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1 Introduction

Entanglement entropy quantifies the amount of information about a quantum state that

is lost upon restriction to a subsystem. Typically, by “subsystem” one means a spatial

region, but in general it can be any subalgebra of observables that belong to the theory

in question. This algebraic point of view has received increased interest in the context

of defining entanglement entropy in gauge theories [1–7], but the tools unearthed in this

body of work can also be used to understand another deep question: the relation between

entanglement entropy and field-theoretic dualities.

The crux of the algebraic approach to entanglement lies in constructing the density

matrix ρV associated to any subalgebra AV of observables [8, 9]. (We will often use

“subsystem” to refer either to the rule V that picks out the subalgebra, or to the subalgebra

AV itself.) This density operator is the unique element of AV that is positive semi-definite,

has unit trace in some natural representation, and reproduces the expectation values of

all operators in the subsystem via 〈O〉 = Tr(ρVO). The entanglement entropy of AV is

then defined as the von Neumann entropy S = −Tr(ρV log ρV ). When V is a spatial

region and AV is the maximal algebra of observables in V , the density matrix defined in

this algebraic way coincides with the one obtained by tracing out the degrees of freedom

outside V in the density matrix for the whole system. However, even if these conditions

are not fulfilled, ρV is still a legitimate density operator, and its entropy reflects the fact

that certain measurements on the system are not accessible to us.

A general approach like this is indispensable when studying dualities. Typically, when

two theories map to each other, there is a small mismatch between a theory that respects

duality and a theory that we are used to dealing with, and the subalgebras dual to each
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other are not necessarily maximal algebras on any spatial region. For example, when a

photon is dualized to a scalar in d = 2 spatial dimensions, the scalar zero mode obeys a

certain compactness condition. At weak gauge theory coupling, the zero mode operator is

absent altogether. The lack of this operator in the strongly coupled (“ordered”) regime of

the scalar theory leads to both an area law and a term that corresponds to the topological

entanglement entropy in the dual weakly coupled gauge theory [10].

One upshot of this discussion is that there is no unique notion of entanglement entropy

associated to a spatial region. Instead, for each region one can define a multitude of algebras

associated to it, and each algebra choice comes with its own entanglement entropy. The

maximal algebra is a natural choice, and indeed most of the current intuition comes from

the entropy associated to this algebra, via the tracing out procedure. Nevertheless, this is

still just a choice, and other algebras associated to a region — for instance, one that differs

from the maximal one by only one generator — lead to (in principle) different measures

of entanglement. We emphasize that this is not a mere UV ambiguity in the definition of

the entropy (see also [1]), in the same way that a choice of boundary conditions in a path

integral is not merely a UV effect. This analogy is not accidental; we will demonstrate

below that a particular non-maximal choice of subalgebra can be represented as a tracing

out of a full density matrix while summing over boundary conditions at the entangling

edge.

The purpose of this paper is to study simple Ising systems on a lattice and to very

explicitly show how the same entanglement entropy is exhibited on both sides of various

dualities. In particular, we will focus on Kramers-Wannier (KW) dualities of the Ising

model in d = 1 and d = 2 [11], and on Jordan-Wigner/bosonization dualities of the Ising

model in d = 1 dimensions. Working with the Ising model affords us a great degree of

transparency, but our conclusions generalize to KW dualities of other Abelian theories in

different dimensions.

2 Entropy in a single spin

Before sinking our teeth into pairs of dual theories, let us first warm up using a rather

trivial example. We will use notation that immediately generalizes to more complicated

cases. Consider a system consisting of a single spin with a two-dimensional Hilbert space

H. The algebra A of Hermitian operators acting on this spin is a vector space that we will

often identify with its set of basis vectors. For example, we write A = {σµ}, where σ0 = 1,

and the remaining three operators, σx, σy, and σz, satisfy the commutation relations of the

usual Pauli matrices. This basis set is generated by two operators, say σx and σz; other

operators are obtained as products of these two. The following subsets of {σµ} generate

subalgebras of A:

{1}, {1, σx}, {1, σy}, and {1, σz} . (2.1)

Other subsets do not generate algebras because they are not closed under multiplication.

