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1 Introduction

AdS/CFT correspondence [1] provides us with the possibility to investigate a quantum

theory of gravity in terms of an ordinary quantum field theory. In order to study some

geometrical properties of the dual gravity theory, one is typically required to perform

a quantitative analysis on strong coupling behaviors of the corresponding quantum field

theory. Recently, such an analysis has become manageable, at least for a set of physical

quantities, thanks to the developments of the supersymmetric localization. See [2, 3] for

recent reviews on this topic.

ABJM theory [4] provides a prototypical example of AdS4/CFT3 correspondence. This

is a Chern-Simons theory coupled to matters with N = 6 superconformal symmetry. The

analysis of this theory has been done intensively in the context of AdS/CFT correspondence

as well as in relation to M2-branes. The researches discussing the strong coupling behaviors

of ABJM theory include the ones using the planar limit [5–8], the M-theory limit [9] and

the Fermi gas formalism [10], all of which are based on the localization formula for the

partition function obtained in [11]. Among them, the Fermi gas formalism has turned out

to be quite powerful. It allows us to obtain, for example, the free energy, not only to all

orders in 1/N expansion [12], but even including non-perturbative terms [13–15]. Recently,

such an analysis has been extended to Chern-Simons-matter theories whose dual theories

contain orientifolds [16–21].

In this paper, on the other hand, we revisit the analysis of planar solutions based on

the matrix model technique. Although the reach of this technique is practically confined in
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the leading order of 1/N expansion unless the matrix model under consideration is simple

enough, it can be applied to much wider family of Chern-Simons-matter theories, compared

to the other methods. The aim of our research is to investigate a pattern in the strong

coupling behaviors of various Chern-Simons-matter theories so that one could find a clue to

know which theory could have a possible gravity dual. We expect that this line of research

would shed some light on the underlying principle of how the space-time of the bulk gravity

theory emerges from a quantum field theory.

We focus our attention on a family of N ≥ 3 Chern-Simons-matter theories with

the gauge group U(N1) × U(N2) coupled to an arbitrary number n of bi-fundamental

hypermultiplets. The planar resolvents for such theories have been investigated in [5,

6, 22–24], however, explicit expressions for the resolvents have not been obtained so far

except for ABJM theory and ABJ theory [25]. In this paper we show that, instead of the

planar resolvent itself, its derivative can be determined explicitly for all theories mentioned

above. More precisely, we define for each theory two planar resolvents which contain the

information on two sets of eigenvalues in the matrix model. We determine the derivatives

of both two resolvents explicitly except for the case n = 2. For this exceptional case,

which turns out to be the most interesting in the context of AdS/CFT correspondence,

the derivative of a linear combination of the two resolvents is determined. From these

results, we derive the explicit expressions of (a linear combination of) the vevs of BPS

Wilson loops [26–28] of the theories. Since the vevs can be written in terms of well-known

functions, it is now straightforward to examine in which limit the vevs of the Wilson loops

may diverge, the result of which provides an important hint for when a weak gravity dual

might exist.

This paper is organized as follows. In section 2, we revisit the analysis of pure Chern-

Simons theory in order to motivate us to consider the derivative of the planar resolvent. In

section 3, we investigate the Chern-Simons-matter theories specified above, and determine

explicitly the derivatives of the planar resolvents and the vevs of the Wilson loops. The

analysis is done for the case n = 2 (subsection 3.1) and for the other cases (subsection 3.2)

separately. The validity of our formula for the planar resolvents is checked in section 4

by calculating the vevs of the BPS Wilson loops perturbatively. Section 5 is devoted to

discussion.

2 Chern-Simons matrix model

The partition function of the Chern-Simons matrix model is [29]

Z =

∫
dNu exp

[
ik

4π

N∑
i=1

(ui)
2

]
N∏
i<j

sinh2 ui − uj
2

. (2.1)

The overall constant which is irrelevant in the planar limit has been omitted. In the

planar limit, any relevant quantities of this model are determined by the solution of the

saddle-point equations
k

2πi
ui =

∑
j 6=i

coth
ui − uj

2
. (2.2)
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For example, the vev of the Wilson loop is given in terms of the solution as [11]

〈W 〉 =
1

N

N∑
i=1

eui . (2.3)

The symmetry of the equations (2.2) implies that the distribution of {ui} is invariant under

the reflection, that is, the equality

{u1, · · · , uN } = {−u1, · · · ,−uN } (2.4)

between two sets holds.

It is convenient to introduce new variables xi := eui in terms of which (2.2) can be

written as

log xi =
t

N

∑
j 6=i

xi + xj
xi − xj

, (2.5)

where t is the ’t Hooft coupling defined as

t :=
2πiN

k
. (2.6)

The condition (2.4) for ui is translated to

{ x1, · · · , xN } = { x−11 , · · · , x−1N }. (2.7)

The solution of (2.5) can be encoded in the resolvent defined as

v(z) :=
t

N

N∑
i=1

z + xi
z − xi

. (2.8)

The large z expansion

v(z) = t+ 2t〈W 〉z−1 +O(z−2) (2.9)

provides us with the interesting physical quantities.

Suppose that t > 0. Then the equations (2.5) can be interpreted as the equations

for N particles, lying on the real axis in C, interacting among them and with an external

log-type force. In this system, all xi > 0 are distributed around x = 1. In the planar

limit, the distribution of the eigenvalues xi becomes dense, and form an interval [a, b] with

0 < a < b. The equality (2.7) implies ab = 1. The resolvent v(z) becomes a holomorphic

function on C\[a, b] with a branch cut on [a, b].

As t changes continuously to a complex value, the branch points z = a, b move around

in C while keeping ab = 1 satisfied. We denote the branch cut by [a, b] even when it does

not lie on the real axis.

The equations (2.5) in the planar limit can be written in terms of v(z) as

2 log x = v(x+) + v(x−), x ∈ [a, b] (2.10)

– 3 –
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where x+ (x−) is the point in C slightly above (below) x on the branch cut [a, b]. Requiring

the finiteness of v(z) at the branch points and at infinity, v(z) is uniquely determined as

v(z) = 2 log
z + 1−

√
(z − a)(z − b)

√
a+
√
b

. (2.11)

Note that the square-root is defined such that
√

(z − a)(z − b) → z for large positive z.

