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1 Introduction

In this paper we continue the development of the Large N formulation of the Sachdev-

Ye-Kitaev (SYK) model begun in our earlier work. The SYK model [5–8] and the earlier

Sachdev-Ye (SY) model [1–4] represent valuable laboratories for understanding of hologra-

phy and quantum features of black holes. They represent fermionic systems with quenched

disorder with nontrivial properties [9–12] and gravity duals. In addition to models based on

random matrices, they represent some of the simplest models of holography (see also [13]).
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The framework for accessing the IR critical point and the corresponding AdS2 dual can

be provided by the large N expansion at strong coupling. In this limit, Kitaev [6] has

demonstrated the chaotic behavior of the system in terms of the Lyapunov exponent and

has exhibited elements of the dual black hole.

Recently, in-depth studies [14–16] have given large N correlations and spectrum of

two-particle states of the model. In these (and earlier works [6, 7]), a notable feature is

the emergence of reparametrization symmetry showing characteristic features of the dual

AdS Gravity.

The present work continues the development of systematic Large N representation of

the model given in [15] (which we will refer to as I), through a nonlinear bi-local collective

field theory. This representation systematically incorporates arbitrary n-point bi-local

correlators through a set of 1/N vertices and propagator(s) and as such gives the bridge

to a dual description. It naturally provides a holographic interpretation along the lines

proposed more generally in [22, 23], where the relative coordinate is seen to represents

the radial AdS2 coordinate z. The Large N SYK model represents a highly nontrivial

nonlinear system. At the IR critical point (which is analytically accessible) there appears

a zero mode problem which at the outset prevents a perturbative expansion. In (I), this

is treated through introduction of collective ‘time’ coordinate as a dynamical variable as

in quantization of extended systems [25]. Its Faddeev-Popov quantization was seen to

systematically project out the zero modes, providing for a well defined propagator and

expansion around the IR point. What one has is a fully nonlinear interacting system of

bi-local matter with a discrete gravitational degree of freedom governed by a Schwarzian

action. In [16] the zero modes were enhanced away from the IR defining a near critical

theory, and correspondence. We will be able to demonstrate that the nonlinear treatment

that we employ leads to very same effects (‘big’ contributions) at the linearized quadratic

level, it is expected hoverer to be exact at all orders.

In the present work, we present perturbative calculations (around the IR point) using

this collective formulation. A particular scheme that we employ for perturbative calcu-

lations is an ε expansion, where ε represents a deviation from the exactly solvable case.

Using this scheme we are able to perform analytic calculations in powers of 1/J (where J

represents the strong coupling constant). These calculations are compared with and are

seen to be in agreement with numerical evaluations of [16]. The content of this paper is

as follows: in the rest of section 1, we give a short summary of our formulation with the

treatment of symmetry modes. In section 2, we perform a perturbative evaluation of the

Large N classical background, to all orders in the inverse of the strong coupling defining

the IR. In section 3, we discuss the two-point function in the leading and sub-leading order.

In section 4, we deal with the finite temperature case and give the free energy to several

orders. Comments are given in section 5.

1.1 The method

In this subsection, we will give a brief review of our formalism [15]. The Sachdev-Ye-

Kitaev model [6] is a quantum mechanical many body system with all-to-all interactions
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on fermionic N sites (N � 1), represented by the Hamiltonian

H =
1

4!

N∑
i,j,k,l=1

Jijkl χi χj χk χl , (1.1)

where χi are Majorana fermions, which satisfy {χi, χj} = δij . The coupling constant

Jijkl are random with a Gaussian distribution. The original model is given by this four-

point interaction; however, with a simple generalization to analogous q-point interacting

model [6, 16]. In this paper, we follow the more general q model, unless otherwise specified.