Each of the resulting subalgebras has an associated reduced density matrix. For a

subalgebra AV = {1,O}, the general density operator can be written as ρV = ρ11+ ρOO,
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where ρ1 and ρO are numbers. These coefficients are uniquely determined by solving a

system of two linear equations coming from the requirement

Tr(ρVO) = 〈O〉 . (2.2)

This uniqueness persists in more complicated examples with arbitrarily large algebras. For

the trivial subalgebra AV = {1}, the reduced density matrix is ρV = ρ11, where ρ1 is

chosen to ensure the operator has unit trace, in agreement with (2.2).

The coefficients in the expansion

ρV =
∑
O∈AV

ρOO (2.3)

will all depend on the representation of the trace on the l.h.s. of (2.2). In principle, we can

choose any representation, and we would get a legal density matrix. The von Neumann

entropy associated to ρV does depend on this choice. For instance, the trivial algebra

AV = {1} can be represented as the identity operation on a space of arbitrary dimension D,

and the entropy would then be logD. There is no reason to believe that one representation

is more fundamental than another; each is a different yardstick for measuring the entropy.

In this paper we will always employ the natural choice that comes from the original Hilbert

space on which the full algebra A was defined, and when comparing entropies of different

algebras we will make sure to only compare the entropies associated to representations

of the same dimensionality. This way, our results will agree with the standard algebraic

definition of entanglement entropy, where the dimension of the Hilbert space is fixed to be

equal to the number of minimal projection operators in a given algebra [8]. The reason for

the agreement is that the dual subalgebras are always equivalent, and therefore the numbers

of minimal projectors on both sides of the duality must be the same. Our phrasing in terms

of representations of the operator algebra can be considered as a slight generalization of

this usual algebraic picture that does not have deep consequences for our discussion.

With this comment in mind, we choose to represent the operators 1 and O as 2 × 2

matrices acting on vectors in H. If AV = {1}, the reduced density matrix is ρV = 1
21 and

the entropy is SV = log 2 regardless of the original state of the system. This is natural,

as having access only to the identity operator means that we have no way of measuring

anything about the system, so we can do no better than to express it as a completely mixed

state.

If AV = {1, σz}, say, things are more interesting. If 〈σz〉 = 0, the reduced density

matrix is again ρV = 1
21, describing a mixed state since we have no information whether

the system is in the +1 or −1 eigenstate of one of the other two operators. The entropy

is again log 2. If 〈σz〉 = 1, however, the reduced density matrix describes a pure state,

ρV = |↑〉〈↑|, and the entropy is zero; this time the observable algebra is enough to determine

all information about the state of the system.

The setup described so far has a very nice property that generalizes to all Z2 models we

study in this paper: all operators except for the identity have zero trace, and all operators

square to the identity. This allows us to multiply both sides of (2.3) with an operator O
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and take the trace, getting

ρO =
〈O〉
Tr1

. (2.4)

If we know the coefficients ρO of the full density matrix, we automatically know all the

reduced density matrices: we just project the sum ρ =
∑
O∈A ρOO to ρV =

∑
O∈AV ρOO.

In other examples, we may want to express the operators in AV as acting on a smaller

Hilbert space HV , in which case we need to restrict the sum to O ∈ AV and to rescale

all the surviving coefficients ρO by dimH
dimHV . Doing this for a maximal algebra on a spatial

subset V gives the reduced matrix ρV = TrV̄ ρ.

3 Ising-Ising duality (d = 1)

Consider the quantum Ising model defined on a chain with L sites. Any conceivable

operator in this model can be written as σµ11 . . . σµLL , where σµi is a Pauli matrix acting

on site i.1 The version of the Ising model that possesses a Kramers-Wannier (KW) dual

does not contain all of these operators; the needed algebra is generated by operators σzi
for i = 2, . . . , L − 1 and σxi σ

x
i+1 for i = 1, . . . , L − 1. This choice reflects the adoption

of open boundary conditions (σz cannot be measured at the edges of the system).2 The

Hamiltonian is

H = −
L−1∑
i=1

σxi σ
x
i+1 + h

L−1∑
i=2

σzi , (3.1)

and the Hilbert space H is taken to be 2L−1-dimensional, with the spin on site 1 always

being in state |+〉 that satisfies σx1 |+〉 = |+〉. At strong coupling (h � 1), there are two

orthogonal ground states corresponding to two different boundary conditions,

|Ωh�1
↓ 〉 = |+↓↓ . . . ↓↓〉 , |Ωh�1

↑ 〉 = |+↓↓ . . . ↓↑〉 , (3.2)

with σz|↑〉 = |↑〉 and σz|↓〉 = −|↓〉 as usual. At weak coupling (h � 1) the unique ground

state is

|Ωh�1〉 = |+ + . . .+〉 . (3.3)

The KW dual of this system is an Ising model defined on the links of the above chain.

