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cited states of two-dimensional conformal field theory (CFT) on a cylinder, and examine

their differences from the ones for the thermal state. We assume the interval to be short so

that we can use operator product expansion (OPE) of twist operators to calculate Rényi en-

tropy in terms of sum of one-point functions of OPE blocks. We find that the entanglement

entropy for highly excited state and thermal state behave the same way after appropriate

identification of the conformal weight of the state with the temperature. However, there

exists no such universal identification for the Rényi entropy in the short-interval expansion.

Therefore, the highly excited state does not look thermal when comparing its Rényi en-

tropy to the thermal state one. As the Rényi entropy captures the higher moments of the

reduced density matrix but the entanglement entropy only the average, our results imply

that the emergence of thermality depends on how refined we look into the entanglement

structure of the underlying pure excited state.
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4 Rényi entropy for descendant states of vacuum family 12

5 Conclusion and discussion 14

A Some details of vacuum OPE block 16

1 Introduction

It was conjectured that highly excited microstates behave like a thermal state, for example

in the context of eigenstate thermalization hypothesis (ETH) [1, 2] when probing by few-

body operators, or canonical typicality [3, 4] when considering small sub-system. This was

demonstrated in two-dimensional (2D) conformal field theory (CFT) in the large central

charge limit by comparing the two-point functions of light operators in the thermal state

with the ones in the highly excited microstate at the leading order of large central charge

expansion [5, 6]. Similarly, one can also examine the conjecture in the entanglement en-

tropy. This was done in [7, 8] by calculating the leading order entanglement entropy of

an interval for a 2D CFT highly excited microstate on a circle, and the result agrees with

the thermal entanglement entropy in [9]. On the other hand, there is simple argument [7]

against extending the above agreement to all orders, which runs as follows. The entangle-

ment entropy or Rényi entropy for a pure state obeys the complementarity equality, i.e.,

S(A) = S(Ac) where Ac is the complement of interval A. However, this equality does not

hold for a mixed state such as thermal state. Thus, the full entanglement entropy or Rényi

entropy for the highly excited state shall not equal to the ones for the thermal state. This

motivates the current work to calculate the higher order results for the Rényi entropy of

the excited states in the expansion of large central charge (i.e., corresponding to the few-

body operators for general holographic CFT, which is in accordance with the requirement

in the context of ETH,) and short interval (i.e., corresponding to the requirement of small

sub-system in the context of canonical typicality). We then examine their differences from

the thermal state Rényi entropy.
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It is usually difficult to calculate the entanglement entropy and Rényi entropy for

nontrivial quantum field theories, however, for a 2D CFT one can convert the problem into

the calculation of correlation functions of twist operators [9]. Furthermore, we can use the

operator product expansion (OPE) to turn the product of two twist operators into a sum

of the so-called OPE blocks [10], i.e., the collective object of a particular primary field

and its descendants appearing in the OPE. These OPE blocks are conformal invariants.

After that, one can obtain the short-interval expansion of the Rényi entropy by evaluating

the corresponding one-point or multi-point functions of the OPE blocks. This trick has

been adopted to calculate the Rényi entropy for some special cases [11–20], such as the

Rényi entropy of two intervals on complex plane and of the one-interval on torus. In this

paper, we adopt the same trick to investigate the short-interval expansion of excited state

Rényi entropy on a cylinder, and then compare our results with the thermal state Rényi

entropy. We will consider the excited states obtained by acting on the CFT vacuum state

with either primary field or non-primary fields of the vacuum family.1 In particular, we

will consider the heavy state with its conformal weight comparable to the central charge

because this kind of microstates are believed to behave like a thermal state, especially in

the large central charge limit. We show that this is indeed the case for the entanglement

entropy, which is also obtained by the other method [7, 8]. However, the thermal behavior

will be spoiled once there are contributions of the non-vacuum OPE blocks to the excited

state entanglement entropy. On the other hand, the excited state Rényi entropy differs

from the termal state result even at the leading order, i.e. contribution from the vacuum

OPE block. Our results therefore demand more detailed understanding of the thermal

typicality or ETH from the Rényi entropy point of view.

The remaining of this paper is arranged as follows. In section 2 we recall a few basic

facts, as well as reviewing the method of twist operator OPE, which we use to compute

the short interval expansion of the Rényi entropy. In section 3 we obtain the short interval

expansions of the excited state Rényi entropy for both heavy and light primary states. Our

result shows that the excited state Rényi entropy for heavy states does not agree with the

thermal state Rényi entropy. In section 4 we evaluate the excited state Rényi entropy for

the non-primary states, which is found to be different from the primary one. We conclude

the paper with discussion in section 5. In appendix A we list some details of the vacuum

OPE block.

Note added: when we are preparing the draft, there appears the paper [26] in ArXiv

that has some overlaps with our paper.

2 Rényi entropy in 2D CFT: formulation and review

Let the CFT be in a state |φ〉 so that the reduced density matrix for the interval A is

given by

ρA = trAc |φ〉〈φ|. (2.1)

1The states we consider are globally excited states, and they are different from the locally excited states

that are investigated in, for example, [21–23]. One can see [24, 25] for recent investigations of the globally

excited state entanglement entropy using methods that are different from the method in this paper.
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Here |φ〉 can be any pure state, including the vacuum state |0〉. It is normalized such

that 〈φ|φ〉 = 1.

