
J
H
E
P
1
1
(
2
0
1
6
)
0
5
0

Published for SISSA by Springer

Received: September 26, 2016

Accepted: November 2, 2016

Published: November 8, 2016

One loop mass renormalization of unstable particles in

superstring theory

Ashoke Sen

Harish-Chandra Research Institute,

Chhatnag Road, Jhusi, Allahabad 211019, India

Homi Bhabha National Institute, Training School Complex,

Anushakti Nagar, Mumbai 400085, India

E-mail: sen@mri.ernet.in

Abstract: Most of the massive states in superstring theory are expected to undergo mass

renormalization at one loop order. Typically these corrections should contain imaginary

parts, indicating that the states are unstable against decay into lighter particles. However

in such cases, direct computation of the renormalized mass using superstring perturbation

theory yields divergent result. Previous approaches to this problem involve various analytic

continuation techniques, or deforming the integral over the moduli space of the torus with

two punctures into the complexified moduli space near the boundary. In this paper we

use insights from string field theory to describe a different approach that gives manifestly

finite result for the mass shift satisfying unitarity relations. The procedure is applicable

to all states of (compactified) type II and heterotic string theories. We illustrate this by

computing the one loop correction to the mass of the first massive state on the leading

Regge trajectory in SO(32) heterotic string theory.

Keywords: String Field Theory, Superstrings and Heterotic Strings

ArXiv ePrint: 1607.06500

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP11(2016)050

mailto:sen@mri.ernet.in
https://arxiv.org/abs/1607.06500
http://dx.doi.org/10.1007/JHEP11(2016)050


J
H
E
P
1
1
(
2
0
1
6
)
0
5
0

Contents

1 Introduction and summary 1

2 Toy model 5

2.1 Direct evaluation 5

2.2 Schwinger parameter representation 8

3 One loop mass renormalization of an unstable state in string theory 10

4 Generalizations and justification using string field theory 16

5 Unitarity 23

A Equivalence to the iε prescription 25

B Finiteness of J1 26

1 Introduction and summary

The world-sheet formulation of superstring perturbation theory gives an elegant expression

for scattering amplitudes, expressing the amplitude at any given order in perturbation the-

ory as a single integral over the moduli space of a Riemann surface with punctures. This

expression is manifestly free from ultraviolet divergences. However superstring perturba-

tion theory shares all the usual infrared divergence problems in quantum field theory, but

unlike in the case of quantum field theories, there is no systematic way of dealing with

these divergences within the frame-work of the world-sheet formalism.

Superstring field theory provides a solution to this problem. By construction, the

Feynman rules of superstring field theory reproduce the amplitude given by the world-sheet

description when the latter gives finite result, but the existence of the underlying quantum

field theory allows us to deal with the infrared divergence problems when they arise.

In this paper we shall use the insight from superstring field theory to address a re-

lated problem that arises in the world-sheet description of superstring perturbation theory.

String theory has many massive states in its spectrum, but most of them are unstable

against decay to lighter states. Therefore one expects that when quantum corrections to

the masses are taken into account, the mass2 of an unstable particle should receive cor-

rection that contains an imaginary part (and also possibly a real part). Now while higher

loop mass renormalization requires full use of string field theory — because one needs to

subtract the one particle reducible (1PR) contributions from the two point function — one

would expect that the one loop contribution to the shift in mass2 should be given by the

on-shell two point function on the torus, and hence should be straightforward to compute
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using the usual world-sheet formalism. However when one tries to repeat this computation

for an unstable state, one finds a divergent answer [1–3].

Intuitively the reason for this divergence is as follows [1–8]. In quantum field theory,

while computing the mass renormalization of a particle that can decay into two or more

particles, one finds that there are Feynman diagrams for which one or more internal prop-

agators have negative denominator (k2 +m2) for some region of internal loop momentum

integration, and there is no way to deform the integration contours of loop momenta that

can make all denominators have positive real parts everywhere along the contour. This

means that the Schwinger parameter representation of this propagator breaks down, — if

we try to replace (k2 +m2)−1 by
∫∞

0 ds e−s(k
2+m2) then the integration over s encounters a

divergence from infinity. On the other hand, integration over the moduli space of Riemann

surfaces directly gives the result in the Schwinger parameter representation. Therefore the

issue shows up as a divergence in the integration over the moduli space of Riemann surfaces.

It is also possible to argue that a finite result would necessarily have led to a con-

tradiction. The loop correction to mass2 of an unstable particle is expected to have an

imaginary part, but straightforward world-sheet computation in string theory gives real

results for all amplitudes. Therefore the only way an imaginary part can arise is if the

naive world-sheet description gives divergent answer. In that case one might hope that by

defining the amplitude for unphysical external momenta where the result is finite and then

analytically continuing the result to on-shell external momenta, we may get an imaginary

part. Early attempts to implement this achieved only partial success [1, 2]. A systematic

method of dealing with this was suggested in [4–6] (see also [9, 10]). This was achieved

by considering a four point amplitude with external momenta chosen in appropriate range

where the integrals are well defined, then analytically continuing the result to the physical

region where we expect a pole due to the massive particle of interest, and finally finding

the shift in mass2 from the location of the pole. Alternative approaches to analytic contin-

uation, working directly with two point function, can be found in [11–13]. The imaginary

part of the shift, which is related to the decay rate, is relatively easier to compute, and

various other methods for computing this can be found in [11–22].1

One disadvantage of the analytic continuation procedure is that it has to be done

on a case by case basis, and may not provide a systematic procedure to deal with all

cases. For example not every massive state may appear as an intermediate state in the

four point amplitude of massless external states. Also at higher mass levels there will be

mixing between different states, leading to a renormalized mass2 matrix with both real and

imaginary parts, and it may not be easy to extract this matrix from the four point function

of massless states. Finally, lack of a general procedure makes it difficult to prove general

properties like unitarity that relates the imaginary part of the mass shift to the decay rate

— except by explicit computation in each case. For these reasons, it will clearly be useful to

develop a systematic procedure for computing string theory amplitudes that directly gives

a finite result instead of having to define the amplitudes via analytic continuation. This

1In a quantum field theory the imaginary part is determined by unitarity relation. On the other hand

the real part is ultraviolet divergent. This has to be removed by a counterterm and hence has to be taken

as an input parameter of the theory. In string theory both parts are finite and computable.
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will be the analog of the iε prescription in quantum field theory, — instead of defining the

amplitudes as the analytic continuations of Euclidean Green’s functions, one can write down

the expression for the Green’s functions with Lorentzian external momenta as integrals over

loop momenta, but one needs the iε prescription for regulating the poles of the propagator.

Proposals for generalizing this to string theory was given in [7, 8]. These approaches involve

deforming the integration over the moduli space of Riemann surfaces — that appear in the

expression for the loop amplitudes — into the complexified moduli space. In terms of

the Schwinger parameter representation of the propagators, this corresponds to taking the

upper limit of s integration to be i∞ instead of∞, and at the same time supplying a small

damping factor that represent the effect of replacing m2 by m2 − iε as in a conventional

quantum field theory.

In this paper we suggest a different approach to this problem by directly drawing in-

sight from string field theory. In any quantum field theory, writing down the expression for

a loop amplitude is quite straightforward if the Feynman rules are known, but typically it

suffers from ultraviolet divergence. In string field theory there are no ultraviolet divergences

since the vertices fall off exponentially for large space-like external momenta. However in

the conventional formulation of string field theory, the vertices grow exponentially for large

time-like momenta. Due to this property, while computing Feynman amplitudes by inte-

grating over internal momenta, we cannot take the integral over internal energies along the

real axis — the ends of the integration contour have to be tied to ±i∞ [23]. However in

the interior of the complex plane the contour has to be deformed appropriately away from

the imaginary axis following the algorithm described in [23]. With this prescription we get

finite results for all loop corrections except where there are physical infrared divergences

involving one or more divergent propagators — e.g. mass renormalization diagrams if we

fail to take into account the shift of mass due to quantum corrections, or tadpole diver-

gences if the original perturbative vacuum is destabilized by quantum corrections. In the

absence of such divergences, we should get finite results. This includes the one loop two

point function that is needed for computing the renormalized mass — both its real and

the imaginary parts.

One could wonder how the results in string field theory are related to those of other

approaches — e.g. analytic continuation. To this end we note that the string field theory

amplitudes, constructed using the procedure mentioned above, are automatically analytic

functions of external momenta. Therefore by the uniqueness of analytic continuation,

string field theory results must agree with those computed using analytic continuation.

However what string field theory achieves is that it expresses the result as a (contour)

integral over momenta that is manifestly finite without any need for analytic continuation.

Therefore this automatically gives the analytically continued result that we would have

gotten from the usual world-sheet approach. Another bonus of this approach is that the

amplitudes defined this way automatically satisfies the Cutkosky cutting rules [23]. While

for general amplitudes one still needs few more steps to prove unitarity from the cutting

rules by showing that the contribution to the cut diagrams from unphysical intermediate

states cancel, for diagrams involving one loop mass renormalization this can be shown

– 3 –



J
H
E
P
1
1
(
2
0
1
6
)
0
5
0

explicitly. Therefore the imaginary parts of the mass shifts computed using this approach

are automatically consistent with unitarity.2

While string field theory is essential for carrying out this computation to higher loop

order, for one loop correction to the masses one does not require the full power of string

field theory. The reason has already been mentioned earlier: one loop mass renormalization

can be computed from one loop two point function of external states that satisfy tree

level on-shell condition. No subtraction is necessary, unlike in the case of higher loop

two point functions from which the contribution from 1PR graphs have to be subtracted.

Nevertheless since this one loop two point function diverges due to the reasons mentioned

above, we need a way to deal with this divergence. The strategy we follow is to isolate

the divergent part and reinterpret this as coming from a specific Feynman diagram of

string field theory. If we try to express this as integration over Schwinger parameters, we

get back the expression that we have in the world-sheet description, and it is divergent.