Nevertheless, our main interest represents the original q = 4 model. After the disorder

averaging for the random coupling Jijkl, there is only one effective coupling J and the

effective action is written as

Sq = − 1

2

∫
dt

N∑
i=1

n∑
a=1

χai ∂tχ
a
i −

J2

2qN q−1

∫
dt1dt2

n∑
a,b=1

(
N∑
i=1

χai (t1)χbi(t2)

)q
, (1.2)

where a, b are the replica indexes. Throughout this paper, we only use Euclidean time. We

do not expect a spin glass state in this model [7] and we can restrict to replica diagonal

subspace [15]. Therefore, introducing a (replica diagonal) bi-local collective field:

Ψ(t1, t2) ≡ 1

N

N∑
i=1

χi(t1)χi(t2) , (1.3)

the model is described by a path-integral

Z =

∫ ∏
t1,t2

DΨ(t1, t2) µ(Ψ) e−Scol[Ψ] , (1.4)

with an appropriate measure µ and the collective action:

Scol[Ψ] =
N

2

∫
dt
[
∂tΨ(t, t′)

]
t′=t

+
N

2

∫
dt log Ψ(t, t) − J2N

2q

∫
dt1dt2 Ψq(t1, t2) . (1.5)

This action being of order N gives a systematic G = 1/N expansion, while the measure µ

found as in [24] begins to contribute at one loop level (in 1/N). Here the first linear term

represents a conformal breaking term, while the other terms respect conformal invariance.1

In the strong coupling limit |t|J � 1, the collective action is reduces to the critical action

Sc[Ψ] =
N

2

∫
dt log Ψ(t, t) − J2N

2q

∫
dt1dt2 Ψq(t1, t2) , (1.6)

which exhibits the emergent conformal reparametrization symmetry t→ f(t) with

Ψ(t1, t2) → Ψf (t1, t2) =
∣∣∣f ′(t1)f ′(t2)

∣∣∣ 1q Ψ(f(t1), f(t2)) . (1.7)

1Such linear breaking term was seen previously in [27].
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The critical solution is given by

Ψ0,f (t1, t2) = b

(√
|f ′(t1)f ′(t2)|
|f(t1)− f(t2)|

) 2
q

, (1.8)

where b is a time-independent constant. This symmetry is responsible for the appearance

of zero modes in the strict IR critical theory. This problem was addressed in [15] with

analog of the quantization of extended systems with symmetry modes [25]. The above

symmetry mode representing time reparametrization can be elevated to a dynamical vari-

able introduced according to [26] through the Faddeev-Popov method which we summarize

as follows: we insert into the partition function (1.4), the functional identity:∫ ∏
t

Df(t)
∏
t

δ

(∫
u ·Ψf

) ∣∣∣∣∣δ
(∫
u ·Ψf

)
δf

∣∣∣∣∣ = 1 , (1.9)

so that after an inverse change of the integration variable, it results in a combined repre-

sentation

Z =

∫ ∏
t

Df(t)
∏
t1,t2

DΨ(t1, t2) µ(f,Ψ) δ

(∫
u ·Ψf

)
e−Scol[Ψ,f ] , (1.10)

with an appropriate Jacobian. After separating the critical classical solution Ψ0 from the

bi-local field: Ψ = Ψ0 + Ψ, the total action is now given by

Scol[Ψ, f ] = S[f ] +
N

2

∫
dt
[
∂tΨf (t, t′)

]
t′=t

+ Sc[Ψ] , (1.11)

where the action of the time collective coordinate is

S[f ] =
N

2

∫
dt1

[
∂1Ψ0,f (t1, t2)

]
t2=t1

. (1.12)

We have given the explicit evaluation of the nonlinear action S[f ] for the case of q = 2

in [15]. This evaluation is based on expanding the critical solution in the t1 → t2 limit

and taking the derivative; the result producing the form of a Schwarzian derivative. For

general q, and in particular q = 4 which is our main interest we employ an ε-expansion

with q = 2/(1− ε) in appendix A. So in general the action S[f ] always comes in the form

of the Schwarzian derivative but with a constant overall coefficient, which is in ε-expansion

found to be α = 1− ε2 = 4(q − 1)/q2:

S[f ] = − Nα

24πJ

∫
dt

[
f ′′′(t)

f ′(t)
− 3

2

(
f ′′(t)

f ′(t)

)2
]
. (1.13)

At the linearized level this action was deduced as the action of enhanced zero mode in [16]

through numerical evaluation. Our value of α for q = 4 is α = 3/4, which agrees very

well with a numerical result found there, the corresponding numerical value being α ≈
0.756. Summarizing the f(t) is now introduced as a dynamical degree of freedom, with

the combined action of eq. (1.11) showing interaction with the bi-local field and possessing
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a reparametrization symmetry which is now present at but also away from the IR point.