The Rényi entropy is then given by

Sn =
1

1− n
log trAρ

n
A . (2.2)

For n→ 1, it reduces to the entanglement entropy, i.e., SA := Sn→1.

By using the replica trick, the Rényi entropy of an interval of length ` can be obtained

by the two-point function of the twist operators for the orbifold version of the original

CFT, i.e.,

trAρ
n
A = 〈Φ|σ(`)σ̃(0)|Φ〉, (2.3)

where σ and σ̃ are the twist operators with conformal weights2

hσ = hσ̃ =
c(n2 − 1)

24n
, (2.4)

and the state |Φ〉 of the orbifold CFT is defined as

|Φ〉 = |
n−1∏
j=0

φj〉, (2.5)

where the index j labels the replicas of the original CFT.

For the ground state of a CFT on the cylinder, the one-interval Rényi entropy is

universal, i.e., the result depends only on CFT’s central charge c [9]. The result has been

obtained in [13, 14] and looks as follows (only the holomorphic part is shown)

Sn =
c(n+ 1)

12n
log

(
L

πε
sin

π`

L

)
=
c(n+ 1)

12n
log

`

ε
− π2c(n+ 1)`2

72nL2
− π4c(n+ 1)`4

2160nL4
− π6c(n+ 1)`6

34020nL6
+O(`8), (2.6)

where L is the length of the circle on which the CFT lives. In the second equality we

expand the result in powers of `/L. This will be useful for later comparison. Furthermore,

by swapping the role of time and space, one can obtain the thermal state Rényi entropy of

an interval of length ` for a CFT on an infinite line at temperature 1/β. The result is

Sn =
c(n+ 1)

12n
log

(
β

πε
sinh

π`

β

)
=
c(n+ 1)

12n
log

`

ε
+
π2c(n+ 1)`2

72nβ2
− π4c(n+ 1)`4

2160nβ4
+
π6c(n+ 1)`6

34020nβ6
+O(`8). (2.7)

On the other hand, if |φ〉 is not the ground state, the Rényi entropy is no longer uni-

versal. This is the case considered in this paper and the setup is shown in figure 1. The

results will then depend on the details of the CFT, e.g., on the spectrum and structure con-

stants [20, 27–30]. In this case, we need to find some ways to obtain the approximate results.

2Note that in this paper we only consider the contributions of the holomorphic sector to the Rényi

entropy, and contributions of the anti-holomorphic sector can be calculated similarly.
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|ϕ〉

〈ϕ|

Figure 1. The CFT setup for our calculation of the one-interval excited state Rényi entropy and

entanglement entropy on the interval A = [0, `]. The CFT is defined on a cylinder with spatial size

L in the excited state |φ〉, which is created by acting on the vacuum state with an operator φ.

Similar situation also holds for the CFT on tours, i.e., with a spatial circle of length L

and a Euclidean time circle of temperature 1/β. Moreover, the Rényi entropy in this case

is useful for comparison with the one in the excited state of the same CFT on the cylinder.

For this purpose, it is as good to consider the results in the expansion of `/L or `/β in

either low or high temperature limits. This in fact was done in [20] for CFT on torus by

assuming ` is small so that one can adopt the OPE of the twist operators to evaluate the

one-interval Rényi entropy in terms of sum of one-point functions for various conformal

families. The key point for this method to work is that one-point function on torus is a

constant by the translational symmetry. As the same is true for the one-point function on

a cylinder in excited state, we can apply the same OPE method to obtain the expansion

of Rényi entropy.

In the following subsection, we will first describe the OPE method for evaluating the

excited state Rényi entropy on a cylinder. Our description will be brief as the method is in

parallel with the details in [20] for Rényi entropy on torus. We will then review the results

in [20] for latter comparisons.

2.1 Excited state Rényi entropy via OPE

To calculate the excited state Rényi entropy is just to calculate the two-point function of

twist operators, i.e.,

trAρ
n
A = 〈Φ|σ(`)σ̃(0)|Φ〉cyl. (2.8)

As introduced in [10], the OPE of two operators of the same conformal weight can be

expressed as the sum of conformal invariant objects, called the OPE blocks.3 Take the

3If the two operators of the OPE have different conformal weights, then the OPE blocks are not conformal

invariants [10]. Moreover, in this paper we adopt the OPE by quasiprimary operators and their derivatives.
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product of the twist operators as example, one has

σ(x1)σ̃(x2) = |x1 − x2|−2hσ
∑
O∆

Cσσ̃O∆
B∆(x1, x2) , (2.9)

where the sum runs over all primary fields O∆’s, and Cσσ̃O∆
is the OPE coefficient. The

OPE block B∆(x1, x2) is a succinct notation for the sum of the primary operator O∆ and

its descendants appearing in the OPE. As shown in [10] the OPE blocks in (2.9) are the

conformal invariant kinematic objects. Obviously, the Rényi entropy obtained via (2.8)

and (2.9) will depend on the spectrum and the OPE coefficients, and thus not universal.

It is known that the OPE block for the vacuum family is related to the modular

Hamiltonian HA [10]. This fact leads to the first law of entanglement thermodynamics

∆SA = ∆〈HA〉, (2.10)

where ∆SA is the change of the entanglement entropy due to the change of CFT state |φ〉,
similarly for ∆〈HA〉. Beside the vacuum family, there are also contributions to the Rényi

entropy from the other conformal family, which will then lead to the deviation from the

first law.

