

∆O ≥
d− 2

2
. (1.3)

The bound is saturated if O is a free scalar field satisfying �O = 0.

The qualitative properties of the deformation depend on the value of ∆O relative to

the spacetime dimension d. This is the standard distinction between relevant, irrelevant,

and marginal operators:

• Relevant deformations (∆O < d): here the CFT at g = 0 is the UV fixed point of

an RG flow that is initiated by turning on the deformation. The relevant coupling g

grows in the IR, and conformal perturbation theory in g is expected to break down

eventually.

• Irrelevant deformations (∆O > d): in this case the CFT is the IR fixed point of an

RG flow along which the irrelevant coupling g flows to zero. The deformed theory

can be interpreted as an effective field theory that requires a UV completion.

• Marginal deformations (∆O = d): these preserve conformal invariance at leading

order in the coupling g and can therefore lead to a nearby fixed point. They may be

further subdivided into marginally relevant, irrelevant, or exactly marginal, to indi-

cate the direction of the RG flow once higher-order corrections are taken into account.

The only restriction on the possible deformations that follows directly from the structure

of so(d, 2) representations is the unitarity bound (1.3), which constrains the possible scaling

dimensions of relevant deformations. The more detailed question of which deformations

actually exist in a given CFT, and when they lead to well-behaved RG flows, cannot be

answered using only representation theory.

1.2 Superconformal theories

We will use the structure of unitary superconformal multiplets to analyze the possible

supersymmetric deformations of unitary superconformal theories in 3 ≤ d ≤ 6 spacetime

dimensions, generalizing the analysis of [16, 17]. By this we mean deformations of the

form (1.1) that preserve all Poincaré Q-supersymmetries, but not necessarily the super-

conformal S-supersymmetries. From now on, we will always use the term deformations to

refer to such supersymmetric operator deformations.

– 3 –
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Together, the Q- and the S-supersymmetries anticommute to the superconformal al-

gebra, whose bosonic subalgebra contains the conformal algebra so(d, 2), as well as an R-

symmetry algebra. Unlike the Poincaré supersymmetry algebra, which exists in all di-

mensions, superconformal algebras are highly constrained: they do not exist in d ≥ 7

dimensions, and in 3 ≤ d ≤ 6 dimensions the only consistent superconformal algebras are

given by [18] (see also [12] for a nice discussion),

d = 3 osp(N|4) ⊃ so(3, 2)× so(N )R ,

d = 4

{
su(2, 2|N ) ⊃ so(4, 2)× su(N )R × u(1)R , N 6= 4 ,

psu(2, 2|4) ⊃ so(4, 2)× su(4)R , N = 4 ,

d = 5 f(4) ⊃ so(5, 2)× su(2)R , N = 1 ,

d = 6 osp(6, 2|N ) ⊃ so(6, 2)× sp(2N )R . (1.4)

In every case, we have indicated the maximal bosonic subalgebra, which factorizes into the

conformal algebra so(d, 2) and the R-symmetry. As usual, N ∈ Z≥1 is a positive integer in-

dicating the number of supercharges in units of the minimal amount of supersymmetry that

is possible in a given dimension. We use NQ to denote the total number of independent

supercharges. In d = 3, 4, 5, 6 dimensions, minimal N = 1 supersymmetry corresponds

to NQ = 2, 4, 8, 8 supercharges, respectively. For d = 5, there is a unique superconfor-

mal algebra, with N = 1 supersymmetry; theories with more supersymmetry (e.g. N = 2

maximally supersymmetric Yang-Mills theory) exist, but cannot be superconformal. By

contrast, the superconformal algebras in d = 3, 4, 6 come in infinite families, labeled by a

positive integer N . However, it can be shown [19] that interacting superconformal field

theories only exist for N ≤ 8, 4, 2 in d = 3, 4, 6 dimensions, respectively, and hence we

will only discuss these values of N . Note that SCFTs in six dimensions are often referred

to as (N , 0) theories. There is compelling evidence for the existence of many interacting

SCFTs in these allowed ranges of d and N .

We will make extensive use of known facts about unitary representations of the su-

perconformal algebras in (1.4), especially results from [12, 13, 19–23],6 which we briefly

review. Each unitary irreducible representation of a superconformal algebra decomposes

into a finite number of irreducible representations of the bosonic subalgebra, which consists

of the conformal algebra so(d, 2) and the R-symmetry. In other words, the superconformal

multiplet decomposes into a supermultiplet of conformal representations. Since we are

interested in deformations of the form (1.1), we will only consider conformal primaries O,

which are labeled by their Lorentz- and R-symmetry representations LO and RO, as well

as their scaling dimension ∆O,

O ∈ [LO]
(RO)
∆O

. (1.5)

6In addition to references dedicated to the representation theory of the superconformal algebras, there

are also many supergravity papers that considered these representations from the perspective of what

was later understood to be the holographic AdS duals. See for instance [24–26] for a discussion of 1
2
-BPS

multiplets in maximally supersymmetric SCFTs in d = 4, 3, 6 dimensions, respectively. We will not attempt

the challenging task of assembling a complete set of references.
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Throughout the paper, we will use integer-valued Dynkin labels to specify the representa-

tions LO, RO (see section 3 for more details).

Every unitary superconformal multiplet contains a unique conformal primary V of

lowest scaling dimension ∆V , which transforms irreducibly under the R-symmetry. The

operator V is known as the superconformal primary, or simply as the bottom component,

of the multiplet. It is annihilated by the superconformal generators of negative scaling

dimension (i.e. the S-supersymmetries, with dimension −1
2 , and the special conformal gen-

erators Kµ, with dimension −1). The other operators in the superconformal multiplet

(the other conformal primaries, and all conformal descendants) are superconformal descen-

dants of V , i.e. they are obtained by acting on V with any number of Q-supersymmetries,

whose scaling dimension is +1
2 . Demanding that all of these operators have non-negative

norm leads to unitarity bounds for the superconformal primary. These bounds are are

stronger than the bosonic unitarity bounds (1.2) because there are more Q-descendants

than Pµ-descendants, all of whose norms must be non-negative. Schematically,

∆V ≥ f(LV , RV) . (1.6)

Whenever such a bound is saturated, the representation has null states. These must them-

selves form a superconformal representation (though not necessarily a unitary one) that

can be consistently removed from the multiplet. We will refer to all representations with

null states as short, and those without null states as long. A superconformal representation

is completely determined by the quantum numbers of its superconformal primary V . As a

result, the multiplet is typically described by specifying the quantum numbers (1.5) for V .

We are interested in supersymmetry-preserving deformations (1.1), i.e. conformal pri-

maries O that are annihilated by the action of all Q-supersymmetries, up to a total deriva-

tive. Schematically,

QO = ∂µ (· · · ) , (1.7)

where (· · · ) denotes a well-defined operator. The conformal primary O must therefore

transform into a conformal descendant under all Q-supersymmetries. This immediately

shows that O cannot be the bottom component (i.e. the superconformal primary) of its

multiplet.7 We refer to a conformal primary O satisfying (1.7) as a top component of its

superconformal multiplet. (This definition does not restrict the Lorentz quantum numbers

of a top component, but below we will largely focus on top components that are Lorentz

scalars.) A classification of all supersymmetric deformations amounts to an enumeration

of all possible top components. In order to carry out this task, it is not sufficient to know

the list of allowed superconformal primaries that lead to unitary representations. Instead,

the following, more detailed information is required:

1.) The decomposition of all unitary superconformal representations into conformal pri-

maries. This is analogous to the expansion of a superfield into components.

2.) An understanding of how the conformal primaries map into each other under the

action of the Q-supersymmetries, and when they map into a descendent, as in (1.7).

7The only exception is the identity operator 1, which has already been excluded as a deformation.
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We will heavily draw on the results of [19], where a solution to 1.) is presented for all unitary

superconformal multiplets in 3 ≤ d ≤ 6 dimensions, generalizing the results of [13] for d = 4.

However, the methods of [19], do not immediately solve 2.) as well. The problem is in

principle straightforward: it can be solved by explicitly expressing all conformal primaries

as Q-descendants of the superconformal primary and, if the multiplet is short, imposing

the vanishing of all null states. This head-on approach was used in [16, 17] to analyze

the deformations of four-dimensional N = 1, 2 SCFTs, but it is prohibitively tedious in

many other cases. Here we will carry out a classification of supersymmetric deformations

while largely sidestepping this problem. As a result, the completeness of our classification

depends on some assumptions that are spelled out in section 2.

1.3 Supersymmetric deformations: generic and sporadic phenomena

There are several familiar classes of top components, and hence supersymmetric deforma-

tions, that can be described in a uniform manner. Given a superconformal primary V ,

its descendants are obtained by acting with the Q-supersymmetries. Operators of the

form QℓV , which are obtained by acting with ℓ supercharges on V are said to reside at

level ℓ. The expression QℓV should always be understood as ℓ nested (anti-) commutators.

Since we are only interested in conformal primaries, we can drop all spacetime derivatives,

∂µ ∼ Pµ ∼ 0, so that the Q-supercharges effectively anticommute,

 Qi, Qj} ∼ 0 , i, j = 1, . . . , NQ . (1.8)

Here NQ is the total number of supercharges. By Fermi statistics, conformal primaries only

occur at levels 0 ≤ ℓ ≤ ℓmax, where ℓmax must satisfy the bound ℓmax ≤ NQ. This bound is

saturated for long multiplets, without null states, for which QNQV is the unique top com-

ponent. Its quantum numbers are the same as those of V , because QNQ is a Lorentz and R-

symmetry singlet. This leads to the generalized supersymmetric D-term deformation,

LD = QNQV , (1.9)

which is a Lorentz singlet if the superconformal primary V is a Lorentz singlet; its dimension

is ∆(LD) =
1
2NQ + ∆V . When a superspace formulation is available, the generalized D-

term (1.9) can be written as an integral over all of superspace. A typical example is the

Kähler potential in four-dimensional theories with N = 1 supersymmetry and NQ = 4

supercharges.

Another common type of deformation is a generalized F -term. It is constructed using

a short, 1
2 -BPS multiplet, whose superconformal primary VBPS is annihilated by half of

the supercharges. Then the F -term deformation is given by the action of the other 1
2NQ

supercharges on VBPS,

LF = Q
1
2
NQVBPS . (1.10)

When a superspace formulation is available, a generalized F -term can be written as an

integral over half of superspace. A typical example is the chiral superpotential W in

– 6 –
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four-dimensional N = 1 theories, which satisfies Qα̇W = 0 and leads to the F -term de-

formation LF = Q2W .8 (The Hermitian conjugate deformation Q
2
W is also an F -term.)

The detailed structure of 1
2 -BPS multiplets changes for different d and N , but they often

lead to generalized F -term deformations. Also, we will see below that some theories admit

different types of F -term deformations that reside in distinct 1
2 -BPS multiplets.

The D- and F -term deformations are generic: they are constructed using multiplets

that exist for all (or most) values of d and N , and for a variety of quantum numbers. By

contrast, there are deformations that reside in special, typically very short multiplets and

only occur sporadically, i.e. only for certain values of d and N , and only when the quantum

numbers of the superconformal primary take certain small values.

As an example of such sporadic behavior, consider the stress-tensor multiplet of N = 4

SCFTs in three dimensions. (It is an A2[0]
(0;0)
1 multiplet, see table 9.) According to (1.4),

the R-symmetry is so(4)R = su(2)R×su(2)′R, and the Lorentz algebra is also su(2), so that

we can label operators as [j]
(R ;R′)
∆ . Here R,R′, j ∈ Z≥0 are integer-valued Dynkin labels

for the su(2)R × su(2)′R symmetry and the su(2) Lorentz algebra.9 The supercharges Qi,i′
α

transform as a trifundamental [1]
(1;1)
1/2 . The decomposition of the stress-tensor multiplet

into conformal primaries takes the following form,

[0]
(0;0)
1

Q
// [1]

(1;1)
3/2

Q
// [2]

(2;0)
2 ⊕ [2]

(0;2)
2 ⊕ [0]

(0;0)
2

Q
// [3]

(1;1)
5/2

Q
// [4]

(0;0)
3

(1.11)

Here the operators [2]
(2;0)⊕(0;2)
2 at level ℓ = 2 are the su(2)R × su(2)′R currents, the op-

erator [3]
(1;1)
5/2 at level ℓ = 3 is the supersymmetry current, and the operator [4]

(0;0)
3 at

level ℓ = 4 is the stress tensor. This multiplet has two top components:

• The stress-tensor [4]
(0;0)
3 at level ℓ = 4 is clearly a (Lorentz non-invariant) top com-

ponent, because there are no conformal primaries at ℓ = 5.

• The Lorentz scalar [0]
(0;0)
2 at ℓ = 2 is also a top component, even though it occurs in

the middle of the multiplet. Acting on it with the Q-supercharges leads to an operator

with quantum numbers [1]
(1;1)
3/2 , but there is no such conformal primary at ℓ = 3.

The scalar top component at ℓ = 2 gives rise to a relevant deformation of the theory with

scaling dimension ∆ = 2, just like a fermion mass term. Since it occurs in the stress-tensor

multiplet, this relevant deformation exists for all three-dimensional N = 4 SCFTs, and

we will refer to it as a universal mass. Its existence invalidates the standard lore that

supersymmetric deformations necessarily reside at the highest level of a multiplet. (As

we will explain in section 2, this lore is correct for suitably generic multiplets.) Similar

universal mass deformations, which reside in the middle of stress-tensor multiplets, exist

in three-dimensional theories with N ≥ 5 supersymmetry. Such deformations are further

discussed in section 4.3. As we review there, they lead to exotic deformations of the non-

conformal supersymmetry algebra that includes the R-symmetry generators, even though

– 7 –
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d N Relevant Marginal Irrelevant ∆min

d = 3

N = 1 D-term D-term ∆min > 3

N = 2 Flavor Current, F -term F -term ∆min > 3

N = 3 Flavor Current — 4

N = 4 Stress Tensor, Flavor Current — 4

5 ≤ N ≤ 6 Stress Tensor — 5

N = 8 Stress Tensor — 6

d = 4

N = 1 F -term F -term ∆min > 4

N = 2 Flavor Current, F -term F -term ∆min > 4

N = 3 — — ∆min > 4

N = 4 — Stress Tensor 8

d = 5 N = 1 Flavor Current — 8

d = 6
N = (1, 0) — — 10

N = (2, 0) — — 12

Table 1. Supersymmetric deformations of interacting SCFTs in 3 ≤ d ≤ 6 dimensions. Empty

entries indicate that the corresponding type of deformation does not exist. For relevant and marginal

deformations, we give a crude indication of what kind of multiplet the deformation resides in. For

irrelevant deformations, we list the smallest possible scaling dimension ∆min. Additional details

can be found in section 3. As we review there, genuine N = 7 theories in three dimensions do not

exist, which is why there is no corresponding entry.

they do not commute with the supercharges.

The main result of this paper is a classification of all Lorentz-invariant, supersymmetric

deformations that can arise for SCFTs in 3 ≤ d ≤ 6 dimensions. The full classification is

tabulated in section 3, and a brief summary appears in table 1. Even at this level of detail,

two unifying themes emerge:

1.) Many theories possess special deformations that reside in multiplets together with

conserved currents. We have already mentioned the universal mass deformations

for N ≥ 4 theories in three dimensions, which reside in stress-tensor multiplets.

Similarly, in theories with NQ = 8 supercharges in d = 3, 4, 5 dimensions, as well

as N = 2, 3 theories in d = 3, a multiplet containing a conserved flavor current also

8Equivalently, we can impose the constraint Dα̇W = 0 in superspace and write the F -term deformation

as LF =
∫
d2θW .

9The standard half-integral su(2) spins are given by R
2
, R′

2
, j
2
.

– 8 –
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contains a relevant supersymmetric deformation of dimension d − 1, which we will

refer to as a flavor mass. These deformations modify the supersymmetry algebra by

conventional central charges. Finally, four-dimensional N = 4 theories necessarily

possess an exactly marginal supersymmetric deformation, which resides in the stress-

tensor multiplet.

2.) Many theories with a sufficient amount of supersymmetry do not admit relevant or

marginal deformations. For instance, N ≥ 3 theories in three dimensions and SCFTs

in five dimensions do not possess marginal deformations, and their only relevant de-

formations are the universal and flavor mass deformations mentioned in 1.) above.

Similarly, genuine N = 3 theories in four dimensions and N = (1, 0) or N = (2, 0)

theories in six dimensions admit neither relevant nor marginal deformations, and

hence they are isolated. Note that all of these theories possess supersymmetric irrel-

evant deformations, e.g. D-terms residing in long multiplets. In theories with enough

supersymmetry, irrelevant deformations can also reside in short multiplets.

Some of our results are well known, or overlap with results that have recently been ob-

tained by other authors. The possible deformations of four-dimensional N = 1 and N = 2

theories were classified in [16, 17]. The fact that N = 4 theories in three dimensions

and N = (1, 0) theories in six dimensions do not possess marginal deformations was in-

dependently found in [27, 28], while the absence of relevant or marginal deformations in

genuine N = 3 theories in four dimensions was observed in [29].

1.4 Outline

In section 2, we explore aspects of long and short superconformal representations, and their

decomposition into supermultiplets of conformal primaries. We use various examples to

illustrate possible sporadic phenomena. This leads to the notion of manifest versus acciden-

tal top components, and allows us to state the assumptions that underly our classification

of supersymmetric deformations.

Section 3 contains our main results in table form. For all values of d andN that can lead

to interacting SCFTs, we summarize the possible shortening conditions for unitary super-

conformal multiplets and the possible supersymmetric deformations that preserve Lorentz

invariance. The subsections describing different d and N are essentially self-contained and

may be read independently.

In section 4, we discuss Lorentz-invariant deformations that reside in superconformal

multiplets together with conserved currents, focusing on flavor currents and the stress

tensor. Such deformations can lead to a modified supersymmetry algebra, which may

contain central or non-central charges. We also use flavor mass deformations to illustrate

the fact that deformations which preserve supersymmetry at leading order need not do so

at higher order.

Section 5 contains various applications and examples. In particular, we use the clas-

sification of irrelevant supersymmetric deformations to constrain the low-energy effective

Lagrangians that describe different moduli spaces of supersymmetric vacua. We also com-

ment on the status of Fayet-Iliopoulos (FI) terms in different dimensions. In d ≥ 4, such
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terms cannot arise as deformations of SCFTs, even though they are common in super-

symmetric theories with abelian gauge fields. Finally, we briefly discuss supersymmetric

deformations that break Lorentz invariance.

2 Superconformal multiplets and supersymmetric deformations

As discussed in the introduction, the problem of classifying supersymmetric deformations

amounts to identifying top components of superconformal multiplets, i.e. conformal pri-

maries that are annihilated by all Q-supersymmetries up to a total derivative, as in (1.7).