We define the dual algebra via generators τ zi, i+1 = σxi σ
x
i+1 and τxi−1, iτ

x
i, i+1 = σzi , so the

Hamiltonian of the dual space is

H = −h̃
L−1∑
i=1

τ zi, i+1 +

L−1∑
i=2

τxi−1, iτ
x
i, i+1 , h̃ =

1

h
. (3.4)

The 2L−1-dimensional Hilbert space of Ising spins on links is isomorphic to the original

Hilbert space, and we will denote its elements with |·}. The natural mappings between the

two spaces map ground states to each other, and in terms of basis elements they are

|±〉i|±〉i+1 7→ |↑}i, i+1 , |±〉i|∓〉i+1 7→ |↓}i, i+1 .

|±}i−1, i|±}i, i+1 7→ |↓〉i , |±}i−1, i|∓}i, i+1 7→ |↑〉i .
(3.5)

1For clarity, we omit the ⊗ symbols and factors of 1. In proper notation, σµi would be written as

11 ⊗ . . .⊗ 1i−1 ⊗ σµi ⊗ 1i+1 ⊗ . . .⊗ 1L.
2There exists a version with a σz at only one edge, but it would give us the same results as this one.
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This implements the standard picture of spin flips being dualized to kinks/domain walls

by a KW transformation.

The lack of individual τx operators in the dual picture means that there is no measure-

ment that would distinguish states related by a global spin flip in the τx eigenbasis. This

is not so in the original picture, where the first spin is fixed to be in the |+〉 state, so all

the other individual σxi eigenvalues can be measured, and there is no lack of information

on the overall spin flip in the σx basis. Rather, the global spin-flip symmetry of the dual

model corresponds to the | ↑〉L 7→ | ↓〉L symmetry in the original model (note that σzL is

also not an observable).

Let us now study entanglement entropy on both sides of the duality. Consider first a

set of neighboring sites V in the original picture. Assuming that V is away from the edges

of the system, the maximal algebra AV supported on V is generated by |V | operators σzi
and |V | − 1 operators σxi σ

x
i+1. The entanglement entropy that we wish to compute is the

von Neumann entropy of the matrix ρV =
∑
O∈AV ρOO represented as an operator on the

Hilbert space HV of spins in V . The coefficients in this expansion are, according to (2.4),

ρO =
〈O〉

dimHV
. (3.6)

At strong coupling, the reduced density operator ρh�1
V is built out of all the operators

with nonzero expectation values in the state |Ωh�1
↓ 〉. (The result will be the same in the

other ground state, of course.) The operators with nonzero vevs are all possible products

of σz’s, and the density matrix is

ρh�1
V =

1

2|V |

(
1−

∑
i∈V

σzi +
∑
i<j

σzi σ
z
j − . . .+ (−1)|V |

∏
i∈V

σzi

)
. (3.7)

These matrices are all diagonal in the σz eigenbasis, and it takes a simple counting exercise

to determine that all the diagonal entries except for |↓ . . . ↓〉〈↓ . . . ↓| are zero. Thus, ρh�1
V

describes a pure state and the entanglement entropy at strong coupling is

Sh�1
V = 0 . (3.8)

At weak coupling, the situation is inverted. The only operators with nonzero vevs are

products of σxi σ
x
i+1, and all the vevs are equal to one. The reduced density operator is

ρh�1
V =

1

2|V |

(
1 +

∑
i<j

σxi σ
x
j +

∑
i<j<k<l

σxi σ
x
j σ

x
kσ

x
l + . . .

)
. (3.9)

Like before, it is sufficient to work in the σx basis and count the ±1 terms on the diagonal.

The result is that matrix elements at positions |+ . . .+〉〈+ . . .+ | and |− . . .−〉〈− . . .−| will

each equal 1/2, while all others will be zero. The weak-coupling reduced density matrix

thus represents a mixed state with entropy

Sh�1
V = log 2 . (3.10)
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•

τxτx

σz

l

Figure 1. (color online) KW duality in d = 1. Above: the original picture. Thick red dots

are the set V , and operators generating its maximal algebra are explicitly labeled. Below: dual

picture. Black circles denote edge sites without τz operators; all operators in the dual algebra are

also labeled.