Therefore, we can evaluate the one-point functions of the OPE blocks to obtain the

Rényi entropy. In particular, for small ` one can express the Rényi entropy in the powers

of ` with each term being calculated explicitly. The contribution from the vacuum family4

can be expanded as follows:

trAρ
n
A =

cn
`2hσ

[
1 + bT 〈T 〉φ`2 +

(
bA〈A〉φ + bTT 〈T 〉2φ

)
`4 (2.11)

+
(
bB〈B〉φ + bD〈D〉φ + bTA〈T 〉φ〈A〉φ + bTTT 〈T 〉3φ

)
`6 +O(`8)

]
,

with 〈· · ·〉φ := 〈φ| · · · |φ〉cyl, cn is the normalization of the twist operators, and the coeffi-

cients b’s are given as follows [20]

bT =
n2 − 1

12n
, bA =

(n2 − 1)2

288n3
,

bB = −
(n2 − 1)2

(
2n2(35c+ 61)− 93

)
10368n5(70c+ 29)

, bD =
(n2 − 1)3

10368n5
,

bTT =
(n2 − 1)[5c(n+ 1)(n− 1)2 + 2(n2 + 11)]

1440cn3
,

bTA =
(n2 − 1)2[5c(n+ 1)(n− 1)2 + 4(n2 + 11)]

17280cn5
, (2.12)

bTTT =
(n−2)(n2−1)[35c2(n+1)2(n−1)3+42c(n2−1)(n2+11)−16(n+2)(n2+47)]

362880c2n5
.

4Note that twist operators are operators of the n-fold CFT, which we call CFTn. Using the vacuum

family of the original CFT we can not only get the vacuum family of CFTn but also some nonidentity

conformal families. Here by vacuum family we mean that of the original CFT, not that of CFTn.
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We can then obtain the expansion of the excited state Rényi entropy contributed from the

vacuum OPE block in terms of the associated one-point functions

S(0)
n =

c(n+ 1)

12n
log

`

ε
− 1

n− 1

{
bT 〈T 〉φ`2 +

[
bA〈A〉φ +

(
bTT −

1

2
b2T

)
〈T 〉2φ

]
`4

+

[
bB〈B〉φ + bD〈D〉φ + (bTA − bT bA)〈T 〉φ〈A〉φ

+

(
bTTT − bT bTT +

1

3
b3T

)
〈T 〉3φ

]
`6 +O(`8)

}
. (2.13)

Furthermore, one can consider the contribution to the Rényi entropy from the OPE

blocks other than the one of vacuum family. For the OPE block with primary field ψ

of conformal weight (hψ, 0), its leading order contribution to the Rényi entropy up to the

lowest conformal weights comes from ψj1ψj2 with j1 < j2 [12], and the leading order result is

S(ψ)
n = − 1

n− 1
bψψ〈ψ〉2φ`2hψ +O(`2hψ+1), (2.14)

with

bψψ =
i2hψ

αψ(2n)2hψ

∑
j1<j2

1(
sin (j1−j2))π

n

)2hψ
. (2.15)

However, in the usual consideration of the Rényi entropy for the holographic CFT, it

is usually assumed that there is a sparse light spectrum with no order c expectation value

so that the vacuum OPE block dominates the Rényi entropy [6, 7].

2.2 Thermal state Rényi entropy on a cycle

The above formulation is in parallel with the one used in [20] in which the one-interval

Rényi entropy was calculated for CFT on a circle at finite temperature, i.e., CFT on a

torus. The results in [20] agree with the gravity and CFT results in [27–30]. The result

contributed from the vacuum OPE block is the same as (2.13), except that the one-point

functions in it should be evaluated with respect to the torus geometry, i.e., change 〈· · ·〉φ
by 〈· · ·〉T with T denoting the torus. As the result is useful for latter comparison with the

Rényi entropy for highly excited state, we will write down it explicitly. Moreover, in the

following we will always arrange the expansion of the result in the following manner

Sn = SL
n + SNL

n + SNNL
n + · · · . (2.16)

where Sn can be either S
(0)
n or S

(ψ)
n , and the superscript L denotes leading order (of 1/c

expansion), NL as next-to-leading order and so on. We will see that this is the just the

large c expansion with SL
n of O(c), SNL

n of O(1), and so on.

– 6 –
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In the high temperature limit, i.e., β � L, after evaluating the one-point functions on

the torus, the resultant thermal state Rényi entropy is

SL
n =

c(n+ 1)

12n
log

`

ε
+
π2c(n+ 1)

72n

`2

β2

+

(
− π4c(n+ 1)

2160n
− π4c(n− 1)(n+ 1)2

18n3
q′2 +O(q′3)

)
`4

β4

−
(
− π6c(n+ 1)

34020n
+
π6c(n− 1)(n+ 1)2

27n3
q′2 +O(q′3)

)
`6

β6
+O(`8),

SNL
n = −

(
2π2(n+ 1)

3n
q′2 +O(q′3)

)
`2

β2
+

(
− π4(n+ 1)(9n2 − 11)

45n3
q′2 +O(q′3)

)
`4

β4

−
(

2π6(n+ 1)(17n4 − 46n2 + 31)

945n5
q′2 +O(q′3)

)
`6

β6
+O(`8),

SNNL
n =

(
− 4π4(n+ 1)(n2 + 11)

45n3c
q′4 +O(q′5)

)
`4

β4

−
(

4π6(n+ 1)(26n4 + 271n2 − 345)

945n5c
q′4 +O(q′5)

)
`6

β6
+O(`8), (2.17)

with q′ = e−2πL/β � 1. We see that the leading order result agrees with (2.7) as expected,

except that there are finite size corrections which are manifested in the infinite number

of terms such that they are exponentially suppressed. We can also obtain the expansion

in the low temperature limit, i.e., β � L, and the result is related to (2.17) by replacing

β with iL and q′ with q := e−2πβ/L. Again, except the infinite number of exponentially

suppressed terms, the leading term agrees with (2.6) as expected.