Since total spacetime derivatives play no role in this discussion they can be dropped without

repercussion so that the Q-supersymmetries anticommute, as in (1.8),

 Qi, Qj} ∼ 0 , i, j = 1, . . . , NQ . (2.1)

As discussed around (1.9), it follows from (2.1) that a superconformal multiplet can only

contain a finite number of conformal primaries, which must occur at levels 0 ≤ ℓ ≤ ℓmax,

where ℓmax ≤ NQ by Fermi statistics. Thus, every multiplet contains at least one top

component, which resides at level ℓmax. In this section we will explore supermultiplets with

a unique top component, as well as others that possess multiple top components. This will

enable us to precisely formulate our classification scheme for supersymmetric deformations.

2.1 Long multiplets and the Racah-Speiser algorithm

Long multiplets do not possess any null states, i.e. the supercharges Qi do not satisfy any

relations other than Fermi statistics (2.1) when acting on the superconformal primary V .

The primary V transforms irreducibly under the Lorentz- and R-symmetry, and the in-

dependent conformal primaries at level ℓ of a long multiplet transform in the reducible

representation (
∧ℓRQ

)
⊗ V . (2.2)

Here RQ is the Lorentz- and R-symmetry representation of the supercharges and ∧ℓRQ

denotes its ℓ-fold totally antisymmetric wedge power.10 It follows from the antisymmetry

of the wedge power that this multiplet has a unique top component at level

ℓmax = dimRQ = NQ . (2.3)

Since the maximal wedge power of RQ transforms as a Lorentz and R-symmetry singlet,

the top component QNQV has the same Lorentz and R-symmetry quantum numbers as the

superconformal primary V , but its dimension is ∆V + 1
2NQ.

The structure of long multiplets is conceptually straightforward. The short multiplets

are more complicated. It is convenient to use the Racah-Speiser (RS) algorithm for decom-

posing tensor products of Lie-algebra representations, which was applied to superconformal

multiplets in [13, 23, 30] and plays a crucial role in [19]. Here we will only briefly sketch

the algorithm and use it to illustrate various general features of superconformal multiplets.

In broad strokes, the RS construction of a long multiplet proceeds as follows:

10Note that RQ may be a reducible representation, as in four dimensions and in three-dimensional N = 2

theories (see section 3).
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• Select the highest-weight state Vh.w. ∈ V of the superconformal primary with respect

to both the Lorentz and the R-symmetry.

• At each level ℓ, consider all sequences of ℓ supercharges acting on the highest weight

state Vh.w., which are distinct up to rearrangements using (2.1),

Qi1Qi2 · · ·QiℓVh.w. . (2.4)

Adding the Lorentz and R-symmetry weights of the supercharges in (2.4) to those

of Vh.w. for all such sequences leads to a set of RS trial weights W
(ℓ)
RS at level ℓ.

As long as the representation V is sufficiently large, the RS algorithm states that the

highest weights of all irreducible representations that occur in (2.2) are in one-to-one

correspondence with the RS trial weights W
(ℓ)
RS.

• When the representation V is too small, the bijection between irreducible subrepresen-

tations of (2.2) and RS trial weights in W
(ℓ)
RS can fail. This happens when one or sev-

eral trial weights cannot be highest weights of an irreducible representation, because

some of their Dynkin labels are negative. In this case the RS algorithm specifies that

these states should be removed, possibly at the expense of also removing other weights

from W
(ℓ)
RS, or adding new ones, according to a precise set of group-theoretic rules.

As a simple example, consider long multiplets in three-dimensional N = 1 SCFTs.

According to (1.4), the R-symmetry is trivial and the Lorentz symmetry is su(2). The

supercharges Qα (α = ±) transform in a Lorentz doublet, which we denote as RQ = [1].

(As in (1.11), we use integer-valued su(2) Dynkin labels.) If the Lorentz representation

of the superconformal primary V is [n], it can be represented by an n-index symmetric

spinor V(α1 ···αn) with αi=1,...,n = ±. The RS trial states (2.4) and their weights W
(ℓ)
RS are

then

ℓ = 0 : Vh.w. = V++···+ , W
(0)
RS =

{
[n]

}
,

ℓ = 1 : Q+Vh.w. , Q−Vh.w. , W
(1)
RS =

{
[n+ 1], [n− 1]

}
,

ℓ = 2 : Q+Q−Vh.w. , W
(2)
RS =

{
[n]

}
. (2.5)

For n ≥ 1, the Lorentz representations of conformal primaries occurring at level ℓ precisely

agree with W
(ℓ)
RS. However, when n = 0 only the [1] representation occurs at ℓ = 1, while

the [−1] representation is removed by the RS algorithm. It is important to note that the

RS trial states (2.4) generally do not coincide with the true highest-weight states of the

corresponding representations. For instance, the true highest-weight state of the [n − 1]

representation at ℓ = 1 in (2.5) is

Q−V++···+ −Q+V−+···+ , (2.6)

rather than just Q−V++···+.

A powerful simplification afforded by the RS algorithm is that it only involves the

simple trial states (2.4), rather than the (generally very complicated) true highest weight
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states that arise in the decomposition of a product representation into irreducible subrep-

resentations, i.e. it bypasses the full Clebsch-Gordan problem. However, this aspect also

obscures how the Q-supersymmetries map different conformal primaries into each other.

For instance, the structure of the trial states in (2.5) incorrectly suggests that Q− maps

the superconformal primary [n] into [n− 1], but not [n+1]. In fact, the state Q−Vh.w. can

be written as a sum of (2.6), which is the highest-weight state of the [n−1] representation,

and Q−V++···+ + Q+V−+···+, which belongs to the [n + 1] representation (but is not its

highest-weight state).

We are not aware of a simple, group-theoretic principle that predicts the possible

transitions between different conformal primaries that can be achieved by acting with theQ-

supersymmetries. It is clear that acting with a supercharge Q on a conformal primary O

at level ℓ can only give rise to operators O′ at level ℓ+ 1 whose Lorentz and R-symmetry

representation occurs in the tensor product of the supercharge representation RQ with O,

O′ ⊂ RQ ⊗O . (2.7)

However, a given irreducible subrepresentation O′ in this tensor product may fail to occur

in the image of O under the action of Q, for one of two reasons:

1.) The representation O′ does not occur at level ℓ + 1 in the multiplet. This could be

due to Fermi statistics or, if the multiplet is short, due to null states.

2.) The representation O′ occurs at level ℓ+ 1, but the transition Q : O → O′ does not

occur, even though it is allowed by group theory.

The occurrence of 2.) depends on the detailed structure of O and O′, written as Q-

descendants of the superconformal primary, i.e. on their full Clebsch-Gordan decompo-

sition.

In order to illustrate this phenomenon, we consider a long multiplet in three-

dimensional N = 4 theories. As in the discussion around (1.11), the supercharges Qi,i′
α

transform in the trifundamental [1]
(1;1)
1/2 of the su(2)R × su(2)′R symmetry and the su(2)

Lorentz symmetry. Here i, i′, α = ± are doublet indices for the respective su(2)’s. For sim-

plicity, we take the superconformal primary V ∈ [0](0;0) to be a singlet. We examine the true

highest weight states S,O,O′ of three conformal primaries that occur at levels ℓ = 2, 3, 4

in the multiplet,

ℓ = 2 : S =
(
Q+,+

+ Q−,−
− +Q−,−

+ Q+,+
− −Q+,−

+ Q−,+
− −Q−,+

+ Q+,−
−

)
V ∈ [0](0;0) ,

ℓ = 3 : O = Q+,+
+ S ∈ [1](1;1) ,

ℓ = 4 : O′ = Q+,+
+ Q+,−

+ Q−,+
+ Q+,+

− V ∈ [2](2;2) . (2.8)

Note that the transition Q : O → O′ does not occur, because Q+,+
+ O =

(
Q+,+

+

)2
S = 0 by

Fermi statistics, despite the fact that the representation [2](2;2) of O′ occurs in the tensor

product RQ ⊗O = [1](1;1) ⊗ [1](1;1). (In this example O′ is the only operator at ℓ = 4 that

transforms in the [2](2;2) representation.)
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The fact that some transitions do not occur even through they are consistent with

all quantum numbers raises the possibility of accidental top components, which cannot be

inferred from the decomposition of a superconformal multiplet into conformal primaries.

As we argued around (2.2) above, this does not occur in long multiplets, which have unique

top components. We will now examine the short multiplets.

2.2 Short multiplets and manifest top components

Short multiplets possess null states, which must be removed from the representation. In

some cases, this can be done by simply dropping some of the supercharges and constructing

a long multiplet using the remaining ones. (See for instance [13] for a discussion in four di-

mensions.) Since the resulting multiplets are essentially long multiplets constructed using a

reduced set of Q-supersymmetries, they have unique top components. More generally, the

null states lead to (potentially very complicated) relations, which must be solved explic-

itly.11 Such multiplets may possess additional top components, which can be categorized

as follows:

1.) Manifest Top Components: these are conformal primaries O that are necessarily

mapped into descendants by the Q-supersymmetries because of quantum numbers.

If O resides at level ℓ, then none of the conformal primaries at level ℓ+1 occur in the

tensor product RQ⊗O. All conformal primaries that reside at the highest level ℓmax

of a multiplet (so that there are no conformal primaries at level ℓmax+1) are examples

of manifest top components. The universal mass deformation in three dimensions,

which was discussed around (1.11), is also a manifest top component, even though it

resides in the middle of its multiplet, i.e. not at level ℓmax.

2.) Accidental Top Components: as discussed after (2.8), these are hypothetical confor-

mal primaries at level ℓ that are mapped into descendants, even though there are

conformal primaries at level ℓ+1 whose quantum numbers occur in the tensor prod-

uct RQ ⊗O. We do not know any examples of such accidental top components, and

we suspect they do not exist, but we have not ruled them out systematically.12

It is interesting to note that long multiplets have a reflection symmetry which exchanges

the raising and lowering generators Q and S, and hence relates the unique superconformal

primary to the unique top component. By contrast, short multiplets with multiple top

components do not respect this reflection symmetry of the Clifford algebra (2.1).

In this paper we will only discuss manifest top components, which can be analyzed

using the decomposition of a superconformal multiplet into conformal primaries. In the

remainder of this section, we illustrate various properties of manifest top components in

simple examples. The vast majority of manifest top components reside at the highest

level ℓmax of a multiplet. To our knowledge, the only Lorentz-invariant deformations that

11See for instance appendix C of [31] for some intricate examples in six-dimensional (2, 0) theories.
12In any given example, it is straightforward to check for accidental top components by explicitly solv-

ing the Clebsch-Gordan problem. We have implemented this numerically for a variety of superconformal

representations and confirmed the absence of accidental top components in those cases.
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reside in the middle of a multiplet are the universal mass deformations in three-dimensional

theories with N ≥ 4 supersymmetry (see the discussion around (1.11) and in section 4.3).

Suitably generic multiplets have a single (generally not Lorentz-invariant) operator at

level ℓmax. For long multiplets this was discussed around (2.2) above. Here we consider

an example of a generic short multiplet in three-dimensional N = 2 theories, where the

supercharges Qα and Qα carry u(1)R charges −1 and +1, i.e. they transform reducibly

as [1]
(−1)
1/2 ⊕ [1]

(1)
1/2. Here [j]

(r)
∆ denotes an operator of Lorentz spin 1

2j ∈
1
2Z≥0, R-charge r ∈

R, and scaling dimension ∆. Consider an A1A1[j]
(0)
1
2
j+1

multiplet, which obeys a shortening

condition of type A1 with respect to Qα (see table 4) and a shortening condition of type A1

with respect to Qα (see table 5), with generic Lorentz spin j and vanishing R-charge, r = 0.

The superconformal multiplet decomposes into the following conformal primaries:

[j]
(0)
1
2
j+1

Q

❄❄
❄

��
❄❄

❄Q
⑧⑧
⑧

��⑧⑧
⑧

[j + 1]
(+1)
1
2
(j+3)

Q
⑧⑧
⑧

��⑧⑧
⑧

[j + 1]
(−1)
1
2
(j+3)

Q

❄❄
❄

��
❄❄

❄

[j + 2]
(0)
1
2
j+2

(2.9)

Note that there is a unique operator at ℓmax = 2. This multiplet exists for any j ≥ 1.

It only contains conserved currents (generally with high spin). Taking into account the

conservation laws leads to 4 + 4 independent operators, for all values of j. The case j = 2

is the superconformal stress-tensor multiplet.

As the Lorentz and R-symmetry quantum numbers of a short multiplet are specialized

to small values, we encounter a host of sporadic phenomena that can result in additional

top components. We have analyzed these phenomena on a case-by-case basis, by relying

on the explicit construction of unitary superconformal multiplets in [19]. As an example,

consider an A2A2[0]
(0)
1 flavor current multiplet in three-dimensional N = 2 theories, which

obeys a Q-shortening condition of type A2 (see table 4) and a Q-shortening condition of

type A2 (see table 5). It can be viewed as the specialization of the A1A1[j]
(0)
1
2
j+1

multiplets

discussed above to j = 0. As indicated by the subscripts on A and A, the primary null

states jump from ℓ = 1 to ℓ = 2. The component decomposition of the A2A2[0]
(0)
1 multiplet
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is well known,

[0]
(0)
1

Q

❄❄
❄❄

��
❄❄

❄❄
Q
⑧⑧
⑧⑧

��⑧⑧
⑧⑧

[1](+1)

Q
⑧⑧
⑧⑧

��⑧⑧
⑧⑧

[1](−1)

Q

❄❄
❄❄

��
❄❄

❄❄

[0]
(0)
2 ⊕ [2]

(0)
2

There are now two manifest top components at ℓmax = 2. The conserved flavor current [2]
(0)
2

is the generic top component, i.e. the specialization of the top component [j+2]
(0)
1
2
j+2

in (2.9)

to j = 0. The additional scalar [0]
(0)
2 is special to j = 0. It gives rise to the Lorentz-invariant

flavor mass deformation in these theories, which is further discussed in section 4.1.

As in the previous example, many multiplets with multiple top components con-

tain conserved currents, but that is not always the case. Consider an example in four-

dimensional N = 2 SCFTs. Operators are labeled as [ j; j ]
(R ; r)
∆ , where j, j and R

are integer-valued Dynkin labels for the so(3, 1) = su(2) × su(2) Lorentz symmetry and

the su(2)R symmetry, while r ∈ R is the u(1)R charge and ∆ is the scaling dimension. The

supercharges Qα and Qα̇ transform as [1; 0]
(1;−1)
1/2 ⊕ [0; 1]

(1;+1)
1/2 . Consider an A2A2[0; 0]

(R;0)

multiplet, which obeys a shortening condition of type A2 with respect to Qα (see table 4)

and a shortening condition of type A2 with respect to Qα̇ (see table 5). The superconformal

primary is given by V = [0; 0]
(R;0)
R+2 , and any R ∈ Z≥0 is allowed. For sufficiently large R,

there is a single top component at level ℓmax = 6, which transforms as [1; 1]
(R−2 ; 0)
R+5 . (For

generic R, the multiplet is tabulated in equation (4.37) of [13].) However, when R = 0, 1

this top component disappears, and the multiplet undergoes further shortening, i.e. ℓmax

decreases. The case R = 0 is the stress-tensor multiplet, which also contains the con-

served R-symmetry and supersymmetry currents; the stress tensor is the unique top com-

ponent at ℓmax = 4. However, for R = 1 the multiplet has two manifest top components,
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at ℓmax = 5, as seen in its explicit decomposition into conformal primaries:

[0; 0]
(1;0)
3

Q

❄❄
❄❄

��
❄❄

❄❄
Q
⑧⑧
⑧⑧

��⑧⑧
⑧⑧

[0; 1]
(2;1)⊕(0;1)
7/2

Q

❄❄
❄❄

��
❄❄

❄❄
Q
⑧⑧
⑧⑧

��⑧⑧
⑧⑧

[0; 2]
(1;2)
4 ⊕ [0, 0]

(1;2)
4

Q

❄❄
❄❄

��
❄❄

❄❄
Q
⑧⑧
⑧

��⑧⑧
⑧

[0; 1]
(0;3)
9/2

Q
⑧⑧
⑧⑧

��⑧⑧
⑧⑧

[1; 0]
(2;−1)⊕(0;−1)
7/2

Q

❄❄
❄❄

��
❄❄

❄❄
Q
⑧⑧
⑧⑧

��⑧⑧
⑧⑧

[1; 1]
(3;0)⊕2(1;0)
4

Q

❄❄
❄

��
❄❄
❄Q

⑧⑧
⑧

��⑧⑧
⑧

[1; 2]
(2;1)⊕(0;1)
9/2

[1; 0]
(2;1)⊕(0;1)
9/2

Q

❄❄
❄

��
❄❄
❄Q

⑧⑧
⑧

��⑧⑧
⑧

[1; 1]
(1;2)
5

Q
⑧⑧
⑧⑧

��⑧⑧
⑧⑧

[2; 0]
(1;−2)
4 ⊕ [0; 0]

(1;−2)
4

Q

❄❄
❄

��
❄❄
❄Q

⑧⑧
⑧⑧

��⑧⑧
⑧⑧

[2; 1]
(2;−1)⊕(0;−1)
9/2

[0; 1]
(2;−1)⊕(0;−1)
9/2

Q
⑧⑧
⑧

��⑧⑧
⑧

Q

❄❄

��
❄❄

[2; 2]
(1;0)
5 ⊕ [2; 0]

(1;0)
5 ⊕ [0; 2]

(1;0)
5

Q
⑧⑧
⑧⑧

��⑧⑧
⑧⑧

Q

❄❄
❄❄

��
❄❄

❄❄

[2; 1]
(0;1)
11/2

[1; 0]
(0;−3)
9/2

Q

❄❄
❄❄

��
❄❄

❄❄

[1; 1]
(1;−2)
5

Q

❄❄
❄❄

��
❄❄

❄❄

[1; 2]
(0;−1)
11/2

Using conformal unitarity bounds (see for instance section 2.5 of [12]), it can be checked

that this multiplet does not contain any conserved currents.