But we can directly evaluate this Feynman diagram by performing integration over loop

momenta following the prescription of [23] and this yields a finite answer. The difference

between the two can be traced to the fact that the Schwinger parameter representation of

the internal propagators breaks down for certain range of momentum integration. Since

from the point of view of string field theory, the Feynman diagrams are more fundamental,

the procedure of evaluating the Feynman diagrams directly is the correct one, even when

its Schwinger parameter representation fails.

The rest of the paper is organized as follows. In section 2 we introduce a toy quantum

field theory that shares some essential properties of string theory. We compute one loop

mass renormalization of an unstable particle in this theory and show that we get a finite

answer. On the other hand if we try to evaluate the same expression by using Schwinger

parameter representation of the propagators, we get a divergent result. The divergence can

be traced to the breakdown of the Schwinger parameter representation of the propagator.

In section 3 we compute one loop mass renormalization of the lowest massive string state

of ten dimensional heterotic string theory on the leading Regge trajectory. The answer,

expressed as an integral over the moduli space of a torus with two punctures, has certain

divergences from the boundary of the moduli space. We isolate the divergent piece, and

by comparing it with the result of section 2 in the Schwinger parameter representation of

the propagator, identify the divergent piece as the contribution from a specific Feynman

diagram of string field theory. This Feynman diagram is then evaluated using direct mo-

mentum space integration, leading to finite answer. Our final result is expressed as a sum

of three terms, given in (3.12), (3.25) and (3.26), each of which is manifestly finite. We

discuss extension of this analysis to general external states in section 4 where we also give

a justification of the procedure from string field theory and show that the results for the

renormalized mass obtained this way agree for different versions of string field theory. We

2Since the approach of [7] was motivated from light-cone string field theory [24, 25], one could ask if we

can directly work with the light-cone string field theory and impose the iε prescription there. This would

make the proof of unitarity more straightforward. However light-cone superstring field theory suffers from

contact term divergences which have not yet been understood fully [26–29]. A way to circumvent this has

been suggested in [30].
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Figure 1. One loop mass renormalization diagram of a heavy state, labelled by a thick line, due

to a loop of light particles, labelled by thin lines. The dashed line corresponds to a light particle

of mass m1 carrying momentum k and the continuous thin line corresponds to a light particle of

mass m2 carrying momentum (p− k). All momenta flow from left to right.

also describe how our analysis can be easily extended to compactified string theories. In

section 5 we show that the imaginary part of the mass2 computed using our approach is

manifestly consistent with unitarity. In appendix A we show the equivalence between the

iε prescription of [7, 8] and our prescription of section 2 in the context of one loop two

point functions. In appendix B we analyze in detail the ‘stringy contribution’ to mass

renormalization given by (3.12) and show explicitly that this gives a finite contribution.

2 Toy model

Let us consider a quantum field theory in D space-time dimensions with three particles of

masses M , m1 and m2 respectively, with M > m1 + m2, in which there is a three point

vertex that couples the three particles. Our goal will be to analyze the one loop mass

renormalization diagram shown in figure 1. Inspired by string field theory, we shall assume

that the vertex contains a factor of exp[−1
2A{k

2 + m2
1} − 1

2A{(p − k)2 + m2
2}] for some

positive constant A that makes the diagram ultraviolet (UV) finite [23]. In that case the

contribution of this diagram to mass2 of the heavy particle can be expressed as

δM2 = i B

∫
dDk

(2π)D
exp[−A{k2 +m2

1}−A{(p−k)2 +m2
2}] {k2 +m2

1}−1{(p−k)2 +m2
2}−1,

(2.1)

where B is another positive constant that includes multiplicative constant contributions

to the vertices, and p is an on-shell external momentum satisfying p2 = −M2. In general

we could include factors involving polynomials in the momenta in the vertices without

affecting the UV finiteness, but we have not included them to keep the analysis simple.

Later we shall consider the effect of including such interactions.

2.1 Direct evaluation

Using k2 = −(k0)2 + ~k2 where ~k denotes (D − 1)-dimensional spatial momenta, we see

that the exponential factor falls off exponentially as |~k| → ∞ but grows exponentially as
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Figure 2. The integrations contours in the k0 plane.

k0 → ±∞. This shows that we cannot take the k0 integral to run along the real axis. This

issue was discussed in detail in [23] where we proposed that the ends of the k0 integral

must always be at ±i∞ to ensure convergence of the integral, but the integration contour

may take complicated form in the interior of the complex k0 plane to avoid poles of the

propagator. This is done as follows: begin with imaginary p0 for which the k0 contour

is taken along the imaginary axis and then deform p0 to the physical real value staying

in the first quadrant of the complex p0 plane, simultaneously deforming the k0 contour

appropriately to always stay away from the poles. In particular (2.1) was analyzed in

detail in [23] using this prescription. Here we shall review some of the important details of

that analysis.

The integrand of (2.1) has poles in the k0 plane at

Q1 ≡
√
~k2 +m2

1, Q2 ≡ −
√
~k2 +m2

1,

Q3 ≡ p0 +

√
(~p− ~k)2 +m2

2, Q4 ≡ p0 −
√

(~p− ~k)2 +m2
2 . (2.2)

For imaginary p0, and k0 contour running along the imaginary axis from −i∞ to i∞, the

poles Q1 and Q3 are to the right of the integration contour whereas the poles Q2 and Q4

are to the left of the integration contour. When p0 is continued to the real axis along the

first quadrant, the contour needs to be deformed appropriately so that Q1 and Q3 continue

to lie on the right and Q2 and Q4 continue to lie on the left. There are different possible

configurations depending on the value of ~k.

As long as p0 <

√
~k2 +m2

1 +

√
(~p− ~k)2 +m2

2, Q4 lies to the left of Q1 and the con-

tour can be taken as shown in figure 2(a). On the other hand for p0 >

√
~k2 +m2

1 +√
(~p− ~k)2 +m2

2, Q4 is to the right of Q1 and the deformed contour takes the form shown

in figure 2(b). In drawing this we have used the fact that when p0 lies in the first quadrant,

Q4 remains above Q1 as it passes Q1 and that during this process the contour needs to be

deformed continuously without passing through a pole. At the boundary between these two

regions Q4 approaches Q1. In this case we have to use a limiting procedure to determine

the contour, and the correct procedure will be to take p0 in the first quadrant, evaluate the
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integral and then take the limit of real p0. This in particular means that Q4 approaches

Q1 from above in this limit.

In order to evaluate the integral, in both cases we deform the k0 contour to be a sum

of a contour along the imaginary axis and an anti-clockwise contour around the pole at

Q4. We shall choose, for convenience,

p = (M,~0) . (2.3)

In this case the contribution from the first contour, after relabeling k0 as i u, takes the form

I1 = −B
∫

dD−1k

(2π)D−1

∫ ∞
−∞

du

2π
exp

[
−A

{
u2 + ~k2 +m2

1

}
−A

{
(u+ iM)2 + ~k2 +m2

2

}]
(
u2 + ~k2 +m2

1

)−1 {
(u+ iM)2 + ~k2 +m2

2

}−1
. (2.4)

On the other hand the contribution from the residue at Q4 gives

I2 = −B
∫

dD−1k

(2π)D−1
exp

[
A

(
M −

√
~k2 +m2

2

)2

−A(~k2 +m2
1)

]
Θ

(
M −

√
~k2 +m2

2

)
(

2

√
~k2 +m2

2

)−1{
M +

√
~k2 +m2

1 −
√
~k2 +m2

2

}−1

{√
~k2 +m2

1 +

√
~k2 +m2

2 −M − iε
}−1

. (2.5)

In this expression Θ denotes the Heaviside function and reflects that this contribution is

present only when Q4 is to the right of the imaginary axis. The iε in the arguments of the

last term represents that we need to take the limit p0 → M from the first quadrant, i.e.

set p0 to M + iε and then take the ε → 0+ limit. Defining v = |~k| and doing the angular

integration, I1 and I2 may be rewritten as

I1 = −B (2π)−DΩD−2

∫ ∞
0

dv

∫ ∞
−∞

du vD−2 exp

[
−A

{
u2 + v2 +m2

1

}
−A

{
(u+ iM)2 + v2 +m2

2

} ] (
u2 + v2 +m2

1

)−1 {
(u+ iM)2 + v2 +m2

2

}−1
, (2.6)

and

I2 = −B (2π)−(D−1)ΩD−2

∫ √M2−m2
2

0
dv vD−2 exp

[
A

(
M −

√
v2 +m2

2

)2

−A(v2 +m2
1)

]
(

2
√
v2 +m2

2

)−1{
M +

√
v2 +m2

1 −
√
v2 +m2

2

}−1

{√
v2 +m2

1 +
√
v2 +m2

2 −M − iε
}−1

, (2.7)

where ΩD−2 is the volume of the unit (D − 2) sphere. Due to the exponential suppression

factors and/or limits of integration, neither I1 nor I2 has any divergence from the large u
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or large v region. Even though as ε → 0 the integrand of I2 has a pole on the real v axis

from the last term, the contour is not pinched there. Hence we can define the integral by

deforming the v integration contour below the real axis, getting a finite result. Therefore

both I1 and I2 are manifestly finite (and in particular can be evaluated using numerical

integration).

The analysis given above can be easily generalized to the case where the integrand

in (2.1) is multiplied by an additional polynomial in momenta coming from the vertices

and/or the propagators. Using rotational invariance we can always replace this by a poly-

nomial Q in k0 and ~k2. The result will still be given by the sum of two terms like (2.6)

and (2.7). The integrand in (2.6) will now be multiplied by the polynomial Q with k0

replaced by i u and ~k2 replaced by v2. On the other hand the integrand in (2.7) will be

multiplied by the polynomial Q with k0 replaced by M −
√
v2 +m2

2 and ~k2 replaced by v2.

2.2 Schwinger parameter representation

We shall now try to evaluate (2.1) by representing the propagators as integrals over

Schwinger parameters. For this we write

(k2 +m2
1)−1 =

∫ ∞
0

ds1 exp
[
−s1(k2 +m2

1)
]
,

{(p− k)2 +m2
2}−1 =

∫ ∞
0

ds2 exp
[
−s2{(p− k)2 +m2

2}
]
, (2.8)

and substitute into (2.1). This give

δM2 = iB

∫ ∞
0
ds1

∫ ∞
0
ds2

∫
dDk

(2π)D
exp

[
−(A+s1){k2+m2

1} − (A+ s2){(p− k)2 +m2
2}
]
.