3 Rényi entropy for a primary excited state

Given the formalism in the previous section, we can then evaluate the excited state Rényi

entropy by calculating the one-point function of the OPE blocks. In this section, we will

consider the excited state |φ〉 by acting on the vacuum state with a holomorphic primary

operator of conformal weight hφ. We can obtain the one-point function on the cylinder from

the one on the complex plane by the conformal transformation z → f(z) = exp(2πiz/L).

The result for the vacuum OPE block is

〈T 〉φ =
π2(c− 24hφ)

6L2
, 〈A〉φ =

π4(c(5c+ 22)− 240(c+ 2)hφ + 2880h2
φ)

180L4
,

〈B〉φ = −
2π6(31c− 504hφ)

525L6
,

〈D〉φ =
π6

216(70c+ 29)L6

[
c(2c− 1)(5c+ 22)(7c+ 68)

−72(70c3 + 617c2 + 938c− 248)hφ (3.1)

+1728(c+ 4)(70c+ 29)h2
φ − 13824(70c+ 29)h3

φ

]
.

– 7 –
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Plugging these one-point functions into (2.13), we get the Rényi entropy. We now obtain

the explicit results for the state |φ〉 to be either light or heavy, and compare them with the

thermal state ones.

3.1 The case for light state

We first consider the state |φ〉 to be light, i.e., hφ ∼ 1 so that in the large central charge

limit we have hφ � c. We can then organize the Rényi entropy in the expansion of powers

of central charge, i.e., as in the form of (2.16), and the results for the first few orders are

SL
n =

c(n+ 1)

12n
log

`

ε
− cπ2(n+ 1)`2

72nL2
− cπ4(n+ 1)`4

2160nL4
− cπ6(n+ 1)`6

34020nL6
+O(`8),

SNL
n =

π2(n+ 1)hφ`
2

3nL2
+
π4(n+1)(n2+1)hφ`

4

90L4n3
+

2π6(n+1)(n4+n2+1)hφ`
6

2835L6n5
+O(`8),

SNNL
n = −

π4(n+ 1)(n2 + 11)h2
φ`

4

45cn3L4
−
π6(n+ 1)(2n4 + 9n2 + 37)h2

φ`
6

945cn5L6
+O(`8), (3.2)

SNNNL
n = −

8π6(n+ 1)(n2 − 4)(n2 + 47)h3
φ`

6

2835c2n5L6
+O(`8).

We can take n→ 1 limit to obtain the entanglement entropy.

Note that the leading term agrees with (2.6). However, there are nonzero sub-leading

O(1/c) corrections, which encode the information of the excited state as indicated by

the appearance of hφ. Moreover, the result in (3.2) is also quite different from the low

temperature expansion of the thermal state Rényi entropy, i.e., (2.17) with β replaced

by iL and q′ by q := e−2πβ/L. In the latter case, even in the leading order there are

infinite number of q-power terms, and all the sub-leading corrections are dressed by the

q powers so that they vanish at zero temperature limit. These q dressing terms are the

non-perturbative corrections due to the finite-size effect of torus geometry in temporal

direction, and they are absent for the excited state on cylinder. This is of no wonder, since

there is no correspondence between the low energy eigenstate and the low temperature

thermal state. For Rényi entropy there is difference at leading order, and for entanglement

entropy the difference appears at the sub-leading orders. We see that Rényi entropy is a

more powerful tool to distinguish different states.

3.2 The case for heavy state

We now consider the case for which the excited state is heavy in large c limit, i.e., hφ ∼ c.
In this case we introduce

hφ = cεφ, (3.3)

with εφ being of order one. We then obtain the Rényi entropy contributed by the vacuum

OPE block as follows

S(0)
n =

c(n+ 1)

12n
log

`

ε
+
cπ2(n+ 1)(24εφ − 1)`2

72nL2

−
cπ4(n+ 1)

{
24εφ

[
2(n2 + 11)εφ − (n2 + 1)

]
+ n2

}
`4

2160n3L4

– 8 –
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−
cπ6(n+ 1)

{
12εφ

[
8(n−2)(n+2)(n2+47)ε2φ + 3(2n4+9n2+37)εφ − 2(n4+n2+1)

]
+n4

}
`6

34020n5L6

+O(`8). (3.4)

We see that the result is of order c, and there are no sub-leading corrections. This is the

result of straightforward calculation, and is also quite unexpected. The equations (3.2)

happens to be not only an expansion of large central charge c, but also an expansion of

small conformal weight hφ. After setting hφ = cεφ, we find that all the sub-leading terms

can be absorbed into the leading term. We do not know if there is any deep reason for

this result.

The result is very different from the thermal state Rényi entropy in the high tempera-

ture expansion, i.e., (2.17). Note that the sub-leading corrections in (2.17) are exponentially

suppressed. In the high temperature limit, (2.17) is reduced to (2.7). However, even in this

limit the result is also different from (2.7) because we cannot find a universal identification

of εφ with β to turn (3.4) into (2.7) term by term.