3 Tables of supersymmetric deformations

In this section we tabulate all Lorentz-invariant supersymmetric deformations of interacting

SCFTs in 3 ≤ d ≤ 6 dimensions. The subsections describing the results for different values

of d and N are largely self-contained and can be read independently. In each case we

briefly summarize our conventions and review the Lorentz and R-symmetry transformation

properties of the supercharges. As was already stated in the introduction, we always use

integer-valued Dynkin labels to denote Lie-algebra representations.13

13For the rank-r odd and even orthogonal algebras so(2r + 1) and so(2r), the relation between Dynkin

labels Ri ∈ Z and orthogonal labels hi ∈
1
2
Z (which are, for instance, used in [12, 23]) is given by

so(2r + 1) : hi = Ri +Ri+1 + · · ·+Rr−1 +
1

2
Rr (i = 1, . . . , r − 1) , hr =

1

2
R .

so(2r) : hi = Ri +Ri+1 + · · ·+Rr−2 +
Rr−1 +Rr

2
(i = 1, . . . , r − 2) ,

hr−1 =
Rr−1 +Rr

2
, hr =

Rr−1 −Rr

2
.
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For each d and N , we summarize the possible unitarity superconformal multiplets,

relying on the results of [12, 13, 20–23]. We use a streamlined labeling scheme for su-

perconformal representations that uniformly covers all values of d and N . (See [19] for a

detailed discussion.) Multiplets are denoted by capital letters that indicate whether they

satisfy any shortening conditions. Long multiplets are always denoted by L, while the let-

ters A,B,C,D indicate short multiplets. A-type multiplets exist for all values of d and N .

They reside at the threshold to the continuum of long multiplets, and their Lorentz or R-

symmetry quantum numbers are not restricted. By contrast, the letters B,C,D denote

families of short multiplets that are isolated from the continuum and whose Lorentz or R-

symmetry quantum numbers are restricted. The notation is chosen such that A,B,C,D-

type multiplets with the same Lorentz and R-symmetry quantum numbers are ordered

according to their scaling dimension: ∆A > ∆B > ∆C > ∆D.

Short multiplets have null states, which descend from a primary null state whose

quantum numbers are uniquely fixed by those of the superconformal primary. We will

use a subscript ℓ to denote the level of the primary null state, e.g. Aℓ denotes an A-type

shortening condition whose primary null state resides at level ℓ. In d = 4 and in three-

dimensional N = 2 theories there are independent Q and Q supercharges, both of which

give rise to shortening conditions. In these theories, we denote multiplets by a pair of capital

letters (one unbarred and one barred) to indicate the Q,Q null states, e.g. LB1 or A1A1.

For every value of d and N , we list the superconformal shortening conditions allowed

by unitarity, the possible Lorentz and R-symmetry quantum numbers of the supercon-

formal primary, the restrictions on its scaling dimension imposed by unitarity, and the

quantum numbers of the primary null state. In theories with Q and Q supercharges, we

independently list the corresponding shortening conditions, which must be combined in a

consistent fashion to obtain a sensible superconformal multiplet.

In each case, we then tabulate (and briefly comment on) all Lorentz-invariant super-

symmetric deformations. In these tables, we indicate both the superconformal primary of

the multiplet containing the deformation, as well as the deformation itself. Here we would

like to make some general comments, which apply for all values of d and N .

• In this section, we only discuss Lorentz-invariant deformations.14 As can be seen from

the tables below, the superconformal primaries of the multiplets that harbor such

deformations are also always Lorentz scalars. In order to streamline the presentation,

we will therefore omit the (trivial) Lorentz quantum numbers from the deformation

tables.

• We shift the quantum numbers of the superconformal primaries by constant offsets,

to make the quantum numbers of the deformations as uniform as possible. This

facilitates the comparison of deformations that reside in different multiplets.

• The deformations are ordered according to the level at which they reside in their

respective multiplets. Every table starts with deformations that reside in the shortest

14See section 5.3 for some examples of supersymmetric deformations that break Lorentz invariance.
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possible multiplets and ends with generalized D-term deformations, which reside in

long multiplets.

• For some values of d and N , we find deformations residing in multiplets that also

contain additional supersymmetry currents. We will not include such deformations

in our tables, since they can be thought of as deformations of a theory with enhanced

supersymmetry. Similarly, we will not tabulate deformations residing in multiplets

that also contain higher-spin currents, since such theories are expected to be free [32].

See [19] for a systematic discussion of superconformal multiplets with conserved cur-

rents.

• Some deformations are related by Hermitian conjugation. We indicate conjugate

pairs by including a common symbol, e.g. (∗) or (⋆), in the ‘comments’ column of the

deformation tables. We similarly indicate deformations that are related by mirror

symmetry or so(8)R triality in three-dimensional N = 4 or N = 8 theories.

3.1 Three dimensions

In this subsection we list all Lorentz-invariant deformations of three-dimensional SCFTs

with 1 ≤ N ≤ 6 and N = 8 supersymmetry. Unitarity SCFTs with N ≥ 9 exist,

but are necessarily free, because the stress-tensor multiplet also contains higher-spin

currents [19]. Genuine theories with N = 7 supersymmetry do not exist: they always

enhance to N = 8, because the N = 7 stress-tensor multiplet contains eight, rather than

seven, supersymmetry currents [19, 33]. The pertinent superconformal algebras and their

unitary representations are briefly summarized below. (See for instance [12, 19, 23] and

references therein for additional details.) Throughout, representations of the so(3) = su(2)

Lorentz algebra are denoted by

[j] , j ∈ Z≥0 . (3.1)

Here j is an integer-valued su(2) Dynkin label, so that the [j]-representation is (j + 1)-

dimensional. (The conventional half-integral su(2) spin is j
2 .) We write [j]∆ whenever we

wish to indicate the scaling dimension ∆.

3.1.1 d = 3, N = 1

The N = 1 superconformal algebra is osp(1|4), which does not contain an R-symmetry.

The Q-supersymmetries transform as

Q ∈ [1]1/2 , NQ = 2 . (3.2)

The superconformal unitarity bounds and shortening conditions are summarized in table 2.

As is summarized in table 3, the only Lorentz-invariant supersymmetric deformations

of three-dimensional N = 1 SCFTs are D-terms, which reside in long L′ multiplets. They

can be relevant, irrelevant, or marginal. Since they reside in long multiplets, we generally

do not expect marginal deformations to remain exactly marginal beyond leading order.
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Name Primary Unitarity Bound Null State

L [j]∆ , j ≥ 1 ∆ > 1
2 j + 1 −

L′ [0]∆ ∆ > 1
2 −

A1 [j]∆ , j ≥ 1 ∆ = 1
2 j + 1 [j − 1]∆+1/2

A′
2 [0]∆ ∆ = 1

2 [0]∆+1

B1 [0]∆ ∆ = 0 [1]∆+1/2

Table 2. Shortening conditions in three-dimensional N = 1 SCFTs.

Primary O Deformation δL Comments

L′
{
∆O > 1

2

}
Q2O ∈

{
∆ > 3

2

}
D-Term

Table 3. Deformations of three-dimensional N = 1 SCFTs.

3.1.2 d = 3, N = 2

The N = 2 superconformal algebra is osp(2|4), hence the R-symmetry is so(2)R ≃ u(1)R.

Operators of R-charge r ∈ R are denoted by (r). There are independent Q and Q super-

symmetries, which transform as

Q ∈ [1]
(−1)
1/2 , Q ∈ [1]

(1)
1/2 , NQ = 4 . (3.3)

Superconformal multiplets obey unitarity bounds and shortening conditions with respect

to both Q and Q, which are summarized in tables 4 and 5, respectively. As a result, they

are labeled by a pair of capital letters. For instance, a generic chiral multiplet (annihilated

by all Q supercharges) is denoted by LB1[0]
(r)
r . Consistency of the L and B1 shortening

conditions in tables 4 and 5 requires that r > 1
2 . By contrast, a free chiral scalar satis-

fies ∆ = r = 1
2 and resides in an A2B1[0]

(1/2)
1/2 multiplet, which is annihilated by Q2 as well

as all Q supercharges. Conserved flavor currents reside in an A2A2[0]
(0)
1 multiplet, while

the stress-tensor multiplet is given by A1A1[2]
(0)
2 .

The Lorentz-invariant supersymmetric deformations of three-dimensional N = 2

SCFTs are summarized in table 6. The F -term deformations reside in chiral LB1 and

anti-chiral B1L multiplets, which are related by complex conjugation. (This is indicated

by the symbol (∗) in table 6.) Depending on their R-charge, they may be relevant, ir-

relevant, or marginal. As in four-dimensional N = 1 theories (see section 3.2.1 below),

marginal deformations are exactly marginal if and only if they do not break any flavor

symmetries [16], because the chiral LB1[0]
(2)
2 multiplet containing the marginal deforma-

tion (and its complex conjugate) can only form a LL[0](0) long multiplet by pairing up

with an A2A2[0]
(0)
1 flavor current multiplet.

– 19 –



J
H
E
P
1
1
(
2
0
1
6
)
1
3
5

Name Primary Unitarity Bound Q Null State

L [j]
(r)
∆ ∆ > 1

2 j − r + 1 −

A1 [j]
(r)
∆ , j ≥ 1 ∆ = 1

2 j − r + 1 [j − 1]
(r−1)
∆+1/2

A2 [0]
(r)
∆ ∆ = 1− r [0]

(r−2)
∆+1

B1 [0]
(r)
∆ ∆ = −r [1]

(r−1)
∆+1/2

Table 4. Q shortening conditions in three-dimensional N = 2 SCFTs.

Name Primary Unitarity Bound Q Null State

L [j]
(r)
∆ ∆ > 1

2 j + r + 1 −

A1 [j]
(r)
∆ , j ≥ 1 ∆ = 1

2 j + r + 1 [j − 1]
(r+1)
∆+1/2

A2 [0]
(r)
∆ ∆ = 1 + r [0]

(r+2)
∆+1

B1 [0]
(r)
∆ ∆ = r [1]

(r+1)
∆+1/2

Table 5. Q shortening conditions in three-dimensional N = 2 SCFTs.

Primary O Deformation δL Comments

A2A2

{
(0)

∆O = 1

}
QQO ∈

{
(0)

∆ = 2

}
Flavor Current

LB1

{
(r + 2) , r > −3

2

∆O = 2 + r

}
Q2O ∈

{
(r) , r > −3

2

∆ = 3 + r > 3
2

}
F -Term (∗)

B1L

{
(r − 2) , r < 3

2

∆O = 2− r

}
Q

2
O ∈

{
(r) , r < 3

2

∆ = 3− r > 3
2

}
F -Term (∗)

LL

{
(r)

∆O > 1 + |r|

}
Q2Q

2
O ∈

{
(r)

∆ > 3 + |r|

}
D-Term

Table 6. Deformations of three-dimensional N = 2 SCFTs. Here r ∈ R denotes the u(1)R charge

of the deformation.
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Name Primary Unitarity Bound Null State

L [j]
(R)
∆ ∆ > 1

2 j +
1
2R+ 1 −

A1 [j]
(R)
∆ , j ≥ 1 ∆ = 1

2 j +
1
2R+ 1 [j − 1]

(R+2)
∆+1/2

A2 [0]
(R)
∆ ∆ = 1

2R+ 1 [0]
(R+4)
∆+1

B1 [0]
(R)
∆ ∆ = 1

2R [1]
(R+2)
∆+1/2

Table 7. Shortening conditions in three-dimensional N = 3 SCFTs.

Primary O Deformation δL Comments

B1

{
(R = 2)
∆O = 1

}
Q2O ∈

{
(R = 2)
∆ = 2

}
Flavor Current

B1

{
(R+ 4)

∆O = 2 + 1
2R

}
Q4O ∈

{
(R)

∆ = 4 + 1
2R

}
−

L

{
(R)

∆O > 1 + 1
2R

}
Q6O ∈

{
(R)

∆ > 4 + 1
2R

}
D-Term

Table 8. Deformations of three-dimensional N = 3 SCFTs. The su(2)R Dynkin label R ∈ Z≥0

denotes the R-charge of the deformation.

3.1.3 d = 3, N = 3

TheN = 3 superconformal algebra is osp(3|4), so that there is a so(3)R ≃ su(2)R symmetry.

The R-charges are denoted by (R), where R ∈ Z≥0 is an su(2)R Dynkin label. The Q-

supersymmetries transform in the vector representation 3 of so(3)R,

Q ∈ [1]
(2)
1/2 , NQ = 6 . (3.4)

The superconformal unitarity bounds and shortening conditions are summarized in table 7.

For instance, B1[0]
(1)
1/2 is a free hypermultiplet, and B1[0]

(2)
1 contains a conserved flavor

current.

The Lorentz-invariant supersymmetric deformations of three-dimensional N = 3

SCFTs are summarized in table 8. The only exception is a relevant deformation residing in

an A2[0]
(0)
1 multiplet, which contains an extra supersymmetry current that enhances N = 3

toN = 4. The relevant deformation is the universal mass deformation residing in theN = 4

stress-tensor multiplet (see sections 3.1.4 and 4.3). Note that N = 3 theories never have

marginal deformations, and in genuine N = 3 theories the only relevant deformations are

flavor masses residing in flavor current multiplets (see section 4.1).
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Name Primary Unitarity Bound Null State

L [j]
(R ;R′)
∆ ∆ > 1

2 j +
1
2 (R+R′) + 1 −

A1 [j]
(R ;R′)
∆ , j ≥ 1 ∆ = 1

2 j +
1
2 (R+R′) + 1 [j − 1]

(R+1 ;R′+1)
∆+1/2

A2 [0]
(R ;R′)
∆ ∆ = 1

2 (R+R′) + 1 [0]
(R+2 ;R′+2)
∆+1

B1 [0]
(R ;R′)
∆ ∆ = 1

2 (R+R′) [1]
(R+1 ;R′+1)
∆+1/2

Table 9. Shortening conditions in three-dimensional N = 4 SCFTs.

3.1.4 d = 3, N = 4

The N = 4 superconformal algebra is osp(4|4), hence the R-symmetry is so(4)R ≃

su(2)R×su(2)′R. Its representations are denoted by (R ;R′), where R,R′ ∈ Z≥0 are Dynkin

labels for su(2)R and su(2)′R, respectively. For example, (1; 0) and (0; 1) are the left- and

right-handed spinors 2 and 2′ of so(4)R, while (1; 1) is its vector representation 4. Note

that the su(2)R and su(2)′R factors of the R-symmetry algebra are inert under complex

conjugation. However, they are exchanged by the action of mirror symmetry M , which is

an outer automorphism of the N = 4 superconformal algebra. (It need not be a symmetry

of the field theory, although it can be.) The Q-supersymmetries transform as

Q ∈ [1]
(1;1)
1/2 , NQ = 8 . (3.5)

The superconformal unitarity bounds and shortening conditions are summarized in table 9.

For instance, B1[0]
(1;0)
1/2 is a free hypermultiplet, and B1[0]

(0;1)
1/2 is a free twisted hypermulti-

plet. The two multiplets are exchanged by the mirror automorphism M . By contrast, the

stress-tensor multiplet A2[0]
(0;0)
1 is invariant under M .

The Lorentz-invariant supersymmetric deformations of three-dimensional N = 4

SCFTs are summarized in table 10. There are no marginal deformations, as was ob-

served holographically in [27]. The only relevant deformations are flavor masses residing

in flavor current multiplets, or universal masses residing in the stress-tensor multiplet (see

section 4). Note that the two flavor mass deformations are exchanged by mirror symmetry

(this is indicated by the symbol (M) in table 10), and likewise for the two F -term defor-

mations (as indicated by (M̃) in table 10). The only deformation that does not appear

in table 10 resides in a B1[0]
(1;1)
1 multiplet, which contains an additional supersymmetry

current that enhances N = 4 to N = 5. It is an additional universal mass deformation

that resides in the N = 5 stress-tensor multiplet (see sections 3.1.5 and 4.3).

3.1.5 d = 3, N = 5

The N = 5 superconformal algebra is osp(5|4) and therefore the R-symmetry is so(5)R. Its

representations are denoted by (R1, R2), where R1, R2 ∈ Z≥0 are so(5)R Dynkin labels. For

example, (1, 0) is the vector representation 5, while (0, 1) is the spinor representation 4.15

15Note that the corresponding sp(4) ≃ so(5) Dynkin labels are reversed, e.g. (1, 0) is the 4 of sp(4).
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Primary O Deformation δL Comments

B1

{
(2 ; 0)
∆O = 1

}
Q2O ∈

{
(0 ; 2)
∆ = 2

}
Flavor Current (M)

B1

{
(0 ; 2)
∆O = 1

}
Q2O ∈

{
(2 ; 0)
∆ = 2

}
Flavor Current (M)

A2

{
(0 ; 0)
∆O = 1

}
Q2O ∈

{
(0 ; 0)
∆ = 2

}
Stress Tensor

B1

{
(R+ 4 ; 0)

∆O = 2 + 1
2R

}
Q4O ∈

{
(R ; 0)

∆ = 4 + 1
2R

}
F -Term (M̃)

B1

{
(0 ;R′ + 4)

∆O = 2 + 1
2R

′

}
Q4O ∈

{
(0 ;R′)

∆ = 4 + 1
2R

′

}
F -Term (M̃)

B1

{
(R+ 2 ;R′ + 2)

∆O = 2 + 1
2(R+R′)

}
Q6O ∈

{
(R ;R′)

∆ = 5 + 1
2(R+R′)

}
−

L

{
(R ;R′)

∆O > 1 + 1
2 (R+R′)

}
Q8O ∈

{
(R ;R′)

∆ > 5 + 1
2 (R+R′)

}
D-Term

Table 10. Deformations of three-dimensional N = 4 SCFTs. The su(2)R × su(2)′R Dynkin la-

bels R,R′ ∈ Z≥0 denote the R-charges of the deformation.

The Q-supersymmetries transform as

Q ∈ [1]
(1,0)
1/2 , NQ = 10 . (3.6)

The superconformal unitarity bounds and shortening conditions are summarized in ta-

ble 11. For example, B1[0]
(0,1)
1/2 is a free hypermultiplet and B1[0]

(1,0)
1 is the stress-tensor

multiplet.

The Lorentz-invariant supersymmetric deformations of three-dimensional N = 5

SCFTs are summarized in table 12. There are no marginal deformations, and the only

relevant deformations are universal masses residing in the stress-tensor multiplet (see sec-

tion 4.3). Two relevant deformations have been omitted from table 12. One resides in

a B1[0]
(0,2)
1 multiplet, which contains an extra supersymmetry current that enhances N = 5

to N = 6 (see section 3.1.6), and the other one belongs to an A2[0]
(0,0)
1 multiplet, which

contains higher spin currents.
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Name Primary Unitarity Bound Null State

L [j]
(R1,R2)
∆ ∆ > 1

2 j +R1 +
1
2R2 + 1 −

A1 [j]
(R1,R2)
∆ , j ≥ 1 ∆ = 1

2 j +R1 +
1
2R2 + 1 [j − 1]

(R1+1,R2)
∆+1/2

A2 [0]
(R1,R2)
∆ ∆ = R1 +

1
2R2 + 1 [0]

(R1+2,R2)
∆+1

B1 [0]
(R1,R2)
∆ ∆ = R1 +

1
2R2 [1]

(R1+1,R2)
∆+1/2

Table 11. Shortening conditions in three-dimensional N = 5 SCFTs.