(2.9)

After performing integral over k, pretending that the k0 integral runs along the imaginary

axis and is convergent, and defining new variables

t1 = s1 +A, t2 = s2 +A , (2.10)

we get

δM2 = −B (4π)−D/2
∫ ∞
A

dt1

∫ ∞
A

dt2 (t1 + t2)−D/2 exp

[
t1t2
t1 + t2

M2 − (t1m
2
1 + t2m

2
2)

]
.

(2.11)

This expression has no UV divergence, i.e. divergence from the small ti region, since the

lower limits of ti integrals are shifted to positive values A. However it is easy to see that

this integral diverges from the region t1, t2 →∞ if

M > m1 +m2 . (2.12)

This divergence can be traced to the fact that for M > m1 + m2, it is not possible to

choose the k0 integration contour in a way that keeps the real parts of both k2 + m2
1 and

(p − k)2 + m2
2 positive. As a result the Schwinger parameter representation (2.8) breaks

– 8 –



J
H
E
P
1
1
(
2
0
1
6
)
0
5
0

down. However note that we can get finite results by taking the upper limits of the ti
integrals to be i∞ instead of ∞ [7, 8]. We have shown in appendix A that this gives

the same result as what we would obtain by following the prescription of section 2.1 for

evaluating (2.1).

Since string world-sheet description of the S-matrix elements naturally gives the am-

plitudes in the Schwinger parameter representation, we shall see that the world-sheet de-

scription of one loop mass renormalization in string theory encounters similar divergences.

Our strategy will be to use the insight gain from our analysis above to convert this to a

momentum space integral of the form given in (2.1) and extract finite answers. For this we

shall need a generalization of the analysis given above, where the integrand in (2.1) has an

additional multiplicative factor given by some polynomial in the momenta {kµ}. We shall

first discuss a few examples. The first example we consider is when the integrand in (2.1)

has an additional factor of (k0)2. In this case it is easy to see that the integrand in (2.11)

will be multiplied by an additional factor of

− 1

2(t1 + t2)
+

t22
(t1 + t2)2

M2 . (2.13)

Next we consider the case where the integrand in (2.1) has a multiplicative factor of k0. In

this case the integrand in (2.11) is multiplied by an additional factor of

t2
t1 + t2

M . (2.14)

If we consider the case where the integrand in (2.1) has an additional multiplicative factor

of kikj with 1 ≤ i, j ≤ (D − 1), then we get an additional multiplicative factor of

δij
1

2(t1 + t2)
(2.15)

in (2.11). Finally if the integrand has an additional factor of kikjkmkn then we get an

additional multiplicative factor of

1

4(t1 + t2)2
(δijδmn + δimδjn + δinδjm) . (2.16)

It is clear that given any polynomial in {kµ} inserted into (2.9), we can find the cor-

responding insertion in the integrand of the Schwinger parameter representation (2.11) by

formally carrying out the integration over momenta using the rules of gaussian integration,

pretending that the integral is convergent. An interesting question is whether the reverse

is true: given any polynomial P in 1/(t1 + t2) and t2/(t1 + t2), can we find a function Q of

momenta such that the following holds?

i

∫
dDk

(2π)D
exp

[
−t1{k2 +m2

1} − t2{(p− k)2 +m2
2}
]
Q(k)

= −(4π)−D/2 exp

[
t1t2
t1 + t2

M2 − (t1m
2
1 + t2m

2
2)

]
P

(
1

t1 + t2
,

t2
t1 + t2

)
. (2.17)
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It is clear that due to rotational invariance of the problem Q cannot be unique — e.g. (k1)2,

(k2)2 and ~k2/(D − 1) will all generate the same expression after momentum integration.

However they will also give the same result if we insert Q(k) into the integrand in (2.1) and

carry out the momentum integration directly using the procedure described in section 2.1.

Therefore we can easily resolve this ambiguity in the form of Q by restricting Q to be a

polynomial in k0 and ~k2. In that case we can construct a unique Q from a given P as follows.

We can start from the terms in P with the highest power of t2/(t1 + t2), and among these

the term with highest power of 1/(t1+t2). If this has the form {t2/(t1+t2)}n{1/(t1+t2)}m,

then we need a term Q1 in Q proportional to (k0)n(~k2)m to generate this. Let P1 be the

polynomial in 1/(t1 + t2) and t2/(t1 + t2) obtained by replacing Q,P by Q1, P1 in (2.17).

Besides containing the term proportional to {t2/(t1 + t2)}n{1/(t1 + t2)}m appearing in P ,

P1 will generically also contain terms with lower powers of t2/(t1 + t2). We now repeat the

analysis for P − P1, by identifying the terms in P − P1 with highest power of t2/(t1 + t2),

and among them the term with highest power of 1/(t1 + t2). Proceeding this way till we

have exhausted all the terms in P , we can find the polynomial Q = Q1 + Q2 + · · · that,

when inserted into the left hand side of (2.17), will produce the desired P on the right

hand side.

The effect of inserting P in the integrand of (2.11) can now be represented by insertion

of Q(k) in the integrand of (2.9) and hence of (2.1). Since Q is a polynomial in {kµ}, there

will be no difficulty in carrying out the momentum integration in (2.1) directly following

the procedure described in section 2.1 to get a finite result. This way any integral of

the form (2.11), with arbitrary polynomial of 1/(t1 + t2) and t2/(t1 + t2) inserted in the

integrand, can be interpreted as a finite momentum space integral.

3 One loop mass renormalization of an unstable state in string theory

We shall now use the insight gained from the analysis of section 2 to compute one loop

mass renormalization in string theory. In this section we shall consider a specific example,

leaving the general analysis to section 4. We consider the lowest massive state on the

leading Regge trajectory in the SO(32) heterotic string theory.3 The one loop correction

to the mass2 of this state can be computed from the on-shell two point function of the

corresponding vertex operators on the torus. If we define

X± = (X1 ± iX2), ψ± = (ψ1 ± iψ2) , (3.1)

where Xµ are the world-sheet scalars and ψµ are the right-moving world-sheet fermions,

then the −1 picture unintegrated vertex operators of the states whose two point function

on the torus we need to compute are:

c̄ c e−φψ+∂X+(∂̄X+)2eik
0X0

and c̄ c e−φψ−∂X−(∂̄X−)2e−ik
0X0

, (3.2)

3The advantage of working with states on the leading Regge trajectory is that they do not mix with any

other state at the same mass level. This simplifies our analysis, but the method that we shall describe is

valid for arbitrary states.
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up to overall normalization constants. Here φ is the world-sheet scalar that originates

from bosonizing the β-γ ghost system, and c, c̄ are the usual ghost fields associated with

diffeomorphism invariance on the world-sheet. Now it was argued in [31] that all the

states at the first massive level which differ from each other by different right-moving

excitations are related by space-time supersymmetry and hence will have the same mass

renormalization. Using this we can instead consider the vertex operators

c̄ c e−φψ1ψ2ψ3(∂̄X+)2eik
0X0

and c̄ c e−φψ1ψ2ψ3(∂̄X−)2e−ik
0X0

. (3.3)

The reason for doing this is that with this choice the right-moving parts of the vertex

operators become identical to those used in [31] and we can make use of the results of [31].4

In this case the only difference between the vertex operators used in [31] and those used

here is that the left-moving part of the vertex operators used in [31] were S̄α — the spin

fields of the left-moving world-sheet fermions responsible for the SO(32) gauge group —

instead of (∂̄X±)2. Therefore if we want to compute the two point correlation function

of the vertex operators (3.3) inserted at 0 and z on a torus with modular parameter τ ,

all we need to do is to replace, in the result of [31], the normalized two point function

〈S̄α(z̄)S̄β(0)〉 by the normalized two point function 〈(∂̄X+(z̄))2(∂̄X−(0))2〉. Normalizing

both correlators so that as z̄ → 0 they go as 1/z̄4, we have

〈S̄α(z̄)S̄β(0)〉 = δαβ

(∑
ν

ϑν(z/2)
16

)(∑
ν

ϑν(0)
16

)−1 (
ϑ′1(0)

)4 (
ϑ1(z)

)−4
, (3.4)

and

〈(∂̄X+(z̄))2(∂̄X−(0))2〉 =

(ϑ′1(z)

ϑ1(z)

)2

− ϑ′′1(z)

ϑ1(z)
− π

τ2

2

, (3.5)

where ϑν for 1 ≤ ν ≤ 4 denotes Jacobi theta function of spin structure ν, with ϑ1 being

the Jacobi theta function with odd spin structure, and τ1, τ2, z1, z2 are defined via

τ = τ1 + iτ2, z = z1 + iz2 . (3.6)

Therefore, to compute δM2 we have to multiply the integrand obtained in [31] by the ratio

of (3.5) and (3.4). This gives, from eq. (4.16), (4.17) of [31]:

δM2 = − 1

32π
M2 g2

∫
d2τ

∫
d2z F (z, z̄, τ, τ̄) ,

F (z, z̄, τ, τ̄) ≡

{∑
ν

ϑν(0)16

}
(η(τ))−18(η(τ))−6(ϑ′1(0))−4

(
ϑ1(z)ϑ1(z)

)2

(ϑ′1(z)

ϑ1(z)

)2

− ϑ′′1(z)

ϑ1(z)
− π

τ2

2

exp[−4π z2
2/τ2] (τ2)−5 , (3.7)

4In [31] we converted both vertex operators to zero picture vertex operators for carrying out the com-

putation. This does not satisfy the correct factorization condition when two vertex operators approach

each other, and in some cases, can give erroneous results [32, 33]. However for flat space-time background,

including toroidal compactification, the difference between the correct result and the one obtained using

zero picture vertex operators can be computed using the analysis given in [33] and can be shown to vanish.
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where g is the string coupling constant, normalized as in [31]. The integration over τ

runs over the fundamental region and that over z runs over the whole torus. The sum

over ν in (3.7) comes from the sum over spin structures in the left-moving sector of the

world-sheet — the sum over spin structures in the right-moving sector have already been

performed [31] in arriving at (3.7). Analogous expression for arbitrary state on the leading

Regge trajectory in type II string theory can be found in [1, 13].