On the other hand, by taking n → 1 limit we can obtain the entanglement entropy

as follows

S(0) =
c

6
log

`

ε
+
cπ2(24εφ − 1)`2

36L2
−
cπ4(24εφ − 1)2`4

1080L4
+
cπ6(24εφ − 1)3`6

17010L6
+O(`8). (3.5)

It is easy to see that the result (3.5) agrees with (2.6) of n→ 1 for εφ < 1/24 if we identify

L in (2.6) with L/
√

1− 24εφ. Similarly, (3.5) agrees with (2.7) of n → 1 for εφ > 1/24 if

we identify β in (2.7) with L/
√

24εφ − 1. This implies that the excited state entanglement

entropy behaves the same way as the ground/thermal state entanglement entropy in the

low/high temperature limit. This is consistent with the expectation of ETH [1, 2] or

canonical typicality [3, 4], i.e., a typical eigenstate can mimic the thermal or finite-size

effect. Moreover, for εφ = 1/24 we have

S(0) =
c

6
log

`

ε
, (3.6)

which behaves like the ground state entanglement entropy on a complex plane.

In summary, the one-interval entanglement entropy with interval length ` for a heavy

pure state |φ〉 with hφ = cεφ on a circle of length L is equivalent to the one-interval

entanglement entropy with the same interval length for the CFT ground state or thermal

state depending on the value of εφ as following. (i) When εφ < 1/24 it behaves as the

entanglement entropy for the CFT ground state on a circle of length L/
√

1− 24εφ;5 (ii)

when εφ > 1/24 it behaves as the entanglement entropy for a CFT thermal state on an

infinite straight line with temperature
√

24εφ − 1/L; and (iii) when εφ = 1/24 it behaves

as the entanglement entropy for the CFT in ground state on an infinite straight line. We

summarize the results in figure 2 by tuning the parameter εφ from εφ < 1/24 to εφ > 1/24.

5We may also say that it behaves as the entanglement entropy of an interval of length `
√

1− 24εφ for

a CFT living on a circle of length L. Since we are discussing about a CFT, the two statements are in fact

equivalent.
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1/240 ϵϕ

Figure 2. When we tune the parameter εφ from εφ < 1/24 to εφ > 1/24, the entanglement entropy

of the short interval on cylinder in excited state |φ〉 with hφ = chφ behaves as the entanglement

entropies of the same interval length on different manifolds. When εφ < 1/24 there are cylinders

with periodic boundary condition in the spatial direction, and the cylinder becomes ‘fatter’ when

εφ becomes larger. When εφ = 0, it is the complex plane. When εφ > 1/24 there are cylinders with

periodic boundary condition in the temporal direction, and the cylinder becomes ‘thinner’ when εφ
becomes larger.

Through just straightforward calculation, our result here is quite provoking. In sum-

mary, the high temperature limit is the same as the micro-canoical emsemble, and thus

our result can be phrased as follows: both the excited state Rényi entropy and the entan-

glement entropy are different from the thermal state ones of the canonical ensemble by the

sub-leading corrections in the large c expansion. However, in the high temperature limit,

i.e., the canonical ensemble is turned into the micro-canonical one, the excited state entan-

glement entropy agrees with the thermal state one. This agrees with what one will expect

from ETH or canonical typicality. On the other hand, the excited Rényi entropy still fails

to behave as the micro-canonical thermal state one because without taking n→ 1 limit it

is impossible to identify a universal temperature in terms of εφ for all orders of ` expansion

of (3.4). The Rényi entropy encodes higher moments of the reduced density matrix than

the entanglement entropy, our above result implies that the emergence of thermality of the

excited state depends on how detailed we compare the entanglement structures.

3.3 Leading contribution from non-vacuum OPE block

By following the discussion around (2.14), we now evaluate the leading order result of

the excited state Rényi entropy contributed from the non-vacuum OPE block. For a

holomorphic primary operator ψ of conformal weight hψ, we have the one-point function

as following

〈ψ〉φ =

(
2πi

L

)hψ
Cφψφ. (3.7)

where Cφψφ is the OPE coefficient. Therefore, there is nonzero contribution to the one-

interval Rényi entropy for the excited state |φ〉 from the corresponding OPE block charac-

terized by the primary field ψ only if the structure constant Cφψφ is nonvanishing. In this
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case from (2.14) we have

S(ψ)
n ∼

C2
φψφ

αψ

(
`

L

)2hψ

+O(`2hψ+1). (3.8)

As the result depends on the OPE coefficient, it is not universal. Moreover, by taking

n → 1 limit we obtain the nonzero contribution to the entanglement entropy, which will

then spoil the thermal behavior of (3.5) for the vacuum OPE block. On the other hand,

if there is a gap in the low energy spectrum of CFT as it is usually assumed for the

holographic CFT, then the non-thermal deviation from the non-vacuum OPE blocks will

be highly suppressed.

3.4 Check ETH

If ETH holds, one would expect that the one-point functions of some set of local physical

operators {Ophy} for some microstate are the same as the ones for the thermal state. In

the context of this paper, we expect

〈Ophy〉φ = 〈Ophy〉T (3.9)

after the following identification of the conformal weight hφ and the inverse temperature β:

hφ = cεφ, β =
L√

24εφ − 1
. (3.10)

In section 3.2 we have shown that the excited state Rényi entropy does not match with

the thermal state one even after the identification of (3.10), despite that the entanglement

entropy does match. We now like to check if the ETH relation holds universally for all

physical observables or not.