In the dual picture, the algebra AV maps to the non-maximal algebra Ã
Ṽ

on the

region Ṽ with |V | + 1 sites (see figure 1). This dual algebra is generated by operators τ zi
for i ∈ Ṽ − ∂Ṽ and τxi τ

x
i+1 for i ∈ Ṽ ; in other words, Ã

Ṽ
is obtained by removing the

edge operators τ zi from the maximal algebra on Ṽ . Note that the dimension of the Hilbert

space on Ṽ is different from the dimension of the corresponding Hilbert space on V . As

discussed in the Introduction, this means that the entanglement entropy that is naturally

calculated in the dual picture can be greater than the entropy in the original picture, as

the algebras of the observables are the same but their representations differ. In order to

meaningfully compare entropies on both sides of the duality, we will take dual operators

to act on the 2|Ṽ |-dimensional Hilbert space H
Ṽ

that has the first spin (at one edge of Ṽ )

fixed to |+}. This parallels the need to choose the spin on the end of the chain to be in

the |+〉 state.

Direct calculation can verify that the entanglement entropies are the same, as they

should be since the dual subalgebras are isomorphic and the representations have the same

dimension. It is instructive to see how this works out. The ground states at weak dual

coupling are

|Ωh̃�1
1 } = |+−+ . . .} , |Ωh̃�1

2 } = | −+− . . .} , (3.11)

and operators with nonzero vevs in these states are τxi τ
x
i+1 and their products. The reduced

density matrix ρh̃�1

Ṽ
is found to be the pure state matrix |+−+ . . .}{+−+ . . . | in both

ground states, and the entanglement entropy is

Sh̃�1

Ṽ
= 0 . (3.12)

At strong dual coupling, the ground state is

|Ωh̃�1} = |↑ . . . ↑} , (3.13)

and the operators with nonzero vevs are τ zi and their products. With the inclusion of the

edge operators, the reduced density matrix on H
Ṽ

takes the form

ρh̃�1

Ṽ
=

1

2|Ṽ |

(
1 +

∑
i∈Ṽ−∂Ṽ

τ zi + . . .

)
⊗ 1 . (3.14)
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The matrix in the parentheses is a pure state density matrix, | ↑ . . . ↑}{↑ . . . ↑ |. The

entire von Neumann entropy of ρh̃�1

Ṽ
comes from the identity operator at the edge where

no boundary condition has been imposed:

Sh̃�1

Ṽ
= log 2 . (3.15)

These calculations show that the naturally defined entanglement entropies of dual

systems are

Sh̃
Ṽ

= ShV . (3.16)

While this may seem like a foregone conclusion given that the density matrices are evidently

mapped to each other by duality, we point out that the origin of the entropy (when present)

is different on the two sides of duality. In the original picture, the entropy came from

mixing of the two states related by a global spin flip; in the dual picture, the same entropy

came from the edge mode alone. This is a very simple example of UV/IR correspondence

engendered by duality.

4 Ising-gauge duality (d = 2)

4.1 Setup

Let us now define a Z2 gauge theory on a square L × L lattice. Operators and states are

defined on links `, and the most general operator has the form
∏
` σ

µ`
` . Gauge-invariant

states are those elements of the full Hilbert space H0 that are invariant under Gauss

operators Gi =
∏
µ σ

x
(i, µ) at any site i, with the product over all directions µ of links

emanating from i. These states form the gauge-invariant Hilbert space H. Operators that

map H to H form the gauge-invariant algebra A, which is generated by all the operators σx`
and by products Wp =

∏
`∈p σ

z
` around each plaquette p. The Wp are magnetic operators

(Wilson loops) and they create closed loops of electric flux. The σx` are electric operators

and they create pairs of vortices (“magnetic flux insertions”).

As done for the Ising model, in order to define a theory with a KW dual, we choose

that A has no generators on the edge of the lattice. In other words, we regard an electric

operator σx` as unphysical/unobservable if ` does not belong to exactly two plaquettes.

Now all the remaining gauge-invariant operators can be mapped to operators in the Ising

model on the dual lattice via

Wp = τ zp , σx` = τxp τ
x
q , (4.1)

with p and q being two plaquettes that both contain the link `. As before, we see that

the system with no operators at its edges gets dualized to a system with no individual τx

operator on any site.