We shall now try to analyze possible divergences in this integral. It is easy to see that

the integral has no divergence from the z → 0 region, and is in fact finite for all finite

values of τ and z. Since z1 and τ1 integrals are restricted to the range (0,1) and the z2

integral is restricted to the range 0 ≤ z2 < τ2, possible divergences come from the region

of large τ2 and possibly large z2. In particular we can remove the τ2 < 1 region from our

consideration, since this is a finite region with bounded integrand. For τ2 ≥ 1 the τ1 and

z1 integrals run over the entire range between 0 and 1. While evaluating these integrals

we need to first integrate over z1 and τ1 for fixed z2 and τ2, and then integrate over z2 and

τ2. A justification for this from string field theory will be given in section 4. Therefore

if we expand the integrand in this region in powers of e2πiτ , e−2πiτ̄ , e2πiz and e−2πiz̄, all

terms with non-zero powers of e2πiτ1 or e2πiz1 will integrate to zero, and only the τ1 and z1

independent terms will survive.

We shall first consider the large τ2 but finite z2 region. For this we define finite z2

region to be the region z2 < Λ for some fixed positive number Λ ≤ τ2. In this region

F (z, z̄, τ, τ̄) has the form

F (z, z̄, τ, τ̄) = exp[−4πz2
2/τ2](τ2)−5

[
2π−4e2πiτ̄ | sin(πz)|4

(
π2 cot2(πz̄)+π2− π

τ2

)2

+O(1)

]
,

(3.8)

where the O(1) term is finite for any finite z, τ and approaches a fixed finite function of z

for τ2 → ∞ and finite z.5 Therefore for z2 < Λ, the O(1) term inside the square bracket

can be bounded from above by a positive number ∆, and after integration over z and τ

restricted to the region z2 < Λ ≤ τ2, τ2 ≥ 1, its contribution to
∫
d2τd2z F will be bounded

from above by

Λ ∆

∫ ∞
1

dτ2 τ
−5
2 = Λ ∆/4 . (3.9)

On the other hand the term proportional to e2πiτ̄ inside the square bracket in (3.8) gives

vanishing contribution after the τ1 integration. This shows that the integral does not

receive any divergent contribution from the z2 < Λ and large τ2 region.

Next we examine the region of integration where both τ2 and z2 are large. Note that

due to the reflection symmetry z → τ − z of the integrand, there is also no divergence

from the region where τ2 and z2 are large with τ2 − z2 finite; so we focus on the region

where z2 and τ2 − z2 are both large. Expanding the integrand in powers of e2πiτ , e2πiz

5For z = 0 the O(1) term has a phase ambiguity since both the function F and the first term inside the

square bracket in (3.8) is proportional to (z/z̄)2 for small z. But the integral of this term over any finite

neighborhood of z = 0 is unambiguous and finite for all τ inside the fundamental domain, as well as in the

τ → i∞ limit. The analogous expression in type II string theory will not have any such phase ambiguity.
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and their complex conjugates, and throwing away all terms which have non-zero powers

of e2πiz1 and/or e2πiτ1 since they vanish after integration over z1 and τ1, we find that the

part of F (z, z̄) that can give divergent contribution to (3.7) takes the form

2 (2π)−4

(
32π4 − 32

π3

τ2
+ 512

π2

τ2
2

)
exp[4πz2 − 4πz2

2/τ2] τ−5
2 . (3.10)

Based on the above understanding of the possible sources of divergence, we shall now

give a systematic procedure for isolating and dealing with the potentially divergent part.

Using (3.7) we can write

δM2 = J1 + J2 , (3.11)

where

J1 = − 1

32π
M2 g2

∫
d2τ

∫
d2z

[
F (z, z̄, τ, τ̄) (3.12)

−Θ(τ2−z2−Λ)Θ(z2−Λ)2(2π)−4

(
32π4 − 32

π3

τ2
+ 512

π2

τ2
2

)
exp[4πz2 − 4πz2

2/τ2]τ−5
2

]
,

and

J2 = − 1

32π
M2g2

∫
d2τ

∫
d2z2(2π)−4

(
32π4 − 32

π3

τ2
+ 512

π2

τ2
2

)
exp[4πz2 − 4πz2

2/τ2]τ−5
2

Θ(τ2 − z2 − Λ) Θ(z2 − Λ) , (3.13)

where Λ is an arbitrary positive constant larger than 1, and Θ denotes Heaviside step

function.

First let us analyze J1. For this it will be convenient to define the variable

w = τ − z = w1 + iw2 , (3.14)

and divide the integration region into four parts. The region z2 < Λ, w2 < Λ has finite

size, and the integrand F is bounded. Hence there is no divergence from this region. In

the region z2 < Λ, w2 ≥ Λ the integrand is F and by our previous argument that there

is no divergence from the finite z2, large τ2 region, this integral is also finite. The region

z2 ≥ Λ, w2 < Λ is related to the one just described by the z ↔ w, or equivalently z → τ−z
symmetry, and gives finite result. This leaves us with the region z2 ≥ Λ, w2 ≥ Λ. In

this region the term proportional to the Heaviside functions in (3.12) subtracts the leading

divergent piece. A careful analysis (see appendix B) shows that after throwing away all

terms carrying non-zero powers of e2πiz1 and e2πiw1 , we get finite result for J1 from the

z2 ≥ Λ, w2 ≥ Λ region. Therefore there are no divergences in J1 from any part of the

region of integration.

Next we turn to the analysis of J2 which only receives contribution from the z2 ≥ Λ,

w2 ≥ Λ region. We can bring J2 to a more recognizable form by performing integrations

over z1 and τ1 and defining the variables

t1 = π z2, t2 = πw2 = π(τ2 − z2) . (3.15)
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In terms of these variables J2 takes the form

J2 = −2−3π2M2g2

∫ ∞
πΛ
dt1

∫ ∞
πΛ
dt2(t1 + t2)−5 exp

[
4
t1t2
t1+t2

]{
1− 1

(t1+t2)
+ 16

1

(t1+t2)2

}
.

(3.16)

The integral has apparent divergence from the large t1, t2 region. However we shall now

try to interpret it as a finite momentum space integral by comparing this with (2.11) for

D = 10. Comparing the overall normalization and the argument of the exponential we get6

B = (2π)7M2g2, A = πΛ, M = 2, m1 = 0, m2 = 0 . (3.17)

Matching the rest of the integrand in (3.16) with what appears in (2.11) for D = 10, we

see that we have an extra insertion of a factor of(
1− 1

(t1 + t2)
+ 16

1

(t1 + t2)2

)
. (3.18)

Using (2.15), (2.16) this can be identified as the effect of inserting a factor of

(1− 2 (k1)2 + 64 (k1)2(k2)2) . (3.19)

in the integrand in the momentum space.7 Combining this with (2.1), we can express J2

as a momentum space integral

J2 = i (2π)7M2g2

∫
d10k

(2π)10
exp[−πΛk2 − πΛ(p− k)2] (k2)−1{(p− k)2}−1

{1− 2 (k1)2 + 64 (k1)2(k2)2} . (3.20)

This of course gives a finite contribution and can be evaluated using the method described

in section 2.1.

Therefore we see that J2 can be identified as the contribution from the Feynman

diagram of the form shown in figure 1 with the parameters given in (3.17), and extra

momentum dependent insertion in the integrand given in (3.19). In the α′ = 1 unit

that we have been working in, M = 2 is the correct mass of the external state. The

result m1 = m2 = 0 in (3.17) indicates that for this state the only source of divergence

comes from the graphs where the intermediate states are massless. J1 can be regarded

as the contribution from the Feynman diagrams of figure 1 with other massive string

states propagating in the loop and from other Feynman diagrams, including the elementary

two point vertex. Note the dependence of J1 and J2 on the arbitrary parameter Λ; this

represents the freedom of changing the interaction vertices of string field theory by ‘adding

6The peculiar factor of (2π)7 in the expression for B can be traced to the fact that the heterotic string

coupling gH is related to the coupling g used here by the relation gH = (2π)7/2g [31].
7Note that knowing the integrand in the Schwinger parameter representation does not fix the form in

momentum space completely, e.g. the multiplicative factor could also have been (1−(k2)2+64(k3)2(k4)2), or

averages of various factors of this form. If we had started from string field theory, then Feynman diagrams

would lead to a specific form. However for evaluation of the integral the detailed form is not necessary since

due to rotation symmetry all of them lead to the same value of the integral.
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stubs’, and can be compensated for by a redefinition of the string fields [34]. We shall show

later that J1 + J2 is independent of Λ.

