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1 Introduction

The notion of interface is relevant to different areas of physics. In particle physics the sim-

plest model of the confining potential between a quark and an antiquark is obtained seeing

them as the endpoints of a string whose time propagation generates a two-dimensional

surface; for large separations r the potential then grows as σr due to the surface tension σ.

In a statistical system at phase coexistence, in any dimension d ≥ 2, suitable boundary

conditions induce a separation between different phases which is commonly described in

terms of an interface. The connection between the two physical problems becomes explicit

when duality relates a lattice gauge theory to a spin model (see e.g. [1]).

It is clear that the notion of surface/interface provides an effective description of phe-

nomena for which one is unable to perform a first principle derivation from the underlying

field theory (gauge theory for confinement, field theory of the scaling region for a near-

critical statistical system). The process of endowing the interface with fluctuations able

to reproduce the observed properties leads to effective string actions [2–4] for confinement,

and to capillary wave theory [5] and its extensions in statistical physics. These approaches

account for the presence of long wavelength modes for the effective degrees of freedom, i.e.
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the deviations of the interface from its average position. In turn, the existence of these

long wavelength modes should imply long range correlations in the underlying field theory.

Since, referring from now on to phase separation (e.g. in the Ising model slightly below

the critical temperature1), all correlations decay exponentially in a pure phase, long range

correlations of the order parameter must be generated by phase separation. Although this

implication has been pointed out and investigated since long time in the context of inho-

mogeneous fluids [6–8], these correlations have never been derived within the underlying

field theory. In this paper we perform this derivation exactly in the two-dimensional case.

We are able to do this because it has been shown in the last few years [9–11] how phase

separation in near-critical two-dimensional systems can be described in a fundamental,

general and exact way supplementing with the required boundary conditions the bulk field

theory, i.e. the field theory corresponding to the scaling limit of the pure phases. This has

allowed, in the first place, to determine the order parameter profiles2 (one-point functions)

and to derive from them the properties of the interfacial region, including the deviations

from the simple curve picture [9, 10]. The theory has also been extended to interfaces at

boundaries [14–16] and to interface localization [17].

Here we move on to the determination of the two-point function of the order parameter,

in the large distance regime relevant for the issue discussed above. We consider the system

in the infinitely long strip |y| ≤ R/2 in the xy plane, with boundary conditions on the

two edges favoring a phase a for x < 0 and a phase b for x > 0 (figure 1), with a and b

coexisting phases. In the relevant regime R much larger than the bulk correlation length

ξ, phase separation is exhibited by the variation of the expectation value 〈σ(x, y)〉ab of the
order parameter field σ(x, y) (spin field within the magnetic terminology) from 〈σ〉a to 〈σ〉b
as x varies from −∞ to +∞. We denote by 〈· · · 〉ab the expectation values for boundary

conditions changing from a to b at x = 0, and by 〈· · · 〉a the expectation values in the pure

phase a. The analytic formulae of this paper hold for systems for which phase separation

takes place in its simplest form, i.e. without the formation of an intermediate macroscopic

layer of a third phase; these include the universality classes of the Ising model (which has

only two phases), those of the three- and four-state Potts model, and others (see [17] for a

classification). For the two-point function we obtain, in particular,

〈σ(x, y)σ(x,−y)〉ab =
(〈σ〉a + 〈σ〉b

2

)2

+
〈σ〉2b − 〈σ〉2a

2
erf

(√
2m

R
x

)

+

(〈σ〉a − 〈σ〉b
2

)2
(
1− 4

π

√
2y

R
e−

2m
R

x2

)
+O((y/R)3/2) (1.1)

in the limits

ξ ≪ y ≪ R/2 ; (1.2)

1We always refer to systems with short range interactions and in their scaling limit, i.e. close to a second

order phase transition point. As a consequence, our results are characteristic of a given universality class.
2In the Ising case one recovers the exact lattice result of [12, 13].
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m ∝ 1/ξ coincides with the interfacial tension and erf(x) = (2/
√
π)

∫ x
0 du e−u2

is the error

function. It follows from (1.1) that

lim
R→∞

〈σ(x, y)σ(x,−y)〉ab =
〈σ〉2a + 〈σ〉2b

2
, y ≫ ξ , (1.3)

a result explained by the fact that, as recalled in the next section, the horizontal fluctuations

of the interface grow as
√
R; hence for R = ∞, no matter the value of x, one obtains the

average of the correlator over the two pure phases; on the other hand, 〈σ(x1, y1)σ(x2, y2)〉a
tends to 〈σ〉2a for separations much larger than ξ. For the Ising model this averaging

property is known rigorously for n-point functions (see [13]).

The term proportional to
√
y/R in (1.1) is particularly interesting, since it shows that

phase separation generates long range (i.e. not exponentially suppressed) correlations in

the vertical direction (parallel to the interface). It also shows that, within the limits (1.2),

these correlations grow as
√
y for R fixed, and that they vanish for R = ∞.

On the side of effective theories, the characterization of order parameter correlations

in presence of phase separation is especially pursued in momentum space (see [21–23] and

references therein), focusing on the interface structure factor

S(q) =
1

2(〈σ〉a − 〈σ〉b)2
∫

dy e−iqy

∫
dx1

∫
dx2 〈σ(x1, y)σ(x2,−y)〉connab , (1.4)

where 〈σσ〉connab denotes the connected correlator. We evaluate this correlator in the

range (1.2) including also the first subleading corrections, and denote by Ŝ(q) the re-

sult that we obtain using this expression into (1.4) and performing the integral over y from

−R/2 to R/2. We find

Ŝ(q) =
1

mq2
+

c20 sinQ

m2q
+

2

mR

[
2α2

2

sinQ

m2q
+ 2α2

cosQ

mq2
− sinQ

q3

]
+O

(
R−2

)
, (1.5)

with Q = qR/2. While α2 is a boundary coefficient, c0 is specific of the bulk theory; it

vanishes for the Ising universality class but takes a known non-zero value in other cases

such as the three-state Potts universality class (see [9, 10]). We stress that 〈σσ〉connab does

not contain bulk correlations, so that (1.5) is entirely due to the interface. From (1.5)

we have

lim
R→∞

Ŝ(q) =
1

mq2
, q2 > 0 . (1.6)

This term is the one dominating at small q in effective theories, where (in d ≥ 3) it is

obtained associating the long wavelength modes to free massless bosons with support on

the plane corresponding to minimal interfacial area. On the other hand, the l.h.s. of (1.6)

receives from (1.5) additional contributions at q = 0; in particular, the term proportional

to c20 becomes
πc20
m2 δ(q) in the limit. These additional contributions reflect the specific form

of the long range correlations which we exhibited above.

The paper is organized as follows. In the next section we recall the derivation of the

order parameter profile as a warm up for the determination of the two-point function that

we perform in section 3. Section 4 is devoted to the study of the interface structure factor,

while section 5 contains some final remarks. Four appendices contain some developments of

the analysis performed in the main body of the paper, as well as some mathematical aspects.
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R/2

−R/2

x

y

a

a

Figure 1. The strip and boundary conditions considered throughout the paper, with a pictorial

representation of the interface running between the boundary condition changing points.

2 One-point function

In this section we review the derivation of the order parameter one-point function [9, 10] as

an introduction to the calculation of the two-point function. As explained in the introduc-

tion, we consider a near critical system at phase coexistence in the strip geometry depicted

in figure 1, with boundary conditions on the edges favoring a phase a for x < 0 and a phase

b for x > 0. The fact that the system is close to criticality (i.e. to a point of second order

phase transition) ensures that the bulk correlation length ξ is much larger than microscopic

scales and that all universal properties are described by a two-dimensional Euclidean field

theory. The latter is related to a quantum field theory in one spatial dimension (with

coordinate x) by analytic continuation to imaginary time, y = it. The fact that the system

is at phase coexistence then means that the quantum theory possesses degenerate vacuum

states |Ωa〉, one for each coexisting phase. In this (1+1)-dimensional case the elementary

quantum excitations are kinks Kab(θ) interpolating between two different vacua Ωa and

Ωb; the rapidity θ parameterizes energy and momentum of these relativistic particles as

(e, p) = (m cosh θ,m sinh θ) , (2.1)

where m ∝ 1/ξ is the kink mass. The trajctories of the kink Kab in imaginary time

are domain walls separating phase a from phase b. The collection of all multikink states

|Ka1a2(θ1)Ka2a3(θ2) . . .Kanan+1(θn)〉 form a complete basis. The boundary conditions on

the edges of the strip play the role of boundary states for the imaginary time evolution,

and can be expanded over the basis of kink states. For a boundary located at y = it and

boundary conditions changing from a to b at a spatial coordinate x this expansion takes

the form

|Bab(x; it)〉 = e−itH+ixP

[∫

R

dθ

2π
fab(θ)|Kab(θ)〉+ . . .