The delta function condition can be understood as gauge fixing condition projecting out a

state associated with wave function u(t1, t2). This wave function is arbitrary (representing

different gauges), it will be chosen to eliminate the troublesome zero mode of the IR. This

formulation then allows systematic perturbative calculations around the IR point.

1.2 Relation to zero mode dynamics

Before we proceed with our perturbative calculations it is worth comparing the above

exact treatment of the reparametrization mode (1.13) with a linearized determination of

the zero mode dynamics, as considered in [16]. We will be able to see that the latter

follows from the former.

Expanding the critical action around the critical saddle-point solution Ψ0, we have in

I generated [15], the quadratic kernel (which defines the propagator) and a sequence of

higher vertices. This expansion is schematically written as

Sc

[
Ψ0 +

√
2/N η

]
= N Sc[Ψ0] +

1

2

∫
η · K · η +

1√
N

∫
V(3) · η η η + · · · , (1.14)

where the kernel is

K(t1, t2; t3, t4) =
δ2Sc[Ψ0]

δΨ0(t1, t2)δΨ0(t3, t4)

= Ψ−1
0 (t1, t3)Ψ−1

0 (t2, t4) + (q − 1)J2 δ(t13)δ(t24) Ψq−2
0 (t1, t2) , (1.15)

with tij = ti − tj . For other detail of the expansion, please refer to [15]. Then, the bi-local

propagator D is determined as a solution of the following Green’s equation:∫
dt3dt4K(t1, t2; t3, t4)D(t3, t4; t5, t6) = δ(t15)δ(t26) . (1.16)

In order to inverse the kernel K in the Green’s equation (1.16) and determine the bi-local

propagator, let us first consider an eigenvalue problem of the kernel K:∫
dt3dt4K(t1, t2; t3, t4)un,t(t3, t4) = kn,t un,t(t1, t2) , (1.17)

where n and t are labels to distinguish the eigenfunctions. The zero mode, whose eigenvalue

is k0 = 0 is given by

u0,t(t1, t2) =
δΨ0,f (t1, t2)

δf(t)

∣∣∣∣
f(t)=t

. (1.18)

Now, we consider the zero mode quantum fluctuation around a shifted classical background

Ψ(t1, t2) = Ψcl(t1, t2) +

∫
dt′ ε(t′)u0,t′(t1, t2) , (1.19)

with Ψcl = Ψ0 +Ψ(1) where Ψ(1) is a shift of the classical field from the critical point. Then,

the quadratic action of ε in the first order of the shift is given by expanding Sc[Ψcl + ε ·u0].

This quadratic action can be written in terms of the shift of the kernel δK as

S2[ε] = − N
4

∫
dtdt′ ε(t) ε(t′)

∫
dt1dt2dt3dt4 u0,t(t1, t2) δK(t1, t2; t3, t4)u0,t′(t3, t4) ,

(1.20)
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where

δK(t1, t2; t3, t4) =

∫
dt5dt6

δ3Sc[Ψ0]

δΨ0(t1, t2)δΨ0(t3, t4)δΨ0(t5, t6)
Ψ(1)(t5, t6) . (1.21)

Let us formally denote the t1 - t4 integrals in eq. (1.20) by

δkt δ(t− t′) =

∫
dt1dt2dt3dt4 u0,t(t1, t2) δK(t1, t2; t3, t4)u0,t′(t3, t4) , (1.22)

because this is related to the eigenvalue shift due to δK up to normalization. Then, we can

write the quadratic action (1.20) as

S2[ε] = − N
4

∫
dt δkt ε

2(t) . (1.23)