We first consider the case when Ophy = T . The result of 〈T 〉φ is given in (3.1), and

the result for 〈T 〉T in high temperature is given in [20], i.e., it is

〈T 〉T = −π
2c

6β2
+

8π2

β2
q′2 +

12π2

β2
q′3 +

24π2

β2
q′4 +O(q′5), (3.11)

with q′ := e−2πL/β . If the relation (3.9) holds for this case, then we get the following

identification

hφ =
c(L2 + β2)

24β2
− 2L2q′2

β2
− 3L2q′3

β2
− 6L2q′4

β2
+O(q′5). (3.12)

Note that in the large c limit, it reproduces (3.10). We now substitute (3.12) into (3.1) to

obtain

〈A〉φ =
π4c(5cL4 − 20L2β2 + 2β4)

180L4β4
− 8π4(cL2 − 2β2)q′2

3L2β4

−4π4(cL2 − 2β2)q′3

L2β4
−

8π4
(
(c− 8)L2 − 2β2

)
q′4

L2β4
+O(q′5), (3.13)
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which is very different from the thermal state one given in [20], i.e.,

〈A〉T =
π4c(5c+ 22)

180β4
+

8π4(5c+ 22)

3β4
q′2 +

12π4(5c+ 22)

β4
q′3 +

168π4(c+ 6)

β4
q′4 +O(q5).

(3.14)

Therefore, the ETH relation (3.9) does not hold universally for the descendant operators

of the vacuum family.

From the above, we can also infer that the relation (3.9) will not hold universally for the

other primary field O because 〈O〉T depends on all the non-vanishing structure constants

CϕOϕ of O with all primary operators {ϕ}, but 〈O〉φ only depend on the structure constant

CφOφ. For example, if CφOφ = 0, we have 〈O〉φ = 0, but generally 〈O〉T 6= 0.

4 Rényi entropy for descendant states of vacuum family

For curiosity, we now consider the Rényi entropy for the excited state |φ〉 obtained by acting

on the vacuum state with the descendant operator of the vacuum family, i.e., explicitly we

will consider the following |φ〉,

|φ〉 =

{
|0〉, 1
√
αT
|T 〉, 1
√
α∂T
|∂T 〉, 1

√
α∂2T

|∂2T 〉, 1
√
αA
|A〉
}
, (4.1)

with

αT =
c

2
, α∂T = 2c, α∂2T = 20c, αA =

c(5c+ 22)

10
. (4.2)

For such kind of excited states, we only need to consider the contribution to the Rényi

entropy from the vacuum OPE block because the one-point function of the non-vacuum

OPE block in this kind of state is zero, i.e.,

〈B∆ 6=0〉φ = 0. (4.3)

The first thing we need for carrying out the evaluation is the one-point function of the

operators in vacuum OPE block. The result is as follows

〈T 〉φ =

{
π2c

6L2
,
π2(c− 48)

6L2
,
π2(c− 72)

6L2
,
π2(c− 96)

6L2
,
π2(c− 96)

6L2

}
,

〈A〉φ =

{
π4c(5c+ 22)

180L4
,
π4(c+ 480)(5c+ 22)

180L4
,
π4(c+ 2160)(5c+ 22)

180L4
,

π4(c+ 5568)(5c+ 22)

180L4
,
π4(5c2 + 4822c+ 69504)

180L4

}
,

〈B〉φ =

{
− 62π6c

525L6
,
2π6(120929c+ 1008)

525L6
,

2π6(1088609c+ 243432)

525L6
,

2π6(4838369c+ 1477728)

525L6
,

2π6(241889c+ 1066464)

525L6

}
, (4.4)

〈D〉φ =

{
π6c(2c− 1)(5c+ 22)(7c+ 68)

216(70c+ 29)L6
,
π6(c+ 1584)(2c− 1)(5c+ 22)(7c+ 68)

216(70c+ 29)L6
,
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π6(c+ 6696)(2c− 1)(5c+ 22)(7c+ 68)

216(70c+ 29)L6
,

π6(c+ 16992)(2c− 1)(5c+ 22)(7c+ 68)

216(70c+ 29)L6
,

π6(2c− 1)(7c+ 68)(5c2 + 15862c− 614592)

216(70c+ 29)L6

}
.

We also include the results for the vacuum state in the first entries for comparison, and its

Rényi entropy has been obtained in this way in [13, 14]. It is nothing but (2.6).

For |φ〉 = 1√
αT
|T 〉, we obtain the corresponding Rényi entropy

SL
n =

c(n+ 1)

12n
log

`

ε
− π2c(n+ 1)`2

72nL2
− π4c(n+ 1)(121n2 − 120)`4

2160n3L4

−π
6c(n+ 1)(n4 − 1260n2 + 1260)`6

34020n5L6
+O(`8),

SNL
n =

2π2(n+ 1)`2

3L2n
+
`4(n+ 1)(n2 + 1)π4

45L4n3

+
4π6(n+ 1)(22n4 + 211n2 − 230)`6

2835L6n5
+O(`8),

SNNL
n = −4π4(n+ 1)(n2 + 11)`4

45cn3L4
− 4π6(n+ 1)(2n4 + 9n2 + 37)`6

945cn5L6
+O(`8), (4.5)

SNNNL
n = −64π6(n+ 1)(n2 − 4)(n2 + 47)`6

2835c2n5L6
+O(`8).