]
, (2.2)

where H and P are the Hamiltonian and momentum operators of the one-dimensional

quantum system, and the dots stay for multikink states interpolating between Ωa and Ωb.

As explained in the introduction, in this paper we restrict to universality classes for which

the boundary conditions of figure 1 do not lead to the formation of a macroscopic layer of
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a third phase in the interfacial region (see [10, 17] for a detailed analysis), and this ensures

that fab 6= 0 in (2.2). At this point the partition function for the system reads

Zab = 〈Bab(0; iR/2)|Bab(0;−iR/2)〉

≃
∫

R

dθ

2π
|fab(θ)|2e−mR cosh θ ≃ |fab(0)|2

e−mR

√
2πmR

, (2.3)

where in the last line we took the limit for mR large, which is needed for the emergence of

phase separation and projects onto the lightest (single-kink) contribution in the expansion

of the boundary states.3 Here and below the symbol ≃ indicates omission of terms sub-

leading in such a limit. It follows from (2.3) that the interfacial tension, corresponding to

− lim
R→∞

1

R
lnZab , (2.4)

coincides with m.

Along the same lines, the one-point function of the order parameter field σ reads

〈σ(x, y)〉ab =
1

Zab
〈Bab(0; iR/2)|σ(x, y)|Bab(0;−iR/2)〉

≃ 1

Zab

∫

R2

dθ1dθ2
(2π)2

fab(θ1)fab(θ2)Mσ
ab(θ1|θ2)U+

x,y(θ1)U−
x,y

(θ2) , (2.5)

where we used the relation

σ(x, y) = eixP+yHσ(0, 0)e−ixP−yH , (2.6)

and the notations

U±
x,y(θ) ≡ e−(

mR
2

∓my) cosh θ±imx sinh θ , (2.7)

Mσ
ab(θ1|θ2) ≡ 〈Kba(θ1)|σ(0, 0)|Kab(θ2)〉 =





Fσ
ab(θ12) + 2π〈σ〉aδ(θ12) , right ,

Fσ
ab(θ12) + 2π〈σ〉bδ(θ12) , left ,

(2.8)

θ12 ≡ θ1 − θ2 . (2.9)

In the r.h.s. of (2.8) we made explicit the decomposition of the matrix element of the field

into a connected and a disconnected part, the latter corresponding to particle annihilation.

Pictorially we have

Mσ
ab(θ1|θ2) = +=σ

θ1

θ2

θ1

θ2

σ

a b a b

σ

θ1

θ2

a b

(2.10)

3We normalize the states according to 〈Kab(θ1)|Kab(θ2)〉 = 2πδ(θ1 − θ2).
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for the case in which the annihilation takes place to the right of the field in the Euclidean

plane. The right-left alternative is ultimately responsible for the presence of the kinematical

(or annihilation pole) [18–20]

Fσ
ab(θ12) ≃

i∆〈σ〉
θ12

, θ1 → θ2 ; ∆〈σ〉 ≡ 〈σ〉a − 〈σ〉b . (2.11)

Plugging (2.11) into (2.5) we can write4

〈σ(x, y)〉ab ≃
i∆〈σ〉
2π

3
2

∫

R2

dθ1dθ2
θ12

U+
η,ǫ(θ1)U−

η,ǫ(θ2) , (2.12)

where we introduced the notations U±
η,ǫ(θ) = e−

1∓ǫ
2

θ2±iηθ and

η =
x

λ
, ǫ =

2y

R
, λ =

√
R

2m
. (2.13)

The pole in (2.12) should be intended in the regularized form θ−1 = P
(
θ−1

)
± πiδ(θ), and

can be easily handled taking the derivative

∂η〈σ(x, y)〉ab ≃ −∆〈σ〉
2π

3
2

∫

R2

dθ1dθ2 U+
η,ǫ(θ1)U−

η,ǫ(θ2) = −∆〈σ〉√
πκ

e−χ2
, (2.14)

where we introduced the additional notations

χ =
η

κ
, κ =

√
1− ǫ2 . (2.15)

Integrating back in η with the boundary condition limx→+∞〈σ(x, y)〉ab = 〈σ〉b we fi-

nally obtain

〈σ(x, y)〉ab ≃
〈σ〉a + 〈σ〉b

2
− 〈σ〉a − 〈σ〉b

2
erf(χ). (2.16)

It is easy to see that this leading contribution to the order parameter profile, which

is entirely due to the pole term (2.11) and correctly interpolates between 〈σ〉a at x =

−∞ and 〈σ〉b at x = +∞ (figure 2), amounts to the presence of a fluctuating interface

whose configurations sharply separate two pure phases. Indeed, denoting by P1(x; y)dx

the probability that such an interface intersects the line of ordinate y in the infinitesimal

interval (x, x+ dx), the corresponding profile reads

〈σ(x, y)〉sharpab = 〈σ〉a
∫ +∞

x
duP1(u; y) + 〈σ〉b

∫ x

−∞
duP1(u; y) . (2.17)

The derivative with respect to x matches (2.14) for a passage probability density

P1(x; y) =
e−χ2

√
πκλ

(2.18)

which correctly satisfies
∫∞
−∞ dxP1(x; y) = 1 and is plotted in figure 3. As we explain

in appendix B, the result (2.18) shows that the interface behaves as a Brownian bridge

connecting the boundary condition changing points on the edges of the strip. It can also

be shown that subleading corrections to (2.16) in the large R expansion account for the

internal structure of the interface (see [9, 10] and appendix D.2 below).

4We disregard the additive constant contributed by the disconneted part of the matrix element; it is

associated to the regularization of the pole and drops out when taking the derivative (2.14).
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Figure 2. The order parameter profile (2.16).

Figure 3. The rescaled passage probability density λ−1P1(x; y).
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3 Two-point function

3.1 Field theoretical derivation

The formalism of the previous section can now be used for the determination of the two-

point function5

〈σ1(x1, y1)σ2(x2, y2)〉ab =
1

Zab
〈Bab(0; iR/2)|σ1(x1, y1)σ2(x2, y2)|Bab(0;−iR/2)〉 (3.1)

in the limits in which R ≫ y1 − y2 ≫ ξ, and the distance of y1 and y2 from the edges of

the strip is also much larger than ξ. This ensures that, upon expansion of the boundary

states and insertion of a complete set of multikink states in between the two fields, the

single-kink state gives the dominant contribution, so that

〈σ1(x1, y1)σ2(x2, y2)〉ab ≃
1

Zab

∫

R3

dθ1dθ2dθ3
(2π)3

fab(θ1)fab(θ2) 〈Kba(θ1)|σ1(x1, y1)|Kab(θ3)〉

× 〈Kba(θ3)|σ2(x2, y2)|Kab(θ2)〉e−
mR
2

(cosh θ1+cosh θ2). (3.2)

Using (2.6) and defining

ln E(θ1, θ2, θ3) = −
(
mR

2
−my1

)
cosh θ1 −

(
mR

2
+my2

)
cosh θ2 − (my1 −my2) cosh θ3

+ imx1 (sinh θ1 − sinh θ3) + imx2 (sinh θ3 − sinh θ2) , (3.3)

we can write

〈σ1(x1, y1)σ2(x2, y2)〉ab ≃
1

Zab

∫

R3

dθ1dθ2dθ3
(2π)3

fab(θ1)fab(θ2)Mσ1

ab
(θ1|θ3)Mσ2

ab
(θ3|θ2) E(θ1, θ2, θ3),

(3.4)

then, since small rapidities dominate in the limits we consider,

〈σ1(x1, y1)σ2(x2, y2)〉ab ≃
|fab(0)|2

Zab

∫

R3

dθ1dθ2dθ3
(2π)3

Mσ1
ab (θ1|θ3)M

σ2
ab (θ3|θ2)Ẽ(θ1, θ2, θ3),

(3.5)

with

ln Ẽ(θ1, θ2, θ3) = −mR− mR

4

[
(1− ǫ1) θ

2
1 + (1 + ǫ2) θ

2
2 + (ǫ1 − ǫ2) θ

2
3

]

+ imx1θ13 + imx2θ32, (3.6)

and ǫj =
2yj
R . The matrix elements can be decomposed as in (2.8); pictorially

Mσ1
ab (θ1|θ3)M

σ2
ab (θ3|θ2) = +=

σ1σ1

disconnected

θ1

θ2

θ1

θ2

θ3 θ3

σ2 σ2

. (3.7)

5We perform the computation for the general case of correlations between two different components σ1

and σ2 of the order parameter field.
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Let us consider first the contribution coming from the connected parts of the matrix el-

ements (we will denote it by a superscript CP); the leading contribution comes from the

pole (2.11), and reads

〈σ(x1, y1)σ(x2, y2)〉CP
ab ≃ |fab(0)|2

Zab

∫

R3

dθ1dθ2dθ3
(2π)3

[
i2∆〈σ1〉∆〈σ2〉

θ13θ32

]
Ẽ(θ1, θ2, θ3), (3.8)

where ∆〈σj〉 ≡ 〈σj〉a − 〈σj〉b. It is convenient to define

〈σ(x1, y1)σ(x2, y2)〉CP
ab ≃ ∆〈σ1〉∆〈σ2〉

4
G(η1, ǫ1; η2, ǫ2) , (3.9)

where ηj = xj/λ, ǫj = 2yj/R and

G(η1, ǫ1; η2, ǫ2) =
1

π5/2

∫

R3

dθ1dθ2dθ3
θ13θ23

e−
1−ǫ1

2
θ21−

1+ǫ2
2

θ22−
ǫ1−ǫ2

2
θ23+iη1θ13+iη2θ32 . (3.10)

The explicit computation of the function (3.10) will be performed later in this section.