The definition (2.8) implies t = v(∞). This relates t with a as

t = 2 log

√
a+
√
b

2
. (2.12)

The expression (2.11) looks rather complicated compared to the resolvents of Hermitian

matrix models. The logarithmic form seems to suggest that the fundamental object of the

Chern-Simons matrix model would not be v(z) itself but the exponential of v(z). Indeed,

the spectral curve of this model is given as

ev+t − (z + 1)e
1
2
(v+t) + etz = 0, (2.13)

which plays a role in a relation between Chern-Simons theory and a topological string

theory [30].

It would be desirable if ev(z) could be determined directly from the saddle-point equa-

tion (2.10). In fact, this can be realized for the Chern-Simons matrix model and the lens

space matrix models [31]. However, a generalization of the techniques used in [31] suitable

for other matrix models does not look straightforward.

For the case of Hermitian matrix models, the spectral curve can be derived from the

loop equation. See e.g. [32] for a recent application of the loop equation to Hermitian

matrix models. It is interesting if the loop equation for the Chern-Simons matrix model

would reproduce (2.13). For Hermitian matrix models, the loop equation is nothing but the

Schwinger-Dyson equations which imply that the partition function of the matrix model

satisfies the Virasoro constraints [33–35].

The Virasoro constraints for the Chern-Simons matrix model were studied in [36].

According to [36], the corresponding Schwinger-Dyson equations can be organized into

∫
dNu

N∑
m=1

∂

∂um

 1

z − eum
exp

[
ik

4π

N∑
i=1

(ui)
2

]
N∏
i<j

sinh2 ui − uj
2

 = 0. (2.14)

In the planar limit, this can be rewritten as

z ω(z)2 − t ω(z) = log z · ω(z)− g(z), g(z) :=
t

N

N∑
i=1

log z − ui
z − eui

, (2.15)

where ω(z) is defined in terms of the solution of (2.2) as

ω(z) :=
t

N

N∑
i=1

1

z − eui
. (2.16)
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The function g(z) turns out not to be a simple function like a polynomial, contrary to the

case of Hermitian matrix models. The function g(z) is free from the square-root branch

cut, but instead, it has a logarithmic branch cut. The discontinuity along the cut is

g(x+)− g(x−) = 2πi ω(x), x ∈ (−∞, 0]. (2.17)

This implies that g(z) can be given in terms of ω(z) as

g(z) =

∫ 0

−∞
dx

ω(x)

x− z
. (2.18)

Therefore, the loop equation for the Chern-Simons matrix model is not an algebraic equa-

tion but the following non-linear integral equation

z ω(z)2 − t ω(z) = log z · ω(z)−
∫ 0

−∞
dx

ω(x)

x− z
. (2.19)

Unfortunately, this equation looks quite difficult to solve.

It is interesting to notice that at least one can guess the analytic structure of ω(z)

from the integral equation (2.19). One may find that each of two terms in the right-hand

side of the equation (2.19) has a logarithmic branch cut, but they cancel exactly between

them. The non-linear structure of the left-hand side suggests the existence of a square-root

branch cut in ω(z). Let x ∈ (−∞, 0] be a point in C and x̃ be the corresponding point

on the second Riemann sheet of ω(z). Then ω(x̃) is different from ω(x) appearing in the

integral. As a result, on the second Riemann sheet, the cancellation in the right-hand side

is incomplete, and a logarithmic branch cut appears in ω(z). This is indeed the expected

analytic structure of ω(z) since it is related to v(z) given by (2.11) as

v(z) = 2tz ω(z)− t. (2.20)

It would be very interesting to find how to solve the integral equation (2.19) and its

generalizations derived from various Chern-Simons-matter matrix models.

We have observed that the logarithmic form of v(z) makes the analysis of the Chern-

Simons matrix model complicated. It is interesting to notice that, in addition to exponen-

tiating v(z), there is another way to avoid dealing with the logarithmic form of v(z). If

one takes the derivative of v(z), one obtains

zv′(z) = 1− z − 1√
(z − a)(z − b)

. (2.21)

The large z expansion of zv′(z) is

zv′(z) = −2t〈W 〉z−1 +O(z−2), (2.22)

which preserves the information on 〈W 〉 and all the higher moments. The missing infor-

mation on v(∞) = t can be recovered via

t = −1

2

∫
C

dz

2πi

log z

z
zv′(z), (2.23)
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where C is a contour encircling the branch cut [a, b] counterclockwise and excluding the

origin. Therefore, it turns out to be sufficient to determine zv′(z) for the investigation of

the Chern-Simons matrix model in the planar limit. One finds that zv′(z) is a solution of

the equation

2 = ω(x+) + ω(x−), x ∈ [a, b], (2.24)

which is obtained from the derivative of (2.10). The solution ω(z) is uniquely determined

by requiring that it has the following properties:

• ω(z) is a holomorphic function on C\[a, b],

•
√

(z − a)(z − b)ω(z) is finite at z = a and z = b,

• ω(z) = O(z−1) for large z, and

• ω(z) satisfies

ω(z−1) = ω(z). (2.25)

Note that the last condition is a consequence of (2.7).

In the next section, we determine (a linear combination of) the derivatives of the

resolvents for a family of Chern-Simons-matter matrix models whose gauge group is of the

form U(N1) × U(N2). We find that the resolvents and (a linear combination of) the vevs

of the BPS Wilson loops can be written explicitly for all such matrix models.

3 Chern-Simons-matter matrix models with 2 nodes

In this section, we investigate a Chern-Simons-matter matrix model obtained via the su-

persymmetric localization from a Chern-Simons-matter theory with

• N ≥ 3 supersymmetry,

• the gauge group U(N1)k1 ×U(N2)k2 , and

• n bi-fundamental hypermultiplets.

The family of such theories includes ABJM theory, ABJ theory, GT theory [37] and theories

discussed in [24].

The partition function of the matrix model is given as [11]

Z =

∫
dN1u dN2w exp

[
ik1
4π

N1∑
i=1

(ui)
2 +

ik2
4π

N2∑
a=1

(wa)
2

] ∏N1
i<j sinh2 ui−uj

2

∏N2
a<b sinh2 wa−wb

2∏N1
i=1

∏N2
a=1 coshn ui−wa

2

.