Manipulating (3.20) as in section 2.1 with m1 = m2 = 0, we can express this as

J2 = I1 + I2 , (3.21)

where

I1 = −(2π)7M2g2

∫
d9k

(2π)9

∫ ∞
−∞

du

2π
exp

[
− πΛ

{
u2 + ~k2

}
− πΛ

{
(u+ iM)2 + ~k2

}]
× {1− 2 (k1)2 + 64 (k1)2(k2)2}

(
u2 + ~k2

)−1 {
(u+ iM)2 + ~k2

}−1
, (3.22)

and

I2 = −(2π)7M2g2

∫
d9k

(2π)9
exp

[
πΛ
(
M − |~k|

)2
− πΛ~k2

]
Θ
(
M − |~k|

)
× {1− 2 (k1)2 + 64 (k1)2(k2)2}

(
2M |~k|

)−1 {
2|~k| −M − iε

}−1
. (3.23)

We can simplify both expressions by noting that due to rotational invariance the insertions

of kikj and kikjkmkn must give contributions proportional to

δij and δijδmn + δimδjn + δinδjm , (3.24)

respectively. This allows us to replace the insertion of (k1)2 by ~k2/9 and (k1)2(k2)2 by

(~k2)2/99. Defining v = |~k| we can write

I1 = −(2π)−3M2g2 Ω8

∫ ∞
0

dv

∫ ∞
−∞

du v8 exp
[
−πΛ

{
u2 + v2

}
− πΛ

{
(u+ iM)2 + v2

}]
(

1− 2

9
v2 +

64

99
v4

) (
u2 + v2

)−1 {
(u+ iM)2 + v2

}−1
. (3.25)

On the other hand I2 takes the form:

I2 = −(2π)−2M2g2 Ω8

∫ M

0
dv v8 exp

[
πΛ (M − v)2 − πΛ v2

]
(

1− 2

9
v2 +

64

99
v4

)
(2Mv)−1 {2v −M − iε}−1 . (3.26)

I1 is manifestly finite. I2 is also manifestly finite if we deform the integration contour to

avoid the pole at v = (M + iε)/2 by taking it to lie below the real axis. This gives a

completely finite result for δM2, given by the sum of J1, I1 and I2.

It is easy to see that I1 is real. We can also see the reality of J1 given in (3.12) by

observing that

(F (z, z̄, τ, τ̄))∗ = F (−z̄,−z,−τ̄ ,−τ) , (3.27)

and that the integration domain and the integration measure are invariant under (z ↔
−z̄, τ ↔ −τ̄). Therefore the imaginary part of the amplitude comes only from I2. This can
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be isolated by replacing the last factor in (3.26) by a sum of the principal value and a delta

function and noting that the imaginary part comes from the delta function. This gives

Im
(
δM2

)
= − 1

4π
M2g2Ω8

∫ M

0
dv v8 exp

[
πΛ (M − v)2 − πΛ v2

]
(

1− 2

9
v2 +

64

99
v4

)
(2Mv)−1 δ(2v −M)

= − 1

8π
Ω8 g

2

(
M

2

)8 (
1− 1

18
M2 +

4

99
M4

)
= − 47

264π
Ω8 g

2 , (3.28)

where in the last step we have used M = 2. In section 5 we shall argue that this result is

consistent with unitarity.

We shall now show that although each of the quantities J1, I1 and I2 depends on the

arbitrary parameter Λ, their sum does not depend on Λ. For this, note that from (3.12)

we get

d

dΛ
J1 = − 1

16π
M2 g2

∫
d2τ

∫
d2z 2 (2π)−4

(
32π4 − 32

π3

τ2
+ 512

π2

τ2
2

)
exp[4πz2 − 4πz2

2/τ2] τ−5
2 Θ(τ2 − z2 − Λ)δ(z2 − Λ) ,

= −2−7π−5M2g2

∫ ∞
2Λ

dτ2 exp[4πΛ−4πΛ2/τ2]τ−5
2

(
32π4−32

π3

τ2
+512

π2

τ2
2

)
, (3.29)

where in the first step we have used the z → τ − z symmetry to combine two terms into a

single term. On the other hand from (3.20), (3.21) we get

d

dΛ
(I1 +I2) = −i 28 π8M2 g2

∫
d10k

(2π)10
exp[−πΛk2−πΛ(p−k)2] (k2)−1(1−2 k2

1 +64 k2
1k

2
2)

(3.30)

where again we have exploited the k → (p − k) symmetry to combine two terms into

a single term. Once the pole associated with {(p − k)2}−1 has been removed, there is

no obstruction to taking the k0 integration contour to lie along the imaginary axis, and

representing (k2)−1 as
∫∞

0 dse−sk
2
. Carrying out the integration over kµ using the rules of

gaussian integration, and defining τ2 = (s+ 2πΛ)/π, we get

d

dΛ
(I1 + I2) = 2−2π−1M2g2

∫ ∞
2Λ

dτ2 exp[4πΛ− 4πΛ2/τ2]τ−5
2

(
1− 1

πτ2
+

16

π2τ2
2

)
. (3.31)

Using (3.29) and (3.31) we get

d

dΛ
(J1 + I1 + I2) = 0 . (3.32)

4 Generalizations and justification using string field theory

The procedure described in the previous section can be used to compute the renormalized

mass of any massive state in heterotic or type II string theory. For general physical states,

at one loop order one has to consider the possibility of mixing with other physical states
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at the same mass level, but not with pure gauge or unphysical states [35], or with states

at different mass level. If we denote by δM2 the one loop two point function of physical

states — typically a matrix with both real and imaginary parts — then the one loop

propagator will be proportional to (k2 + M2 + δM2)−1, and its poles will be at places

where det(k2 +M2 + δM2) vanishes.

The general strategy for computing the matrix δM2 will be as follows. The two point

function of general on-shell external states of mass M can be brought to the form

δM2 =

∫
d2τ d2z F (4.1)

where F is some function of z, z̄, τ, τ̄ describing the two point function of the corresponding

vertex operators on the torus. Let us define z1, z2, w1, w2 via

z = z1 + iz2, w = τ − z ≡ w1 + iw2 . (4.2)

The potential divergence in (4.1) comes from the region of large z2 and w2. If we denote

by F0 the part of F that can give divergent contribution, then F0 has the general form

F0 = τ−5
2 exp[πM2z2w2/τ2]

∑
m,n

e2πimz1+2πinw1e2πz2+2πw2 Am,n(z2, w2) , (4.3)

where the sum over m,n runs over a finite set of integers, and Am,n is a function of

z2, w2 that involves a finite sum of products of non-negative powers of e−2πz2 , e−2πw2 , and

polynomial of 1/τ2 and z2/τ2. In defining F0 we shall include in e2πz2+2πw2Am,n a term

proportional to e−2πpz2−2πqw2 if and only if either p or q is negative, or
√

2p+
√

2q < M , since

these are the terms that can cause potential divergence in (4.1) from the large z2 and large

w2 region. In (4.3) the τ−5
2 exp[πw2z2M

2/τ2] factor comes from the non-holomorphically

factorized part of the correlation function of e±ik.X factors in the vertex operators —

expressed in z → τ − z invariant form. The factors of e2πimz1+2πinw1 , e2πz2+2πw2 , and the

powers of e−2πz2 , e−2πw2 hidden in the definition of Am,n come from the expansion of the

holomorphically factorized pieces in the correlation function for large z2 and w2. Finally

the polynomials of 1/τ2 and z2/τ2 in the expansion of Am,n come from the derivatives of

the term proportional to (z2 − w2)2/τ2 in the Green’s function 〈Xµ(z, z̄)Xν(w, w̄)〉. The

presence of the explicit factor of e2πz2 and e2πw2 is a reflection of the presence of the

tachyon in the left-moving sector before level matching.8 However a term proportional to

e2πz2 (resp. e2πw2) in the expression for F0 appears only when accompanied by a factor of

e2πiz1 (resp. e2πiw1), i.e. Ap,q will have its expansion beginning with the power of e−2πz2

(resp. e−2πw2) except for p = 1 (resp. q = 1). Therefore for τ2 ≥ 1, the contribution

from terms proportional to e2πz2 (resp. e2πw2) disappears after integration over z1 (resp.

w1). More generally, for τ2 ≥ 1 integration over z1 and w1 will make the integral (4.3)

vanish unless m = n = 0, but we shall continue to display them for reasons that will

become clear later.

Using (4.1), (4.3) we can write

δM2 = J1 + J2 , (4.4)

8These factors will be absent in type II string theories.
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where

J1 =

∫
d2w d2z [F − F0 Θ(w2 − Λ) Θ(z2 − Λ)] , (4.5)

J2 =

∫
d2w d2z F0(z1, z2, w1, w2) Θ(w2 − Λ) Θ(z2 − Λ)

=

∫
d2w d2zΘ(w2 − Λ)Θ(z2 − Λ) τ−5

2 eπM
2z2w2/τ2e2πz2+2πw2

×
∑
m,n

e2πimz1+2πinw1 Am,n(z2, w2) , (4.6)

and Λ is an arbitrary constant, which we shall take to be larger than 1. J1 can be shown

to be finite following the strategy used in appendix B. Our strategy for evaluation of J2

will be to drop all terms with non zero m,n since they vanish by integration over z1 and

w1, and for the m = n = 0 term, expand e2πz2+2πw2A0,0 in a power series

e2πz2+2πw2A0,0(z2, w2) =
∑
p,q≥0

2
√
p+2
√
q<M

e−4πpz2−4πqw2Pp,q(z2, w2) , (4.7)

where Pp,q is a polynomial in 1/(z2 +w2) and z2/(z2 +w2). Note that once we have focussed

on terms independent of z1 and w1, the series expansion is in powers of e2πi(z−z̄) = e−4πz2

and e2πi(w−w̄) = e−4πw2 . By making the substitution9

π z2 = t1, π w2 = t2, πτ2 = t1 + t2 , (4.8)

and using (4.7), we can now express J2 as

J2 = π3

∫ ∞
πΛ

dt1

∫ ∞
πΛ

dt2 (t1 + t2)−5
∑
p,q≥0

2
√
p+2
√
q<M

exp
[
M2t1t2/(t1 + t2)− 4 p t1 − 4 q t2

]
Pp,q .

(4.9)

This integral diverges for t1, t2 → ∞, but we can replace this by a momentum space

integral by comparing with the results of section 2.2. Once we have made the replacement,

the integration over k0 has to be interpreted as a contour integral following the procedure

described in section 2.1, while integration over ~k can be regarded as ordinary integrals

running along the real axes. This gives finite result due to exponential suppression factor

in the integrand for large space-like momenta.

Note that this method is applicable for all massive states, including the ones that do

not appear as intermediate states in the scattering of massless external states, e.g. massive

states in SO(32) heterotic string theory carrying SO(32) spinor representation. For such

states the method of [4, 5] based on factorization of four point function of massless states is

not directly applicable. Furthermore, since this method allows us to directly compute the

one loop two point function of two arbitrary physical states at the same mass level, we do

9The scale factor π is fixed as follows. The Schwinger parameters t1 and t2 introduced in section 2.2

appears in the exponent multiplied by a factor of k2 + m2. On the other hand z2 and w2 appear in the

exponent multiplied by a factor of 2π(L0 + L̄0) = π(k2 +m2).