For the time being we give a simplified integral representation that will be useful in the

coming sections. Calculations are simplified if we apply the differential operator ∂2
η1,η2 ,

which removes the poles. This leaves us with Gaussian integrals, and integrating over θ1
and θ2 we obtain

∂2
η1,η2G(η1, ǫ1, η2, ǫ2) =

2

π3/2

e
− η21

2(1−ǫ1)
− η22

2(1+ǫ2)√
(1− ǫ1)(1 + ǫ2)

∫

R

dθ e−
ǫ1−ǫ2

2
θ2+i(η2−η1)θ ; (3.11)

integrating back6 over η1 and η2 and using the identity (A.6) we express G through the

single-integral representation

G(η1, ǫ1; η2, ǫ2) =
1√
π

∫

R

dθ e−θ2erf

(
η1 + i(1− ǫ1)θ√

2(1− ǫ1)

)
erf

(
η2 − i(1 + ǫ2)θ√

2(1 + ǫ2)

)
. (3.12)

Let us now consider the contributions coming from the disconnected parts in (3.7).

Pictorially, these disconnected parts correspond to

D1L =

a b

θ3

θ1

θ2

σ1

σ2

, D1R =

a

b

θ3

θ1

θ2

σ1

σ2

, D2L =

a b

θ3

θ1

θ2

σ1

σ2

, D2R =

a b

θ3

θ1

θ2

σ1

σ2

,

D1L2L =

a b

θ3

θ1

θ2

σ1

σ2

, D1L2R = a b

θ3

θ1

θ2

σ1

σ2

, D1R2L =

σ1

σ2

θ1

θ2

θ3

a b , D1R2R = a b

θ3

θ1

θ2

σ1

σ2

,

6This operation produces integration constants, but it is simple to show that they can be reabsorbed in

the contribution of the disconnected parts of the matrix elements. Hence, we set these constants to zero

in (3.12).
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and give the following contributions to the two-point function

D1L = 2πi〈σ1〉b∆〈σ2〉
δ(θ13)

θ32
−→ −〈σ1〉b∆〈σ2〉erf(χ2),

D1R = 2πi〈σ1〉a∆〈σ2〉
δ(θ13)

θ32
−→ −〈σ1〉a∆〈σ2〉erf(χ2),

D2L = 2πi〈σ2〉b∆〈σ1〉
δ(θ32)

θ13
−→ −〈σ2〉b∆〈σ1〉erf(χ1),

D2R = 2πi〈σ2〉a∆〈σ1〉
δ(θ32)

θ13
−→ −〈σ2〉a∆〈σ1〉erf(χ1),

D1L2L = (2π)2〈σ1〉b〈σ2〉bδ(θ13)δ(θ23) −→ 〈σ1〉b〈σ2〉b,
D1L2R = (2π)2〈σ1〉b〈σ2〉aδ(θ13)δ(θ23) −→ 〈σ1〉b〈σ2〉a,
D1R2L = (2π)2〈σ1〉a〈σ2〉bδ(θ13)δ(θ23) −→ 〈σ1〉a〈σ2〉b,
D1R2R = (2π)2〈σ1〉a〈σ2〉aδ(θ13)δ(θ23) −→ 〈σ1〉a〈σ2〉a.

The prescription is to take the arithmetic average of passage left and right [10], so that,

putting all together, we finally obtain

〈σ1(x1, y1)σ2(x2, y2)〉ab ≃
∆〈σ1〉∆〈σ2〉

4
G(η1, ǫ1; η2, ǫ2)− 〈̃σ2〉

∆〈σ1〉
2

erf(χ1)+

− 〈̃σ1〉
∆〈σ2〉

2
erf(χ2) + 〈̃σ1〉〈̃σ2〉, (3.13)

where we used the notation

〈̃σj〉 =
〈σj〉a + 〈σj〉b

2
. (3.14)

For σ1 = σ2 = σ (3.13) becomes

〈σ(x1, y1)σ(x2, y2)〉ab =
(〈σ〉a − 〈σ〉b)2

4
G(η1, ǫ1; η2, ǫ2) +

〈σ〉2b − 〈σ〉2a
4

[
erf(χ1) + erf(χ2)

]

+
(〈σ〉a + 〈σ〉b)2

4
. (3.15)

Notice that, using (3.12) and the integral I of appendix A, one obtains

lim
η2→±∞

G(η1, ǫ1; η2, ǫ2) = ±erf(χ1), (3.16)

lim
η1→±∞

G(η1, ǫ1; η2, ǫ2) = ±erf(χ2), (3.17)

and then the cluster properties

lim
x1→−∞

〈σ1(x1, y1)σ2(x2, y2)〉ab = 〈σ1〉a〈σ2(x2, y2)〉ab,

lim
x1→+∞

〈σ1(x1, y1)σ2(x2, y2)〉ab = 〈σ1〉b〈σ2(x2, y2)〉ab,

lim
x2→−∞

〈σ1(x1, y1)σ2(x2, y2)〉ab = 〈σ2〉a〈σ1(x1, y1)〉ab,

lim
x2→+∞

〈σ1(x1, y1)σ2(x2, y2)〉ab = 〈σ2〉b〈σ1(x1, y1)〉ab, (3.18)

in terms of the one-point functions computed in the previous section.

– 10 –



J
H
E
P
1
1
(
2
0
1
6
)
1
1
9

Figure 4. The scaling function G(η1, ǫ; η2,−ǫ) for ǫ = 0.3.

The function (3.12) can be expressed in a closed form thanks to the integral G dis-

cussed in appendix A, which allows us to write G(η1, ǫ1; η2, ǫ2) = G

(
i
√

1−ǫ1
2 , η1√

2(1−ǫ1)
,

−i
√

1+ǫ2
2 , η2√

2(1+ǫ2)

)
, and

G(η1, ǫ1; η2, ǫ2) = sign(η1η2)− 4T (
√
2χ1, Q1)− 4T (

√
2χ2, Q2), η1, η2 6= 0 , (3.19)

where χj =
ηj

√

1−ǫ2j
, T is Owen’s T function and

Q1 =

√
(1− ǫ1)(1 + ǫ2)

2(ǫ1 − ǫ2)

(
η2
η1

1 + ǫ1
1 + ǫ2

− 1

)
,

Q2 =

√
(1− ǫ1)(1 + ǫ2)

2(ǫ1 − ǫ2)

(
η1
η2

1− ǫ2
1− ǫ1

− 1

)
;

if at least one of the two fields, say σ2, is placed along the vertical axis one uses instead

the representation

G(η1, ǫ1; 0, ǫ2) = 4T

(
√
2χ1,

√
(1− ǫ1)(1 + ǫ2)

2(ǫ1 − ǫ2)

)
. (3.20)

The passage from (3.19) to (3.20) is smooth and follows from the properties of the function

T collected in appendix A. A plot of the function (3.19) is shown in figure 4. The result (1.1)

follows from (3.15) and (3.19).
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σ1

σ2

Figure 5. The sharply separated phases for u1 < x1 and u2 > x2. For this configuration Γab =

〈σ1〉b〈σ2〉a.