We now give a formal proof that the quadratic action (1.23) is equivalent to the

quadratic action of eq. (1.13). To show this, we need the following identity:∫
dt1dt2dt3dt4 u0,t(t1, t2)

δ3Sc[Ψ0]

δΨ0(t1, t2)δΨ0(t3, t4)δΨ0(t5, t6)
u0,t′(t3, t4)

= −
∫
dt3dt4 K(t3, t4; t5, t6)

δ2Ψ0,f (t3, t4)

δf(t)δf(t′)

∣∣∣∣
f(t)=t

. (1.24)

This identity can be derived as follows. In the zero mode equation
∫
K · u0 = 0, rewriting

the kernel as derivatives of Sc as in the first line of eq. (1.15), and taking a derivative of

this equation respect to f(t′), one finds

0 =

∫
dt1dt2dt3dt4

δΨ0,f (t1, t2)

δf(t)

∣∣∣∣
f(t)=t

· δ3Sc[Ψ0,f ]

δΨ0,f (t1, t2)δΨ0,f (t3, t4)δΨ0,f (t5, t6)
· δΨ0,f (t3, t4)

δf(t′)

∣∣∣∣
f(t′)=t′

+

∫
dt3dt4

δ2Sc[Ψ0,f ]

δΨ0,f (t3, t4)δΨ0,f (t5, t6)
· δ

2Ψ0,f (t3, t4)

δf(t)δf(t′)

∣∣∣∣
f(t)=t

, (1.25)

where we used the zero mode expression (1.18). Since Sc is invariant under the

reparametrization, we can change the argument of Sc from Ψ0,f to Ψ0. Then, we get

the identity (1.24). Now for the zero mode eigenvalue shift (1.22), rewriting the kernel

shift δK as in eq. (1.21) and using the above identity, one can show that δk is given as

δkt δ(t− t′) = −
∫
dt3dt4dt5dt6K(t3, t4; t5, t6) Ψ(1)(t1, t2)

δ2Ψ0,f (t3, t4)

δf(t)δf(t′)

∣∣∣∣
f(t)=t

. (1.26)

Next we use the equation of motion of Ψ(1):∫
dt3dt4K(t1, t2; t3, t4)Ψ(1)(t3, t4) = ∂1δ(t12) . (1.27)

Then, one finds

δkt =

∫
dt1 ∂1

[
δ2Ψ0,f (t1, t2)

δf2(t)

∣∣∣∣
f(t)=t

]
t2=t1

, (1.28)

and from eq. (1.23)

S2[ε] = − N
4

∫
dt

∫
dt1 ∂1

[
δ2Ψ0,f (t1, t2)

δf2(t)

∣∣∣∣
f(t)=t

]
t2=t1

ε2(t) . (1.29)

This agrees with the quadratic action of eq. (1.12).
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2 Shift of the classical solution

In large N limit, the exact classical solution Ψcl is given by the solution of the saddle-point

equation of the collective action (1.5). This classical solution corresponds to the one-point

function: 〈
Ψ(t1, t2)

〉
= Ψcl(t1, t2) . (2.1)

At the strict strong coupling limit, the classical solution is given by the critical solution

Ψ0, which is a solution of the saddle-point equation of the critical action (1.6). Now we

would like to consider a first order shift Ψ(1) of the classical solution from the critical

solution induced by the kinetic term. Substituting Ψcl = Ψ0 + Ψ(1) into the collective

action Scol (1.5) and expanding it up to the first order of the shift, one finds∫
dt3dt4K(t1, t2; t3, t4)Ψ(1)(t3, t4) = ∂1δ(t12) , (2.2)

where the kernel is given in eq. (1.15). This is the equation which determines Ψ(1) with

the delta function source.

In the following, we will consider even integer q and perform this perturbative evalua-

tion for the corrections of the classical field.