– 18 –



J
H
E
P
1
1
(
2
0
1
6
)
0
5
0

not have to make the effort of disentangling the contributions from different intermediate

states to the four point function.

There is however a possible subtlety with this procedure arising out of the following

consideration. If we compute the one loop two point amplitude in string field theory, then,

for sufficiently large Λ, the contribution J2 comes from the sum of Feynman diagrams of

the type shown in figure 1 with different states propagating in the loop. If we represent

the Siegel gauge propagator as

b0 b̄0 (L0 + L̄0)−1δL0,L̄0
= 2π b0 b̄0

∫ ∞
0

dξ2

∫ 1

0
dξ1 e

−2πξ2(L0+L̄0)e2πiξ1(L0−L̄0) , (4.10)

then for the two internal propagators of figure 1 we have two complex variables ξ and ζ —

the analog of the variable ξ1 +iξ2 in (4.10). Now if ξ and ζ could be identified as the moduli

parameters z and w, then replacing the right hand side of (4.10) by the left hand side is

equivalent to the prescription for doing the integration in the way we have suggested —

i.e. first integrate over z1 and w1 at fixed z2 and w2, and then replace the integration over

z2 and w2 by momentum space integrals. However the parameters z and w are not directly

the variables ξ and ζ of the string field theory — they are given by some functions of ξ

and ζ. Therefore it is not a priori guaranteed that first performing the integration over

the real parts of z and w, and then treating the imaginary parts of z and w as Schwinger

parameters to translate the amplitude to a momentum space integral is a valid procedure.

The correct procedure will be to first express the amplitude as integrals over the variables

ξ and ζ, carry out the integrations over the real parts of ξ and η, and then interpret the

expression as coming from momentum space integrals treating the imaginary parts of ξ

and ζ as Schwinger parameters. We shall now argue that this does not change the result.

Since different string field theories (related by field redefinition) lead to different plumb-

ing fixture variables, instead of focussing on any particular string field theory we shall

consider the effect of a general parameter redefinition of the form

z = f(ξ, ζ), w = g(ξ, ζ) . (4.11)

In order to get some insight into the form of the functions f and g, it will be useful to recall

the geometric interpretation of the parameters ξ and ζ. In string field theory the Feynman

diagram of figure 1 will represent the effect of sewing two three punctured spheres. If the

first one has punctures P1, P2, P3 with local coordinates y1, y2 and y3, and the second one

has punctures P̃1, P̃2, P̃3 with local coordinates ỹ1, ỹ2 and ỹ3, then the sewing is done via

the relations

y2 ỹ2 = e2πiξ, y3 ỹ3 = e2πiζ . (4.12)

The external states are inserted at the punctures P1 and P̃1. Using this geometric inter-

pretation of the parameters ξ and ζ it is easy to see that for large ξ2 and ζ2, we have z ' ξ
and w ' ζ. Using this and the fact that z, w, ξ and ζ are periodic variables with period

1, we see that z − ξ and w − ζ will have expansions in non-negative powers of e2πiξ and

e2πiζ . Since such a redefinition of parameters can be built from successive infinitesimal

deformations, we shall now focus on infinitesimal deformations of the form

z = ξ + a(ξ, ζ), w = ζ + b(ξ, ζ) , (4.13)
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where a and b are infinitesimal functions admitting expansion in non-negative powers of

e2πiξ and e2πiζ . If we can show that for general infinitesimal a and b, first expressing J2 in

the ξ, ζ variables and then mapping it to momentum space representation regarding ξ2 and

ζ2 as Schwinger parameters, gives the same result as what we get by directly converting

the original expression for J2 to momentum space integral treating z2 and w2 as Schwinger

parameters, then we would have proven a similar result for finite redefinitions relating z

and w to ξ and ζ. This is what we shall now show.

Taking real and imaginary parts of (4.13) we write

z1 = ξ1 + a1(ξ1, ξ2, ζ1, ζ2), z2 = ξ2 + a2(ξ1, ξ2, ζ1, ζ2),

w1 = ζ1 + b1(ξ1, ξ2, ζ1, ζ2), w2 = ζ2 + b2(ξ1, ξ2, ζ1, ζ2) , (4.14)

where ai and bi are periodic functions of ξ1 and ζ1 with period 1. Under this change of

variables, we get

J2 = J̃2 + δJ2 (4.15)

where

J̃2 =

∫
d2ξ d2ζ F0(ξ1, ξ2, ζ1, ζ2) Θ(ξ2 − Λ) Θ(ζ2 − Λ) (4.16)

and

δJ2 =

∫
d2ξ d2ζ Θ(ξ2 − Λ)Θ(ζ2 − Λ)

2∑
i=1

[
∂

∂ξi
{ai F0}+

∂

∂ζi
{bi F0}

]
+

∫
d2ξ d2ζ [δ(ξ2 − Λ)Θ(ζ2 − Λ) a2 + Θ(ξ2 − Λ)δ(ζ2 − Λ) b2]F0 . (4.17)

The arguments of ai, bi and F0 in (4.17) are ξ1, ξ2, ζ1, ζ2. Now J2 evaluated by regarding

z2 and w2 as Schwinger parameters is identical to J̃2 evaluated by regarding ξ2 and ζ2 as

Schwinger parameters. Therefore we need to show that δJ2 evaluated by regarding ξ2 and

ζ2 as Schwinger parameters vanish.

Since the integration rules involve carrying out integration over ξ1 and ζ1 first at fixed

ξ2 and ζ2 and then integrating over ξ2 and ζ2, the derivatives with respect to ξ1 and ζ1

vanish after integration due to the periodicity of the functions ai, bi and F0 in the ξ1 and

ζ1 variables. Since the rest of the terms admit expansion in powers of e2πiξ1 and e2πiζ1 ,

only the ξ1 and ζ1 independent terms can contribute, — the other terms will vanish after

integration over ξ1 and ζ1. Therefore we can write

δJ2 =

∫ ∞
Λ

dξ2

∫ ∞
Λ

dζ2

[
∂ã(ξ2, ζ2)

∂ξ2
+
∂b̃(ξ2, ζ2)

∂ζ2

]
+

∫ ∞
Λ

dζ2 ã(Λ, ζ2) +

∫ ∞
Λ

dξ2 b̃(ξ2,Λ) ,

(4.18)
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where10

ã(ξ2, ζ2) ≡
∫ 1

0
dξ1

∫ 1

0
dζ1 a2(ξ1, ξ2, ζ1, ζ2)F0(ξ1, ξ2, ζ1, ζ2),

b̃(ξ2, ζ2) ≡
∫ 1

0
dξ1

∫ 1

0
dζ1 b2(ξ1, ξ2, ζ1, ζ2)F0(ξ1, ξ2, ζ1, ζ2) . (4.19)

From the form of F0 given in (4.3) we see that ã and b̃ will have expansions of the form(
ã

b̃

)
= (ξ2 + ζ2)−5 exp[πM2ξ2ζ2/(ξ2 + ζ2)]

∑
m,n≥0

e−4πmξ2−4πnζ2

(
Cam,n
Cbm.n ,

)
(4.20)

where Cam,n and Cbm,n are polynomials in 1/(ξ2 + ζ2) and ξ2/(ξ2 + ζ2). Formally the right

hand side of (4.18) vanishes by integration by parts. However we have to remember that

these are divergent integrals and in order to make sense of them we have to replace them

by momentum space integrals following the dictionary given in section 2. Therefore we

shall now replace each of the terms in the expression (4.18) by momentum space integrals,

and then ask if the total contribution vanishes.

We proceed as follows. Using the algorithm described in section 2.2 we first express

ã(ξ2, ζ2) and b̃(ξ2, ζ2) given in (4.20) in the form(
ã(ξ2, ζ2)

b̃(ξ2, ζ2)

)
=
∑
m,n≥0

∫
d10k

(2π)10
e−πξ2(k2+4m)−πζ2((p−k)2+4n)

(
fa,m,n(k)

fb,m,n(k) ,

)
(4.21)

where fa,m,n(k) and fb,m,n(k) is some polynomial in k0 and ~k2, and we have p2 = −M2. In

that case ∂ã/∂ξ2 will have the expression of the form

∂ã

∂ξ2
= −π

∑
m,n≥0

∫
d10k

(2π)10
e−πξ2(k2+4m)−πζ2((p−k)2+4n)(k2 + 4m)fa,m,n(k) . (4.22)

Now the replacement rule says that after substituting the expressions given above into the

integrals appearing in (4.18), we make the replacements∫ ∞
Λ

dξ2e
−πξ2(k2+4m) → 1

π
exp

[
−πΛ(k2 + 4m)

]
(k2 + 4m)−1 , (4.23)

and ∫ ∞
Λ

dζ2e
−πζ2((p−k)2+4n) → 1

π
exp

[
−πΛ{(p− k)2 + 4n}

]
{(p− k)2 + 4n}−1 , (4.24)

and then interpret the integration over k0 as a contour integration of the kind described in

section 2.1, and the integration over ~k as ordinary (D − 1) dimensional integral along real

10Note that part of the contribution comes from the terms carrying powers of e2πiz1 and e2πiw1 in the

original expression for F0(z1, z2, w1, w2), since such terms, after combining with the ξ1 and ζ1 dependent

terms in a2 and b2, can give rise to ξ1 and ζ1 independent terms in a2F0 and b2F0. This is the reason we

had kept such terms in the expression for F0.
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axis. This makes the replacement rules (4.23) and (4.24) only formal, since the integration

over k0 can run over domains in which k2 + 4m or (p− k)2 + 4n may turn negative making

the left hand sides diverge. Using these rules, we get∫ ∞
Λ
dξ2

∫ ∞
Λ
dζ2

∂ã(ξ2, ζ2)

∂ξ2
→ − 1

π

∑
m,n≥0

∫
d10k

(2π)10
exp

[
−πΛ(k2 + 4m)− πΛ{(p− k)2 + 4n}

]
× {(p− k)2 + 4n}−1fa,m,n(k) . (4.25)

Note that the (k2 + 4m)−1 factor of (4.23) has been cancelled by the explicit (k2 + 4m)

factor produced in (4.22) by the ∂/∂ξ2 operation. The right hand side of this expression

is finite, while the individual terms contributing to the left hand side can be infinite for

M >
√

4m +
√

4n. The rules we have proposed uses the right hand side as the definition

of the left hand side. On the other hand we have∫ ∞
Λ

dζ2 ã(Λ, ζ2) =
1

π

∑
m,n≥0

∫
d10k

(2π)10
exp

[
−πΛ(k2 + 4m)− πΛ{(p− k)2 + 4n}

]
× {(p− k)2 + 4n}−1fa,m,n(k) . (4.26)

Note that this is an equality — both the left and the right hand sides are finite since the

integral of an expression of the form given in (4.20) is finite if either ξ2 or ζ2 is fixed.