3.2 Probabilistic interpretation

We now show that, similarly to what we saw for the one-point function, also the re-

sults (3.15), (3.19) can be interpreted in terms of a fluctuating interface whose configura-

tions sharply separate two pure phases. Indeed, within this picture we now write

〈σ1(x1, y1)σ2(x2, y2)〉sharpab =

∫

R2

du1du2 P2(u1, y1;u2, y2) Γab(x1, y1;x2, y2|u1, u2) , (3.21)

where P2(u1, y1;u2, y2)du1du2 is the probability that the interface intersects the line of

ordinate y1 in the interval (u1, u1+du) and the line of ordinate y2 in the interval (u2, u2+

du); Γab(x1, y1;x2, y2|u1, u2) is the value of σ1(x1, y1)σ2(x2, y2) corresponding (in the sharp

separation picture, figure 5) to these intersections. It reads

Γab(x1, y1;x2, y2|u1, u2) =





〈σ1〉a〈σ2〉a , if min(u1, u2) > max(x1, x2),

〈σ1〉a〈σ2〉b , if u1 > x1 ∧ u2 < x2,

〈σ1〉b〈σ2〉a , if u1 < x1 ∧ u2 > x2,

〈σ1〉b〈σ2〉b , if max(u1, u2) < min(x1, x2),

(3.22)

and leads to

〈σ1(x1, y1)σ2(x2, y2)〉sharpab
= 〈σ1〉a〈σ2〉a

∫ +∞

x1

du1

∫ +∞

x2

du2 P2 + 〈σ1〉b〈σ2〉b
∫

x1

−∞

du1

∫
x2

−∞

du2 P2

+ 〈σ1〉a〈σ2〉b
∫

∞

x1

du1

∫
x2

−∞

du2 P2 + 〈σ1〉b〈σ2〉a
∫

x1

−∞

du1

∫ +∞

x2

du2 P2,

and then to

∂x1∂x2〈σ1(x1, y1)σ2(x2, y2)〉sharpab = ∆〈σ1〉∆〈σ2〉P2(x1, y1;x2, y2). (3.23)
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If, on the other hand, we apply ∂x1∂x2 to (3.15) and equate the result to (3.23) we obtain

the expression

P2(x1, y1;x2, y2) =
e
− η21

2(1−ǫ1)
− η22

2(1+ǫ2)
− (η1−η1)

2

2(ǫ1−ǫ2)

πλ2
√
2(1− ǫ1)(1 + ǫ2)(ǫ1 − ǫ2)

, (3.24)

which satisfies the property

∫

R

du2 P2(u1, y1;u2, y2) = P1(u1, y1) (3.25)

required for the joint passage probability density (we recall that P1 is given by (2.18)).

We illustrate in appendix B how (3.24) arises in the Brownian bridge picture; it can also

be recognized as a bivariate normal distribution7 [24] of the random variables x1, x2 with

covariance matrix

cov[x1, x2] = (x1 − x1) (x2 − x2) =
1

2

(
κ21 ρκ1κ2

ρκ1κ2 κ22

)
, (3.26)

with xj = 0 for our case, κj =
√
1− ǫ2j , and correlation coefficient ρ such that ρ2 =

1−ǫ1
1+ǫ1

1+ǫ2
1−ǫ2

. Perfect correlation corresponds to ρ = 1 and absence of correlation to ρ = 0;

notice however that this limiting cases are never realized within the limits of validity of

our field theoretical derivation specified at the beginning of section 3.1. The probability

density can also be written as

P2(x1, y1;x2, y2) =
1

πκ1κ2λ2
√
1− ρ2

exp

[
−χ2

1 + χ2
2 − 2ρχ1χ2

1− ρ2

]
. (3.27)

We notice that an approach based on equations of the type (3.21) and (3.22) was

adopted in [7, 25] to obtain an expression for the order parameter two-point function,

adopting a Gaussian passage probability density for the interface. The logic of this section

is quite different. We have determined the two-point function in two dimensions directly

from field theory, and showed that the result is consistent with (3.21) and (3.22) and deter-

mines (3.24). It is also important to stress that (3.21) accounts only for the leading term

of the two-point function in the limits we specified in section 3.1. Field theory yields also

the subleading terms, associated to the internal structure of the interface and to boundary

effects. The field theoretical derivation of the first subleading term and its interpretation in

terms of interface structure is given in the appendices D.1 and D.2, respectively; subsequent

terms are analyzed in the next section.

Remaining at leading order and calling height the deviation h(y) at ordinate y of

the position of the interface from the average value x = 0, we obtain the height-height

correlation function

h(y)h(−y) =

∫

R2

dx1dx2 x1x2 P2(x1, y;x2,−y) =
R

4m
(1− ǫ)2 , (3.28)

7See (A.15) for the standardized version.
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with ǫ = 2y/R ≪ 1. In three dimensions the height variable has support on the plane

corresponding to minimal interfacial area and is effectively identified with a field which, if

massless, has long range correlations. In our two-dimensional case the height has support on

a line and cannot properly be treated as a field, so that we can only observe the algebraic

form of the result (3.28). This can be compared with the form h(y)h(−y)/h(0)h(0) =

e−2y/Lc obtained in [25] for the two-dimensional case with R = ∞ and in presence of an

external field g ∝ 1/Lc. The two forms are formally consistent at leading order if one takes

Lc proportional to R, and both lengths much larger than the separation 2y.

4 Interface structure factor

4.1 Connected correlator

We begin this section by writing down the connected two-point correlator of the order

parameter field. This is obtained from 〈σ1(x1, y1)σ2(x2, y2)〉ab through the subtractions

ensuring a vanishing limit when x1 and/or x2 go to infinity. It then reads

〈σ1(x1, y1)σ2(x2, y2)〉connab =
〈[

σ1(x1, y1)− Sab(x1)
][
σ2(x2, y2)− Sab(x2)

]〉
ab

− B̃ab(x1, y1;x2, y2), (4.1)

where

Sab(x) = 〈σj〉aθ(−x) + 〈σj〉bθ(x), (4.2)

and

B̃ab(x1, y1;x2, y2) = Bab(x1, y1;x2, y2)− Sab(x1)Sab(x2), (4.3)

with

Bab(x1, y1;x2, y2) = 〈σ1σ2〉aθ(−x1)θ(−x2)+〈σ1σ2〉bθ(x1)θ(x2)+Sab(x1)Sab(x2)θ(−x1x2) ;

(4.4)

θ(x) is the Heaviside step function. We can also write

B̃ab(+,+) = 〈σ1σ2〉b − 〈σ1〉b〈σ2〉b ≡ Gb(x1, y1;x2, y2),

B̃ab(−,−) = 〈σ1σ2〉a − 〈σ1〉a〈σ2〉a ≡ Ga(x1, y1;x2, y2),

B̃ab(±,∓) = 0,

where ± refer to the sign of the xi’s, and Gµ is the connected bulk correlator for the pure

phase µ. The subtraction of Bab in (4.1) eliminates the bulk term one obtains when x1
and x2 are simultaneously translated to infinity keeping the relative distance fixed. Within

our large distance expansion over kink intermediate states the first contributions of this

type to 〈σ1σ2〉ab have the pictorial representation

a b

σ1

σ2

,
a b

σ1

σ2

, (4.5)
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and correspond to a three-kink intermediate state. Hence they are definitely subleading

with respect to the single kink term we are analyzing. This is why we can ignore the term

B̃ab in the following. Concerning the remaining part of (4.1), i.e.

〈σ1(x1, y1)σ2(x2, y2)〉ab − Sab(x1)〈σ2(x2, y2)〉ab − Sab(x2)〈σ1(x1, y1)〉ab + Sab(x1)Sab(x2) ,

(4.6)

we can use (3.13) to see that at the one-kink level it reduces to (3.9) plus terms which

are odd in at least one of the variables x1 and x2. Since these odd terms give a vanishing

contribution upon integration over xi in (1.4), we arrive at the conclusion

Ŝ(q) =
1

2(〈σ〉a − 〈σ〉b)2
∫ R/2

−R/2
dy e−iqy lim

L→∞

∫ L

−L
dx1

∫ L

−L
dx2 〈σ(x1, y)σ(x2,−y)〉CP

ab ; (4.7)

it follows from (3.16) and (3.17) that 〈σσ〉CP
ab tends to opposite (and generically non-zero)

values when xi goes to plus or minus infinity, and the integration over the symmetric

interval (−L,L) yields a convergent result for L → ∞.

4.2 Large R expansion

The expressions (3.9), (3.19) determine only the leading term of 〈σσ〉CP
ab for large R. In

the following we will also consider the corrections generated by subsequent terms in the

small rapidity expansions of the connected part of the matrix element (2.11), and of the

boundary amplitude fab entering (2.2). We write these expansions as

Fσ
ab(θ) = ∆〈σ〉

∞∑

k=−1

ckθ
k , (4.8)

which extends (2.11), and

fab(θ) = 1 +
∞∑

k=1

α2kθ
2k ; (4.9)

when expanding (4.9) over even powers we restrict, for the sake of simplicity, to cases in

which the phases a and b play a symmetric role, as for Ising and Potts universality classes.