2.1 Inhomogeneous solution Ψ(1)

In this subsection, we will determine Ψ(1) from the eq. (2.2). For explicit evaluations, it is

actually useful to separate the J dependence from the bi-local field by

Ψcl(t1, t2) = J
− 2
q Ψ0(t1, t2) + · · · , (2.3)

where we separated J dependence from the critical solution Ψ0, which now reads

Ψ0(t1, t2) = b
sgn(t12)

|t12|
2
q

, (2.4)

with

b = −

tan
(
π
q

)
2π

(
1− 2

q

)
1
q

. (2.5)

By excluding J dependence in this way, the kernel (1.15) does not have the explicit J2 factor

in the second term, and we will refer this new kernel as K in the rest of the paper. Since

Ψ−1
0 (t1, t2) = − bq−1 sgn(t12)

|t12|2−
2
q

, (2.6)

we know the kernel has dimension K ∼ |t|−4+4/q. Therefore, from dimension analysis Ψ(1)

has to be the form of

Ψ(1)(t1, t2) = A
sgn(t12)

|t12|
4
q

, (2.7)
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where A is a t-independent coefficient. Now we are going to check this ansatz actually

solves eq. (2.2) and fix the coefficient A. The integral for the first term of the l.h.s. of

eq. (2.2) is given by

Ab2q−2

∫
dt3dt4

sgn(t13) sgn(t24) sgn(t34)

|t13|2−
2
q |t24|2−

2
q |t34|

4
q

. (2.8)

This type of integral is already evaluated in appendix A of [14]. In general, the result is∫
dt3dt4

sgn(t13) sgn(t24) sgn(t34)

|t13|2∆ |t24|2∆ |t34|2α
= −π2

[
sin(2πα) + 2 sin(2π(α+ ∆)) + sin(2π(α+ 2∆))

sin(2πα) sin(2π∆) sin(2π(α+ ∆)) sin(2π(α+ 2∆))

]

×

[
sin(2π∆) + sin(2π(α+ ∆))

]
Γ(1− 2∆)

Γ(2α)Γ(2∆)Γ(3− 2α− 4∆)

sgn(t12)

|t12|2α+4∆−2
. (2.9)

Our interest is ∆ = 1 − 1/q. For this case, the result is inversely proportional to Γ(4/q −
2α − 1). If we plug α = 2/q into this equation, we can see that the Gamma function in

the denominator gives infinity: Γ(4/q − 2α − 1) = Γ(−1) = ∞, while other part is finite.

Therefore, the first term of the l.h.s. of eq. (2.2) vanishes. The second term is trivial to

evaluate and the equation is now reduced to

(q − 1)Abq−2 sgn(t12)

|t12|2
= ∂1δ(t12) . (2.10)

In order to determine the coefficient A, let us use the Fourier transform of the both hand

sides. For the l.h.s. , we use for example eq. (2.11) of [16]. However, the result is pro-

portional to Γ(0) = ∞, and the Fourier transform of the right-hand side of eq. (2.10) is

just −iω. Therefore, A = 0. Since we saw that from dimensional analysis, only possible

solution was Ψ(1) ∼ |t12|−4/q form, the conclusion is

Ψ(1)(t1, t2) = 0 . (2.11)

Here we have concluded that A = 0 started from the ansatz (2.7). However, for q = 2 case

we could take another type of ansatz: Ψ(1)(t1, t2) = Ã δ′(t12), where Ã is a t-independent

coefficient. This ansatz is antisymmetric and has the correct dimension when q = 2. Indeed,

this is the correct solution for Ψ(1) when q = 2, and we will present a detail analysis of this

ansatz in appendix B.2. Similarly, one might expect an ansatz Ψ(1)(t12) ∼ δ(t12) when q =

4, because this has the correct dimension. To make this ansatz antisymmetric, one has to

multiply sng(t12). However, now Ψ(1)(t12) ∼ sgn(t12)δ(t12), and this function is essentially

zero for all value of t12. Hence, we do not have any delta function type of ansatz for q = 4.

2.2 Homogeneous solution Ψ1

In the previous subsection, we concluded that Ψ(1) = 0. However, we recall that a general

solution of a non-homogeneous differential equation is given by a linear combination of

a specific non-homogeneous solution and a general corresponding homogeneous solution.