(3.1)

The saddle-point equations are

k1
2πi

ui =

N1∑
j 6=i

coth
ui − uj

2
− n

2

N2∑
a=1

tanh
ui − wa

2
, (3.2)

k2
2πi

wa =

N2∑
b 6=a

coth
wa − wb

2
− n

2

N1∑
i=1

tanh
wa − ui

2
. (3.3)

– 6 –
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In terms of new variables xi := eui and ya := −ewa , these equations can be written as

k1
2πi

log xi =

N1∑
j 6=i

xi + xj
xi − xj

− n

2

N2∑
a=1

xi + ya
xi − ya

, (3.4)

k2
2πi

log(−ya) =

N2∑
b 6=a

ya + yb
ya − yb

− n

2

N1∑
i=1

ya + xi
ya − xi

. (3.5)

To define the planar limit in a symmetric manner, we introduce an auxiliary parameter

k and define

t1 :=
2πiN1

k
, t2 :=

2πiN2

k
, κ1 :=

k1
k
, κ2 :=

k2
k
. (3.6)

The planar limit is then defined as the limit k →∞ while keeping these parameters fixed.

We define two resolvents for two sets {xi}, {ya} of eigenvalues as

v1(z) :=
t1
N1

N1∑
i=1

z + xi
z − xi

, v2(z) :=
t2
N2

N2∑
a=1

z + ya
z − ya

. (3.7)

In the planar limit, v1(z) becomes a holomorphic function on C\[a1, b1], and v2(z) becomes a

holomorphic function on C\[a2, b2]. As in the previous section, a1b1 = a2b2 = 1 is assumed.

In terms of these resolvents, the saddle-point equations (3.4)(3.5) can be written as

2κ1 log x = v1(x+) + v1(x−)− n v2(x), x ∈ [a1, b1], (3.8)

2κ2 log(−y) = v2(y+) + v2(y−)− n v1(y), y ∈ [a2, b2]. (3.9)

Our observation in the previous section suggests that, instead of dealing with these

equations, we should investigate the following equations

2κ1 = xv′1(x+) + xv′1(x−)− nxv′2(x), (3.10)

2κ2 = yv′2(y+) + yv′2(y−)− n yv′1(y). (3.11)

It is convenient to combine the two resolvents into a vector-valued resolvent

v(z) := (v1(z), v2(z)). (3.12)

In terms of v(z), the equations (3.10)(3.11), together with

v1(y+) = v1(y−), v2(x+) = v1(x−), (3.13)

which are required by the definition (3.7), can be written as follows:

(2κ1, 0) = xv′(x+)− xv′(x−)M1, (3.14)

(0, 2κ2) = yv′(y+)− yv′(y−)M2, (3.15)

where

M1 :=

[
−1 0

n 1

]
, M2 :=

[
1 n

0 −1

]
. (3.16)

The properties required for the solution of (3.14)(3.15) are as follows:

– 7 –
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• zv′(z) is holomorphic on C\([a1, b1] ∪ [a2, b2]),

• s(z)zv′(z) is finite at the branch points, where

s(z) :=
√

(z − a1)(z − b1)(z − a2)(z − b2), (3.17)

• zv′(z) = O(z−1) for large z, and

• zv′(z) satisfies

z−1v′(z−1) = zv′(z). (3.18)

The ’t Hooft couplings t := (t1, t2) are given as

(t1, 0) = −1

2

∫
C1

dz

2πi

log z

z
zv′(z), (0, t2) = −1

2

∫
C2

dz

2πi

log z

z
zv′(z), (3.19)

where C1 and C2 are contours encircling [a1, b1] and [a2, b2] counterclockwise, respectively,

and excluding the origin. The vevs of the BPS Wilson loops are obtained from the large z

expansion of zv′(z) as

zv′(z) = −2 (t1〈W1〉,−t2〈W2〉) z−1 +O(z−2). (3.20)

Note that there is a minus sign in front of 〈W2〉 since

〈W2〉 =
1

N2

N2∑
a=1

ewa = − 1

N2

N2∑
a=1

ya. (3.21)

3.1 The case n = 2

First, we consider the case n = 2. The matrix model with n = 2 corresponds to ABJM

theory and ABJ theory when κ1 + κ2 = 0. In general (κ1 + κ2 6= 0), the matrix model is

derived from GT theory which is expected to describe a massive Type IIA theory.

In the case n = 2, the equations (3.14)(3.15) can be simplified as follows. Notice that

the matrices M1 and M2 have a common eigenvector:[
−1 0

2 1

][
1

−1

]
= −

[
1

−1

]
=

[
1 2

0 −1

][
1

−1

]
. (3.22)

Multiplying this eigenvector from the right, the equations (3.14)(3.15) become

2κ1 = ω(x+) + ω(x−), (3.23)

−2κ2 = ω(y+) + ω(y−), (3.24)

where ω(z) is defined as

ω(z) := zv′(z)

[
1

−1

]
= zv′1(z)− zv′2(z). (3.25)

– 8 –
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The required properties for zv′(z) is translated to those of ω(z) by this definition. Once

ω(z) is determined, one can show that zv′(z) can be given in terms of integrals of ω(z).

The function ω(z) already contains a lot of information. For example, the ’t Hooft

couplings are given as

t1 = −1

2

∫
C1

dξ

2πi

log z

z
ω(z), t2 =

1

2

∫
C2

dξ

2πi

log z

z
ω(z), (3.26)

and the large z expansion of ω(z) gives

ω(z) = −2(t1〈W1〉+ t2〈W2〉)z−1 +O(z−2). (3.27)

Note that the linear combination of 〈W1〉 and 〈W2〉 appearing above gives the vev of the

half-BPS Wilson loop [38], in the case of ABJM theory and ABJ theory.

The solution of (3.23)(3.24) with the required properties can be given as follows. Let

Ω(z, ξ) be a holomorphic function on C\{a1, b1, a2, b2, ξ} with a parameter ξ, satisfying the

following conditions:

• Ω(z, ξ) has a monodromy −1 at the points z = a1, b1, a2, b2, and

• Ω(z, ξ) has a simple pole at z = ξ with the residue 1.

Using these properties of Ω(z, ξ), One can easily check that

ω0(z) := κ1

∫
C1

dξ

2πi
Ω(z, ξ)− κ2

∫
C2

dξ

2πi
Ω(z, ξ) (3.28)

is a solution of (3.23)(3.24). The finiteness of s(z)ω0(z) at the branch points suggests that

an appropriate choice of Ω(z, ξ) is

Ω(z, ξ) =
h(z)

h(ξ)

1

z − ξ
s(ξ)

s(z)
(3.29)

with h(z) an entire function. A convenient choice turns out to be h(z) = z.