It is a consequence of (3.4) and (3.6) that (4.8) and (4.9) will induce a large R expansion

of the correlator with suppression factors of the form (mR)−
ℓ
2 , with ℓ ≥ 0, and we write

〈σ1(x1; y)σ2(x2;−y)〉CP
ab =

∞∑

ℓ=0

[
〈σ1σ2〉CP

]
ℓ
(mR)−ℓ/2 ; (4.10)

also for ℓ > 0 the quantities
[
〈σ1σ2〉CP

]
ℓ
have a constant limit for R → ∞, and we now

turn to the determination of the first few of them.

Besides (4.9) we also use |fab(θ)|2 = 1 +
∑∞

k=1 f2kθ
2k, and write the partition func-

tion (2.3) beyond leading order for large R as

Zab ≃
∫

R

dθ

2π
|fab(θ)|2e−mR cosh θ ≃ Z(0)

ab

[
1 +

∞∑

k=1

ζk(mR)−k

]
, (4.11)

where Z(0)
ab = e−mR√

2πmR
, and ζk = (2k − 1)!!f2k; in particular ζ1 = 2α2.
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We now turn to the expansion of the numerator of (3.1). Concerning the contribution

to 〈σ1σ2〉CP we have to expand the quantity

Q(θ1, θ2, θ3) ≡ fab(θ1)fab(θ2)Fσ1
ab (θ1|θ3)F

σ2
ab (θ3|θ2), (4.12)

for small θj , j = 1, 2, 3, and evaluate the first terms of such an expansion. Each term is a

monomial in the rapidities of the form θp1θ
q
2, with p and q even and non-negative, multiplied

by θr13θ
s
32 (we recall (2.9)). It follows that such a term is a homogeneous function in

the rapidities with degree ∆ = p + q + r + s, with ∆ + 2 ∈ N. The leading term is

characterized by the minimum value of the homogeneity exponent, ∆ = −2, while the

first subleading correction to the two-point function comes from ∆ = −1. Let us use the

following shorthand notation

Q(θ1, θ2, θ3) =
+∞∑

∆=−2

Q∆ , (4.13)

in which Q∆ denotes all the terms with the same homogeneity exponent. It is easy to see

that a term characterized by a certain ∆ will produce a factor (mR)−
3+∆
2 in the numerator

of (3.1). The leading term ∆ = −2 produces a factor (mR)−
1
2 which is cancelled by Z(0)

ab

in the denominator. Therefore we can write

〈σ1(x1; y)σ2(x2;−y)〉CP
ab ≃

1

Z(0)
ab

∑+∞
∆=−2

∫
R3

dθ1dθ2dθ3
(2π)3

Q∆Ẽ(θ1, θ2, θ3)

1 +
∑∞

k=1
ζk

(mR)k

, (4.14)

with Ẽ given by (3.6). Now we rescale the rapidities as θj →
√

2
mRθj , define

Yǫ(θ1, θ2, θ3)e
iη1θ13+iη2θ32 ≡ emRẼ

(√
2

mR
θ1,

√
2

mR
θ2,

√
2

mR
θ3

)
, (4.15)

Yǫ(θ1, θ2, θ3) ≡ e−
1−ǫ
2 (θ21+θ22)−ǫθ23 , (4.16)

and introduce the shorthand notation

{Φ} ≡
∫

R3

dθ1dθ2dθ3Φ(θ1, θ2, θ3)Yǫ(θ1, θ2, θ3)e
iη1θ13+iη2θ32 ; (4.17)

{
Φ
}

is a scaling function of the dimensionless variables η1, η2, ǫ (recall (2.13)). These

manipulations allow us to write

〈σ1(x1; y)σ2(x2;−y)〉CP
ab ≃

∑+∞
∆=−2

{ Q∆

4π5/2|a0|2
} (

2
mR

)∆+2
2

1 +
∑∞

k=1
ζk

(mR)k

, (4.18)
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and then the expansion in powers of R−1/2

〈σ1(x1; y)σ2(x2;−y)〉CP
ab ≃

{
Q−2

4π5/2

}
+

{
Q−1

4π5/2

}√
2

mR
(4.19)

+

[{
Q0

2π5/2

}
−
{
ζ1Q−2

4π5/2

}]
1

mR
+

[
. . .

]
1

(mR)3/2

+

[{
Q2

π5/2

}
−
{
ζ1Q0

2π5/2

}
+

{
ζ21 − ζ2

4π5/2
Q−2

}]
1

(mR)2
+O

(
R− 5

2

)
,

which corresponds to (4.10); we did not write explicitly the factor multiplying R−3/2 be-

cause, for the parity arguments that we are going to discuss, it does not contribute to the

structure factor.

The calculation of the interface structure factor (4.7) requires the integration of (4.19)

over x1, x2. It will be convenient to introduce a compact notation for the spatial integral of

a scaling function. Thus, given a function Φ of the rapidities we construct the associated

scaling function thanks to (4.17), and the spatial integral as

JΦK ≡ lim
Λ→∞

∫ Λ

−Λ
dη1

∫ Λ

−Λ
dη2

{
Φ(θ1, θ2, θ3)

}∣∣∣
ǫ→|ǫ|

. (4.20)

Since the time ordering of the fields adopted so far implied y > 0, we perform the replace-

ment ǫ → |ǫ| in order to have the result which holds also for y < 0; the factor 1/2 in (1.4)

avoids double counting when integrating over positive and negative values of y. We then

further define

ĴΦK ≡
∫ 1

−1
dǫ JΦK e−iQǫ , (4.21)

Q =
qR

2
. (4.22)

The following Lemmas prove to be useful in view of the calculation of Ŝ(q).

• Lemma 1

The integration of
{
Q∆

}
over (η1, η2) ∈ (−Λ,Λ) × (−Λ,Λ) vanishes if ∆ is an odd

integer.

Proof. It follows from the definition (4.17) that (η1, η2) → (−η1,−η2) is related

to (θ1, θ2, θ3) → (−θ1,−θ2,−θ3), and leads to
{
Q∆

}
→ (−1)∆

{
Q∆

}
. Then the

integration over ηi vanishes for ∆ odd.

• Lemma 2

The functions θp1θ
q
2θ

r
13θ

s
32 with maxΩ(r, s) > 1 and Ω = {(r, s)|r + 1, s+ 1 ∈ N2} give

rise to Jθp1θ
q
2θ

r
13θ

s
32K = 0.

– 17 –



J
H
E
P
1
1
(
2
0
1
6
)
1
1
9

Proof. Let us consider the function f(θ1, θ2)θ
r
13θ

s
32 with f(θ1, θ2) = θp1θ

q
2 in the fol-

lowing cases:

(a): min(r, s) > 1;

(b): (r, s) = (0, s) with s > 1 or (r, s) = (r, 0) with r > 1;

(c): (r, s) = (−1, s) with s > 1 or (r, s) = (r,−1) with r > 1.

For simplicity we can examine case (a) corresponding to r, s > 1. We have

∫

R2

dη1dη2

{
f(θ1, θ2)θ

r
13θ

s
32

}
= (2π)2

{
f(θ1, θ2)θ

r
13θ

s
32δ(θ13)δ(θ32)

}
= 0, (4.23)

due to the Dirac delta functions. We reach the same conclusions even when we have

a single delta function, corresponding to cases (b) and (c).

• Corollary 1

The functions Y
(0,0)
p,q = θp1θ

q
2 and Y

(−1,0)
p,q = θp1θ

q
2θ

−1
13 , Y

(0,−1)
p,q = θp1θ

q
2θ

−1
32 with (p, q) ∈

N2 give rise to JY
(0,0)
p,q K = 0 if p + q is odd and JY

(−1,0)
p,q K = JY

(0,−1)
p,q K = 0 if p + q is

even.

Proof. If p+q is odd then {Y (0,0)
p,q } is odd, while if p+q is even {Y (−1,0)

p,q } and {Y (0,−1)
p,q }

are odd, therefore by virtue of Lemma 1 their integral over the spatial coordinates

vanishes.

• Corollary 2

For our case (4.9) the only non-vanishing contributions to Ŝ(q) come from terms with

zero or two poles, namely of the form fab(θ1)fab(θ2) and
fab(θ1)fab(θ2)

θ13θ32
.

Proof. p+ q is an even integer, therefore a term with θ−1
13 as the only pole gives rise

to ∆ = p + q − 1 which is odd. Hence, thanks to Lemma 1 its contribution to Ŝ(q)

vanishes. The pole-free and the double-pole terms fab(θ1)fab(θ2) and fab(θ1)fab(θ2)
θ13θ32

have even ∆ and survive Lemma 1.

In summary, with reference to (4.8), the non-vanishing contributions to Ŝ(q) will be

those proportional to c2−1 and c20. Recalling (2.11) we know that c2−1 = −1; the vanishing

of the contributions containing cj with j > 0 is not obvious a priori.