The mapping of Hilbert spaces presents more subtleties than in d = 1. The Hilbert

space H̃ of the Ising model has 2(L−1)2 dimensions, as it is a product of two-dimensional

Hilbert spaces on each plaquette. The gauge-invariant Hilbert space H has the same

dimension, but the full space H0 has a much greater dimension, 22L(L−1), being a product

– 7 –
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of two-dimensional spaces on each link. The full Hilbert space cannot be mapped to the

Ising model; only gauge-invariant states map. Since the entanglement entropy in gauge

theories is typically (if tacitly) calculated using the full Hilbert space [1–7, 12–21], we might

expect large differences between entanglement entropies that are naturally calculated on

the two sides of KW duality. This does not happen: the inclusion of Gauss law operators

Gi in the algebra of observables effectively projects the full Hilbert space down to the

physical one. We will later explain how this works in detail.

We take the gauge theory Hamiltonian to be

H = g
∑
`

σx` −
∑
p

Wp . (4.2)

The strong coupling ground state is degenerate, just like it was for the Ising chain. There

are two physical ground states. Both contain a product of states |−〉 at each interior link,

and they differ in how the Gauss law is realized at the edge of the system. (Each of these

states is obtained from the other by adding an (unobservable) electric flux loop along the

system edge.) These states confine electric fields, and excitations are loops of electric flux.

At weak coupling, the ground state |Ωg�1〉 has Wp = 1 on each plaquette. This is satisfied

by
∏
` |↓〉` and by all other states obtained by acting on this one with products of Gi. The

only gauge-invariant ground state is the sum of all of these states, and this is |Ωg�1〉. This

ground state can also be expressed as the unweighted sum over all possible electric flux

loop excitations of either strong coupling state |Ωg�1
1/2 〉.

The dual Hamiltonian is

H =
∑
〈p, q〉

τxp τ
x
q − g̃

∑
p

τ zp , g̃ =
1

g
. (4.3)

which is just the higher-dimensional analogue of (3.4). As before, we denote the dual

quantum states by |·}. At strong dual coupling, the ground state is

|Ωg̃�1} =
∏
p

|↑}p , (4.4)

and at weak dual coupling the two ground states are the two possible “checkerboard” tilings

of the lattice by |+} and |−} states,

|Ωg̃�1
1 } =

L−1∏
i, j=1

|(−1)i+j}(i, j) , |Ωg̃�1
2 } =

L−1∏
i, j=1

|(−1)i+j+1}(i, j) . (4.5)

4.2 Entanglement in gauge theory

The entanglement entropy on the gauge theory side has been calculated for both strong

and weak coupling [1, 4, 5, 7, 17]. In order to emphasize and further illustrate our operator

approach to density matrices, we present a telegraphic derivation these well-known results.

We will focus on the entropy associated to the maximal algebra that can be placed upon

a set of links V .

– 8 –
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At weak coupling, all products of Wilson loops satisfy
〈∏

pWp

〉
= 1, and all electric

operators and their products have vanishing vevs — with the exception of Gauss operators,

Gi, whose products all satisfy 〈
∏
iGi〉 = 1. All these operators with nonzero vevs mutually

commute. Thus, the reduced density operator for the algebra AV can be written as

ρg�1
V =

1

2#links(V )

(
1+
∑
p

Wp+
∑
i

Gi+
∑
p 6=q

WpWq+
∑
i 6=j

GiGj+
∑
i, p

GiWp+ . . .

)
, (4.6)

where the denominator is the dimension of the Hilbert space of spins on all links in V

(without any regard for gauge invariance), and the sums include all Gauss operators and

elementary Wilson loops that generate AV . This density operator can also be written as

ρg�1
V =

2#stars(V )

2#links(V )

(
1 +

∑
p

Wp +
∑
p 6=q

WpWq + . . .