As expected, the result is different from the (3.2) with hφ = 2 for the primary excited state.

More importantly, it is interesting to see that the difference even occurs at the leading order,

i.e., SL
n is different from (2.6). This is in contrast to the case for the entanglement entropy

by taking n→ 1, and the result is

SL =
c

6
log

`

ε
− π2c`2

36L2
− π4c`4

1080L4
− π6c`6

17010L6
+O(`8),

SNL =
4π2`2

3L2
+

4π4`4

45L4
+

8π6`6

945L6
+O(`8),

SNNL = −32π4`4

15cL4
− 128π6`6

315cL6
+O(`8), (4.6)

SNNNL =
2048π6`6

315c2L6
+O(`8).

Note that this is the same as (3.2) of n → 1 by setting hφ = 2. Thus, we have checked

up to order `6 that with the contributions only from the vacuum family, the entanglement

entropy cannot distinguish the primary state from the vacuum descendant state with the

same conformal weight; on the other hand, the Rényi entropy can.

There are similar stories for the other three excited states, and we just list the Rényi

entropies. For the case with |φ〉 = 1√
α∂T
|∂T 〉, we have

SL
n =

c(n+ 1)

12n
log

`

ε
− π2c(n+ 1)`2

72nL2
− π4c(n+ 1)(481n2 − 480)`4

2160n3L4

+
π6c(n+ 1)(5039n4 + 2520n2 − 7560)`6

34020L6n5
+O(`8),

– 13 –



J
H
E
P
1
1
(
2
0
1
6
)
1
1
6

SNL
n =

π2(n+ 1)`2

nL2
− π4(n+ 1)(37n2 − 43)`4

90n3L4

+
2π6(n+ 1)(57n4 + 911n2 − 965)`6

945n5L6
+O(`8),

SNNL
n = −

π4(n+ 1)
(
n2 + 11

)
`4

5cn3L4
+
π6(n+ 1)(106n4 + 1093n2 − 1343)`6

315cn5L6
+O(`8),

SNNNL
n = −8π6(n+ 1)(n2 − 4)(n2 + 47)`6

105c2n5L6
+O(`8). (4.7)

For the case with |φ〉 = 1√
α∂2T
|∂2T 〉, we have

SL
n =

c(n+ 1)

12n
log

`

ε
− π2c(n+ 1)`2

72nL2
− π4c(n+ 1)(1201n2 − 1200)`4

2160n3L4

+
π6c(n+ 1)(32759n4 − 7560n2 − 25200)`6

34020n5L6
+O(`8),

SNL
n =

4(n+ 1)π2`2

3L2n
− 2π4(n+ 1)(33n2 − 35)`4

45n3L4

+
2π6(n+ 1)(1264n4 + 8047n2 − 9299)`6

2835n5L6
+O(`8),

SNNL
n = −16π4(n+ 1)(n2 + 11)`4

45cn3L4
+

16π6(n+ 1)(466n4 + 4715n2 − 5421)`6

4725cn5L6
+O(`8),

SNNNL
n = −512π6(n+ 1)(n2 − 4)(n2 + 47)`6

2835c2n5L6
+O(`8). (4.8)

For the case with |φ〉 = 1√
αA
|A〉, we have

SL
n =

c(n+ 1)

12n
log

`

ε
− π2c(n+ 1)`2

72nL2
− π4c(n+ 1)(241n2 − 240)`4

2160n3L4

−π
6c(n+ 1)(n4 − 2520n2 + 2520)`6

34020n5L6
+O(`8),

SNL
n =

4π2(n+ 1)`2

3nL2
− 4π4(n+ 1)(5n2 − 6)`4

45n3L4

+
4π6(n+ 1)(86n4 + 1073n2 − 1153)`6

2835n5L6
+O(`8),

SNNL
n = −16π4(n+ 1)(n2 + 11)`4

45cn3L4
+

16π6(n+ 1)(144n4 + 1495n2 − 1879)`6

4725cn5L6
+O(`8),

SNNNL
n = −512π6(n+ 1)(n2 − 4)(n2 + 47)`6

2835c2n5L6
+O(`8). (4.9)

5 Conclusion and discussion

In this paper we calculate the large central charge and short-interval expansion of the one-

interval Rényi entropy and entanglement entropy for the excited state of a 2D CFT on a

circle. Our primary goal is to compare the result with the thermal state Rényi entropy and

entanglement entropy, and see if these entanglement quantities can tell a highly exited state

from the thermal state or not. To carry out the calculation we adopt the trick of OPE to

turn the two-point function of the twist operators in the excited state of the replica CFT,
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which is the replica of the reduced density matrix for evaluating Rényi entropy, into sum

of the one point functions of the OPE blocks. After evaluating the associated one-point

function we can then obtain the Rényi entropy and entanglement entropy in the short-

interval expansion up to the sixth order for both heavy (i.e., with its conformal weight

order of the central charge) and light (i.e., with order one conformal weight) pure states.