We write the interfacial structure factor (4.7) as

Ŝ(q) ≃
∞∑

ℓ=0

Ŝℓ(q) , (4.24)

where Ŝℓ(q) is the contribution of the term proportional to R−ℓ/2 in (4.19). The terms Ŝℓ(q)

with ℓ odd vanish by virtue of Lemma 1, hence we focus on those with ℓ even. Recalling

also (4.20) and (4.21), the first term in (4.24) is

Ŝ0(q) = − R2

32π5/2m
Ĵτ−2,1K =

1

mq2

(
1− sinQ

Q

)
(4.25)
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where τ−2,1 ≡ 1/(θ13θ32) is proportional to Q−2. The functions τ∆,j , as well as their inte-

grated form Ĵτ∆,jK, are listed in appendix C. Using Lemma 2 to get rid of some contributions

coming from Q0 and Q2, we can further write

Ŝ2(q) =
λ2R/2

2mR

1

2π5/2

[
c20Ĵτ0,1K − α2Ĵτ0,2K +

ζ1
2

Ĵτ−2,1K

]

=
c20 sinQ

m2q
+ 4α2

cosQ

m2q2R
+O

(
R−2

)
, (4.26)

Ŝ4(q) =
λ2R/2

2m2R2

1

π5/2

[
α2c

2
0Ĵτ2,1K − α4Ĵτ2,2K − α2

2Ĵτ2,3K

]

+
λ2R/2

2m2R2

−ζ1

2π5/2

[
c20Ĵτ0,1K − α2Ĵτ0,2K

]
+

λ2R/2

2m2R2

ζ21 − ζ2

4π5/2

[
−Ĵτ−2,1K

]

= 4α2
2

sinQ

m3qR
+O

(
R−2

)
; (4.27)

It can be checked that the terms Ŝ2k(q) with k > 2 do not contribute to order 1/R. Putting

together these results and those of appendix C we obtain (1.5), where we have to consider

q much smaller than m and larger than q0 ∝ 1/R.

5 Conclusion

In this paper we considered two-dimensional systems at phase coexistence near a second

order phase transition point and determined the form of the long range order parameter

correlations. We were able to do this in an exact way through the extension to two-

point functions of the field theoretical formalism developed in [9, 10]. More precisely, we

considered an infinitely long strip of width R much larger than the bulk correlation length,

and with boundary conditions which induce the separation of two phases and an interface

running from one edge to the other. We then showed that, as long as R is finite, the order

parameter has long range correlations of the specific form (1.1) in the y-direction parallel

to the interface. For R = ∞ the fluctuations of the interface become infinitely wide and

leave only exponentially decaying bulk correlations averaged over the two phases.

Technically, a key role is played by the fact that for phase separation in two dimensions

the excitations of the underlying field theory have a topological nature (they are kinks),

and are non-local with respect to the order parameter field, a fact which reflects into the

singularity (2.11) in the matrix element of the order parameter. Singularities of a similar

nature exist and play an important role also in higher dimensions [20], but in that case

they are not related to phase separation.

We also determined in field theory subleading corrections to the large R expansion

of the two-point function. We showed that the leading term amounts to the presence

of an interface behaving as a simple curve which sharply separates two pure phases and

fluctuates according to a Gaussian passage probability density. Subleading corrections then

correspond to endowing the interface with an internal structure.

Our results for the order parameter two-point function allowed us also a direct inves-

tigation of the structure factor of the interface. This quantity depends on a single variable
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and is largely considered in the framework of effective descriptions aiming at a compact

characterization of the interfacial properties. We showed how the term proportional to

1/q2, which in momentum space is the signature of long range correlations, emerges from

the expression of the two-point function in real space. The specific form of the latter

also characteristically manifests into R-dependent corrections which depend on bulk and

boundary data and localize towards q = 0 as R → ∞.
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A Integrals

In this appendix we collect the integrals needed in the main text and some other useful

mathematical result. Owen’s T function is defined through the integral

T (h, a) =
1

2π

∫ a

0
dx

e−h2 1+x2

2

1 + x2
, (A.1)

and satisfies T (h, a) = T (−h, a) = −T (h,−a) and T (h, 0) = T (±∞, a) = 0. For special

values of the arguments Owen’s T function reduces to elementary functions

T (0, a) =
tan−1(a)

2π
,

T (
√
2h, 1) =

1− erf2(h)

8
=

1

8
erfc (−h) erfc (h) ,

T (
√
2h,±∞) = ±1

4
erfc (|h|) , (A.2)

where erf(x) = 2√
π

∫ x
0 du e−u2

is the error function and erfc(x) = 1− erf(x) is the comple-

mentary error function. The above expressions are useful in the study of the asymptotic

properties of (3.19). The function T obeys also the functional equation

T (h, a) + T (ah, a−1) =
1

2
Ψ(h) +

1

2
Ψ(ah)−Ψ(h)Ψ(ah)− 1

2
θ(−a), (A.3)

where Ψ(x) ≡ (1/2)erfc(−x/
√
2) and θ(x) is Heaviside step function. Owen’s T function

allows us to write the relation

1√
π

∫ x

−∞
du e−u2

erf(qu) = −2T (
√
2x, q), (A.4)

which will be used during the subsequent manipulations. Another result needed in the

main body of the paper is

∫
dη e−

η2

2a
+iηθ =

√
πa

2
e−

aθ2

2 erf

(
η − iaθ√

2a

)
+ C , (A.5)

with C an arbitrary constant.
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The remaining part of this appendix is devoted to prove the integrals listed below:

I(a, b) =
1√
π

∫

R

du e−u2
erf(au+ b) = erf

(
b√

1 + a2

)
, (A.6)

J±(a, b) =
1√
π

∫

R

du e−u2
erf(au+ b)erf(±au+ b)

= 1− 8T

(√
2

1 + a2
b,
(
1 + 2a2

)∓ 1
2

)
, (A.7)

F (a1, b1, a2) =
1√
π

∫

R

du e−u2
erf(a1u+b1)erf(a2u) = 4T

(√
2

1+a21
b1,

a1a2√
1+a21+a22

)
,

(A.8)

G(a1, b1, a2, b2) =
1√
π

∫

R

du e−u2
erf(a1u+ b1)erf(a1u+ b1) = sign(b1b2)

− 4T

(
x1,

x2/x1 − ρ√
1− ρ2

)
− 4T

(
x2,

x1/x2 − ρ√
1− ρ2

)
, for b1b2 6= 0, (A.9)

with xj =
√

2
1+a2j

bj and ρ = a1a2
√

(1+a21)(1+a22)
. We stress that (A.9) holds for b1b2 6=

0, while for b1b2 = 0 the function G reduces to the function F .8 The function J±
can be derived from (A.9), and is particularly useful since (1.1) follows directly from

J−(i
√
(1− ǫ)/2, η/

√
2(1− ǫ)). The integral I(a, b) can be easily performed taking the

first derivative with respect to b which produces a Gaussian integral; then integrating over

b and using the condition I(a, 0) = 0 we obtain (A.6). Let us consider the function F ;

taking the first derivative with respect to b1 and completing the square in the exponential

we find an integral analogous to I. Thus we can write

∂b1F (a1, b, a2) = − 2√
π

e
− b21

1+a21√
1 + a21

erf


 a1a2b1√(

1 + a21
) (

1 + a21 + a22
)


 ; (A.10)

integrating over b1 thanks to (A.4) and using F (a1,−∞, a2) = 0 we find

F (a1, b1, a2) = − 2√
π

∫ x1/
√
2

−∞
dx e−x2

erf

(
a1a2x√

1 + a21 + a22

)

= 4T

(√
2

1 + a21
b1,

a1a2√
1 + a21 + a22

)
, (A.11)

which proves (A.8). The same strategy can be followed for the integral G, where, applying

the same techniques of the previous computation, we find

∂2
b1,b2G(a1, b1, a2, b2) =

4

π
√
1 + a21 + a22

e
− 1+a22

1+a21+a22
b21+

2a1a2b1b2
1+a21+a22

− 1+a21
1+a21+a22

b22
; (A.12)

8For completeness we mention that it is possible to define G for arbitrary values of b1, b2 but the price is

that this requires a careful definition of the corresponding Heaviside step function at zero arguments. We

prefer to avoid such a complication in favor of (A.9) supplemented by (A.8).
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we notice that the right hand side of (A.12) is proportional to a bivariate normal distribu-

tion of the random variables b1, b2. In order to enlighten this connection we introduce the

following parametrization

σ2
j =

1 + a2j
2

,

ρ2 =
a21a

2
2(

1 + a21
) (

1 + a22
) , (A.13)

which allows us to write (A.12) in the form

∂2
b1,b2G(a1, b1, a2, b2) =

4

π
√
1 + a21 + a22

e
− 1

2(1−ρ2)