)∏
i

1 +Gi
2

. (4.7)

(Note that a Gauss operator Gi is in AV if and only if all links emanating from site i are in

V ; such configurations of links are called “stars”.) Each operator 1
2(1 +Gi) projects onto

the space of states that obey the Gauss law at site i. This extremely convenient fact allows

us to forget about the original set of degrees of freedom inside V and to work just with

gauge-invariant basis vectors. However, we must still work with gauge-variant degrees of

freedom at edge sites of V , as the associated Gauss operators will not be in AV . This shows

how the general operator prescription reduces to the one studied by extended Hilbert space

and/or superselection sector techniques [4, 7].3

The von Neumann entropy of ρg�1
V is easy to compute when the matrix is stripped of

the projection operators and expressed in the basis that diagonalizes the Wilson loops. The

density matrix is then diagonal and uniformly mixes the 2|∂V |−1 different basis vectors that

correspond to states with Wp = 1 and Gi = 1 at all plaquettes and stars. (Here we assume

that V does not contain disconnected components.) Its entropy takes the familiar form

Sg�1
V = (|∂V | − 1) log 2 . (4.8)

At strong coupling, the situation is somewhat simpler: operators with nonzero vevs

are all products of σx’s with
〈
σx`1 . . . σ

x
`n

〉
= (−1)n. Gauss operators are a special case of

these, and do not need to be treated separately. The reduced density matrix is

ρg�1
V =

1

2#links(V )

(
1−

∑
`

σx` +
∑
`6=`′

σx` σ
x
`′ − . . .

)
. (4.9)

In the electric basis this matrix is diagonal and by simple inspection we see that the entry

corresponding to the basis vector
∏
`∈V |−〉` is equal to unity; therefore other entries must

be zero, and the matrix is pure. This again reproduces the well-known result

Sg�1
V = 0 . (4.10)

3This conclusion holds generally, not just in the ground state at weak coupling. Gauss operators belong

to the center of AV , they always have unit expectation values for gauge-invariant states, and hence any

density matrix can be written as a projector to the gauge-invariant subspace.
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4.3 Entanglement in the dual picture

Just like in the previous section, the maximal algebra on a set of links does not map to a

maximal algebra on a set of sites on the dual lattice. Instead, the dual algebra Ã
Ṽ

lacks

individual τx generators on any site but contains an extra set of τxp τ
x
q generators that wrap

the edge of the original region V (see figure 2).

At strong dual coupling, the operators with nonzero vev are τ zp and their products.

Note that duals to Gauss operators, i.e. products of τxp τ
x
q along closed contours, have vevs

equal to 1 not by virtue of the state being special, but rather purely algebraically, because

each τxp in that product is repeated an even number of times and the full product just gives

the identity. These are not independent observables the way Gi’s were in the gauge theory.

The reduced density operator is thus

ρg̃�1

Ṽ
=

1

2|Ṽ |

(
1 +

∑
p

τ zp +
∑
p 6=q

τ zp τ
z
q + . . .+

∏
p

τ zp

)
⊗
∏′

p∈∂Ṽ

1p , (4.11)

where the indices p and q in the parentheses run over the interior of the dual region, Ṽ −∂Ṽ .

The product over edge degrees of freedom is primed to denote that it runs over |∂Ṽ | − 1

sites; this is because we need the representation of the dual subalgebra to have the same

dimension as in the original picture, and hence we fix one boundary site to always be in

the |+} state. This is a straightforward generalization of the d = 1 case (3.14), and the

entropy is simply

S g̃�1

Ṽ
= (|∂Ṽ | − 1) log 2 . (4.12)

Since |∂V | = |∂Ṽ |, the dual entropies S g̃�1

Ṽ
and Sg�1

V are equal, as they should be.

At weak dual coupling, the operators with nonzero expectations are τxp τ
x
q pairs and

their products, except for the products along closed loops of links. The reduced density

matrix is

ρg̃�1

Ṽ
=

1

2|Ṽ |

(
1 +

∑
p 6=q

(−1)|p−q|τxp τ
x
q + . . .

)
. (4.13)

By the same trick used in its dual strongly coupled gauge theory case, we notice that, in

the τx eigenbasis, the vector with alternating + and − states is an element of H
Ṽ

that

gives a unit entry on the diagonal of ρg̃�1

Ṽ
. Since this is a density matrix, all other entries

must be zero, and the entanglement entropy is

S g̃�1

Ṽ
= 0 . (4.14)

We see that S g̃
Ṽ

= SgV holds in d = 2, just like it did in d = 1. This time the

interesting effect is the topological piece of the weak-coupling entropy, − log 2, and the

corresponding term in the strongly coupled scalar entropy. In the gauge theory this term is

well-understood: due to the Gauss law, the total electric flux passing through the edge ∂V

must be zero, this leads to a constraint on the types of states that the interior can be in,

and therefore the entropy is smaller than the area law term that one may näıvely expect.