Primary O Deformation δL Comments

B1

{
(1, 0)

∆O = 1

}
Q2O ∈

{
(1, 0)
∆ = 2

}
Stress Tensor

B1

{
(0, R2 + 4)

∆O = 2 + 1
2R2

}
Q6O ∈

{
(0, R2)

∆ = 5 + 1
2R2

}
−

B1

{
(R1 + 2, R2)

∆O = 2 +R1 +
1
2R2

}
Q8O ∈

{
(R1, R2)

∆ = 6 +R1 +
1
2R2

}
−

L

{
(R1, R2)

∆O > 1 +R1 +
1
2R2

}
Q10O ∈

{
(R1, R2)

∆ > 6 +R1 +
1
2R2

}
D-Term

Table 12. Deformations of three-dimensional N = 5 SCFTs. The so(5)R Dynkin labels R1, R2 ∈

Z≥0 denote the R-charges of the deformation.

3.1.6 d = 3, N = 6

The N = 6 superconformal algebra is osp(6|4) and thus the R-symmetry is so(6)R. The R-

symmetry representations are denoted by (R1, R2, R3), where R1, R2, R3 ∈ Z≥0 are so(6)R
Dynkin labels. Therefore (1, 0, 0) is the vector representation 6, while (0, 1, 0) and (0, 0, 1)

are the two chiral spinor representations 4 and 4, which are related by complex conjuga-

tion.16 The Q-supersymmetries transform as

Q ∈ [1]
(1,0,0)
1/2 , NQ = 12 . (3.7)

16Note that the Dynkin labels of the isomorphic so(6) and su(4) algebras are related by a permutation.

For instance, the (0, 1, 0) and (0, 0, 1) chiral spinor representations of so(6) correspond to the fundamen-

tal (1, 0, 0) and anti-fundamental (0, 0, 1) of su(4), while the vector (1, 0, 0) of so(6) is the (0, 1, 0) of su(4).
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Name Primary Unitarity Bound Null State

L [j]
(R1,R2,R3)
∆ ∆ > 1

2 j +R1 +
1
2 (R2 +R3) + 1 −

A1 [j]
(R1,R2,R3)
∆ , j ≥ 1 ∆ = 1

2 j +R1 +
1
2 (R2 +R3) + 1 [j − 1]

(R1+1,R2,R3)
∆+1/2

A2 [0]
(R1,R2,R3)
∆ ∆ = R1 +

1
2 (R2 +R3) + 1 [0]

(R1+2,R2,R3)
∆+1

B1 [0]
(R1,R2,R3)
∆ ∆ = R1 +

1
2 (R2 +R3) [1]

(R1+1,R2,R3)
∆+1/2

Table 13. Shortening conditions in three-dimensional N = 6 SCFTs.

The superconformal unitarity bounds and shortening conditions are summarized in ta-

ble 13. For example, B1[0]
(0,1,0)
1/2 , B1[0]

(0,0,1)
1/2 are complex conjugate free hypermultiplets,

and B1[0]
(0,1,1)
1 is the stress-tensor multiplet.

The Lorentz-invariant supersymmetric deformations of three-dimensional N = 6

SCFTs are summarized in table 14. There are no marginal deformations, and the only

relevant deformations are universal masses residing in the stress-tensor multiplet (see sec-

tion 4.3). Note that the two F -term deformations are related by complex conjugation.

(This is indicated by the symbol (∗) in table 14.) The following multiplets contain relevant

deformations, but have been omitted from table 14: the B1[0]
(0,0,2)
1 multiplet and its com-

plex conjugate B1[0]
(0,2,0)
1 contain two extra supersymmetry currents that enhance N = 6

to N = 8 (see section 3.1.7), consistent with the fact that there are no genuniue N = 7

SCFTs, while the A2[0]
(0,0,0)
1 and B1[0]

(1,0,0)
1 multiplets contain higher spin currents.

3.1.7 d = 3, N = 8

The N = 8 superconformal algebra is osp(8|4) and thus the R-symmetry is so(8)R. The R-

symmetry representations are denoted by (R1, R2, R3, R4), where R1, R2, R3, R4 ∈ Z≥0

are so(8)R Dynkin labels. For instance, (1, 0, 0, 0) is the vector representation 8v,

while (0, 0, 1, 0) and (0, 0, 0, 1) are the two chiral spinor representations 8s and 8c. All

three representations are real (i.e. the spinors 8s, 8c are Majorana-Weyl), and they are

permuted by the S3 triality group, which is an outer automorphism of so(8)R. We choose

a triality frame in which the Q-supersymmetries transform in the vector representation 8v,

Qα ∈ [1]
(1,0,0,0)
1/2 , NQ = 16 . (3.8)

This choice preserves a Z2 ⊂ S3 triality subgroup T that exchanges 8s ↔ 8c and is similar to

the mirror automorphism M of three-dimensional N = 4 theories discussed in section 3.1.4.

The superconformal unitarity bounds and shortening conditions are summarized in ta-

ble 15. For instance, B1[0]
(0,0,1,0) is a free hypermultiplet and B1[0]

(0,0,0,1) is a free twisted

hypermultiplet. The two multiplets are exchanged by T . Similarly, there are two possible

stress-tensor multiplets B1[0]
(0,0,2,0)
1 and B1[0]

(0,0,0,2)
1 , which are also exchanged by T . An

irreducible quantum field theory, without locally decoupled sectors, is expected to possess

a unique stress tensor (see for instance [32]), and hence only one stress-tensor multiplet.

Specifying the stress-tensor multiplet therefore completely fixes the triality frame.
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Primary O Deformation δL Comments

B1

{
(0, 1, 1)
∆O = 1

}
Q2O ∈

{
(0, 1, 1)
∆ = 2

}
Stress Tensor

B1

{
(0, R2 + 4, 0)

∆O = 2 + 1
2R2

}
Q6O ∈

{
(0, R2, 0)

∆ = 5 + 1
2R2

}
F -Term (∗)

B1

{
(0, 0, R3 + 4)

∆O = 2 + 1
2R3

}
Q6O ∈

{
(0, 0, R3)

∆ = 5 + 1
2R3

}
F -Term (∗)

B1

{
(0, R2 + 2, R3 + 2)

∆O = 2 + 1
2 (R2 +R3)

}
Q8O ∈

{
(0, R2, R3)

∆ = 6 + 1
2 (R2 +R3)

}
−

B1

{
(R1 + 2, R2, R3)

∆O = 2 +R1 +
1
2 (R2 +R3)

}
Q10O ∈

{
(R1, R2, R3)

∆ = 7 +R1 +
1
2 (R2 +R3)

}
−

L

{
(R1, R2, R3)

∆O > 1 +R1 +
1
2 (R2 +R3)

}
Q12O ∈

{
(R1, R2, R3)

∆ > 7 +R1 +
1
2 (R2 +R3)

}
D-Term

Table 14. Deformations of three-dimensional N = 6 SCFTs. The R-charges of the deformation

are denoted by the so(6)R Dynkin labels R1, R2, R3 ∈ Z≥0.

Name Primary Unitarity Bound Null State

L [j]
(R1,R2,R3,R4)
∆ ∆ > 1

2
j +R1 +R2 +

1
2
(R3 +R4) + 1 −

A1 [j]
(R1,R2,R3,R4)
∆ , j ≥ 1 ∆ = 1

2
j +R1 +R2 +

1
2
(R3 +R4) + 1 [j − 1]

(R1+1,R2,R3,R4)

∆+1/2

A2 [0]
(R1,R2,R3,R4)
∆ ∆ = R1 +R2 +

1
2
(R3 +R4) + 1 [0]

(R1+2,R2,R3,R4)
∆+1

B1 [0]
(R1,R2,R3,R4)
∆ ∆ = R1 +R2 +

1
2
(R3 +R4) [1]

(R1+1,R2,R3,R4)

∆+1/2

Table 15. Shortening conditions in three-dimensional N = 8 SCFTs.

The Lorentz-invariant supersymmetric deformations of three-dimensional N = 8

SCFTs are summarized in table 16. There are no marginal deformations, and the only

relevant deformations are universal masses (see section 4.3) residing in the two stress-

tensor multiplets, which are exchanged by the triality subgroup T . (This is indicated

by the symbol (T ) in table 16.) Similarly, the two F -term deformations are also ex-

changed by T (indicated by the symbol (T̃ ) in table 16). Several multiplets containing

relevant deformations have been omitted from table 16, because they also contain higher-

spin currents: A2[0]
(0,0,0,0)
1 , B1[0]

(0,0,1,1)
2 , B1[0]

(1,0,0,0)
2 , and B1[0]

(0,1,0,0)
2 . Among these,

the B1[0]
(0,0,1,1)
2 multiplet is distinguished by the fact that it contains an extra super-

symmetry current, which enhances N = 8 to N = 9. This is consistent with the fact

that N ≥ 9 theories exist, but are necessarily free [19].
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Primary O Deformation δL Comments

B1

{
(0, 0, 2, 0)
∆O = 1

}
Q2O ∈

{
(0, 0, 0, 2)
∆ = 2

}
Stress Tensor (T )

B1

{
(0, 0, 0, 2)
∆O = 1

}
Q2O ∈

{
(0, 0, 2, 0)
∆ = 2

}
Stress Tensor (T )

B1

{
(0, 0, R3 + 4, 0)

∆O = 2 + 1

2
R3

}
Q8O ∈

{
(0, 0, R3, 0)

∆ = 6 + 1

2
R3

}
F -Term (T̃ )

B1

{
(0, 0, 0, R4 + 4)

∆O = 2 + 1

2
R4

}
Q8O ∈

{
(0, 0, 0, R4)

∆ = 6 + 1

2
R4

}
F -Term (T̃ )

B1

{
(0, 0, R3 + 2, R4 + 2)

∆O = 2 + 1

2
(R3 +R4)

}
Q10O ∈

{
(0, 0, R3, R4)

∆ = 7 + 1

2
(R3 +R4)

}
−

B1

{
(0, R2 + 2, R3, R4)

∆O = 2 +R2 +
1

2
(R3 +R4)

}
Q12O ∈

{
(0, R2, R3, R4)

∆ = 8 +R2 +
1

2
(R2 +R3)

}
−

B1

{
(R1 + 2, R2, R3, R4)

∆O = 2 +R1 +R2 +
1

2
(R3 +R4)

}
Q14O ∈

{
(R1, R2, R3, R4)

∆ = 9 +R1 +R2 +
1

2
(R3 +R4)

}
−

L

{
(R1, R2, R3, R4)

∆O > 1 +R1 +R2 +
1

2
(R3 +R4)

}
Q16O ∈

{
(R1, R2, R3, R4)

∆ > 9 +R1 +R2 +
1

2
(R3 +R4)

}
D-Term

Table 16. Deformations of three-dimensional N = 8 SCFTs. The R-charges of the deformation are denoted by the so(8)R Dynkin la-

bels R1, R2, R3, R4 ∈ Z≥0.

–
27

–



J
H
E
P
1
1
(
2
0
1
6
)
1
3
5

Name Primary Unitarity Bound Q Null State

L [ j; j ]
(r)
∆ ∆ > 2 + j − 3

2r −

A1 [ j; j ]
(r)
∆ , j ≥ 1 ∆ = 2 + j − 3

2r [ j − 1; j ]
(r−1)
∆+1/2

A2 [ 0; j ]
(r)
∆ ∆ = 2− 3

2r [ 0; j ]
(r−2)
∆+1

B1 [ 0; j ]
(r)
∆ ∆ = −3

2r [ 1; j ]
(r−1)
∆+1/2

Table 17. Q shortening conditions in four-dimensional N = 1 SCFTs.

3.2 Four dimensions

In this subsection we list all Lorentz-invariant supersymmetric deformations of four-

dimensional 1 ≤ N ≤ 4 SCFTs. (Unitary SCFTs with N ≥ 5 do not exist, because they

do not possess a stress tensor [19].) The corresponding superconformal algebras and their

unitary representations are briefly summarized below. (See for instance [12, 13, 19, 20] and

references therein for more detail.) Throughout, representations of the so(4) = su(2)×su(2)

Lorentz algebra are denoted by

[ j; j ] , j, j ∈ Z≥0 . (3.9)

Here j, j are integer-valued su(2) Dynkin labels, so that the representation in (3.9) has

dimension (j + 1)(j + 1). We use [ j; j ]∆ to indicate the Lorentz quantum numbers of an

operator with scaling dimension ∆.

3.2.1 d = 4, N = 1

The N = 1 superconformal algebra is su(2, 2|1), so that there is a u(1)R symmetry. Oper-

ators of R-charge r ∈ R are denoted by (r). The Q-supersymmetries transform as

Q ∈ [1; 0]
(−1)
1/2 , Q ∈ [0; 1]

(1)
1/2 , NQ = 4 . (3.10)

Superconformal multiplets obey unitarity bounds and shortening conditions with respect

to both Q and Q, which are summarized in tables 17 and 18, respectively. Consequently,

they are labeled by a pair of capital letters, e.g. LL[ j; j ]
(r)
∆ is a long multiplet without any

null states. A generic chiral multiplet with left spin j is annihilated by all Q supercharges

and denoted by LB1[ j; 0]
(r)
3r/2. Consistency of the L and B1 shortening conditions in ta-

bles 17 and 18 requires that r > 2
3 +

1
3j. By contrast, a free chiral scalar with j = 0, ∆ = 1

resides in an A2B1[0; 0]
(2/3)
1 multiplet, which is annihilated by Q2 as well as all Q super-

charges. Similarly, A1B1[1; 0]
(1)
3/2 is a free vector multiplet. Conserved flavor currents reside

in an A2A2[0; 0]
(0)
2 multiplet, while the stress-tensor multiplet is given by A1A1[1; 1]

(0)
3 .

The Lorentz-invariant supersymmetric deformations of four-dimensional N = 1 SCFTs

are summarized in table 19. They were first classified in [16]. The F -term deformations
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Name Primary Unitarity Bound Q Null State

L [ j; j ]
(r)
∆ ∆ > 2 + j + 3

2r −

A1 [ j; j ]
(r)
∆ , j ≥ 1 ∆ = 2 + j + 3

2r [ j; j − 1 ]
(r+1)
∆+1/2

A2 [ j; 0 ]
(r)
∆ ∆ = 2 + 3

2r [ j; 0 ]
(r+2)
∆+1

B1 [ j; 0 ]
(r)
∆ ∆ = 3

2r [ j; 1 ]
(r+1)
∆+1/2

Table 18. Q shortening conditions in four-dimensional N = 1 SCFTs.

Primary O Deformation δL Comments

LB1

{
(r + 2) , r > −4

3

∆O = 3 + 3
2r

}
Q2O ∈

{
(r) , r > −4

3

∆ = 4 + 3
2r > 2

}
F -Term (∗)

B1L

{
(r − 2) , r < 4

3

∆O = 3− 3
2r

}
Q

2
O ∈

{
(r) , r < 4

3

∆ = 4− 3
2r > 2

}
F -Term (∗)

LL

{
(r)

∆O > 2 + 3
2 |r|

}
Q2Q

2
O ∈

{
(r)

∆ > 4 + 3
2 |r|

}
D-Term

Table 19. Deformations of four-dimensional N = 1 SCFTs. Here r ∈ R denotes the R-charge of

the deformation.

reside in chiral and anti-chiral multiplets (one can think of them as superpotential deforma-

tions), which are related by complex conjugation. (This is indicated by the symbol (∗) in ta-

ble 19.) Depending on their R-charge, they may be relevant, irrelevant, or marginal. As was

shown in [16], marginal deformations are exactly marginal if and only if they do not break

any flavor symmetries. Essentially, this is because the chiral LB1[0, 0]
(2)
3 multiplet contain-

ing the marginal deformation (and its complex conjugate anti-chiral multiplet) can only

form a LL[0, 0](0) long multiplet by pairing up with an A2A2[0, 0]
(0)
2 flavor current multiplet.

3.2.2 d = 4, N = 2

The N = 2 superconformal algebra is su(2, 2|2), so that there is a su(2)R×u(1)R symmetry.

The R-charges of an operator are denoted by (R ; r), where R ∈ Z≥0 is an su(2)R Dynkin

label, while r ∈ R is the u(1)R charge. The Q-supersymmetries transform as

Q ∈ [1; 0]
(1 ;−1)
1/2 , Q ∈ [0; 1]

(1 ; 1)
1/2 , NQ = 8 . (3.11)

Superconformal multiplets obey unitarity bounds and shortening conditions with respect

to both Q and Q, which are summarized in tables 20 and 21, respectively. Therefore, they

are labeled by a pair of capital letters. For instance, LB1[0; 0]
(0 ; r)
r/2 is a chiral multiplet
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Name Primary Unitarity Bound Q Null State

L [ j; j ]
(R ; r)
∆ ∆ > 2 + j +R− 1

2r −

A1 [ j; j ]
(R ; r)
∆ , j ≥ 1 ∆ = 2 + j +R− 1

2r [ j − 1; j ]
(R+1 ; r−1)
∆+1/2

A2 [ 0; j ]
(R ; r)
∆ ∆ = 2 +R− 1

2r [ 0; j ]
(R+2 ; r−2)
∆+1

B1 [ 0; j ]
(R ; r)
∆ ∆ = R− 1

2r [ 1; j ]
(R+1 ; r−1)
∆+1/2

Table 20. Q shortening conditions in four-dimensional N = 2 SCFTs.

Name Primary Unitarity Bound Q Null State

L [ j; j ]
(R ; r)
∆ ∆ > 2 + j +R+ 1

2r −

A1 [ j; j ]
(R ; r)
∆ , j ≥ 1 ∆ = 2 + j +R+ 1

2r [ j; j − 1 ]
(R+1 ; r+1)
∆+1/2

A2 [ j; 0 ]
(R ; r)
∆ ∆ = 2 +R+ 1

2r [ j; 0 ]
(R+2 ; r+2)
∆+1

B1 [ j; 0 ]
(R ; r)
∆ ∆ = R+ 1

2r [ j; 1 ]
(R+1 ; r+1)
∆+1/2

Table 21. Q shortening conditions in four-dimensional N = 2 SCFTs.

of u(1)R charge r, which is annihilated by all Q supercharges, and B1B1[0; 0]
(2 ; 0)
2 is a

multiplet that contains a conserved flavor current.17

The Lorentz-invariant supersymmetric deformations of four-dimensional N = 2 SCFTs

are summarized in table 22. They were also found in [17]. In addition to relevant flavor

mass deformations (see section 4.1) , there are two kinds of F -term deformations: the

former reside in B1B1 multiplets and are necessarily irrelevant, while the latter reside in

chiral LB1 or anti-chiral B1L multiplets. The symbol (∗) in table 22 indicates that the chi-

ral and anti-chiral F -terms are related by complex conjugation. Depending on their u(1)R
charge, they may be relevant, irrelevant, or marginal. All marginal N = 2 preserving de-

formations must be exactly marginal, because the chiral LB1[0; 0]
(0 ; 4)
2 multiplet containing

the marginal deformation is absolutely protected: there is no recombination rule that allows

it to pair up with other multiplets into a long multiplet (see for instance [13, 30]). There

are also irrelevant 1
4 -BPS deformations that reside in generic LB1 and B1L multiplets. (As

indicated by the symbol (†) in table 22, they are related by complex conjugation.)