[
b21
σ2
1
−2ρ

b1b2
σ1σ2

+
b22
σ2
2

]
. (A.14)

We note that xj = bj/σj and therefore it is straightforward to identify in the r.h.s. of (A.14)

a bivariate normal distribution in the standard form

P2(x1, x2; ρ) =
1

2π
√

1− ρ2
e
−x21−2ρx1x2+x22

2(1−ρ2) , (A.15)

where ρ = 〈x1x2〉√
〈x2

1〉〈x2
2〉

is the correlation coefficient. We recall that 〈xj〉 = 0 and 〈x2j 〉 = 1 for

the standardized distribution (A.15). With the aid of (A.15) we can write (A.14) in the

compact form

∂2
x1,x2

G(a1, b1, a2, b2) = 4P2(x1, x2; ρ), (A.16)

therefore the function G can be obtained upon integrating over x1 and x2 the joint probabil-

ity P2 with the correct asymptotic conditions. It is obvious that this operation corresponds

to the cumulative distribution Φ associated to (A.15); the latter can be written in terms

of Owen’s function [26, 27]

Φ(x1, x2; ρ) =

∫ x1

−∞
du1

∫ x2

−∞
du2 P2(u1, u2; ρ) (A.17)

= Θ(x1, x2) +
Ψ(x1) + Ψ(x2)

2
− T

(
x1,

x2/x1 − ρ√
1− ρ2

)
− T

(
x2,

x1/x2 − ρ√
1− ρ2

)
,

where Θ(x1, x2) = sign(x1x2)−1
4 for xj 6= 0. It is easy to check that the above reduces to

the cumulative distribution for a single random variable if one of the arguments tends to

infinity, i.e. Φ(x1,+∞; ρ) = Ψ(x1). Integrating (A.16) with respect to x2 we get

∂x1G(a1, b1, a2, b2) = 4

∫ x2

−∞
du2 P (x1, u2; ρ) + ∂x1G(a1, b1, a2, σ2x2)

∣∣
x2=−∞, (A.18)

and performing the integral with respect to x1 we find

G(a1, b1, a2, b2) = 4Φ(x1, x2; ρ) +

∫ x1

−∞
du1 ∂u1G(a1, σ1u1, a2, σ2x2)

∣∣
x2=−∞

+G(a1, σ1x1, a2, b2)
∣∣
x1=−∞, (A.19)
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which can be written as

G(a1, b1, a2, b2) = 4Φ(x1, x2; ρ) +G(a1,−∞, a2, b2)

+G(a1, b1, a2,−∞)−G(a1,−∞, a2,−∞); (A.20)

the r.h.s. can be further simplified thanks to the integral I, thus we get the more transparent

expression

G(a1, b1, a2, b2) = 4Φ(x1, x2; ρ)− erf(x1/
√
2)− erf(x2/

√
2)− 1, (A.21)

which after a little algebra reduces to

G(a1, b1, a2, b2) = 4Θ(x1, x2) + 1− 4T

(
x1,

x2/x1 − ρ√
1− ρ2

)
− 4T

(
x2,

x1/x2 − ρ√
1− ρ2

)
. (A.22)

The latter coincides with (A.9), which is finally proved.

B Brownian bridge

A brownian bridge is a Brownian motion constrained to come back to its initial position

after a fixed amount of time. We set the initial and final position to be x = 0, with the

motion occurring along the real axis x. We consider a set of n infinitesimal space intervals

of the form Ij = (xj , xj + dxj) located at times tj with j ∈ {1, . . . , n}. The probability

for the Brownian path to intersect (pass through) the interval Ij at time tj for each j will

be Pn(x1, t1;x2, t2; . . . ;xn, tn)dx1dx2 . . . dxn, where Pn(x1, t1;x2, t2; . . . ;xn, tn) is the joint

probability density, which can be deduced on general grounds. Let W (x1, t1|x0, t0) be the

transition probability,9 which for a Brownian motion takes the well known form

W (x1, t1|x0, t0) =
1√

4πD (t1 − t0)
e
− (x1−x0)

2

4D(t1−t0) , (B.1)

where D is a constant of diffusion. The probability (B.1) solves the diffusion equation for

a Brownian particle which is placed in position x0 at time t0. Let us consider the case of

a single interval for which we can write

P1(x, t) =
W (0, T |x, t)W (x, t|0, 0)

W (0, T |0, 0) =

√
T

4πDt (T − t)
e
− T

t(T−t)
x2

4D . (B.2)

Since (B.1) satisfies
∫
R
dxW (0, T |x, t)W (x, t|0, 0) = W (0, T |0, 0), P1 is correctly normal-

ized,
∫
R
duP1(u, t) = 1. In order to make contact with our notations for phase separation,

we write
tj
T

=
yj
R

+
1

2
=

1 + ǫj
2

; (B.3)

it is then simple to see that (B.2) becomes exactly (2.18) provided a suitable identification

of the diffusion coefficient is chosen, namely DT = λ2, with λ given by (2.13).

9See e.g. [28, 29] for an introduction to stochastic processes.
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We consider now the case of n = 2 intervals. The joint probability distribution for

the passage in the intervals (x1, x1 + dx1) at time t1 and (x2, x2 + dx2) at time t2 < t1 is

given by

P2(x1, t1;x2, t2) =
W (0, T |x1, t1)W (x1, t1|x2, t2)W (x2, t2|0, 0)

W (0, T |0, 0) ; (B.4)

using (B.3) we find that (B.4) coincides with the joint passage probability (3.24). It is

understood that the time ordering is the one depicted in figure 5.

The Brownian properties of interfaces in two dimensions has been investigated with

matematically rigorous methods in [30, 31].

C Computational toolbox

In this appendix we itemize the functions τ∆,j needed for the computations presented in

section 4.1. For each of these functions we provide the corresponding integral over the plane

(η1, η2) that, according to (4.20), we denote by Jτ∆,jK. Then we also list the corresponding

Fourier-like integrals Ĵτ∆,jK defined by (4.21). The results are

τ−2,1(θ1, θ2, θ3) =
1

θ13θ32
, Jτ−2,1K = −2π5/2 (1− |ǫ|)2 , (C.1)

τ0,1(θ1, θ2, θ3) = 1, Jτ0,1K = 4π5/2, (C.2)

τ0,2(θ1, θ2, θ3) =
θ21 + θ22
θ13θ32

, Jτ0,2K = 2π5/2
(
1 + 2|ǫ| − 3ǫ2

)
, (C.3)

τ2,1(θ1, θ2, θ3) = θ21 + θ22, Jτ2,1K = 4π5/2, (C.4)

τ2,2(θ1, θ2, θ3) =
θ41 + θ42
θ13θ32

, Jτ2,2K = 3π5/2(3 + 2|ǫ| − 5ǫ2), (C.5)

τ2,3(θ1, θ2, θ3) =
θ21θ

2
2

θ13θ32
, Jτ2,3K =

π5/2

2
(−7 + 6|ǫ| − 15ǫ2), (C.6)

π−5/2Ĵτ−2,1K = − 8

Q2

(
1− ϕ1(Q)

)
, (C.7)

π−5/2Ĵτ0,1K = 8ϕ1(Q), (C.8)

π−5/2Ĵτ0,2K = −8ϕ2(Q), (C.9)

π−5/2Ĵτ2,1K = 8ϕ1(Q), (C.10)

π−5/2Ĵτ2,2K = −12ϕ3(Q), (C.11)

π−5/2Ĵτ2,3K = −16ϕ1(Q)− 6ϕ3(Q), (C.12)

where we defined

ϕ1(Q) =
sinQ

Q
, (C.13)

ϕ2(Q) =
Q+ 2Q cosQ− 3 sinQ

Q3
, (C.14)

ϕ3(Q) =
Q+ 4Q cosQ− 5 sinQ

Q3
. (C.15)
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The detailed computation of (C.1)–(C.6) can be quite tedious. We illustrate it through

the example of Jτ−2,1K, for which we have

Jτ−2,1K = lim
Λ→∞

∫ Λ

−Λ
dη1

∫ Λ

−Λ
dη2

{
τ−2,1

}∣∣∣
ǫ→|ǫ|

. (C.16)

Eqs. (3.9), (3.10) and (4.19) imply
{
τ−2,1

}
= −π5/2G(η1, ǫ; η2,−ǫ, ), while from (3.19)

G(η1, ǫ; η2,−ǫ) = sign(η1η2)− 4T (
√
2χ1, q1)− 4T (

√
2χ2, q2) with χj =

ηj√
1−ǫ2

and

q1 =
1 + ǫ

2
√
ǫ

η2
η1

− 1− ǫ

2
√
ǫ
, (C.17)

q2 =
1 + ǫ

2
√
ǫ

η1
η2

− 1− ǫ

2
√
ǫ
. (C.18)

With the rescaling of the integration variables ηj = κχj we find

Jτ−2,1K = −κ2π5/2 lim
Λ→∞

∫ Λ

−Λ
dχ1

∫ Λ

−Λ
dχ2 G(η1, ǫ; η2,−ǫ), (C.19)

then we note that

∂ǫG(η1, ǫ; η2,−ǫ) = − 2

π
√
ǫ(1 + ǫ)

e−
1+ǫ
4ǫ

[
(χ1−χ2)2+ǫ(χ1+χ2)2

]
≡ Π(χ1, χ2; ǫ), (C.20)

and that ∫

R2

dχ1dχ2Π(χ1, χ2; ǫ) = − 4

(1 + ǫ)2
; (C.21)

since the integral (C.19) vanishes10 for ǫ = 1 we can write

Jτ−2,1K = 4κ2π5/2

∫ |ǫ|

1

dǫ′

(1 + ǫ′)2
= −2π5/2(1− |ǫ|)2, (C.22)

and this proves the identity (C.1).