One finds that ω0(z) does not satisfy the inversion condition

ω(z−1) = ω(z) (3.30)

deduced from (3.18). This problem is remedied by noticing that ω0(z
−1) also satisfies the

equations (3.23)(3.24). Therefore,

ω(z) =
1

2
ω0(z) +

1

2
ω0(z

−1) (3.31)

is a solution which also satisfies the inversion condition (3.30). One can check that this is

the only solution of (3.23)(3.24) which has all the required properties deduced from those

of zv′(z).

By deforming the integration contour, ω(z) can be written as

ω(z) = −κ2
[
1− z2 − 1

s(z)

]
− κ1 + κ2

2

z2 − 1

s(z)
F (z). (3.32)

– 9 –
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The function F (z) defined as

F (z) :=

∫
C1

dξ

2πi

s(ξ)

ξ(ξ − z)(ξ − z−1)
, (3.33)

which is absent for ABJM theory and ABJ theory (κ1 + κ2 = 0), can be written in terms

of the complete elliptic integrals. Explicitly,

F (z) =
8α√

(1− α2)(1− k2α2)

f(α−2)− f(k(z)2)

(2− z − z−1)(1− k(z)2α2)
, (3.34)

where

f(z) := −2(1− z)(k2 − z)

πiz
Π1(−z, k)− 2

πi
E(k) +

2(1− z)k2

πiz
K(k), (3.35)

and

α :=
1 + a1
1− a1

, k(z)2 :=
z + z−1 + 2

z + z−1 − 2
α−2, k2 := k(a2)

2. (3.36)

The planar resolvent for ABJM theory and ABJ theory was obtained in [6] using the

result of [31]. The resolvent ω(z) determined above for the case κ1 +κ2 = 0 can be derived

from the result of [6]. We have found that the resolvent for general κ1 and κ2 has a quite

complicated expression compared to that for the case κ1 + κ2 = 0.

The large z expansion of ω(z) gives

t1〈W1〉+ t2〈W2〉 = −κ2
4

(a1 + · · ·+ b2)

+
2α(κ1 + κ2)

πi
√

(1− α2)(1− k2α2)

[
1− k2α4

α2
Π1(−α−2, k)− E(k) + (1 + k2α2)K(k)

]
.

(3.37)

Recall that, in various examples of AdS/CFT correspondence, the vev of a Wilson loop

diverges as

log |〈W 〉| = cλγ , (3.38)

in the limit where the ’t Hooft coupling λ is large. For example, the exponent γ is 1
2 for N =

4 super Yang-Mills theory [39, 40] and ABJM theory [5, 6], and γ = 1
3 for GT theory [23].

Therefore, one may be interested in a divergent behavior of the expression (3.37) since

it would be a sign of a possible existence of a dual gravity description via AdS/CFT

correspondence. Obviously, the first term of (3.37) diverges when b1 or b2 diverges, or in

other words, when a1 → 0 or a2 → 0. The second term of (3.37) is divergent if α → 1 or

k → 1, which correspond to a1 → 0 or a2 → a1, respectively. The expression (3.37) shows

that there is no other divergent behavior.

It was observed, e.g. in [23], that the simultaneous limit α→ 1 and k → 1 corresponds

to the limit in which a weak gravity dual exists. In another limit, say α → 1 but k is

different from 1, the distribution of two sets of eigenvalues becomes hierarchical, that is,

the distribution of {xi} becomes large while that of {ya} is not. In such a situation, the

two sets of equations (3.4)(3.5) would decouple effectively, and each set of equations would

become similar to the saddle-point equations (2.5) for the Chern-Simons matrix model.
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3.2 The cases n 6= 2

Next, consider the other cases n 6= 2. Recall that we would like to solve the following

equations

(2κ1, 0) = xv′(x+)− xv′(x−)M1, (3.39)

(0, 2κ2) = yv′(y+)− yv′(y−)M2. (3.40)

For the cases n 6= 2, a constant vector c := (c1, c2) satisfies these equations since there

exist the constants c1, c2 which satisfy

(2κ1, 2κ2) = (c1, c2)

[
2 −n
−n 2

]
. (3.41)

Define a function ω(z) such that zv′(z) is given as

zv′(z) = c+ ω(z). (3.42)

Then, ω(z) satisfies

ω(x+) = ω(x−)M1, ω(y+) = ω(y−)M2. (3.43)

It is convenient to consider, instead of ω(z), a function f(z) defined as

f(z) := s(z)ω(z) (3.44)

which is required to have the following properties:

• f(z) is holomorphic on C\([a1, b1] ∪ [a2, b2]),

• f(z) is finite at the branch points,

• for large z, f(z) behaves as

f(z) = −cz2 +O(z), (3.45)

• f(z) satisfies

f(z−1) = −z−2f(z). (3.46)

The equations (3.43) can be written in terms of f(z) as

f(x+) = −f(x−)M1, f(y+) = −f(y−)M2. (3.47)

We will show that the solution of (3.47) with the above properties is uniquely determined.

The problem of determining f(z) turns out to be a generalization of the problem in [41,

42] discussing the O(n) model [43, 44], and therefore, the analysis developed in [41, 42] can

be applied to our problem with a suitable modification.
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Our strategy is to map the double cover of C\([a1, b1]∪ [a2, b2]) to a torus T 2 by a map

defined as

u(z) :=
ϕ(z)

2ϕ(b1)
, ϕ(z) :=

∫ z

a1

dξ

s(ξ)
, (3.48)

where the integration contour for ϕ(b1) lies above the branch cut [a1, b1]. Note that u(z)

satisfies

u(z−1) = u(z)− 1

2
. (3.49)

Let τ := 2u(a2) be the modulus of T 2. The function f(z) becomes a function on T 2 by the

inverse map

z(u) := − ϑ1(u− u0)ϑ1(u+ u0)

ϑ1(u− u∞)ϑ1(u+ u∞)
, (3.50)

where ϑ1(u) := ϑ1(u, τ) is the theta function, and uz := u(z). In the following, the function

f(z(u)) on T 2 is denoted simply by f(u).

By the definition of the u-coordinate, f(u) satisfies

f(u+ 1) = f(u), (3.51)

since the shift of u by 1 corresponds to a move around the branch cut [a1, b1] in the z-plane.