17In brief, the relation between our labeling scheme (which is somewhat similar to that used in [30]) and

the labeling scheme of [13] is as follows (see [19] for more detail): A∆
R,r(j,) = LL[j, ]

(R ; r)
∆ is a long multiplet,

and the short multiplets are given by (note that some of them are referred to as semi-short in [13]),

CR,r(j,) = A1,2L[j, ]
(R ; r)

, BR,r(0,) = B1L[0, ]
(R ; r)

, Er(0,) = B1L[0, ]
(0 ; r)

,

ĈR(j,) = A1,2A1,2[j, ]
(R ; j−)

, DR(0,) = B1A1,2[0, ]
(R ;−−2)

, B̂R = B1B1[0, 0]
(R ; 0)

.

Analogous relations for the multiplets CR,r(j,), BR,r(j,0), Er(j,0), and DR(j,0) can be obtained by complex

conjugation.
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Primary O Deformation δL Comments

B1B1

{
(2 ; 0)
∆O = 2

}
Q2O ⊕Q

2
O ∈

{
(0 ;−2)⊕ (0 ; 2)

∆ = 3

}
Flavor Current

B1B1

{
(R+ 4 ; 0)
∆O = 4 +R

}
Q2Q

2
O ∈

{
(R ; 0)

∆ = 6 +R

}
F -Term

LB1

{
(0 ; r + 4) , r > −2

∆O = 2 + 1
2r

}
Q4O ∈

{
(0 ; r) , r > −2

∆ = 4 + 1
2r > 3

}
F -Term (∗)

B1L

{
(0 ; r − 4) , r < 2

∆O = 2− 1
2r

}
Q

4
O ∈

{
(0 ; r) , r < 2

∆ = 4− 1
2r > 3

}
F -Term (∗)

LB1

{
(R+ 2 ; r + 2) , r > 0

∆O = 3 +R+ 1
2r

}
Q4Q

2
O ∈

{
(R ; r) , r > 0

∆ = 6 +R+ 1
2r > 6 +R

}
(†)

B1L

{
(R+ 2 ; r − 2) , r < 0

∆O = 3 +R− 1
2r

}
Q2Q

4
O ∈

{
(R ; r)

∆ = 6 +R− 1
2r > 6 +R

}
(†)

LL

{
(R ; r)

∆O > 2 +R+ 1
2 |r|

}
Q4Q

4
O ∈

{
(R ; r)

∆ > 6 +R+ 1
2 |r|

}
D-term

Table 22. Deformations of four-dimensional N = 2 SCFTs. The su(2)R Dynkin label R ∈ Z≥0

and the u(1)R charge r ∈ R denote the R-symmetry representation of the deformation.

3.2.3 d = 4, N = 3

TheN = 3 superconformal algebra is su(2, 2|3),18 with R-symmetry su(3)R×u(1)R. The R-

charges of an operator are denoted by (R1, R2 ; r). Here R1, R2 ∈ Z≥0 are su(3)R Dynkin

labels, e.g. (1, 0) denotes the fundamental 3 and (0, 1) the anti-fundamental 3. The u(1)R
charge is given by r ∈ R. The Q-supersymmetries transform as

Q ∈ [1; 0]
(1,0 ;−1)
1/2 , Q ∈ [0; 1]

(0,1 ; 1)
1/2 , NQ = 12 . (3.12)

Superconformal multiplets obey unitarity bounds and shortening conditions with respect

to both Q and Q, summarized in tables 23 and 24, and hence they are labeled by a pair of

capital letters. For instance, B1B1[0; 0]
(1,1 ; 0)
2 is the stress-tensor multiplet.

The Lorentz-invariant supersymmetric deformations of four-dimensional N = 3 SCFTs

are summarized in table 25. All entries in this table are irrelevant operators: there are no

relevant or marginal deformations. More precisely, there are no multiplets of N = 3 su-

perconformal symmetry that contain relevant supersymmetric deformations, and there are

18A standard argument (based on the single-particle representations of the N -extended super-Poincaré

algebras and the CPT theorem, see for instance [34]) shows that weakly coupledN = 3 SCFTs must actually

be N = 4 theories. However, no known argument rules out the existence of strongly-coupled N = 3 SCFTs

that are not N = 4 theories. Aspects of such theories were recently discussed in [29, 35].
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Name Primary Unitarity Bound Q Null State

L [ j; j ]
(R1,R2 ; r)
∆ ∆ > 2 + j + 2

3 (2R1 +R2)−
1
6r −

A1 [ j; j ]
(R1,R2 ; r)
∆ , j ≥ 1 ∆ = 2 + j + 2

3 (2R1 +R2)−
1
6r [ j − 1; j ]

(R1+1,R2 ; r−1)
∆+1/2

A2 [ 0; j ]
(R1,R2 ; r)
∆ ∆ = 2 + 2

3 (2R1 +R2)−
1
6r [ 0; j ]

(R1+2,R2 ; r−2)
∆+1

B1 [ 0; j ]
(R1,R2 ; r)
∆ ∆ = 2

3 (2R1 +R2)−
1
6r [ 1; j ]

(R1+1,R2 ; r−1)
∆+1/2

Table 23. Q shortening conditions in four-dimensional N = 3 SCFTs.

Name Primary Unitarity Bound Q Null State

L [ j; j ]
(R1,R2 ; r)
∆ ∆ > 2 + j + 2

3 (R1 + 2R2) +
1
6r −

A1 [ j; j ]
(R1,R2 ; r)
∆ , j ≥ 1 ∆ = 2 + j + 2

3 (R1 + 2R2) +
1
6r [ j; j − 1 ]

(R1,R2+1 ; r+1)
∆+1/2

A2 [ j; 0 ]
(R1,R2 ; r)
∆ ∆ = 2 + 2

3 (R1 + 2R2) +
1
6r [ j; 0 ]

(R1,R2+2 ; r+2)
∆+1

B1 [ j; 0 ]
(R1,R2 ; r)
∆ ∆ = 2

3 (R1 + 2R2) +
1
6r [ j; 1 ]

(R1,R2+1 ; r+1)
∆+1/2

Table 24. Q shortening conditions in four-dimensional N = 3 SCFTs.

exactly two such multiplets that contain a marginal deformation: the B1B1[0; 0]
(2,0 ; 4)
2 mul-

tiplet, and its complex conjugate B1B1[0; 0]
(0,2 ;−4)
2 . However, these multiplets also contain

additional supersymmetry currents, which enhance N = 3 to N = 4, and for this reason

they have been omitted from table 25. As is well known, all N = 4 SCFTs possess ex-

actly marginal deformations that reside in their stress-tensor multiplets (see sections 3.2.4

and 4.2). Therefore, genuine N = 3 SCFTs admit neither relevant nor marginal super-

symmetric deformations, as was also observed in [29]. However, there is a rich variety of

irrelevant supersymmetric deformations, many of which reside in short multiplets. Pairs of

multiplets that share one of the symbols (∗), (⋆), (†), (‡) are related by complex conjugation.
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Primary O Deformation δL Comments

B1B1

{
(R1 + 4, 0 ; 2R1 + 8)

∆O = 4 +R1

}
Q4Q

2
O ∈

{
(R1, 0 ; 2R1 + 6)

∆ = 7 +R1

}
F -Term (∗)

B1B1

{
(0, R2 + 4 ; −2R2 − 8)

∆O = 4 +R2

}
Q2Q

4
O ∈

{
(0, R2 ; −2R2 − 6)

∆ = 7 +R2

}
F -Term (∗)

B1B1

{(
R1 + 2, R2 + 2 ; 2(R1 −R2)

)

∆O = 4 +R1 +R2

}
Q4Q

4
O ∈

{(
R1, R2 ; 2(R1 −R2)

)

∆ = 8 +R1 +R2

}
−

LB1

{
(0, 0 ; r + 6) , r > 0

∆O = 1 + 1

6
r

}
Q6O ∈

{
(0, 0 ; r) , r > 0

∆ = 4 + 1

6
r > 4

}
F -term (⋆)

B1L

{
(0, 0 ; r − 6) , r < 0

∆O = 1− 1

6
r

}
Q

6
O ∈

{
(0, 0 ; r) , r < 0

∆ = 4− 1

6
r > 4

}
F -Term (⋆)

LB1

{
(R1 + 2, 0 ; r + 4) , r > 2R1 + 6

∆O = 2 + 2

3
R1 +

1

6
r

}
Q6Q

2
O ∈

{
(R1, 0 ; r) , r > 2R1 + 6

∆ = 6 + 2

3
R1 +

1

6
r > 7 +R1

}
(†)

B1L

{
(0, R2 + 2 ; r − 4) , r < −2R2 − 6

∆O = 2 + 2

3
R2 −

1

6
r

}
Q2Q

6
O ∈

{
(0, R2 ; r) , r < −2R2 − 6

∆ = 6 + 2

3
R2 −

1

6
r > 7 +R2

}
(†)

LB1

{
(R1, R2 + 2 ; r + 2) , r > 2(R1 −R2)

∆O = 3 + 2

3
(R1 + 2R2) +

1

6
r

}
Q6Q

4
O ∈

{
(R1, R2 ; r) , r > 2(R1 −R2)

∆ = 8 + 2

3
(R1 + 2R2) +

1

6
r > 8 +R1 +R2

}
(‡)

B1L

{
(R1 + 2, R2 ; r − 2) , r < 2(R1 −R2)

∆O = 3 + 2

3
(2R1 +R2)−

1

6
r

}
Q4Q

6
O ∈

{
(R1, R2 ; r) , r < 2(R1 −R2)

∆ = 8 + 2

3
(2R1 +R2)−

1

6
r > 8 +R1 +R2

}
(‡)

LL





(R1,R2 ; r)

∆O > 2 + max

{
2

3
(2R1 +R2)−

1

6
r

2

3
(R1 + 2R2) +

1

6
r

}





Q6Q
6
O ∈





(R1,R2 ; r)

∆ > 8 + max

{
2

3
(2R1 +R2)−

1

6
r

2

3
(R1 + 2R2) +

1

6
r

}





D-Term

Table 25. Deformations of four-dimensional N = 3 SCFTs. The su(3)R Dynkin labels R1, R2 ∈ Z≥0 and the u(1)R charge r ∈ R denote

the R-symmetry representation of the deformation.
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Name Primary Unitarity Bound Q Null State

L [ j; j ]
(R1,R2,R3)
∆ ∆ > 2 + j + 1

2 (3R1 + 2R2 +R3) −

A1 [ j; j ]
(R1,R2,R3)
∆ , j ≥ 1 ∆ = 2 + j + 1

2 (3R1 + 2R2 +R3) [ j − 1; j ]
(R1+1,R2,R3)
∆+1/2

A2 [ 0; j ]
(R1,R2,R3)
∆ ∆ = 2 + 1

2 (3R1 + 2R2 +R3) [ 0; j ]
(R1+2,R2,R3)
∆+1

B1 [ 0; j ]
(R1,R2,R3)
∆ ∆ = 1

2 (3R1 + 2R2 +R3) [ 1; j ]
(R1+1,R2,R3)
∆+1/2

Table 26. Q shortening conditions in four-dimensional N = 4 SCFTs.

Name Primary Unitarity Bound Q Null State

L [ j; j ]
(R1,R2,R3)
∆ ∆ > 2 + j + 1

2 (R1 + 2R2 + 3R3) −

A1 [ j; j ]
(R1,R2,R3)
∆ , j ≥ 1 ∆ = 2 + j + 1

2 (R1 + 2R2 + 3R3) [ j; j − 1 ]
(R1,R2,R3+1)
∆+1/2

A2 [ j; 0 ]
(R1,R2,R3)
∆ ∆ = 2 + 1

2 (R1 + 2R2 + 3R3) [ j; 0 ]
(R1,R2,R3+2)
∆+1

B1 [ j; 0 ]
(R1,R2,R3)
∆ ∆ = 1

2 (R1 + 2R2 + 3R3) [ j; 1 ]
(R1,R2,R3+1)
∆+1/2

Table 27. Q shortening conditions in four-dimensional N = 4 SCFTs.

3.2.4 d = 4, N = 4

The N = 4 superconformal algebra is psu(2, 2|4), with R-symmetry su(4)R ≃ so(6)R.

The R-charges are denoted by su(4)R Dynkin labels (R1, R2, R3) with R1, R2, R3 ∈ Z≥0 .

For instance, (1, 0, 0) and (0, 0, 1) are the fundamental 4 and the anti-fundamental 4

of su(4)R, while (0, 1, 0) is the fundamental vector representation 6 of so(6)R. The Q-

supercharges are

Q ∈ [1; 0]
(1,0,0)
1/2 , Q ∈ [0; 1]

(0,0,1)
1/2 , NQ = 16 . (3.13)

Superconformal multiplets obey unitarity bounds and shortening conditions with respect

to both Q and Q, summarized in tables 26 and 27, and are labeled by a pair of capital

letters. For instance, the stress-tensor multiplet is given by B1B1[0; 0]
(0,2,0)
2 .

The Lorentz-invariant supersymmetric deformations of four-dimensional N = 4 SCFTs

are summarized in table 28. There are no relevant deformations, but every such theory nec-

essarily possesses an exactly marginal deformation residing in its stress-tensor multiplet (see

section 4.2 for more detail). There are also 1
2 -BPS (F -term) and 1

4 -BPS irrelevant defor-

mations in B1B1 multiplets, as well as irrelevant deformations in LB1 and B1L multiplets.

(As indicated by the symbol (∗) in table 28, the latter are related by complex conjugation.)
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Primary O Deformation δL Comments

B1B1

{
(0, 2, 0)
∆O = 2

}
Q4O ⊕Q

4
O ∈

{
(0, 0, 0)
∆ = 4

}
Stress Tensor

B1B1

{
(0, R2 + 4, 0)
∆O = R2 + 4

}
Q4Q

4
O ∈

{
(0, R2, 0)

∆ = 8 +R2

}
F -Term

B1B1

{
(R1 + 2, R2, R1 + 2)
∆O = 4 + 2R1 +R2

}
Q6Q

6
O ∈

{
(R1, R2, R1)

∆ = 10 + 2R1 +R2

}
−

LB1

{
(R1, R2, R3 + 2) , R1 < R3

∆O = 3 + 1

2
(R1 + 2R2 + 3R3)

}
Q8Q

6
O ∈

{
(R1, R2, R3) , R1 < R3

∆ = 10 + 1

2
(R1 + 2R2 + 3R3) > 10 + 2R1 +R2

}
(∗)

B1L

{
(R1 + 2, R2, R3) , R1 > R3

∆O = 3 + 1

2
(3R1 + 2R2 +R3)

}
Q6Q

8
O ∈

{
(R1, R2, R3) , R1 > R3

∆ = 10 + 1

2
(3R1 + 2R2 +R3) > 10 +R2 + 2R3

}
(∗)

LL





(R1,R2, R3)

∆O > 2 +
1

2
max

{
R1 + 2R2 + 3R3

3R1 + 2R2 +R3

}



 Q8Q

8
O ∈





(R1,R2, R3)

∆ > 10 +
1

2
max

{
R1 + 2R2 + 3R3

3R1 + 2R2 +R3

}



 D-Term

Table 28. Deformations of four-dimensional N = 4 SCFTs. The R-charges of the deformation are denoted by the su(4)R Dynkin

labels R1, R2, R3 ∈ Z≥0.
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Name Primary Unitarity Bound Null State

L [ j1, j2 ]
(R)
∆ ∆ > j1 + j2 +

3
2 R+ 4 −

A1 [ j1, j2 ]
(R)
∆ , j1 ≥ 1 ∆ = j1 + j2 +

3
2 R+ 4 [ j1 − 1, j2 ]

(R+1)
∆+1/2

A2 [ 0, j2 ]
(R)
∆ , j2 ≥ 1 ∆ = j2 +

3
2 R+ 4 [ 0, j2 − 1 ]

(R+2)
∆+1

A4 [ 0, 0 ]
(R)
∆ ∆ = 3

2 R+ 4 [ 0, 0 ]
(R+4)
∆+2

B1 [ 0, j2 ]
(R)
∆ j2 ≥ 1 ∆ = j2 +

3
2 R+ 3 [ 1, j2 − 1 ]

(R+1)
∆+1/2

B2 [ 0, 0 ]
(R)
∆ ∆ = 3

2 R+ 3 [ 0, 0 ]
(R+2)
∆+1

C1 [ 0, 0 ]
(R)
∆ ∆ = 3

2 R [ 1, 0 ]
(R+1)
∆+1/2

Table 29. Shortening conditions in five-dimensional N = 1 SCFTs.

3.3 Five dimensions

In this subsection we list all Lorentz-invariant supersymmetric deformations of five-

dimensional SCFTs. The unique superconformal algebra in five dimensions is f(4) and

corresponds to N = 1 supersymmetry. The Lorentz algebra is so(5) = sp(4) and

the R-symmetry is su(2)R. Lorentz representations are denoted by sp(4) Dynkin la-

bels j1, j2 ∈ Z≥0, e.g. [1, 0] and [0, 1] are the spinor 4 and the vector 5 representations

of so(5). The R-charges are denoted by (R), where R ∈ Z≥0 is an su(2)R Dynkin label.

The quantum numbers of an operator with scaling dimension ∆ are indicated as follows,

[ j1, j2 ]
(R)
∆ , j1, j2, R ∈ Z≥0 . (3.14)

The Q-supersymmetries transform as

Q ∈ [1, 0]
(1)
1/2 , NQ = 8 . (3.15)

The superconformal unitarity bounds and shortening conditions are summarized in ta-

ble 29. (See [12, 19, 23] and references therein for a more detailed discussion.) For instance,

C1[0, 0]
(1)
3/2 is a free hypermultiplet, C1[0, 0]

(2)
3 is a flavor current multiplet, and B2[0, 0]

(0)
3

is the stress-tensor multiplet.

The Lorentz-invariant supersymmetric deformations of five-dimensional N = 1 SCFTs

are summarized in table 30. The only relevant deformations are flavor masses, which reside

in C1[0, 0]
(2)
3 flavor current multiplets. (See section 4.1 for a more detailed discussion.)

There are no marginal deformations.