D Correlation function beyond leading order

D.1 Field theoretical derivation

Here we obtain the first subleading correction of the two-point function within the large

mR expansion. The two-point function can be expanded as stated by (4.10); in the present

computation we are not restricting our attention to the connected part, thus we drop the

superscript CP and write

〈σ1(x1; y)σ2(x2;−y)〉ab =
∞∑

ℓ=0

[
〈σ1σ2〉

]
ℓ
(mR)−ℓ/2 , (D.1)

10For ǫ = 1 we use the fact that ̺(x, y) = T (
√
2x, y/x) + T (

√
2y, x/y) fulfills the symmetries ̺(x, y) +

̺(−x, y) = 0 and ̺(x,−y) + ̺(x,−y) = 0.
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with leading term corresponding to ℓ = 0 given by (3.13). Concerning the first correction

(ℓ = 1), let us start by considering the connected part, which ultimately is given by the

second term on the r.h.s. of (4.19),

[
〈σ1σ2〉CP

]
1
=

{ √
2Q−1

4π5/2|a0|2
}
; (D.2)

Q−1 can be readily obtained by expanding (4.12) at small rapidities, and a simple calcula-

tion gives

Q−1 = ic
(2)
0 ∆〈σ1〉τ−1,1 + ic

(1)
0 ∆〈σ2〉τ−1,2, (D.3)

where the superscript j in c
(j)
0 refers to σj , while τ−1,j are the functions

τ−1,1(θ1, θ2, θ3) =
1

θ13
,

τ−1,2(θ1, θ2, θ3) =
1

θ32
.

The corresponding scaling functions can be computed with a straightforward calculation

and we find

{
τ−1,1

}
=

2π2i

κ
e−χ2

2erf (χ+) ,

{
τ−1,2

}
= −2π2i

κ
e−χ2

1erf (χ−) , (D.4)

where

χ± =
(1± ǫ)χ1 − (1∓ ǫ)χ2

2
√
ǫ

. (D.5)

Recalling (3.13), the two-point function decomposes as

〈σ1σ2〉ab ≃ 〈σ1σ2〉CP
ab + 〈̃σ1〉〈σ2〉CP

ab + 〈̃σ2〉〈σ1〉CP
ab + 〈̃σ1〉〈̃σ2〉, (D.6)

where again the superscript CP refers to the contributions coming from the connected part

of the matrix element of the order parameter field; in particular we have

〈σj〉CP
ab = −∆〈σj〉

2
erf(χj) + c

(j)
0

P1(xj ; yj)

m
+O

(
R−1

)
, (D.7)

where the second term was determined in [9] (P1 is given by (2.18)). Summing up these

findings we obtain the first term beyond leading order in the expansion (D.1)

[
〈σ1σ2〉

]
1
(mR)−1/2 = c

(1)
0

P1(x1; y)

m

[
〈̃σ2〉+

∆〈σ2〉
2

erf (χ−)

]

+ c
(2)
0

P1(x2; y)

m

[
〈̃σ1〉 −

∆〈σ1〉
2

erf (χ+)

]
(D.8)

≡ X1(x1, y;x2,−y). (D.9)
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It is now rather easy to prove the following clustering relations:

lim
x1→+∞

X1(x1, y;x2,−y) = c
(2)
0

P1(x2; y)

m
〈σ1〉b,

lim
x1→−∞

X1(x1, y;x2,−y) = c
(2)
0

P1(x2; y)

m
〈σ1〉a,

lim
x2→+∞

X1(x1, y;x2,−y) = c
(1)
0

P1(x1; y)

m
〈σ2〉b,

lim
x2→−∞

X1(x1, y;x2,−y) = c
(1)
0

P1(x1; y)

m
〈σ2〉a. (D.10)

which are the counterpart of (3.18) beyond the leading order.

D.2 Probabilistic interpretation

We now show how the correction to the two-point function determined from field theory in

the previous section can be interpreted within the framework of section 3.2 endowing the

interface with an internal structure. This is done adding to (3.22) the contribution

Γ
(s)
ab = A

(0)
1 δ(u1 − x1)Sab(x2 − u2) + A

(0)
2 δ(u2 − x2)Sab(x1 − u1) + . . . , (D.11)

where Sab is the sharp interface profile given by (4.2), and A
(0)
1 ,A

(0)
2 are constants which,

due to the delta functions, carry information about a structure located on the interface.

The correction to (3.21) coming from this modification of (3.22) is

〈σ1(x1, y)σ2(x2,−y)〉(1)ab =

∫

R2

du1du2 P2(u1, y;u2,−y)Γ
(s)
ab (x1, y;x2,−y|u1, u2), (D.12)

which after simple manipulations it becomes

〈σ1(x1, y)σ2(x2,−y)〉(1)ab = A
(0)
1 〈σ2〉a

∫ +∞

x2

du2 P2 + A
(0)
1 〈σ2〉b

∫ x2

−∞
du2 P2

+ A
(0)
2 〈σ1〉a

∫ +∞

x1

du1 P2 + A
(0)
2 〈σ1〉b

∫ x1

−∞
du1 P2,

where P2 stands for P2(x1, y;x2;−y). After a rescaling of the integration variables we can

cast the above in the form

〈σ1(x1, y)σ2(x2,−y)〉(1)ab = A
(0)
1 λ−1〈σ2〉aW+

2 + A
(0)
1 λ−1〈σ2〉bW−

2

+ A
(0)
2 λ−1〈σ1〉aW+

1 + A
(0)
2 λ−1〈σ1〉bW−

1 , (D.13)
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where W±
j = W±

j (η1, η2; ǫ) are the functions

W+
1 =

∫ +∞

η1

dh1 U(h1, η2; ǫ) =
e−χ2

2

2
√
πκ

[
1− erf(χ+)

]
,

W−
1 =

∫ η1

−∞
dh1 U(h1, η2; ǫ) =

e−χ2
2

2
√
πκ

[
1 + erf(χ+)

]
,

W+
2 =

∫ +∞

η2

dh2 U(η1, h2; ǫ) =
e−χ2

1

2
√
πκ

[
1 + erf(χ−)

]
,

W−
2 =

∫ η2

−∞
dh2 U(η1, h2; ǫ) =

e−χ2
1

2
√
πκ

[
1− erf(χ−)

]
,

U(η1, η1; ǫ) = e
− η21+η22

2(1−ǫ)
− (η1−η2)

2

4ǫ . (D.14)

Therefore using the known expression (2.18) for the passage probability P1 and the func-

tions W±
j , (D.13) finally becomes

〈σ1(x1, y)σ2(x2,−y)〉(1)ab = A
(0)
1 P1(x1, y)

[
〈̃σ2〉+

∆〈σ2〉
2

erf(χ−)

]

+ A
(0)
2 P1(x2,−y)

[
〈̃σ1〉 −

∆〈σ1〉
2

erf(χ+)

]
. (D.15)

This coincides with the field theoretical result (D.8) once one identifies A
(0)
j = c

(j)
0 /m.

Lastly, we comment on the terms omitted in (D.11). We notice that (3.22) can be

written in the compact form

Sab(x1 − u1)Sab(x2 − u2), (D.16)

and that this suggest the factorized expression

Γab(x1, y1;x2, y2|u1, u2) = σab(x1|u1)σab(x2|u2) (D.17)

for the function entering (3.21); here

σab(xj |uj) = Sab(xj−uj)+A
(0)
j δ(xj−uj)+A

(1)
j δ′(xj−uj)+A

(2)
j δ′′(xj−uj)+. . . , (D.18)

where the prime symbol stands for the derivative with respect to uj . Eq. (D.18) is exactly

the sharp profile dressed with local terms accounting for interfacial structure proposed

in [9] within the study of the one-point function.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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