The equations (3.47) can be written as

f(−u) = −f(u)M1, (3.52)

f(u+ τ) = f(u)M1M2. (3.53)

The matrix M1M2 can be diagonalized by a matrix S defined as

S :=

[
1 1

−eπiν −e−πiν

]
, (3.54)

where ν parametrizes n as n = 2 cosπν. Therefore, the equations (3.51)(3.53) for a vector-

valued function f(u) can be split into two sets of equations for two scalar-valued functions.

Define (f̃1(u), f̃2(u)) := f(u)S. Then f̃1(u) satisfies

f̃1(u+ 1) = f̃1(u), f̃1(u+ τ) = e2πiν f̃1(u). (3.55)

Note that S also simplifies M1 and M2 separately as

S−1M1S =

[
0 −1

−1 0

]
, S−1M2S =

[
0 −e−2πiν

−e2πiν 0

]
. (3.56)

The equation (3.52) relates f̃2(u) to f̃1(u) as

f̃2(u) = f̃1(−u). (3.57)

In the following, we determine f̃1(u) which has the required properties deduced from those

of f(z).
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A solution G(u) of the equations (3.55) can be constructed in terms of the theta

functions, although it is not uniquely determined. Our choice of G(u) is

G(u) :=
ϑ1(u− uν)ϑ1(u− uν + 1

2)

ϑ1(u− u∞)ϑ1(u+ u∞)
, (3.58)

where uν := 1
2ν+ 1

4 . An advantage of this choice is that G(u) has a nice inversion property

G(u(z−1)) = −1

z
G(u(z)). (3.59)

The product g(u) := f̃1(u)G(u)−1 then satisfies

g(u+ 1) = g(u), g(u+ τ) = g(u), (3.60)

that is, g(u) is an elliptic function.

Since f̃1(z) has a double pole at infinity and otherwise finite, g(u) must have sim-

ple poles at u = u∞,−u∞, uν , uν − 1
2 . The Riemann-Roch theorem implies that elliptic

functions with at most four such simple poles form a four-dimensional vector space V .

Therefore, g(u) can be written as

g(u) = r1g1(u) + r2g2(u) + r3g3(u) + r4g4(u), (3.61)

when a basis of V is given. We choose a basis as

g1(u) := 1, g2(u) := − ϑ1(u− u0)ϑ1(u+ u0)

ϑ1(u− u∞)ϑ1(u+ u∞)
,

g3(u) :=
ϑ1(u− u0)ϑ1(u− uν + 1

2)

ϑ1(u− u∞)ϑ1(u− uν)
, g4(u) := − ϑ1(u+ u0)ϑ1(u− uν)

ϑ1(u+ u∞)ϑ1(u− uν + 1
2)
.

(3.62)

Due to the inversion property (3.59) of G(u), the elliptic function g(u) is required to

satisfy

g(u(z−1)) =
1

z
g(u(z)). (3.63)

This condition implies

r1 = r2, r3 = r4. (3.64)

The remaining two coefficients, say r1 and r3, are fixed by requiring the asymptotic behav-

ior (3.45) of f(z) at infinity. Equivalently, they are determined by requiring f(0) = c. In

terms of the u variable, this implies

f̃1(u0) = c̃1, f̃2(u0) = f̃1(−u0) = c̃2, (3.65)

where c̃ := cS. The solution is

r1 =
1

g3(−u0)− g4(u0)

[
c̃1
g3(−u0)
G(u0)

− c̃2
g4(u0)

G(−u0)

]
, (3.66)

r3 =
1

g3(−u0)− g4(u0)

[
− c̃1
G(u0)

+
c̃2

G(−u0)

]
. (3.67)
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Now, the elliptic function g(u) has been determined completely. The resolvent zv′(z)

is therefore given in terms of the theta functions explicitly as

zv′(z) = c+

[
1

s(z)
g(u(z))G(u(z)),

1

s(z)
g(−u(z))G(−u(z))

]
S−1. (3.68)

Note that a part of the above calculations can be applied to the case n = 2 as long

as κ1 + κ2 = 0. In fact, the multiplication by S for the case n = 2 corresponds to the

multiplication by
[
1
−1
]

used in subsection 3.1.

One can show that the ’t Hooft couplings can be written as

t1 = −1

2

∫
C1

dz

2πi

log z

z

f̃1(z)

s(z)
, t2 =

1

2
e−πiν

∫
C2

dz

2πi

log z

z

f̃1(z)

s(z)
. (3.69)

The large z expansion (3.20) of the resolvent gives the vevs of the BPS Wilson loops.

Equivalently, they can be obtained from the small z expansion of zv′(z):

zv′(z) = c− f(0)−
[
a1 + · · ·+ b2

2
f(0) + f ′(0)

]
z +O(z2). (3.70)

We imposed f(0) = c to determine the elliptic function g(u). Then, the vevs of the BPS

Wilson loops are

(t1〈W1〉,−t2〈W2〉) =
a1 + · · ·+ b2

4
c+

1

2
f ′(0). (3.71)

Note that the coefficients r1 and r3 given in (3.66)(3.67) may diverge for a particular

configuration of the branch cuts. Recall that u0 is a function of the positions a1, · · · , b2.
One can show that, as functions of u0, r1 and r3 have poles at u0 = uν ,−uν + 1

2 and at

values such that g3(−u0) = g4(u0).

The former cases, it is easy to show that the basis functions (3.62) degenerate as

g3(u) =

{
1, (u0 = uν),

−g2(u), (u0 = −uν + 1
2)

g4(u) =

{
g2(u), (u0 = uν),

−1. (u0 = −uν + 1
2)

(3.72)

Due to these degenerations, the poles are canceled among them, and therefore, g(u) is finite

for generic u. Since the ’t Hooft couplings and the vevs of the Wilson loops can be given in

terms of contour integrals, the finiteness of g(u) implies the finiteness of these quantities.

Therefore, the poles at u0 = uν ,−uν + 1
2 are physically irrelevant.

The latter case corresponds to the case z(uν) = −1. This implies

uν =
1

2
τ ± 1

4
mod Z + Zτ. (3.73)

In terms of ν, this condition is written as

ν = τ mod Z + 2Zτ. (3.74)

When τ , which is also a function of the positions a1, · · · , b2, is chosen such that the above

equation holds for a given ν, then g(u) satisfies

(g3(−u0)−g4(u0))g(u) =

[
c̃1

G(u0)
− c̃2
G(−u0)

] [
g3(−u0)(1+g2(u))−g3(u)−g4(u)

]
. (3.75)
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Since the basis functions (3.62) are linearly independent, the right-hand side is not identi-

cally zero. Therefore, g(u) diverges for generic u when z(uν) = −1 holds.