3.4 Six dimensions

In this subsection we list all Lorentz-invariant deformations of six-dimensional SCFTs

with (N , 0) supersymmetry for N = 1, 2. (Unitarity SCFTs with N ≥ 3 do not exist,
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Primary O Deformation δL Comments

C1

{
(2)

∆O = 3

}
Q2O ∈

{
(0)

∆ = 4

}
Flavor Current

C1

{
(R+ 4)

∆O = 6 + 3
2R

}
Q4O ∈

{
(R)

∆ = 8 + 3
2R

}
F -Term

L

{
(R)

∆O > 4 + 3
2R

}
Q8O ∈

{
(R)

∆ > 8 + 3
2R

}
D-Term

Table 30. Deformations of five-dimensional N = 1 SCFTs. The R-charge of the deformation is

denoted by the su(2)R Dynkin label R ∈ Z≥0.

because they do not admit a stress tensor [19].) The corresponding superconformal algebras

and their unitary representations are briefly summarized below. (See for instance [12, 19,

21–23] and references therein for additional details.) Representations of the so(6) = su(4)

Lorentz algebra are denoted using su(4) Dynkin labels,

[j1, j2, j3] , j1, j2, j3 ∈ Z≥0 . (3.16)

For instance, [1, 0, 0] and [0, 0, 1] are the left- and right-handed chiral spinor representa-

tions 4,4′ of so(6),19 while [0, 1, 0] is the vector representation 6 of so(6). Operators of

scaling dimension ∆ are denoted by [j1, j2, j3]∆.

3.4.1 d = 6, N = (1, 0)

The N = (1, 0) superconformal algebra is osp(8|2), hence the R-symmetry is sp(2)R ≃

su(2)R. Its representations are denoted by (R), where R ∈ Z≥0 is an su(2)R Dynkin label.

The Q-supersymmetries transform as

Q ∈ [1, 0, 0]
(1)
1/2 , NQ = 8 . (3.17)

The superconformal unitarity bounds and shortening conditions are summarized in ta-

ble 31. For instance, D1[0, 0, 0]
(1)
2 is a free hypermultiplet and C2[0, 0, 0]

(0)
2 is a free tensor

multiplet, while D1[0, 0, 0]
(2)
4 is a flavor current multiplet and B3[0, 0, 0]

(0)
4 is the stress-

tensor multiplet.

The Lorentz-invariant supersymmetric deformations of six-dimensional N = (1, 0)

SCFTs are summarized in table 32. Note that there are neither relevant nor marginal

deformations. Therefore, the only possible supersymmetric RG flows out of these fixed

points are triggered by moving onto a moduli space of vacua [36]. The fact that there are

no marginal deformations was also discussed in [28].

19As representations of su(4), the 4′ is typically denoted by 4, which is related to the 4 by complex conju-

gation. However, in six-dimensional Minkowski space, chiral spinors are not related by complex conjugation.
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Name Primary Unitarity Bound Null State

L [j1, j2, j3]
(R)
∆ ∆ > 1

2 (j1 + 2j2 + 3j3) + 2R+ 6 −

A1 [j1, j2, j3]
(R)
∆ , j3 ≥ 1 ∆ = 1

2 (j1 + 2j2 + 3j3) + 2R+ 6 [j1, j2, j3 − 1]
(R+1)
∆+1/2

A2 [j1, j2, 0]
(R)
∆ , j2 ≥ 1 ∆ = 1

2 (j1 + 2j2) + 2R+ 6 [j1, j2 − 1, 0]
(R+2)
∆+1

A3 [j1, 0, 0]
(R)
∆ , j1 ≥ 1 ∆ = 1

2 j1 + 2R+ 6 [j1 − 1, 0, 0]
(R+3)
∆+3/2

A4 [0, 0, 0]
(R)
∆ ∆ = 2R+ 6 [0, 0, 0]

(R+4)
∆+2

B1 [j1, j2, 0]
(R)
∆ , j2 ≥ 1 ∆ = 1

2 (j1 + 2j2) + 2R+ 4 [j1, j2 − 1, 1]
(R+1)
∆+1/2

B2 [j1, 0, 0]
(R)
∆ , j1 ≥ 1 ∆ = 1

2 j1 + 2R+ 4 [j1 − 1, 0, 1]
(R+2)
∆+1

B3 [0, 0, 0]
(R)
∆ ∆ = 2R+ 4 [0, 0, 1]

(R+3)
∆+3/2

C1 [j1, 0, 0]
(R)
∆ , j1 ≥ 1 ∆ = 1

2 j1 + 2R+ 2 [j1 − 1, 1, 0]
(R+1)
∆+1/2

C2 [0, 0, 0]
(R)
∆ ∆ = 2R+ 2 [0, 1, 0]

(R+2)
∆+1

D1 [0, 0, 0]
(R)
∆ ∆ = 2R [1, 0, 0]

(R+1)
∆+1/2

Table 31. Shortening conditions in six-dimensional N = (1, 0) theories.

Primary O Deformation δL Comments

D1

{
(R+ 4)

∆O = 8 + 2R

}
Q4O ∈

{
(R)

∆ = 10 + 2R

}
F -Term

L

{
(R)

∆O > 6 + 2R

}
Q8O ∈

{
(R)

∆ > 10 + 2R

}
D-Term

Table 32. Deformations of six-dimensional N = (1, 0) SCFTs. The R-charge of the deformation

is denoted by the su(2)R Dynkin label R ∈ Z≥0.

3.4.2 d = 6, N = (2, 0)

The N = (2, 0) superconformal algebra is osp(8|4), so that the R-symmetry is sp(4)R. Its

representations are denoted by (R1, R2), where R1, R2 ∈ Z≥0 are sp(4)R Dynkin labels,

e.g. (1, 0) and (0, 1) denote the 4 and 5, respectively. The Q-supersymmetries transform as

Q ∈ [1, 0, 0]
(1,0)
1/2 , NQ = 16 . (3.18)

The superconformal unitarity bounds and shortening conditions are summarized in

table 33. For instance, D1[0, 0, 0]
(0,1)
2 is a free tensor multiplet, while D1[0, 0, 0]

(0,2)
4 is the

stress-tensor multiplet.
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Name Primary Unitarity Bound Null State

L [j1, j2, j3]
(R1,R2)
∆ ∆ > 1

2
(j1 + 2j2 + 3j3) + 2(R1 +R2) + 6 −

A1 [j1, j2, j3]
(R1,R2)
∆ , j3 ≥ 1 ∆ = 1

2
(j1 + 2j2 + 3j3) + 2(R1 +R2) + 6 [j1, j2, j3 − 1]

(R1+1,R2)

∆+1/2

A2 [j1, j2, 0]
(R1,R2)
∆ , j2 ≥ 1 ∆ = 1

2
(j1 + 2j2) + 2(R1 +R2) + 6 [j1, j2 − 1, 0]

(R1+2,R2)
∆+1

A3 [j1, 0, 0]
(R1,R2)
∆ , j1 ≥ 1 ∆ = 1

2
j1 + 2(R1 +R2) + 6 [j1 − 1, 0, 0]

(R1+3,R2)

∆+3/2

A4 [0, 0, 0]
(R1,R2)
∆ ∆ = 2(R1 +R2) + 6 [0, 0, 0]

(R1+4,R2)
∆+2

B1 [j1, j2, 0]
(R1,R2)
∆ , j2 ≥ 1 ∆ = 1

2
(j1 + 2j2) + 2(R1 +R2) + 4 [j1, j2 − 1, 1]

(R1+1,R2)

∆+1/2

B2 [j1, 0, 0]
(R1,R2)
∆ , j1 ≥ 1 ∆ = 1

2
j1 + 2(R1 +R2) + 4 [j1 − 1, 0, 1]

(R1+2,R2)
∆+1

B3 [0, 0, 0]
(R1,R2)
∆ ∆ = 2(R1 +R2) + 4 [0, 0, 1]

(R1+3,R2)

∆+3/2

C1 [j1, 0, 0]
(R1,R2)
∆ , j1 ≥ 1 ∆ = 1

2
j1 + 2(R1 +R2) + 2 [j1 − 1, 1, 0]

(R1+1,R2)

∆+1/2

C2 [0, 0, 0]
(R1,R2)
∆ ∆ = 2(R1 +R2) + 2 [0, 1, 0]

(R1+2,R2)
∆+1

D1 [0, 0, 0]
(R1,R2)
∆ ∆ = 2(R1 +R2) [1, 0, 0]

(R1+1,R2)

∆+1/2

Table 33. Shortening conditions in six-dimensional N = (2, 0) theories.

Primary O Deformation δL Comments

D1

{
(0, R2 + 4)

∆O = 8 + 2R2

}
Q8O ∈

{
(0, R2)

∆ = 12 + 2R2

}
F -Term

D1

{
(R1 + 4, R2)

∆O = 8 + 2(R1 +R2)

}
Q12O ∈

{
(R1, R2)

∆ = 14 + 2(R1 +R2)

}
−

L

{
(R1, R2)

∆O > 6 + 2(R1 +R2)

}
Q16O ∈

{
(R1, R2)

∆ > 14 + 2(R1 +R2)

}
D-Term

Table 34. Deformations of six-dimensional N = (2, 0) SCFTs. The R-symmetry representation of

the deformation is denoted by the sp(4)R Dynkin labels R1, R2 ∈ Z≥0.

The Lorentz-invariant supersymmetric deformations of six-dimensional N = (2, 0)

SCFTs are summarized in table 34. As was already the case for N = (1, 0) theories

(see section 3.4.1), there are no supersymmetric relevant or marginal deformations.

4 Deformations related to conserved currents

In this section we discuss Lorentz-invariant supersymmetric deformations which reside

in supermultiplets that also contain conserved currents, focusing on flavor currents and
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the stress tensor. (As in section 3, we will not discuss multiplets containing additional

supersymmetry currents or higher spin currents. A detailed analysis of all superconformal

multiplets that contain conserved currents can be found in [19].) Such deformations can

lead to the appearance of additional bosonic charges in the supersymmetry algebra, which

arise from the currents that reside in the same multiplet as the deformation. We also

comment on the fact that some of these deformations can fail to be supersymmetric at

higher order, even though they preserve supersymmetry at leading order.

4.1 Flavor current multiplets

Using the tables in section 3, we can enumerate theories admitting Lorentz-invariant de-

formations that reside in the same multiplet as a conserved flavor current jaµ, where a is

an adjoint flavor index. (The corresponding flavor charges commute with all supersymme-

tries.) All of these deformations are relevant, with scaling dimension ∆ = d− 1, and all of

them carry an adjoint flavor index a, just as the current jaµ. In many weakly-coupled ex-

amples, such deformations are fermion mass terms of the schematic form ma

(
ψψ

)a
. (The

corresponding bosonic mass terms only arise at O(m2).) For this reason, we will refer to

such deformations as flavor masses and collectively denote them by Ma
flav.. Flavor mass

deformations can occur in the following theories:

• Three-dimensional 2 ≤ N ≤ 4 SCFTs all admit flavor mass deformations Ma
flav.

that are real. Depending on N , they reside in different multiplets and transform

differently under the appropriate R-symmetries:

N = 2: the flavor mass is neutral under the u(1)R symmetry, i.e. Ma
flav. ∈ [0]

(0)
2 .

It resides at level two in an A2A2[0]
(0)
1 flavor current multiplet (see tables 4, 5, 6).

N = 3: the flavor mass transforms as an su(2)R triplet, i.e. (Ma
flav.)

(ij) ∈ [0]
(2)
2 .

It resides at level two in a B1[0]
(2)
1 flavor current multiplet (see tables 7 and 8).

N = 4: here there are two different flavor mass deformations (Ma
flav.)

(ij) ∈

[0]
(2;0)
2 and (M′ a

flav.)
(i′j′) ∈ [0]

(0;2)
2 , which are triplets under su(2)R and su(2)′R,

respectively. They reside at level two, in two different flavor current multiplets,

B1[0]
(0;2)
1 and B1[0]

(2;0), which are exchanged by mirror symmetry (see tables 9

and 10).

• Four-dimensional N = 2 SCFTs admit complex flavor mass deformations Ma
flav.,

which are paired with their complex conjugates M
a
flav.. They are neutral under

the su(2)R symmetry, but carry u(1)r charges: Ma
flav. ∈ [0; 0]

(0;2)
3 and M

a
flav. ∈

[0; 0]
(0;−2)
3 . Both deformations reside at level two in the same B1B1[0; 0]

(2;0)
2 flavor

current multiplet (see tables 20, 21 and 22).

• Five-dimensional N = 1 SCFTs admit real flavor mass deformations Ma
flav. that are

neutral under the su(2)R symmetry, i.e. Ma
flav. ∈ [0, 0]

(0)
4 . They reside at level two in

a C1[0, 0]
(2)
3 flavor current multiplet.
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All of these deformations arise in myriad well-studied examples. In addition to standard

mass terms for scalars and fermions in matter multiplets, which are possible in all cases,

we also mention the following two interesting possibilities in three and five dimensions:

• In three dimensions, FI-terms for abelian gauge fields can be interpreted as flavor

masses for the topological current ⋆F , where F the abelian field strength. (By con-

trast, deformations of SCFTs in 4 ≤ d ≤ 6 dimensions do not include FI-terms, see

section 5.2.) Abstractly, such FI flavor masses cannot be distinguished from conven-

tional flavor masses for matter fields, as reflected by the fact that the two can be

exchanged by duality (see for instance [37, 38]).

• In five dimensions, many SCFTs possess flavor symmetries. Upon activating the

corresponding flavor masses, such theories often flow to weakly-coupled, generally

nonabelian, gauge theories in the IR. Each gauge group gives rise to a topological

current ⋆Tr(F ∧ F ), which descends from a particular flavor current of the SCFT in

the UV. The corresponding Yang-Mills kinetic term descends from the flavor mass

deformation related to that UV flavor current (see for instance [39–42]).

In all cases discussed above, the Lorentz-invariant flavor mass deformation resides at

level two in a flavor current multiplet whose superconformal primary J a,I is also a Lorentz

scalar. (Here I collectively denotes all R-symmetry labels.) Schematically, we can therefore

write the deformation as follows,

δLflav. = ma,IM
a,I
flav. +O(m2) = ma,I(Q

2J a)I +O(m2) . (4.1)

Following [43], the mass parameters ma,I can be interpreted as scalars residing in non-

dynamical vector multiplets that contain background flavor gauge fields. This makes a

variety of non-renormalization theorems manifest. For instance, in four-dimensional N = 2

theories, the Higgs-branch metric cannot depend on vector multiplet scalars, and hence it

also does not depend on flavor mass parameters [44].

This perspective also leads to an intuitive picture for the structure of flavor mass de-

formations in theories with NQ = 8 supercharges. In six-dimensional N = (1, 0) theories,

vector multiplets only contain gauge fields and fermions, but no scalars. Correspondingly,

there are no scalars that reside in flavor current multiplets, and hence such theories do not

admit flavor mass deformations, even though they may possess flavor symmetries. (This is

consistent with section 3.4.1, where it was shown that these theories do not possess any rel-

evant deformations.) In 3 ≤ d ≤ 5 dimensions, theories with the same amount of supersym-

metry do admit flavor masses. The corresponding background vector multiplet scalars ma,I

can be viewed as Wilson lines for six-dimensional background gauge fields which wrap one-

cycles of a (6− d)-dimensional torus that is used to compactify the six-dimensional theory

down to d = 5, 4, 3. This correctly accounts for the fact that each flavor symmetry leads

to 1, 2, 3 mass parameters for N = 1, 2, 4 theories in the respective dimension. The en-

hanced u(1)R or su(2)′R symmetries of four-dimensional N = 2 or three-dimensional N = 4

theories (in addition to the su(2)R symmetry that is already present in five and six dimen-

sions) can also be understood as arising from dimensional reduction, and this explains why

flavor mass deformations in these theories are charged under u(1)R or su(2)′R.
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4.2 Stress tensor multiplets

We now consider Lorentz-invariant supersymmetric deformations that reside in the same

multiplet as the stress tensor Tµν . For fixed values of d and N , the stress tensor multiplet

of a SCFT is unique. (The only exception occurs in three-dimensional N = 8 theories,

as mentioned around (3.8). See [19] for a detailed discussion of stress tensor multiplets

in all dimensions.) Moreover, every theory must possess such a multiplet, and hence the

corresponding deformations are universal, i.e. they always exist. Universal deformations

occur in the following theories:

• Four-dimensional N = 4 SCFTs possess a universal marginal deformation O, which

is complex and paired with its complex conjugate O. Both deformations are neutral

under the su(4)R symmetry, i.e. O,O ∈ [0; 0]
(0,0,0)
4 . They reside at the top of the

multiplet, at level ℓ = 4, together with the stress tensor Tµν .

• Three-dimensional SCFTs with N ≥ 4 supersymmetry have universal relevant de-

formations Muniv. of dimension ∆ = 2. In analogy with the flavor masses Ma
flav.

discussed in section 4.1, we will refer to them as universal mass deformations. They

reside in the middle of the stress-tensor multiplet, at level ℓ = 2, while Tµν resides

at level ℓ = 4. The Muniv. are generally charged under the R-symmetry (see below),

but since they reside in the same multiplet as Tµν , they are neutral under any flavor

symmetries.

We will now comment on these two kinds of universal deformations in turn.

Since the marginal deformation O in four-dimensional N = 4 theories resides in the

same multiplet as Tµν , many of its properties follow directly from superconformal Ward

identities (see for instance [45–47] and references therein). First, the deformation is neces-

sarily exactly marginal, because its dimension is tethered to that of the stress tensor.20 It

therefore gives rise to a conformal manifold labeled by one complex parameter τ . The local

geometry of this manifold is fixed by Ward identities, which imply that its Zamolodchikov

metric has constant negative curvature,

ds2 = C
dτdτ

(Im τ)2
, C > 0 . (4.2)

Here C is proportional to the stress tensor two-point function, which is determined by the

Weyl anomaly of the theory. (The four-dimensional Weyl anomalies a and c coincide in

all N = 4 SCFTs [48].) In four-dimensional N = 4 SCFTs that have a Lagrangian descrip-

tion as gauge theories, the marginal parameter τ is identified with the complexified gauge

coupling. However, it is not known whether all N = 4 theories admit such a description.

The universal mass deformation Muniv. that exists in all three-dimensional N ≥ 4

theories is somewhat less familiar. If we use V to denote the fundamental N -dimensional

vector representation of the so(N )R symmetry, then Muniv. transforms as a (N − 4)-form,

Muniv. ∈ ∧N−4V . (4.3)

20Alternatively, we can use the fact that all marginal deformations of four-dimensional N ≥ 2 theories

are exactly marginal, as discussed in section 3.2.2.
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For N = 8, the four-forms Λ4V can be decomposed into their self-dual and anti-self-dual

parts,
(
Λ4V

)
±
, with Dynkin labels (0, 0, 0, 2) and (0, 0, 2, 0). They reside, respectively, in

two different stress-tensor multiplets B1[0]
(0,0,2,0)
1 and B1[0]

(0,0,0,2)
1 that are exchanged by

the triality subgroup T , as discussed in section 3.1.7. Some early and recent discussions of

universal mass deformations in N = 8 theories and their gravity duals are in [49–54].