Therefore we can use either description to evaluate this contribution. We now see that the

right hand sides of (4.25) and (4.26) cancel. A similar analysis shows that the other two

terms in (4.18) also cancel.

This shows that δJ2 vanishes. Therefore J2 takes the same value irrespective of whether

we use its expression in the w, z coordinate and express it as momentum space integral by

regarding z2 and w2 as Schwinger parameters, or whether we take its expression in the ξ, ζ

coordinate and express it as momentum space integral by regarding ξ2 and ζ2 as Schwinger

parameters. Integrating this result to generate finite deformations, we see that the result

remains the same irrespective of whether we use the z, w variables or the sewing parameters

of a string field theory to generate the momentum space representation. Besides justifying

the use of z, w variables to generate momentum space representation, this analysis also

shows that the result is independent of which string field theory we use to generate the

momentum space representation.

The analysis has a straightforward generalization to compactified heterotic and type II

string theories described by general superconformal world-sheet theories. If we consider a

vacuum with D non-compact space-time dimensions, then the overall multiplicative factor

of τ−5
2 in (4.3) will be replaced by τ

−D/2
2 . The other difference will be that the coefficients

Am,n will not only have integer powers of e−2πz2 , e−2πw2 , e2πiz1 , e2πiw1 , but also fractional

powers of e−2πz2 and e−2πw2 . For example for compactification on a circle of radius R, Ap,q
will contain factors of

exp

[
−πiz

2

( n
R

+mR
)2

+
πiz

2

( n
R
−mR

)2
]
, (4.27)

and

exp

[
−πiw

2

( n
R

+mR
)2

+
πiw

2

( n
R
−mR

)2
]
. (4.28)
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Here n,m are integers labelling the momentum and winding numbers along the circle. The

rest of the analysis can be carried out as before by converting each term into momentum

space integrals.

5 Unitarity

In this section we shall show that the result for one loop contribution to mass2 computed

using our method is consistent with unitarity. The general analysis of [23] already shows

that the result satisfies Cutkosky rules. This would prove unitarity if in the Siegel gauge

all states with L0 = L̄0 = 0 had been physical states. However in general there will also be

unphysical and pure gauge states. Hence we need to show that their contribution to the

cut diagram vanishes.

While for a general amplitude establishing this requires some effort [36], for the one

loop two point function the analysis can be carried out as follows. Let us focus on states

with L0 = L̄0 = 0 and annihilated by b0 and b̄0, since these are the states that are associated

with a cut propagator in the Siegel gauge. We choose a basis of states such that unphysical

states — those not annihilated by the BRST charge QB — are labelled as |φs〉, and physical

states — annihilated by QB but not pure gauge — are labelled as |χa〉. In this basis we do

not need to introduce separately the basis of pure gauge states — they can be taken to be

QB|φs〉. Pure gauge states have non-zero inner product only with unphysical states, while

physical states can have non-zero inner product with unphysical and physical states. Using

the fact that the BPZ inner product is non-degenerate, one can argue that it is possible

to choose a basis in which unphysical states have non-zero inner product only with pure

gauge states and physical states have non-zero inner product only with physical states. We

denote by |φcs〉 and |χca〉 another basis of unphysical and physical states, also annihilated

by b0, b̄0, and satisfying

〈φcs|c−0 c
+
0 QB|φr〉 = δrs, 〈φcs|c−0 c

+
0 |φr〉 = 0, 〈χcb|c−0 c

+
0 |χa〉 = δab,

〈φcs|c−0 c
+
0 |χa〉 = 0, 〈χcb|c−0 c

+
0 |φr〉 = 0 , (5.1)

where

c±0 =
1

2
(c0 ± c̄0), b±0 = b0 ± b̄0, L±0 = L0 ± L̄0 . (5.2)

From (5.1) we get

ns + ncs = 3 , (5.3)

where ns and ncs are the ghost numbers of φs and φcs respectively.

Since Siegel gauge propagator is proportional to b+0 b
−
0 (L+

0 )−1δL0,L̄0
, a cut propagator

in the Siegel gauge will be proportional to b+0 b
−
0 δ(L

+
0 )δL−0 ,0

. It is easy to see that in the

L±0 = 0 subspace, b+0 b
−
0 may be decomposed as

b+0 b
−
0 = |φr〉〈φcr|QB +QB|φr〉〈φcr|+ |χa〉〈χca| . (5.4)

Now consider the diagram of figure 1 but interpret this as a string theory diagram with

all string states propagating in the internal lines. A cut passing through both internal
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propagators will insert a factor of (5.4) for each propagator. Let us denote the first one

by (5.4) and the second one by

|φs〉〈φcs|QB +QB|φs〉〈φcs|+ |χb〉〈χcb| . (5.5)

We shall assume that the ket is inserted on the vertex to the left and the bra is inserted

on the vertex to the right. Now since the external state in each vertex is physical, and

since the three point function on the sphere of two physical states and one pure gauge

state vanishes, it is easy to see that many of the contributions vanish. For example, for

the combination

QB|φs〉〈φcs| ⊗ |χa〉〈χca| (5.6)

the left vertex will represent the three point function on the sphere of QBφs, χa and

the external state. Since χa and the external state are BRST invariant, this amplitude

vanishes by standard argument involving deformation of the BRST contour. Only the

following combination survives from the tensor product of (5.4) and (5.5) inserted at the

vertices:

|χa〉〈χca| ⊗ |χb〉〈χcb|+ |φr〉〈φcr|QB ⊗QB|φs〉〈φcs|+QB|φr〉〈φcr| ⊗ |φs〉〈φcs|QB . (5.7)

Of these the first term gives the desired contribution — the sum over physical states.

Therefore we need to show that the contribution from the other two terms cancel. Consider

the second term. For this the left vertex has the insertion of |φr〉, QB|φs〉 and the BRST

invariant external state. We can now use the usual argument involving deformation of

the BRST contour to put QB on the |φr〉 at the cost of getting an extra minus sign and

whatever other sign we get for passing QB through the grassmann odd operators. Similarly

for the last term in (5.7), the right vertex has the insertion of 〈φcr|, 〈φcs|QB and the external

state, and we move QB from φcs to φcr. This brings (5.7) to

|χa〉〈χca| ⊗ |χb〉〈χcb| −QB|φr〉〈φcr|QB ⊗ |φs〉〈φcs|+QB|φr〉〈φcr|QB ⊗ |φs〉〈φcs| . (5.8)

The minus sign in the second term is due to the reversal of the orientation of the BRST

contour. No further minus signs appear since here QB has to pass through |φr〉〈φcr|QB which

is grassmann even due to (5.3). On the other hand in going from the last term in (5.7) to

the the last term in (5.8), QB has to pass through the grassmann odd combination |φs〉〈φcs|
that gives an extra minus sign and cancels the minus sign coming from the reversal of

orientation of the BRST contour. We now see that the last two terms in (5.8) cancel,

leaving behind the contribution from only the physical intermediate states in the Cutkosky

rules. This proves unitarity of the one loop two point function.

Note that the cancelation described above involves loops carrying states of different

ghost numbers — the ghost numbers of the states QBφs and φs in (5.7) differ by 1. This

is a generalization of the results in ordinary gauge theories where the proof of unitarity

in the Feynman gauge involves cancelation between unphysical states in the matter sector

and the ghost states propagating in the loop.
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A Equivalence to the iε prescription

In section 2.1 we described a specific choice of contour that can be used to evaluate (2.1).

An alternative prescription, known as the iε prescription, is to take the expression (2.11)

and define the integration over t1, t2 by taking the upper limits of integration to be t0 + i∞
instead of ∞ where t0 is some fixed positive number [7, 8]. The question that we would

like to address in this appendix is: are these two prescriptions equivalent?

As pointed out in section 2.2, the failure of the Schwinger parameter representation is

in the use of (2.8), i.e. it is not possible to choose the k0 contour shown in figure 2 such

that k2 +m2
1 and (p− k)2 +m2

2 always have positive real parts so that the integrals (2.8)

converge. With the new prescription of turning the contours of t1 and t2 (equivalently of

s1 and s2 in (2.8)) towards t0 + i∞, the relevant question becomes: is it possible to deform

the k0 integration contours in figure 2 to a form such that k2 +m2
1 and (p−k)2 +m2

2 always

have negative imaginary parts? If this is the case then the integrals in (2.8) — with the

new upper limits t0 + i∞ — converge and the use of these equations will be justified.

Now since the imaginary parts of k2 + m2
1 and (p − k)2 + m2

2 come respectively from

the −(k0)2 and the −(p0 − k0)2 terms, in order to satisfy the requirement described above

we need k0 and p0 − k0 to lie either in the first quadrant or in the third quadrant. At the

same time we must ensure that the poles Q1 and Q3 lie to the right of the contour and

the poles Q2 and Q4 lie to the left of the contour as in figure 2. It is easy to see that the

contour shown in figure 3 satisfies these requirements. In drawing this we have used that

we need to take the limit of p0 approaching the real axis from the first quadrant, and have

consequently taken p0 to have a small positive imaginary part.