One can check that, for example when a1 = −a2 holds, the quantities t1〈W1〉 and

t2〈W2〉 diverge. Note that the definitions of 〈W1〉 and 〈W2〉 imply

|〈W1〉| ≤ |b1|, |〈W2〉| ≤ |b2|. (3.76)

Unless the two branch cuts are hierarchical, a finite τ corresponds to finite b1 and b2,

implying that the vevs 〈W1〉 and 〈W2〉 are finite. Therefore, the divergence for z(uν) = −1

is due to the divergence of the ’t Hooft couplings t1 and t2. This means that there exists a

large ’t Hooft coupling limit in the parameter space of a 2-node theory with n > 2 at which

the vevs of the Wilson loops are finite. A similar kind of behavior was observed in [24] for

more general theories.

4 Perturbative check

In this section, we will use the planar resolvent obtained in section 3 for the calculation of

the vevs of the Wilson loops for the 2-node theories perturbatively. The same perturba-

tive expansion can be also obtained directly from their localization formulas. The match

between these two results provides a non-trivial check for the validity of our formulas for

the planar resolvents.

4.1 Expansion from the localization formula

The vev of a Wilson loop can be given in terms of a finite-dimensional integral via the

supersymmetric localization [11]. For pure Chern-Simons theory, the vev 〈W 〉 is given as

〈W 〉 =
1

Z

∫
dNu exp

[
ik

4π

N∑
i=1

(ui)
2

]
N∏
i<j

sinh2 ui − uj
2

· 1

N

N∑
i=1

eui , (4.1)

where Z is defined as (2.1). The 1/k expansion of 〈W 〉 can be derived in a manner explained

in [11]. The idea is to relate the vev (4.1) to the vevs of the Gaussian matrix model whose

partition function Z0 is defined as

Z0 :=

∫
dNu exp

[
−1

2

N∑
i=1

(ui)
2

]
N∏
i=1

(ui − uj)2. (4.2)

The partition function Z can be rewritten as follows:

Z = 2−N(N−1)
(

2πi

k

) 1
2
N2 ∫

dNu exp

[
−1

2

N∑
i=1

(ui)
2

]
N∏
i<j

(ui − uj)2 ·
∞∑
n=0

(
2πi

k

)n
Xn(u),

(4.3)
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where Xn(u) are defined such that

exp

 N∑
i<j

2 log

sinh
√

2πi
k
ui−uj

2√
2πi
k
ui−uj

2

 =

∞∑
n=0

(
2πi

k

)n
Xn(u)

= 1 +
2πi

k
· 1

3

N∑
i<j

(
ui − uj

2

)2

+O(k−2). (4.4)

The same rewriting can be also performed in the presence of an operator insertion. There-

fore, the vev (4.1) can be written as

〈W 〉 =

〈 ∞∑
n=0

(
2πi

k

)n
Xn(u)

∞∑
m=0

(
2πi

k

)m
Wm(u)

〉
0〈 ∞∑

n=0

(
2πi

k

)n
Xn(u)

〉
0

= 1 +
2πi

k
〈W1(u)〉0

+

(
2πi

k

)2 (
〈W2(u)〉0 + 〈X(u)W1(u)〉0 − 〈X(u)〉0〈W1(u)〉0

)
+O(k−3) (4.5)

where 〈O(u)〉0 is the vev in the Gaussian matrix model defined as

〈O(u)〉0 :=
1

Z0

∫
dNu exp

[
−1

2

N∑
i=1

(ui)
2

]
N∏
i=1

(ui − uj)2 · O(u), (4.6)

and Wn(u) are defined as

Wm(u) :=
1

N

N∑
i=1

(ui)
2m

(2m)!
. (4.7)

The vevs in (4.5) can be calculated exactly by using the Hermite polynomials. The results

are as follows:

〈W1(u)〉0 =
N

2
, 〈X1(u)〉0 =

N(N2 − 1)

12
,

〈W2(u)〉0 =
2N2 + 1

24
, 〈X1(u)W1(u)〉0 =

(N2 − 1)(N2 + 2)

24
.

(4.8)

Therefore, the perturbative expansion of the vev 〈W 〉 is given as

〈W 〉 = 1 +
πiN

k
+

1

6

(
2πiN

k

)2(
1− 1

4N2

)
+O(k−3). (4.9)

Note that this is exact in N . This reproduces the first three terms of the exact result [11]

1

N
eπiN/k

sin πN
k

sin π
k

= 1+
πiN

k
+

1

6

(
2πiN

k

)2(
1− 1

4N2

)
+

1

24

(
2πiN

k

)3(
1− 1

2N2

)
+O(k−4).

(4.10)
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The perturbative calculation described above can be easily extended for the application

to the Chern-Simons-matter matrix models with two nodes [11]. For these models, we

use vevs of the two non-interacting Gaussian matrix models whose partition function is

defined as

Z0 :=

∫
dN1udN2w exp

[
−1

2

N1∑
i=1

(ui)
2 − 1

2

N2∑
a=1

(wa)
2

]
N1∏
i<j

(ui − uj)2
N2∏
a<b

(wa − wb)2. (4.11)

The vev 〈W1〉 of the Wilson loop for the U(N1) gauge field is given as

〈W1〉 = 1 +
2πi

k1
〈W1(u)〉0 +

(
2πi

k1

)2

〈W2(u)〉0

+

(
2πi

k1

)2 (
〈Y1(u)W1(u)〉0 − 〈Y1(u)〉0〈W1(u)〉0

)
+

2πi

k1

2πi

k2

(
〈Y2(w)W1(u)〉0 − 〈Y2(w)〉0〈W1(u)〉0

)
+O(k−3) (4.12)

where Y1(u) and Y2(w), defined as

Y1(u) :=
1

3

N1∑
i<j

(
ui − uj

2

)2

− n

2
N2

N1∑
i=1

u2i
4
, (4.13)

Y2(w) :=
1

3

N2∑
a<b

(
wa − wb

2

)2

− n

2
N1

N2∑
a=1

w2
a

4
, (4.14)

come from the one-loop part of the integrand in (3.1). The values of the vevs in (4.12) are

〈W1(u)〉0 =
N1

2
,

〈Y1(u)〉0 =
N1(N

2
1 − 1)

12
− n

8
N2

1N2,

〈W2(u)〉0 =
2N2

1 + 1

24
,

〈Y1(u)W1(u)〉0 =
(N2

1 − 1)(N2
1 + 2)

24
− n

16
N1N2(N

2
1 + 2),

〈Y2(w)W1(u)〉0 = 〈Y2(w)〉0〈W1(u)〉0.