As a simple example, we write down the universal mass deformation for a free N = 4

hypermultiplet (H i, ψi′
α), which itself constitutes a B1[0]

(1;0)
1/2 multiplet. The scalars H i

and the fermions ψi′
α are doublets under the first and second factors of the su(2)R× su(2)′R

symmetry. The action of the supercharges on the scalars is given by Qii′
α Hj ∼ εijψi′

α , where

the ∼ indicates that we are not keeping track of convention-dependent proportionality

factors. The universal mass deformation resides at level two of the A2[0]
(0;0)
1 stress tensor

multiplet, whose bottom component is εijH iHj . According to (4.3), the universal mass

is R-symmetry (as well as Lorentz) invariant. Explicitly,

Muniv. ∼ mεαβεi′j′ψ
i′

αψ
j′

β ∼ mεαβεijεi′j′Q
ii′

α Qjj′

β

(
εklHkHl

)
, (4.4)

where m is a real mass parameter. Note that the two supercharges are contracted

to a Lorentz and R-symmetry singlet. As was the case for flavor masses (see (4.1)),

the O(m) deformation is a pure fermion mass term, while the corresponding scalar

mass term m2εijH iHj only arises at O(m2). However, unlike the flavor masses resid-

ing in B1[0]
(2;0)
1 and B1[0]

(0;2)
1 flavor current multiplets, which are exchanged by mirror

symmetry, the universal mass is inert under the mirror automorphism. In this example,

the universal mass (4.4) leads to a fully gapped theory. As we will review below, this is a

general, model-independent property of all universal mass deformations.

4.3 Deformed stress-tensor multiplets and supersymmetry algebras

In an SCFT, the stress tensor Tµν resides in a short superconformal multiplet (whose

structure essentially only depends on d and N ), together with the NQ supersymmetry

currents Si
µα and the R-symmetry currents. The multiplet is typically completed by other

operators that need not be conserved currents. At the conformal point, both the stress

tensor and the supersymmetry currents are traceless. Schematically,

Tµ
µ = 0 , σµα̇αSi

µα = 0 , (4.5)

where we have used four-dimensional notation to indicate the spin-12 projection of the

supersymmetry currents in all dimensions. The vanishing traces in (4.5) allow the def-

inition of dilatation and special conformal generators, as well as the superconformal S-

supersymmetries. See [19] for a unified discussion of superconformal stress-tensor multi-

plets for all d and N .

When a CFT is deformed by a scalar operator O of dimension ∆, i.e. δL = λO,

then the trace of the stress tensor is deformed to Tµ
µ ∼ λ (∆− d)O, at leading order in λ.

(More generally, the coefficient of O in Tµ
µ is proportional to the β-function of the cou-

pling λ.) If the deformation O is marginal, the deformation preserves conformal symmetry
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at leading order and Tµ
µ remains zero at that order. (A non-zero trace, i.e. a beta func-

tion, may be generated at higher order.) In all other cases, conformal symmetry is broken

and Tµν acquires a trace. For the case of an SCFT deformed by a Lorentz-scalar opera-

tor O that preserves the Q-supersymmetries but breaks conformal symmetry (and hence

the S-supersymmetries), the currents Tµν , S
i
µα remain conserved, but both of the traces

that were set to zero in (4.5) are activated by the deformation. Together with their su-

perpartners, they deform the conformal stress-tensor multiplet into a multiplet of Poincaré

supersymmetry that contains the currents Tµν , S
i
µα. Typically, it contains more opera-

tors than the conformal stress-tensor multiplet, which are supplied by the multiplet of the

deformation O. (However, operators from other multiplets can also participate, see below.)

As an example, consider four-dimensional N = 1 theories. At the superconformal

point, the stress-tensor resides in an A1A1[0; 0]
(0)
2 multiplet (see tables 17 and 18), whose

primary Jµ = σαα̇
µ Jαα̇ is the u(1)R current. The superconformal shortening conditions

take the form

Q
α̇
Jαα̇ = 0 , QαJαα̇ = 0 . (4.6)

After using these to eliminate all null states (including conservation laws), the multiplet

has 8 + 8 bosonic and fermionic operators: the conserved R-current Jµ, as well as the

conserved and traceless supersymmetry currents Sµα, Sµα̇ and stress-tensor Tµν .

Unlike the superconformal case, the representation theory of the Poincaré supersymme-

try algebra admits several different non-conformal stress-tensor multiplets. (See [55, 56] and

references therein for a detailed discussion.) The most common such multiplet is Ferrara-

Zumino (FZ) multiplet. In addition to Jαα̇, it also contains a chiral submultiplet X (and

its conjugate anti-chiral multiplet X). The superconformal shortening condition (4.6) is

deformed to

Q
α̇
Jαα̇ = QαX , QαJαα̇ = Qα̇X , Qα̇X = QαX = 0 . (4.7)

The 4 + 4 bosonic and fermionic operators in X combine with the 8 + 8 operators in

the superconformal multiplet to make a 12 + 12 multiplet. The bottom component Jµ =

σαα̇
µ Jαα̇ is no longer a conserved current; its non-zero divergence is one of the additional

operators residing in X. Therefore, the FZ-multiplet only contains a conserved R-current

if X vanishes and the theory is superconformal. If a non-conformal N = 1 theory has

a u(1)R symmetry, the associated R-current resides in a different 12 + 12 stress-tensor

multiplet, which is related to the FZ-multiplet by an improvement transformation.

The vast majority of N = 1 theories admit an FZ-multiplet. The only known ex-

ceptions are models with FI-terms, or theories that can be obtained from such models

by RG flow, e.g. sigma models whose target spaces contain compact two-cycles [55–57].

Since supersymmetry deformations of N = 1 superconformal theories never give rise to FI-

terms (see the more detailed discussion in section 5.2), we expect that all deformed N = 1

SCFTs possess an FZ stress-tensor multiplet, whose X submultiplet is determined by the

deformation.21

21In a weakly-coupled theory of chiral superfields with superpotential W and Kähler potential K, the

chiral operator X in the FZ multiplet is a linear combination of W and Q
2
K. Using conformal perturbation

theory, it should be possible to find an analogous expression for X in any N = 1 SCFT that has been

deformed by general F - and D-terms (see table 19), but we will not pursue it here.
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We will now consider the effect of flavor mass deformations (see section 4.1) on the

stress-tensor multiplet. For simplicity, we will focus on theories with NQ = 8 super-

charges in d = 5, 4, 3 dimensions, where the discussion is fairly uniform.22 As explained

below (4.1), flavor currents in these theories are conveniently understood in terms of dimen-

sional reduction, staring with a D1[0, 0, 0]
(2)
4 flavor current multiplet with primary J ij

a in

six dimensions (see table 31). Here a is an adjoint flavor index, and i, j are su(2)R doublet

indices. This leads to flavor current multiplets with 8 + 8 operators that contain 0, 1, 2, 3

scalar mass deformations in d = 6, 5, 4, 3 dimensions. The currents in d = 5, 4 reside

in C1[0, 0]
(2)
3 and B1B1[0, 0]

(2)
2 multiplets (see tables 29 and 20, 21), while they can reside

in either B1[0]
(2;0)
1 or B1[0]

(0;2)
2 multiplets in d = 3 (see table 9). Explicitly, the primaries

and shortening conditions of these flavor current multiplets are

Q(i
αJ

jk)
a = 0 , Q(i

αJ
jk)
a = Q

(i
α̇J

jk)
a = 0 , Qi′(i

α J jk)
a = 0 or Qi(i′

α J j′k′)
a = 0 .

d = 5 d = 4 d = 3
(4.8)

Here α, α̇ are spacetime spinor indices in the respective dimension, while i, j, k are su(2)R
doublet indices. In three dimensions, i′, j′, k′ are su(2)′R doublet indices.

The superconformal stress-tensor multiplets in these theories are based on a Lorentz-

scalar and R-symmetry neutral primary T of dimension ∆ = d − 2. In d = 6 it is

a B3[0, 0, 0]
(0)
4 multiplet, with a null state at ℓ = 3, and in d = 5, 4, 3 the stress tensor

multiplets B2[0, 0]
(0)
3 , A2A2[0; 0]

(0;0)
2 , A2[0]

(0;0)
1 all have null states at ℓ = 2. Explicitly,23

ΩαβQ(i
αQ

j)
β T = 0 , εαβQ(i

αQ
j)
β T = εα̇β̇Q

(i
α̇Q

j)

β̇
T = 0 , εαβQ(i′i

α Q
j′j)
β T = 0 .

d = 5 d = 4 d = 3
(4.9)

In three dimensions, the symmetrization of the su(2)R doublet indices i, j and the su(2)′R
doublet indices i′, j′ denotes a projection onto the representation with Dynkin labels (2 ; 2).

The resulting multiplets contain 8(d− 1) + 8(d− 1) operators. Upon reducing the theory

from d to d − 1 dimensions, the d-dimensional stress-tensor multiplet becomes reducible

and splits into a (d − 1)-dimensional stress-tensor multiplet and an 8 + 8 flavor current

multiplet associated with the Kaluza-Klein (KK) symmetry, i.e. the momentum in the

reduced direction.

This perspective immediately suggests the form of the non-conformal stress-tensor

multiplet in the presence of flavor mass deformations (4.1), since they can be viewed as

Wilson lines that wrap the reduced directions (see the discussion below (4.1)), and hence

contribute to the momentum in those directions. We simply interpret a suitable linear

combination of the flavor currents J ij
a as the KK current, which no longer decouples in

the presence of flavor mass deformations. This logic leads to a non-conformal stress-tensor

22See [56] for a discussion of stress-tensor multiplets in three-dimensional N = 2 theories, including the

effects of flavor masses.
23In five dimensions, spinors are contracted using the sp(4)-invariant symplectic matrix Ωαβ .
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multiplet in d = 5, 4, 3 that was first described in [58] for N = 2 theories in four dimensions,

d = 5 : ΩαβQ(i
αQ

j)
β T = maJ

ij
a , (4.10a)

d = 4 : εαβQ(i
αQ

j)
β T = maJ

ij
a , εα̇β̇Q

(i
α̇Q

j)

β̇
T = maJ

ij
a , (4.10b)

d = 3 : εαβQ(i′i
α Q

j′j)
β T = mi′j′

a J ij
a + (m′)ija′J

i′j′

a′ . (4.10c)

Here the ma are real and R-neutral in d = 5, while they are complex (with complex conju-

gates ma) and charged under U(1)R in d = 4. In three dimensions, both mi′j′
a and (m′)ija′

are real and transform as triplets of su(2)′R and su(2)R, respectively. The conserved flavor

currents on the right-hand sides of (4.10) integrate to Lorentz-scalar central charges in the

supersymmetry algebra, which is therefore deformed. For instance, in five dimensions they

lead to a term Ωαβε
ijZ ⊂  Qi

α, Q
j
β}, where the real central charge Z = maFa is determined

by the masses ma and the flavor charges Fa corresponding to the currents J ij
a . This is

consistent with the interpretation of maJ
ij
a as the KK current, since the central charge Z

can be identified with the momentum in the reduced direction.

An even more drastic modification of the supersymmetry algebra takes place in the

presence of universal mass deformations in three-dimensional theories with N ≥ 4 super-

symmetry. As discussed in section 4.3, the universal mass deformation resides in the stress-

tensor multiplet. This leads to an unusual deformation of the supersymmetry algebra by

non-central terms proportional to the unbroken R-symmetry generators, see e.g. [51, 52, 54].

For instance, in N = 4 theories the universal mass m preserves the entire su(2)R × su(2)′R
symmetry, with generators Rij , (R′)i

′j′ , so that the deformed algebra takes the form

{
Qi′i

α , Qj′j
β

}
= εijεi

′j′P(αβ) + 2mεαβ ε
i′j′Rij − 2mεαβε

ij (R′)i
′j′ . (4.11)

The appearance of the non-central R-symmetry generators may seem in tension with the

usual lore that Q-supercharges should only anticommute to the momenta Pµ or to central

charges. In fact, the general constraints on Poincaré supersymmetry algebras first enunci-

ated in four spacetime dimensions [59] only require a consistent superalgebra that closes

on bosonic generators obeying the Coleman-Mandula theorem [60]. This is the case for the

algebra in (4.11), and it appears in the classification of consistent supersymmetry algebras

in [18]. As we will review below, theories with this algebra are necessarily gapped. This

is clearly the case for the free hypermultiplet with a universal mass described in (4.4).

In all known interacting examples based on a Lagrangian, the theory in the deep IR is a

Chern-Simons theory, and there are massive charged particles that are turned into anyons

by the Chern-Simons interaction. It would be interesting to understand to what extent

the occurrence of massive anyons in interacting theories (and the associated peculiarities

of the S-matrix, see for instance [61] for a recent discussion) can be traced back to the

unconventional structure of the supersymmetry algebra.24

We now review the argument that the algebra (4.11) implies that the resulting theory

is gapped, i.e. the low-energy effective theory must be empty or topological and does not

24We are grateful to J. Maldacena for clarifying discussions about these issues.
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contain massless particles. To see this, we follow [52] and consider a massless particle with

lightcone momentum P+ = E and P− = P3 = 0, on which (4.11) reduces to

{
Qi′i

+ , Qj′j
+

}
= εijεi

′j′E , (4.12a)
{
Qi′i

− , Qj′j
−

}
= 0 , (4.12b)

{
Qi′i

+ , Qj′j
−

}
= 2mεi

′j′Rij − 2mεij(R′)i
′j′ . (4.12c)

In Lorentzian signature, the supercharges Qii′
− are Hermitian, so (4.12b) implies that

they are represented trivially, Qii′
− = 0. It then follows from (4.12c) that the R-

charges Rij , (R′)i
′j′ must also act trivially. Since Qii′

+ transforms as a bifundamental under

these generators, this is only consistent if Qii′
+ = 0, so that the entire representation is triv-

ial, and in particular E = 0. Therefore, the only massless single-particle states are vacua,

and hence the theory is gapped. The argument straightforwardly generalizes to all N ≥ 5

theories with universal masses.

4.4 Comments on preserving supersymmetry at higher order

Throughout this paper, we have focused on deformations δL = λO(1) that preserve su-

persymmetry at leading order in the deformation parameter λ, i.e. the operator O(1) is

annihilated by the Q-supercharges of the undeformed theory at λ = 0, up to a total deriva-

tive. However, once the deformation has been activated, it typically does not preserve

supersymmetry at O(λ2). Resorting to weakly-coupled, Lagrangian intuition, this is due

to the fact that we used the equations of motion of the undeformed theory to show that O(1)

is annihilated by the undeformed supercharges. Therefore the supercharges themselves are

corrected at O(λ) and may no longer annihilate O(1), leading to a remainder term at O(λ2).

If this term can be cancelled by the supersymmetry variation of a local operator O(2), then

the following Lagrangian is supersymmetric up to and including O(λ2),

δL = λO(1) + λ2O(2) . (4.13)

If such an operator O(2) does not exist, then δL breaks supersymmetry at O(λ2), even

though the leading-order deformation O(1) was supersymmetric. (An explicit example

where this happens will be discussed below.)

Even if O(2) exists, the deformation δL may fail to be supersymmetric at O(λ3).

We must then repeat the procedure and look for a local operator O(3) that can be added

to δL to preserve supersymmetry at this order. This procedure may terminate after a finite

number of steps, or it can continue indefinitely. A simple example in the former category

arises by deforming the free SCFT consisting of a single chiral superfield Φ = (φ, ψα) by a

superpotential λW (Φ).25 The O(λ) leading deformation takes the form (see table 19),

O(1) = Q2W + (h.c.) ∼ W ′′(φ)ψ2 + (h.c.) , (4.14)

where the ∼ means that we are omitting convention-dependent numerical factors. We see

from (4.14) that theO(λ) deformationO(1) only contains the Yukawa couplings, but not the

25Here we are using an on-shell formalism without auxiliary fields, since it more closely resembles the

situation encountered when deforming an abstract SCFT.
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scalar potential. The latter must be added to restore supersymmetry at O(λ2), i.e. we must

choose O(2) ∼ |W ′(φ)|2, after which the procedure terminates. A deformation that requires

corrections at all orders in λ is the Born-Infeld-like higher-derivative F -term that arises on

the Coulomb branch of four-dimensional N = 4 Yang-Mills theories (see section 5.1.2).

We will not attempt to systematically determine which deformations preserve su-

persymmetry beyond leading order.26 Rather, we will use the flavor mass deformations

discussed in sections 4.1 and 4.3 above to give a simple example of an allowed leading-

order deformation that breaks supersymmetry at second order. Following the discussion

around (4.1), we consider flavor mass deformations of N = 1, 2, 4 theories in d = 5, 4, 3.

The mass parameters ma,I carry an adjoint index a, as well as a suitable R-symmetry

index I. In d = 5, the masses are real and the index I is absent; in d = 4 the masses

are complex and I = ± indicates the sign of their u(1)R charge, so that ma,− = (ma,+) ;

in d = 3 they are real and I is an su(2)′R triplet index. (We can also consider twisted

masses, for which I is an su(2)R triplet index.) As explained below (4.1), it is useful to

think of the ma,I as flat Wilson lines wrapping the one-cycles of a (6 − d)-dimensional

torus, which always preserve supersymmetry. (The torus directions are labeled by I.) The

vanishing of the field strength leads to the requirement27

fabcma,Imb,J = 0 , (4.15)

where fabc are the totally antisymmetric structure constants of the flavor Lie algebra g.

Therefore, supersymmetry requires all of the ma,I to reside in a Cartan subalgebra of g.

This requirement is trivial in d = 5, but not so in d = 4, 3. For instance, if fabcma,−m+,b 6=

0 in four dimensions, then N = 2 supersymmetry is explicitly broken to N = 1 [44].

Note that this is a quadratic constraint, which occurs at second order in the deformation

parameters ma,I , all of which preserve supersymmetry at leading order.