In the dual picture, the reduced density matrix uniformly mixes all edge modes (modulo
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Figure 2. (color online) Duality in d = 2: thick black lines are the set V , and grey circles

denote edge sites in ∂V . Electric operators σx are defined on all thick black lines, and magnetic

operators W are defined on all thick black plaquettes. All red circles together form the dual set

Ṽ . Operators τz on filled-in circles belong to the dual algebra ÃṼ , as do all τxτx pairs on sites

connected by red lines.

an overall spin flip) even though the interior is in an ordered state. When computing an

expectation value, this mixing can be implemented as a sum over all possible domain walls

on a spin chain located on the entangling edge ∂Ṽ . In the case at hand, there are 2|∂Ṽ |−1

different domain walls.

This phenomenon is already known for the dual of U(1) gauge theory [10]. The en-

tanglement entropy of a compact scalar at small radius was found to come from the sum

over configurations with different windings along the entanglement edge in the replica path

integral. In the language of the present paper, the sum over winding sectors follows from

the fact that the edge ∂Ṽ does not admit any position operators as observables. Adding

these edge operators would project us to a sector with zero winding; equivalently stated,

the reduced density matrix of this enlarged algebra would have to be that of a pure state

in order to reproduce expectation values of the newly added operators. There exist re-

lated discussions in the contexts of d = 3 gauge theories [21], self-dual higher form gauge

theories [22], and the d = 1 Ising model [23].

5 Bosonization (d = 1)

As our final example, we study the Jordan-Wigner transformation between the Ising chain

and a system of Majorana fermions. This is a rather simple setup, but it will provide

us with an example of a system where a nonlocal set of generators is needed to form the

subalgebra of one side of the duality.
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This time, we work with an Ising chain on L sites with all operators present, and with

Hamiltonian

H = −
L−1∑
i=1

σxi σ
x
i+1 + h

L∑
i=1

σzi . (5.1)

The dual Majorana operators are

ci = σxi
∏
j<i

σzj , di = σyi
∏
j<i

σzj . (5.2)

These operators are Hermitian and any two nonidentical ones anticommute. Often, di is

written as ci+1/2. The dual Hamiltonian is

H = i
L−1∑
i=1

dici+1 − ih
L∑
i=1

cidi . (5.3)

(Note that due to the anticommutation between all c’s and d’s, their products must be

multiplied by i to give Hermitian operators.) The Majoranas ci and di act on the 2i-

dimensional Hilbert space of a complex fermion at sites 1 through i, which is in turn

isomorphic to the Hilbert space of i spins.

Let us consider the entropy associated to the algebra generated by a set of adjacent c’s

and d’s on sites V . At strong coupling (h� 1), the ground state is a “Majorana supercon-

ductor”, a condensate of pairs of fermions that are coupled by the h term in H. Individual

Majorana fermions have vanishing vevs, and the only operators with nonvanishing expec-

tations are the identity and products of pairs icidi. In the spin language, these are the σzi
operators that detect that the ground state is ordered.

When choosing the representation of the reduced algebra AV , it is important to keep

it the same dimension as in the original spin picture. Thus, even though all operators have

trailing σz’s or 1’s going all the way to the beginning of the chain, we choose to represent

all operators as matrices acting on the 2|V |-dimensional space of spins/fermions living in V .

If the algebra AV contains both Majoranas on each site in V , the strong coupling entropy

is zero, in complete analogy with (3.7). If not, i.e. if the system’s right edge V cuts between

sites i and i + 1
2 , this is equivalent to removing σzi but leaving σxi in the subalgebra. If

the system’s left edge cuts between i − 1
2 and i, the situation is a bit more complicated

because then both σyi−1 and σxi−1 will appear in the algebra, but the latter operator will

only appear in products with other operators on sites i and onwards.