(4.15)

Therefore, the perturbative expansion of the vev 〈W1〉 is given as

〈W1〉 = 1 +
πiN1

k1
+

(
2πi

k1

)2(4N2
1 − 1

24
− n

8
N1N2

)
+O(k−3), (4.16)

When k1 = k,N1 = N2 = N and n = 2, this reproduces the result in [11]. Since (N1, k1)

and (N2, k2) appear in the partition function (3.1) symmetrically, the vev 〈W2〉 of the

Wilson loop for the U(N2) gauge field must be

〈W2〉 = 1 +
πiN2

k2
+

(
2πi

k2

)2(4N2
2 − 1

24
− n

8
N1N2

)
+O(k−3). (4.17)
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In terms of the parameters (3.6), the vevs can be written as

〈W1〉 = 1 +
t1

2κ1
+

1

6

(
t1
κ1

)2(
1− 1

4N2
1

)
− n

8

t1t2
κ21

+O(t3), (4.18)

〈W2〉 = 1 +
t2

2κ2
+

1

6

(
t2
κ2

)2(
1− 1

4N2
2

)
− n

8

t1t2
κ22

+O(t3). (4.19)

In the following, we will show that the planar limit of these expansions can be derived

from the planar resolvent obtained in section 3.

4.2 Expansion from the planar resolvent: pure Chern-Simons theory

To illustrate how to derive the perturbative expansion from the planar resolvent, let us start

with the calculation for pure Chern-Simons theory. Recall that the resolvent v(z) satisfies

zv′(z) = 1− z − 1√
(z − a)(z − b)

, (4.20)

where ab = 1 is assumed. The ’t Hooft coupling t and the vev 〈W 〉 of the Wilson loop are

given as

t =
1

2

∫
C

dz

2πi

log z

z

z − 1√
(z − a)(z − b)

, t〈W 〉 =
a+ b− 2

4
. (4.21)

The vev 〈W 〉 depends on the coupling t through the parameter a. In order to derive the

power series expansion of 〈W 〉 in t, it is necessary to know which limit for a corresponds

to the weak coupling limit t→ 0.

The saddle point equations (2.2) imply that, for a large k (small t), the eigenvalues

are expected to be localized around the origin with a narrow width. This implies that the

limit t→ 0 corresponds to the limit a→ 1. Introduce a small parameter

δ := − log a. (4.22)

The expansion in δ will provide us with the perturbative expansion. The integrand in (4.21)

has the expansion of the following form:

log z

z

z − 1√
(z − a)(z − b)

=

∞∑
n=0

fn(z)δn. (4.23)

Since

z − 1√
(z − a)(z − b)

=

(
1 +

1− e−δ

z − 1

)− 1
2
(

1 +
1− eδ

z − 1

)− 1
2

, (4.24)

the functions fn(z) have poles at z = 1 and are holomorphic elsewhere inside C. Therefore,

the expansion coefficients are given by the residues of fn(z) at z = 1. Summing up all

residues, one obtains

t =
1

4
δ2 − 1

96
δ4 +

1

1440
δ6 +O(δ8). (4.25)

The inverse of this relation is given as

δ2 = 4t+
2

3
t2 +

2

45
t3 +O(t4). (4.26)
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This implies that the perturbative expansion is given as

〈W 〉 =
1

t

(
1

4
δ2 +

1

48
δ4 +

1

1440
δ6 +O(δ8)

)
= 1 +

1

2
t+

1

6
t2 +O(t3). (4.27)

This reproduces the planar limit of (4.9).

4.3 Expansion from the planar resolvent: 2-node theories with n = 2

The perturbative calculation for Chern-Simons-matter theories with 2-node is almost par-

allel with that for pure Chern-Simons theory shown in the previous subsection, as long as

n = 2. Recall that the planar resolvent ω(z) is

ω(z) = −κ2
[
1− z2 − 1

s(z)

]
− κ1 + κ2

2

z2 − 1

s(z)

∫
C1

dξ

2πi

s(ξ)

ξ(ξ − z)(ξ − z−1)
, (4.28)

where s(z) is defined as (3.17). The weak coupling limit t1, t2 → 0 correspond to the limit

δ1, δ2 → 0 where

δ1 := − log a1, δ2 := − log(−a2). (4.29)

In this limit, the integral in (4.28) can be evaluated as a power series in δ1 and δ2 by

evaluating residues at ξ = 1. Then, the ’t Hooft couplings are given in terms of δ1 and δ2 as

t1 =
κ1
4
δ21 −

κ1
96
δ41 +

κ2
32
δ21δ

2
2 +

κ1
1440

δ61 +
6κ1 − 5κ2

1536
δ41δ

2
2 −

5κ2
1536

δ21δ
4
2 +O(δ8), (4.30)

t2 =
κ2
4
δ22 −

κ2
96
δ42 +

κ1
32
δ21δ

2
2 +

κ2
1440

δ62 +
6κ2 − 5κ1

1536
δ21δ

4
2 −

5κ1
1536

δ41δ
2
2 +O(δ8). (4.31)

The inverse of these relations is given as

δ21 =
4

κ1
t1 +

2

3κ21
t21 −

2

κ21
t1t2 +

2

45κ31
t31 −

1

6κ31
t21t2 +

κ1 + 2κ2
2κ31κ2

t1t
2
2 +O(t4), (4.32)

δ22 =
4

κ2
t2 +

2

3κ22
t22 −

2

κ22
t1t2 +

2

45κ32
t32 −

1

6κ32
t1t

2
2 +

2κ1 + κ2
2κ1κ32

t21t2 +O(t4). (4.33)

The linear combination of the vevs of the Wilson loops derived from the expansion of

ω(z) is

t1〈W1〉+ t2〈W2〉 = −κ2
4

(
e−δ1 + eδ1 − e−δ2 − eδ2

)
− κ1 + κ2

4

∫
C1

dξ

2πi

s(x)