5 Applications and examples

5.1 Constraints on moduli-space effective actions

Many supersymmetric theories in d > 2 dimensions have a moduli space of vacua M that

is parametrized by the expectation values of massless, scalar moduli fields ΦI , which are

nearly free in the deep IR. The low-energy effective Lagrangian LM on the moduli space

includes a sigma model for the ΦI with target space M, whose kinetic terms determine the

metric gIJ(Φ) on the moduli space.28 The moduli-space Lagrangian LM is constrained by

supersymmetry, and the constraints depend on the supermultiplets in which the scalars ΦI

26One possible approach, which was mentioned in [62], is to examine the OPE of two or more leading-order

deformations O(1). The supersymmetry Ward identities may require the presence of certain operator-valued

contact terms that can be identified with the higher-order corrections O(n≥2) to the deformation.
27Equivalently, (4.15) can be derived by embedding the masses in non-dynamical background vector

multiplets and demanding that the corresponding background gauginos are annihilated by all supercharges.
28In two dimensions, there are no moduli spaces of vacua due to the strong IR fluctuations of massless

scalars. However, most of our discussion concerns supersymmetric sigma models, which also exist in two

dimensions.
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reside. (Such constraints are often referred to as non-renormalization theorems.) In this

subsection we will explain how our results on irrelevant supersymmetric deformations can

be used to understand the supersymmetry constraints on LM, including the moduli-space

metric gIJ(Φ) (section 5.1.1), as well as higher-derivative terms (section 5.1.2). We will

follow the standard scaling rules for moduli-space effective actions, which assign scaling

weight 0 to the moduli ΦI and weight 1
2 to the Q-supercharges, so that a derivative ∂µ has

weight 1. This fixes the scaling weights of all superpartners of the ΦI .

Our starting point is an expression for LM as a sum of terms with moduli-dependent

coefficient functions fi
(
Φ
)
multiplying operators Oi (constructed from ΦI and its super-

partners) that can be organized according to their scaling weight,29

LM =
∑

i

fi(Φ)Oi ⊃ gIJ(Φ) ∂µΦ
I∂µΦJ . (5.1)

Here we have explicitly indicated the kinetic terms of the ΦI , which determine the moduli

space metric gIJ(Φ). They carry scaling weight 2 and are often the terms of lowest scaling

weight in (5.1).30 We would like to understand how the functions fi(Φ) and the possible Oi

are constrained by supersymmetry. Our strategy will be to focus on a neighborhood of a

point 〈ΦI〉 on M and to consider the fluctuations δΦI around that point. In the deep IR,

the δΦI are free fields with canonical kinetic terms, and we will reorganize the moduli-

space Lagrangian in terms of higher-derivative, irrelevant corrections to this free theory.

We therefore expand

ΦI = 〈ΦI〉+ δΦI , fi(Φ) = fi|〈Φ〉 + ∂Ifi|〈Φ〉 δΦ
I +

1

2
∂I∂Jfi|〈Φ〉 δΦ

IδΦI + · · · , (5.2)

and substitute into (5.1). This leads to a series of irrelevant operators in the fluctua-

tions δΦI and their superpartners, such as

∂I1∂I2 · · · ∂Infi|〈Φ〉 δΦ
I1δΦI2 · · · δΦIn Oi . (5.3)

If such a term cannot be interpreted as an irrelevant supersymmetric deformation of the

free IR theory consisting of the δΦI and their superpartners, it must be absent, which leads

to a differential constraint on the coefficient functions fi(Φ). Some higher-order terms that

should be absent according to this rule can in fact be generated by supersymmetrically

completing a lower-order deformation, as in the discussion around (4.13). In this case

the higher-order deformation is not independent: its coefficient is completely determined

by the lower-order deformation that induces it. Some examples of this phenomenon are

described in [36, 62].

The preceding discussion offers an alternative perspective on known moduli-space non-

renormalization theorems, and can be used to derive new ones. We will discuss several

examples below, relying on our understanding of irrelevant supersymmetric deformations

29We can also contemplate couplings of the moduli fields to other degrees of freedom that may be present

at low energy, but we will not do it here.
30Some supersymmetric theories allow scalar potentials (e.g. superpotentials in four-dimensional N = 1

theories), which carry weight 0. Note that such terms can lift all or part of the moduli space.
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in free SCFTs. In some cases, the free IR theory of the fluctuations δΦI is not an SCFT.

For instance, this happens on the Coulomb branches of maximally supersymmetric Yang-

Mills theories in d ≥ 5, because free vector fields in these dimensions are not conformally

invariant (see for instance [63]). In such cases, our classification of irrelevant deformations

does not apply and must be worked out separately.31

5.1.1 Kinetic terms and the moduli-space metric

We will now apply the general procedure outlined above to constrain the weight-2 kinetic

terms of the moduli-space sigma model in (5.1), and hence the moduli-space metric gIJ(Φ).

Expanding in Riemann normal coordinates δΦI around a point 〈ΦI〉, we can express

gIJ(Φ) ∂µΦ
I∂µΦJ = δIJ ∂µ(δΦ

I)∂µ(δΦJ)+
1

3
RIKJL δΦKδΦL ∂µ(δΦ

I)∂µ(δΦJ)+ · · · , (5.4)

where RIKJL is the Riemann curvature tensor, evaluated at the point 〈ΦI〉, and the ellipsis

denotes terms with five or more powers of δΦI . The term proportional to RIKJL contains

four powers of δΦI and two derivatives, i.e. it has weight 2. It must therefore be accounted

for by a weight-2 deformation tabulated in section 3 that involves a product of four fields.

(In a free theory, the number of fields is preserved by the action of the supercharges.) In

the examples discussed below, the number of fields is simply related to the R-symmetry

quantum numbers of the superconformal primary that gives rise to the deformation.

By examining the tables in section 3, we see that a large class of theories does not

admit any supersymmetric deformations that satisfy these requirements:

• In three-dimensional N = 5 theories (see table 12) all deformations involving four or

more fields take the form QnO, with n ≥ 6, and therefore have weight ≥ 3. They

can therefore not account for the term proportional to the Riemann tensor in (5.4),

and hence the moduli-space metric must be flat.

• Repeating the argument for N = 6, 8 theories in three dimensions (see tables 14

and 15), and N = 3 theories in four dimensions (see table 25) immediately shows

that these theories must also have flat moduli-space metrics.

• Four-dimensional N = 4 theories have a flat metric, because there are no weight-2

terms with four fields, but they do admit weight-2 terms with two fields (see ta-

ble 28). These are the exactly marginal deformations that change the gauge coupling

multiplying the kinetic terms. The latter have been canonically normalized in (5.4).

• The metric on the tensor branch of six-dimensional N = (1, 0) theories must also

be flat. Although there is a candidate F -term deformation of weight-2 that involves

four fields (see table 32), it requires fields that carry su(2)R charge, e.g. hypermulti-

plets (see below). By contrast, the tensor-multiplet scalars are R-symmetry neutral,

because they reside in a C2[0, 0, 0]
(0)
2 multiplet (see table 31).

31For maximally supersymmetric Yang-Mills theories in all dimensions, this was done in [64–66].
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• In six-dimensional N = (2, 0) theories, the entire moduli space must be flat, because

there are no candidate weight-2 deformations (see table 34).

Intuitively, tensor branches in six dimensions must have flat metrics because self-dual

two-form gauge fields do not admit continuous (and hence also not moduli-dependent)

couplings.

Theories with less supersymmetry allow richer possibilities for the moduli-space metric.

For instance, it is a classic result [67] that gIJ(Φ) must be Kähler in theories with NQ = 4

supercharges. In four-dimensional N = 2 theories, the Coulomb branch is parametrized by

complex scalars ΦI residing in A2B1[0; 0]
(0;2)
1 vector multiplets (see tables 20 and 21), and

their complex conjugates. Supersymmetry requires the Coulomb-branch metric to obey

the constraints of rigid special Kähler geometry (see for instance [68, 69] and references

therein). This can be understood in terms of the fact that the only weight-2 deformations

that can be constructed out of the su(2)R neutral vector multiplets are chiral and anti-

chiral F -terms residing in LB1 and B1L multiplets (see table 22). The bottom components

of these multiplets furnish the holomorphic prepotential and its anti-holomorphic complex

conjugate that give rise to special geometry.

Finally, we will discuss the geometry of Higgs branches parametrized by hypermulti-

plets, which exist in all theories with NQ = 8 supercharges.32 It is well-known that su-

persymmetry requires the Higgs-branch metric to be hyperkähler [70, 71]. A hyperkähler

manifold of quaternionic dimension n has real dimension 4n, and the Riemannian holonomy

of its metric must lie in Sp(2n) ⊂ SO(4n). Here we will briefly outline how the hyperkähler

constraint arises from the perspective of the free hypermultiplets that constitute the deep

IR of the Higgs-branch effective theory.

For simplicity, we will focus on Higgs branches of rank one, which are described by a

single hypermultiplet H i and its complex conjugate H i = (H i). Here i = 1, 2 is an su(2)R
doublet index, which is raised and lowered with the su(2)R invariant ε-symbol. The real

target space index I which appears in (5.4) is now replaced by a pair i, i of complex indices.

Here i is also an su(2)R doublet index, which refers to the components of H
i
. The barred

and unbarred indices transform in the same way under su(2)R, so that εij is also an invariant

symbol. For instance, the kinetic terms in (5.4) are now proportional to εij∂µH
i
∂µHj . Note

that the indices i, i are not standard holomorphic indices on the Higgs branch, because the

corresponding Kähler form is proportional to εij and hence su(2)R invariant. By contrast,

the usual su(2)R triplet of hyperkähler forms is proportional to the Pauli matrices σa
ij
.

By examining tables 32, 30, 22, 10, which list the supersymmetric deformations of

theories with NQ = 8 supercharges in d = 6, 5, 4, 3 dimensions, we see that these theories

admit a unique irrelevant deformation of weight 2 constructed out of four hypermultiplet

fields. In each case, the deformation is obtained by acting with four Q-supercharges on

four hypermultiplet scalars in a totally symmetric representation of the su(2)R symmetry

with Dynkin label (4), while the deformation itself is an su(2)R singlet.33

32In d = 6, 5, 4, 3 they reside in D1[0, 0, 0]
(1)
2 , C1[0, 0]

(1)

3/2, B1B1[0; 0]
(1;0)
1 , B1[0]

(1;0)

1/2 multiplets (see ta-

bles 31, 29, 20, 21, 9). In three-dimensional N = 4 theories, there are also B1[0]
(0;1)

1/2 twisted hypermultiplets,

which are related to conventional hypermultiplets by mirror symmetry.
33In d = 6, 5, 4, 3 dimensions, these deformations are the unique top components of D1[0, 0, 0]

(4)
8 ,

C1[0, 0]
(4)
6 , B1B1[0; 0]

(4;0)
4 , B1[0]

(4;0)
2 multiplets (see tables 32, 30, 22, 10).
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Comparing with the normal coordinate expansion in (5.4), we see that the Riemann

tensor must be constructed using combinations of su(2)R invariant ε-symbols, in accord

with its usual algebraic symmetry properties. This leads to (here ∼ means that we are not

keeping track of numerical coefficients)

Rikjl ∼ εikεjl , Rikjl ∼ εikεjl , Rikjl ∼ εikεjl , (5.5)

together with similar expressions for other components, which are related to those in (5.5)

by complex conjugation or algebraic symmetries. The highly constrained form of the

Riemann tensor in (5.5) implies that the local holonomy of the metric lies in su(2) ≃

sp(2) ⊂ so(4). This is reflected by the fact that the Riemann tensor — viewed as a

map from two-forms to two-forms — annihilates the su(2)R triplet of hyperkähler forms

proportional to σa
ij

(see for instance [72]). Therefore, the metric is locally hyperkähler.

Note that our local analysis does not allow us to conclude that the Higgs-branch metric

should be globally hyperkähler, as is in fact required by supersymmetry [70, 71].

5.1.2 Higher derivative terms

The approach to moduli-space effective actions described above can also be used to

constrain higher-derivative terms. We will focus on a representative example: the

four-derivative Born-Infeld-like deformation that exists on the Coulomb branch of four-

dimensional N = 4 theories.34 Perhaps surprisingly, these terms are strongly constrained

by supersymmetry, as was first observed in the context of BFSS matrix quantum mechan-

ics [73].

For simplicity, we will consider a Coulomb branch of rank one, which is described by

a free abelian N = 4 vector multiplet, which constitutes a B1B1[0; 0]
(0,1,0)
1 representation

of the superconformal algebra (see tables 26 and 27). In particular, the moduli space

is parametrized by six real scalars ΦI , which transform in the vector representation 6 of

the so(6)R ≃ su(4)R symmetry. Schematically, the term of interest takes the following form,

δLM = f(Φ)
(
F 4 + (∂Φ)4 + · · ·

)
, (5.6)

where F denotes the abelian field strength and the ellipsis indicates terms with fermions.

For our purposes, it will be sufficient to know that we are looking for a term of weight 4

(there are four derivatives and four abelian field-strengths) that involves four fields. By

comparing with table 28, we see that there is a unique deformation with these properties.

It is the F -term deformation obtained by acting with Q4Q
4
on a B1B1[0; 0]

(0,4,0)
4 multiplet

constructed out of four symmetrized vector-multiplet scalars. The deformation itself

is R-symmetry neutral, and hence the function f(Φ) can only depend on the radial

variable ϕ =
√
δIJΦIΦJ .

In order to determine the function f(ϕ), we expand (5.6) in fluctuations δΦI around

a fixed expectation value 〈ΦI〉. This leads to an infinite number of terms of the schematic

form

∂I1∂I2 · · · ∂Inf |〈Φ〉 δΦ
I1δΦI2 · · · δΦIn

(
F 4 + (∂Φ)4 + · · ·

)
. (5.7)

34Similar deformations exist in all theories with NQ = 16 (see [62, 73–78] and references therein).
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All of these terms have weight 4 and involve n+ 4 fields. It follows from table 28 that the

only such deformation is an F -term that arises by acting with Q4Q
4
on a B1B1[0; 0]

(0,n+4,0)
n+4

multiplet constructed out of n+ 4 symmetrized vector-multiplet scalars. The deformation

itself has R-symmetry quantum numbers (0, n, 0), i.e. it is a totally symmetric, traceless

tensor of so(6)R. This immediately implies that the coefficients ∂I1∂I2 · · · ∂Inf |〈Φ〉 must

also be traceless. Taking n = 2, we obtain

δIJ∂I∂Jf(Φ) = 0 . (5.8)

Therefore f(Φ) is a harmonic function, as was first pointed out in a quantum mechanical

context [73]. Since f(Φ) only depends on the radial variable ϕ =
√
δIJΦIΦJ , it is fixed in

terms of two constants

f(ϕ) = A+
B

ϕ4
. (5.9)

Note that the constant A is dimensionful and must vanish on the moduli space of a con-

formal theory. However, our discussion did not assume that the theory whose Coulomb

branch we are discussing is conformal.35

5.2 Fayet-Iliopoulos terms

In this section, we use the classification of supersymmetric deformations in section 3 to com-

ment on the status of Fayet-Iliopoulos (FI) terms in different dimensions. As we will see, FI-

terms cannot arise as deformations of SCFTs unless d = 3. These results complement the

restrictions on field-theoretic FI-terms discussed in [55–57]. We will only consider theories

with NQ = 4, 8 supercharges. In these theories, vector multiplets have an off-shell formula-

tion and contain a Lorentz-scalar auxiliary field D. This D-component is R-symmetry neu-

tral in theories withNQ = 4 and transforms under theR-symmetry in theories withNQ = 8.

(For brevity, we suppress the R-symmetry indices.) In all cases, the FI-term is a deforma-

tion by the auxiliary D-component of an abelian vector multiplet, which is gauge invariant,

δL = ξD . (5.10)

The R-symmetry representation of the FI-parameter ξ is conjugate to that of the D-term,

e.g. it is an R-symmetry singlet in four-dimensional N = 1 theories and an su(2)R triplet

in four-dimensional N = 2 theories.

Since the D-term resides in a vector multiplet, and at the same level as the abelian field

strength F , its scaling dimension is ∆ = 2 in every spacetime dimension. By examining

tables 19, 30, 32, we see that SCFTs in d = 4, 5, 6 do not admit relevant deformations

of scaling dimension ∆ = 2. Thus, despite their common appearance in supersymmetric

theories with abelian gauge fields, FI-terms cannot arise as deformations of UV-complete

SCFTs. Conversely, an abelian gauge theory with FI-terms cannot have a UV fixed point.

In d = 4, these statements can also be understood from the following alternative point

of view: interacting CFTs with abelian gauge fields necessarily require electrically and

35We did, however, need the fact that the free N = 4 vector multiplet constitutes an SCFT, in order to

use our classification of irrelevant supersymmetric deformations in table 28.
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magnetically charged degrees of freedom [79]. However, it was shown in [56] that the

magnetic current identically vanishes in theories with FI-terms. This leaves only the free

abelian vector multiplet, for which the deformation (5.10) vanishes on-shell and can be

removed by a field redefinition, up to an innocuous shift of the vacuum energy.

In three dimensions, the situation is different: as can be seen from ta-

bles 3, 6, 8, 10, 12, 14, 16, all SCFTs in d = 3 admit relevant deformations of scaling

dimension ∆ = 2, and hence the FI-term is not ruled out. On the contrary, FI-terms

exist and can be interpreted as flavor mass deformations associated with the topological

current ⋆F , as was already discussed in section 4.1.

5.3 Lorentz non-invariant deformations

Throughout this paper, we have focused on deformations that preserve the full super-

Poincaré algebra. We can use the same techniques to enumerate deformations that preserve

supersymmetry but break Lorentz invariance. These are much less restricted, e.g. all

operators at the highest level ℓ = ℓmax of any multiplet furnish such deformations. Here

we briefly mention a well-studied example, which arises in the context of non-commutative

gauge theories (see [80] and references therein). Using the Seiberg-Witten map [81], gauge

theories on a non-commutative geometry with coordinates
[
xµ, xν

]
= iθµν can be described

as ordinary gauge theories deformed by a series of irrelevant operators weighted by powers

of θµν . These operators break Lorentz-invariance, but they may preserve supersymmetry.

For instance, the leading non-commutative deformation of a four-dimensional N = 4 gauge

theory is (see [49]),

δL = θαβ [Q2Q
4
O]αβ + θα̇β̇ [Q2Q

4
O]α̇β̇ , (5.11)

where θαβ and θα̇β̇ are the self-dual and anti-self-dual components of θµν , and O is a 1
2 -BPS

operator in a B1B1[0; 0]
(0,3,0)
3 multiplet (see tables 26, 27) that can be constructed out of

three nonabelian vector multiplet scalars, O ∼ Tr
(
Φ(IΦJΦK)

)
. The deformations in (5.11)

then take the following schematic form,

[Q2Q
4
O]αβ ∼ (Tr F 3)αβ + · · · ∈ [2; 0]

(0,0,0)
6 , (5.12a)

[Q2Q
4
O]α̇β̇ ∼ (Tr F 3)α̇β̇ + · · · ∈ [0; 2]

(0,0,0)
6 . (5.12b)

They reside at the highest level ℓmax = 6 of the multiplet and therefore preserve all NQ = 16

Poincaré supersymmetries.
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