At weak coupling, the spin system has two ground states (this time we have not

imposed boundary conditions to lift this degeneracy). They are related by a global spin

flip. In the Majorana picture, however, the degeneracy comes from the edge Majoranas c1

and dL which are free (while all the others are paired up by the dici+1 terms in H). If

we pick the algebra AV such that it doesn’t split any of these pairs of Majoranas, we will

get zero entropy. If, however, we pick the algebra such that it is a maximal algebra on a

set of spin sites, then it will necessarily cut through two pairs of coupled Majoranas. The

final result in this case is an entropy of log 2. In the spin language this entropy came from

the mixing of two states on V related by a global spin flip, and in the fermion language it
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came from the dangling Majoranas at the edge of V . Once again, this is an example of a

UV/IR connection.

6 Outlook

The main purpose of this paper was to provide a point of view from which entanglement

entropy becomes an object that is naturally preserved by various dualities. The price we

paid was the need to generalize entanglement entropy away from the usual “tracing out”

procedure. From the point of view of this usual procedure, the generalized notion of entan-

glement entropy amounts to introducing summations over sectors labeled by eigenvalues

of operators removed from a maximal algebra on a spatial region. In gauge theories, this

summation over superselection sectors has been the subject of a lot of attention [1–7], and

in this paper we have shown that it can be understood to follow from excluding Gauss

operators at the edges of the system from the observable subalgebra. In scalar theories,

we have seen how excluding edge operators leads to a sum over winding sectors around the

edge (or solitonic configurations on the edge), a variant of which was already considered

in [10] in order to study entanglement in a scalar dual to a d = 2 Maxwell theory.

The entropy of a non-maximal algebra on a spatial region V may seem undeserving of

the name “entanglement” entropy. In particular, this entropy can be defined even in d = 0,

as we did for the case of a single spin, and here there are no spatial regions to entangle.

However, it seems that distinguishing between purely spatial entanglement entropy and

these other entropies is not productive, as duality mixes up these notions. Moreover, at

least in the case of Majorana fermions, there is even a way to map each generator of

the Ising chain algebra to a Majorana operator on a separate spatial site, giving a direct

geometric interpretation to each spin operator.

Requiring additional symmetries is a useful way to tame the multitude of subalgebras

that can be placed on a spatial region. For instance, if we work on a lattice with spherical

symmetry and we pick V to be a ball, then requiring that AV be spherically symmetric

significantly restricts the set of allowed subalgebras, as we can now only remove a generator

from all points at the edge. In fact, demanding enough symmetry may pick out a unique

algebra (up to differences leading to nonuniversal terms only), as evidenced by the fact that

supersymmetric Renyi entropies of certain superconformal theories on spherical regions

(computed via localization of the replica trick path integral) agree across dualities without

any manual summation over superselection sectors [24].

Our results easily generalize to other Abelian theories. In particular, Zk and U(1)

theories with known duals all follow the pattern of mapping a maximal algebra to a non-

maximal one. In d = 3, where a gauge theory maps to another gauge theory via electric-

magnetic duality, our results rather reassuringly imply that the maximal algebra on one

side (the “electric center” choice) will map to the “magnetic center” choice on the other

side of the duality. We have not touched upon dualities of nonabelian theories, as these

are much more complex, but we expect that a similar story will hold.

A duality that we have so far not mentioned at all is holography. The algebraic

approach to entanglement entropy in gravitational theories is still nascent [25–27], and
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even bulk operator reconstruction based on boundary data is very much an active field

of research (see, for instance, [28–36]). Nevertheless, holographic dualities qualitatively

behave like the dualities studied in this paper: they are strong-weak coupling dualities,

there exists a UV/IR connection [37], and entanglement entropy in the bulk appears to

be equal to the one on the boundary, inasmuch as we know how to define entanglement

in quantum gravity (see e.g. [38, 39]). Based on this and on the intuition developed in

this paper, a reasonable speculation at this stage would be that a maximal algebra in

a subregion does not holographically map to a maximal algebra in a dual subregion, so

any statement about the duality of subregions must be supplemented with rules about

how to exclude certain operators (or how to sum over corresponding sectors in the path

integral) on at least one side of the duality. It would be interesting to understand what

boundary operators are missed by the construction of [36], which proves that local bulk

operators in the entanglement wedge of a boundary region V are dual to boundary operators

supported only in V . For example, local boundary operators in V are dual to classical

gravity backgrounds, i.e. to solitons that live in the entire bulk, so we should expect that

the algebra dual to local bulk operators in the entanglement wedge can contain local

operators in the boundary only in some approximate sense. Making these speculations

precise is a difficult but extremely rewarding task left for future work.
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