We then compare our results with the previous results for the thermal state Rényi

entropy and entanglement entropy. We first consider the contribution to the Rényi entropy

only from the vacuum OPE block. Our result shows that unlike the thermal state case, the

excited state Rényi entropy or entanglement entropy for the heavy state receive no sub-

leading correction in the large central charge expansion. The absence of such corrections

indicates that thermality apparently fails for both the Rényi entropy and entanglement

entropy. However, in the high temperature limit, we can neglect these exponentially sup-

pressed corrections. We then find that the short-interval epansion for the excited state

entanglement entropy agrees with the thermal state expansion after identifying an effective

temperature corresponding to the heavy state. This agrees with the expectation from the

ETH or canonical typicality, as well as the earlier checks in the literatures. However, when

the Rényi entropy is considered, we find it impossible to identify such an effective temper-

ature that make the short-interval expansion of the excited state Rényi entropy agree with

the thermal state one.

Though our result is obtained straightforwardly, it is striking in the sense that we

explicitly demonstrate that the thermality of the heavy pure state fails for Rényi entropy,

while it holds for entanglement entropy. In some sense, the Rényi entropy encodes the

higher moments of the reduced density matrix, our results implies that the thermality of

heavy pure state emerges in the entanglement structure only in the average sense, i.e.,

the entanglement entropy, but not in the more refined entanglement structure, i.e., the

Rényi entropy. If our observation holds in the more general cases such as beyond the

context of CFT, then it is the caveat when one tries to formulate or apply the ETH or

canonical typicality.

Besides, we also consider the contribution to the excited state Rényi entropy and

entanglement entropy from the non-vacuum OPE blocks, which cannot be neglected if

there is no low energy gap in the CFT spectrum. In this case, it is easy to see that

the thermality of the heavy pure state fails even for the entanglement entropy. However,

there are evidences showing that the holographic CFT is gapped so that this kind of

corrections can be neglected in the large central charge limit. Finally, we also consider the

excited state created by acting on CFT’s vacuum state with the descendant operators of

the vacuum family.

To summarize, we find in this paper that the whether thermality emerges or not

depends on how refined we look into the entanglement structure of the underlying pure

state. The calculations in this paper provide some clues for further studies. In this paper

we examine the issue by the short-interval expansion of the Rényi entropy, and there may

have a rare chance that the thermality may be encoded in a highly nontrivial way in the full

Rényi entropy. In any case, our results could be a step stone to the route of uncovering the

caveats for the emergence of thermality beyond the context of ETH and canonical typicality.
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A Some details of vacuum OPE block

We list the holomorphic quasiprimary operators in vacuum family to level 6. In level 2, we

has the quasiprimary operator T , with the usual normalization αT = c
2 . In level 4, we have

A = (TT )− 3

10
∂2T, αA =

c(5c+ 22)

10
. (A.1)

In level 6, we have

B = (∂T∂T )− 4

5
(∂2TT )− 1

42
∂4T, αB =

36c(70c+ 29)

175
,

D = (T (TT ))− 9

10
(∂2TT )− 1

28
∂4T +

93

70c+ 29
B, (A.2)

αD =
3c(2c− 1)(5c+ 22)(7c+ 68)

4(70c+ 29)
.

Under a general coordinate transformation z → f(z), we have

T (z) = f ′2T (f) +
c

12
s, A(z) = f ′4A(f) +

5c+ 22

30
s

(
f ′2T (f) +

c

24
s

)
,

B(z) = f ′6B(f)− 8

5
f ′4sA(f)− 70c+ 29

1050
f ′4s∂2T (f) +

70c+ 29

420
f ′2(f ′s′ − 2f ′′s)∂T (f)

− 1

1050

(
28(5c+ 22)f ′2s2 + (70c+ 29)(f ′2s′′ − 5f ′f ′′s′ + 5f ′′2s)

)
T (f) (A.3)

− c

50400

(
744s3 + (70c+ 29)(4ss′′ − 5s′2)

)
,

D(z) = f ′6D(f) +
(2c− 1)(7c+ 68)

70c+ 29
s

(
5

4
f ′4A(f) +

5c+ 22

48
s

(
f ′2T (f) +

c

36
s

))
,

with the definition of Schwarzian derivative

s(z) =
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

. (A.4)

In the calculations we need the structure constants

CTTT = c, CTTA =
c(5c+ 22)

10
, CTTB = − 2c(70c+ 29)

35
,

CTTD = 0, CTAA =
2c(5c+ 22)

5
, CAAA =

c(5c+ 22)(5c+ 64)

25
, (A.5)

CAAB = − 4c(5c+ 22)(14c+ 73)

35
, CAAD =

6c(2c− 1)(5c+ 22)(7c+ 68)

70c+ 29
.
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For a general primary operator φ with conformal weight hφ and normalization factor αφ =

1, we have the structure constants

CφTφ = hφ, CφAφ =
hφ(5hφ + 1)

5
, CφBφ = −

2hφ(14hφ + 1)

35
,

CφDφ =
hφ[(70c+ 29)h2

φ + (42c− 57)hφ + (8c− 2)]

70c+ 29
. (A.6)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991)

2046.

[2] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888.

[3] S. Goldstein, J.L. Lebowitz, R. Tumulka and N. Zanghi, Canonical typicality, Phys. Rev.

Lett. 96 (2006) 050403 [cond-mat/0511091] [INSPIRE].

[4] S. Popescu, A.J. Short and A. Winter, Entanglement and the foundations of statistical

mechanics, Nature Phys. 2 (2006) 754 [quant-ph/0511225].

[5] A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics

from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].

[6] A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality

from classical background fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].

[7] C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic entanglement entropy

from 2D CFT: heavy states and local quenches, JHEP 02 (2015) 171 [arXiv:1410.1392]

[INSPIRE].
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