Note that unlike the contours shown in figure 2, the contour shown in figure 3 does

not approach ±i∞ at the two ends. Instead it approaches ±i∞ plus finite real parts. It is

easy to see however that the integrand in (2.1) decays exponentially as k0 → A ± i∞ for

any finite real A and hence the contour shown in figure 3 can be deformed to the ones in

figure 2 without changing the value of the integral (2.1).

This shows that at least for the one loop two point function the prescription of [7, 8]

agrees with the prescription of [23] that we have used in section 2.1. Whether the two

prescriptions agree for general amplitudes is not known to us at present.
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Q2
×

Q1

×

Q4

×
p0

×
Q3

×

Figure 3. Choice of integration contour in the complex k0 plane that can be used to prove

equivalence between our prescription and the iε prescription.

B Finiteness of J1

In this appendix we shall show that J1 defined in (3.12) receives a finite contribution from

the z2 ≥ Λ, w2 ≡ τ2 − z2 ≥ Λ region of integration. For this let us introduce variables

u = e2πiz, v = e2πiw = e2πi(τ−z) . (B.1)

In that case F given in (3.7) has the form

F (z, z̄, τ, τ̄) = exp[4πw2z2/(z2 + w2)] τ−5
2 G(u, v) , (B.2)

where

G(u, v) ≡

{∑
ν

ϑν(0)16

}
(η(τ))−18(η(τ))−6(ϑ′1(0))−4e2πi(z−z̄)

(
ϑ1(z)ϑ1(z)

)2

×

(ϑ′1(z)

ϑ1(z)

)2

− ϑ′′1(z)

ϑ1(z)
− π

τ2

2

(B.3)

can be organized as

G(u, v) = h(u, v)
2∑
i=0

τ−i2

[
a(i)ū−1v̄−1 + ū−1f (i)(v̄) + v̄−1f (i)(ū) + g(i)(ū, v̄)

]
. (B.4)

Here τ2 has to be interpreted as z2 + w2, a(i)’s are constants, and h, f (i) and g(i)’s are

holomorphic functions of their arguments in the domain |u| < 1, |v| < 1. The form of these

functions can be easily read out from (B.3) and known expansions of the theta and eta
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functions, e.g. we have

h(u, v) = e2πizϑ1(z)2/η(τ)6 ,

a(0) = 0, a(1) = 0, a(2) = −2−3π−2 ,

f (0)(ū) = −2 ū (1− ū)−2, f (1)(ū) = −π−1, f (2)(ū) = 2−3π−2 (2− ū) ,

g(0)(ū, v̄) =

{∑
ν

ϑν(0)16

}
(η(τ))−18(ϑ′1(0))−4e−2πiz̄

(
ϑ1(z)

)2

(ϑ′1(z)

ϑ1(z)

)2

− ϑ′′1(z)

ϑ1(z)

2

− v̄−1f (0)(ū)− ū−1f (0)(v̄) ,

g(1)(ū, v̄) = −2π

{∑
ν

ϑν(0)16

}
(η(τ))−18(ϑ′1(0))−4e−2πiz̄

(
ϑ1(z)

)2
[(

ϑ′1(z)

ϑ1(z)

)
− ϑ′′1(z)

ϑ1(z)

]
− v̄−1f (1)(ū)− ū−1f (1)(v̄) ,

g(2)(ū, v̄) = π2

{∑
ν

ϑν(0)16

}
(η(τ))−18(ϑ′1(0))−4e−2πiz̄

(
ϑ1(z)

)2

− ū−1v̄−1a(2) − v̄−1f (2)(ū)− ū−1f (2)(v̄) . (B.5)

Being holomorphic inside the disks |u| < 1, |v| < 1, these functions have Taylor series

expansions of the form

f (i)(ū) =
∞∑
m=0

f (i)
m ūm, g(i)(ū, v̄) =

∞∑
m,n=0

g(i)
m,nū

mv̄n, h(u, v) =
∞∑

m,n=0

hm,nu
mvn. (B.6)

Now after integration over z1 and w1, only those terms in the expression for F which

carry equal powers of u and ū, and also equal powers of v and v̄ will survive, This gives,

using (B.2), (B.4) and (B.6):∫
dz1

∫
dw1F =

∑
m,n≥0

exp[4πw2z2/(z2+w2)−4πmz2−4πnw2]τ−5
2

2∑
i=0

A(i)
m,nτ

−i
2 , (B.7)

where

A(i)
m,n = hm,ng

(i)
m,n . (B.8)

The (m,n) = (0, 0) term in (B.7) is subtracted away from F in (3.12). It can be easily

seen that the term in the argument of the exponential in (B.7) is always negative or 0

for (m,n) 6= (0, 0) and hence for each (m,n) 6= (0, 0) the integral converges due to the

τ−5
2 factor. It will however be instructive to investigate the individual terms in some more

detail. The m = 1, n = 0 term has an exponential factor exp[−4πz2
2/(z2 + w2)]. If we

first carry out the z2 integral at fixed w2, the leading contribution for large w2 comes from

the z2 ∼ w1/2
2 region, and, after carrying out the integration over z2 the integrand falls off

as w
−9/2
2 for large w2. The subsequent integral over w2 gives a finite result.11 A similar

11If we had considered compactified string theory with D non-compact space-time dimensions then the

τ−5
2 factor will be replaced by τ

−D/2
2 and after integration over z2 is performed, the integrand will fall off

as w
−(D−1)/2
2 . This integral diverges for D ≤ 3. This is related to an infrared divergence of the diagram of

figure 1 for m1 = 0 and m2 = M in D ≤ 3.
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contribution will arise from the m = 0, n = 1 term in (B.7). For terms with m ≥ 2,

n = 0 the z2 integral yields a result of order w−5
2 for large w2, and the result is finite after

integration over w2. Similar remark holds for the m = 0, n ≥ 2 term. Finally for terms

with m,n ≥ 1, the integrand falls off exponentially for large z2 and/or w2 and the integral

receives a finite contribution.

This shows that each term in the sum in (B.7) gives finite result after integration over

z2 and w2, but one could still wonder if the sum over m,n could lead to divergence. For

exploring this possibility we need to know the growth rate of A
(i)
m,n for large m and/or n.

For this recall that since h, f (i) and g(i) are holomorphic function of their arguments for

|u| < 1, |v| < 1, the Taylor series expansions (B.6) should converge in this domain. This

means that for any positive constant Λ0, we can find another positive constant K such that

|f (i)
m | < Ke2πΛ0m, |g(i)

m,n| < Ke2πΛ0(m+n), |hm,n| < Ke2πΛ0(m+n) . (B.9)

(B.8) now gives

|A(i)
m,n| < K2 e4πΛ0(m+n) . (B.10)

We shall take Λ0 < Λ. Using this we can put the following upper bound to the integral of

the series expansion (B.7) without the m = n = 0 term:∫ ∞
Λ

dz2

∫ ∞
Λ

dw2

∑
m,n≥0

(m,n) 6=(0,0)

exp[4πw2z2/(z2 + w2)− 4πmz2 − 4πnw2]

2∑
i=0

A(i)
m,nτ

−5−i
2

≤ ∆0

∑
m,n≥0

(m,n) 6=(0,0)

∫ ∞
Λ

dz2

∫ ∞
Λ

dw2 exp[4πw2z2/(z2+w2)− 4πmz2 − 4πnw2] e4πΛ0(m+n)τ−5
2 ,

∆0 ≡ K2

(
1 +

1

2
Λ−1 +

1

4
Λ−2

)
. (B.11)

We now consider the following terms separately, leaving aside the (m,n) = (0, 1) and (1, 0)

terms since their contribution has been analyzed separately anyway and found to be finite.

1. First consider the sum of all the terms with m ≥ 2, n = 0. In this case the sum is

bounded by

∆0

∞∑
m=2

∫ ∞
Λ

dz2

∫ ∞
Λ

dw2 exp[4πw2z2/(z2 + w2)− 4πmz2] e4πΛ0m τ−5
2

≤ ∆0

∞∑
m=2

∫ ∞
Λ

dz2

∫ ∞
Λ

dw2 exp[−4π(m− 1)z2] e4πΛ0mw−5
2

=
1

16π
∆0 e

4πΛ0 Λ−4
∞∑
m=2

1

m− 1
e−4π(m−1)(Λ−Λ0) . (B.12)

Since Λ > Λ0, this is a convergent sum. This shows that in the expression for J1, the

sum over m for n = 0 is convergent.

2. Sum over all terms with m = 0, n ≥ 2 can be dealt with similarly.
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3. Finally the sum over all terms in (B.11) with m ≥ 1, n ≥ 1, can be bounded as

∆0

∑
m,n≥1

∫ ∞
Λ

dz2

∫ ∞
Λ

dw2 exp[4πw2z2/(z2 + w2)− 4πmz2 − 4πnw2] e4πΛ0(m+n)τ−5
2

≤ ∆0

∑
m,n≥1

∫ ∞
Λ

dz2

∫ ∞
Λ

dw2 exp[−4π(m− 1)z2 − 4πnw2] e4πΛ0(m+n)z−5
2

≤ 1

4π
∆0

∫ ∞
Λ

dz2

z−5
2 e4πΛ0 +

∑
m≥2

e−4π(m−1)z2e4πΛ0mΛ−5

 ∞∑
n=1

1

n
e−4πΛne4πΛ0n

=
1

4π
∆0e

4πΛ0

 1

4Λ4
+

1

4πΛ5

∑
m≥2

1

m−1
e−4π(Λ−Λ0)(m−1)

 ∞∑
n=1

1

n
e−4π(Λ−Λ0)n. (B.13)

Since Λ > Λ0, both sums on the right hand side of (B.13) are convergent. This shows

that the sum on the left hand side of (B.13) is also convergent.

Combining all the results we conclude that the sum on the right hand side of (B.11)

converges and hence the sum on the left hand side of (B.11) also converges. This in turn

shows that the contribution to J1 has no divergence from the sum over infinite set of terms.

Open Access. This article is distributed under the terms of the Creative Commons
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