ξ2

=
κ1
4
δ1

2 +
κ2
4
δ2

2 +
κ1
48
δ1

4 +
κ2
48
δ2

4 +
κ1 + κ2

32
δ1

2δ2
2

+
κ1

1440
δ1

6 +
κ2

1440
δ2

6 +
κ1 + κ2

1536
δ41δ

2
2 +

κ1 + κ2
1536

δ21δ
4
2 +O(δ8)

= t1 + t2 +
1

2κ1
t21 +

1

2κ2
t22 +

1

6κ21
t31 −

1

4κ21
t21t2

− 1

4κ22
t1t

2
2 +

1

6κ22
t32 +O(t4). (4.34)

This reproduces the planar limit of the corresponding linear combination of (4.18)

and (4.19) with n = 2.
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4.4 Expansion from the planar resolvent: 2-node theories with n 6= 2

The planar resolvent for a 2-node theory with n 6= 2, given in (3.68), is quite complicated.

Indeed, it is given in terms of the theta functions of u(z), and u(z) is given by the inverse

of an elliptic function. Therefore, the method of calculation used so far in this section does

not seem to be appropriate for these general cases.

A simplification occurs if the range of the parameters is restricted such that a1 =

−a2 =: a holds. In this case, the quantities u0 and u∞ can be written simply as

u0 =
1

4
τ, u∞ =

1

4
τ − 1

2
. (4.35)

The modulus τ can be written explicitly as

τ = i
2K(a2)

K(
√

1− a4)
. (4.36)

Inverting this relation, one obtains

1− a4 = 16q
1
2

( ∑∞
n=1 q

1
2
n(n−1)

1 + 2
∑∞

n=1 q
1
2
n2

)4

, q := eπiτ . (4.37)

As in the previous subsections, we introduce δ such that a = exp(−δ). Then, this relation

implies that q
1
2 can be given as a power series in δ. Explicitly,

q
1
2 =

1

4
δ − 1

48
δ3 − 31

7680
δ5 +O(δ7). (4.38)

This implies that the q
1
2 -expansion of the resolvent gives the desired perturbative expansion.

It turns out that each coefficient of the q
1
2 -expansion is a linear combination of exponential

functions of u. Since the ’t Hooft couplings are given as

t1 = ϕ(b1)

∫ + 1
2

− 1
2

du

2πi

log z(u)

z(u)
g(u)G(u), (4.39)

t2 = e−πiνϕ(b1)

∫ + 1
2
+ 1

2
τ

− 1
2
+ 1

2
τ

du

2πi

log z(u)

z(u)
g(u)G(u), (4.40)

the integration of the coefficients can be performed easily.

To simplify the calculation further, notice that it is enough to perform the perturbative

check for (κ1, κ2) = (1,±1) since the resolvent for a general (κ1, κ2) is obtained as a linear

combination of the resolvents for these two special cases.

Let us focus on the cases (κ1, κ2) = (1, ε) with ε = ±1. The uniqueness of the solution

of the saddle point equations (3.14)(3.15) implies

v′1(z) = −εv′2(−z). (4.41)

This equality then implies

t1 = εt2 =: t, 〈W1〉 = 〈W2〉 =: 〈W 〉. (4.42)
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The integral formula (4.39) implies

t =
1

4
δ2 + ε

3eπiν − 2ε+ 3e−πiν

192
δ4

+
45e2πiν − 150εeπiν + 122− 150εe−πiν + 45e−2πiν

46080
δ6 +O(δ8). (4.43)

Inverting this relation, one obtains

δ2 = 4t− ε3eπiν − 2ε+ 3e−πiν

3
t2

+
45e2πiν + 30εeπiν + 98 + 30εe−πiν + 45e−πiν

180
t3 +O(t4). (4.44)

The vev 〈W 〉 is given as

(1 + εeπiν)t〈W 〉 = − 1

4ϕ(b)

[
g′(u0)G(u0) + g(u0)G

′(u0)
]

=
εeπiν + 1

4
δ2 +

3e2πiν + 7εeπiν + 7 + 3εe−πiν

192
δ4

+ε
45e3πiν − 15εe2πiν + 62eπiν + 62ε− 15e−πiν + 45εe−2πiν

46080
δ6 +O(δ8)

=
(
1 + εeπiν

)
t+

1 + εeπiν

2
t2 − 3e2πiν − εeπiν − 1 + 3εe−πiν

24
t3 +O(t4).

(4.45)

Therefore,

〈W 〉 = 1 +
1

2
t+

[
1

6
− n

8
ε

]
t2 +O(t3). (4.46)

This reproduces the planar limit of (4.18)(4.19).

5 Discussion

We have investigated the planar resolvents of a family of Chern-Simons-matter matrix mod-

els which are derived from N ≥ 3 Chern-Simons-matter theories with the gauge groups of

the form U(N1)k1×U(N2)k2 via the supersymmetric localization. We found that, although

the resolvents themselves are not obtained in general, their derivatives can be determined

explicitly. From this result, we obtained the explicit formulas for the vevs of the Wilson

loops. We discussed the possible divergent behaviors of the vevs of the Wilson loops using

the explicit formulas. As a check of our result, we performed the perturbative calculations

of the vevs of Wilson loops. The results from the planar resolvents reproduce the results

obtained directly from the localization formulas.

It is interesting to extend the analysis of this paper to a more general family of Chern-

Simons-matter matrix models. If the gauge group of a given Chern-Simons-matter the-

ory has g factors of U(N) type, the resolvent zv′(z) to be determined is valued in a g-

dimensional vector space with g branch cuts. It can be shown that the determination of

– 21 –



J
H
E
P
1
1
(
2
0
1
6
)
0
4
9

zv′(z) reduces to a Riemann-Hilbert problem with the monodromy matrices given in terms

of the numbers of bi-fundamental hypermultiplets. It is interesting to clarify whether some

physical quantities like the vevs of the Wilson loops can be obtained in a form explicit

enough to investigate their analytic properties.

We have found for the cases n > 2 that there exists a strong ’t Hooft coupling limit in

which the vevs of the Wilson loops are finite. Similar phenomena were also observed in [24]

for more general theories. It would be interesting to analyze the behavior of the physical

quantities in the strong coupling limits for the cases n > 2, and investigate the possibility

for the existence of a gravity dual (see e.g. [45, 46] for a proposal for the case n = 3).
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