Therefore, a general solution for the non-homogeneous differential equation (2.2) is given by

Ψ(1) = Ψ(1) + Ψ1, where Ψ(1) is a specific non-homogeneous solution, which we concluded

– 8 –
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Ψ(1) = 0 in the previous subsection. In this subsection, we consider the corresponding

homogeneous differential equation:∫
dt3dt4K(t1, t2; t3, t4)Ψ1(t3, t4) = 0 , (2.12)

to determine Ψ1. This equation looks like a zero-mode equation. However, we can find

another mode which satisfies this equation. Since the r.h.s. of the equation (2.12) is zero,

we cannot determine the scaling dimension of Ψ1 a priori. Nevertheless, the dimension of

Ψ1 should be less than the scaling dimension of Ψ0. Hence, we use a general ansatz for Ψ1:

Ψ1(t1, t2) = B1
sgn(t12)

|t12|
2
q

+2s
, (2.13)

where B1 is a t-independent coefficient and s > 0. Now we are going to fix s by requiring

this ansatz solves the homogenous equation (2.12). The integral of the first term of l.h.s.

of eq. (2.12) is evaluated from eq. (2.9) with ∆ = 1− 1/q and α = s+ 1/q as

B1 b
2q−2 π2 cot

(
π
q

)
Γ
(

2
q − 1

)
sin
(
π
(

1
q + s

))
cos
(
π
(
s− 1

q

))
Γ
(

2
q + 2s

)
Γ
(

2− 2
q

)
Γ
(

2
q − 2s− 1

) sgn(t12)

|t12|2−
2
q

+2s
.

(2.14)

Hence, after a slight manipulation the l.h.s. of eq. (2.12) becomes∫
dt3dt4K(t1, t2; t3, t4)Ψ1(t3, t4) (2.15)

=(q−1)B1b
q−2

1− π Γ
(

2
q

)
q sin

(
π
(

1
q

+ s
))

cos
(
π
(
s− 1

q

))
Γ
(

2
q

+ 2s
)

Γ
(

3− 2
q

)
Γ
(

2
q
− 2s− 1

)
 sgn(t12)

|t12|2−
2
q
+2s

,

where we used eq. (2.5). Therefore, in order to determine s, we need to solve the equation

obtained by setting the inside of the bracket in r.h.s. to zero. A solution of this equation is

given by s = 1/2. We note that since the r.h.s. of the eq. (2.12) is zero, we cannot determine

the coefficient B1 from the equation. However, we will fix this coefficient B1 in section 2.5 by

relating Ψ1 to the dynamical collective coordinate action (1.13) found in the previous sec-

tion as we did in section 1.2. Hence, the expansion of the classical solution is now given by

Ψcl(t1, t2) = J
− 2
q

[
Ψ0(t1, t2) + J−1 Ψ1(t1, t2) + · · ·

]
, (2.16)

where

Ψ0(t1, t2) = b
sgn(t12)

|t12|
2
q

, Ψ1(t1, t2) = B1
sgn(t12)

|t12|
2
q

+1
. (2.17)

2.3 Evaluation of Ψ2

Now we would like to go further higher order term in the expansion of the classical solution.

This term is given by

Ψcl(t1, t2) = J
− 2
q

[
Ψ0(t1, t2) + J−1 Ψ1(t1, t2) + J−2 Ψ2(t1, t2) + · · ·

]
, (2.18)
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with

Ψ2(t1, t2) = B2
sgn(t12)

|t12|
2
q

+2
, (2.19)

where B2 is a t-independent coefficient. The dimension of Ψ2 is already fixed by Ψ1, so

what we need to do is just to fix the coefficient B2. Substituting the above expansion of the

classical field into the critical action Sc (1.6) and expanding it, one finds that the equation

determining Ψ2 is given by∫
dt3dt4K(t1, t2; t3, t4)Ψ2(t3, t4) (2.20)

= − [Ψ−1
0 ?Ψ1 ?Ψ−1

0 ?Ψ1 ?Ψ−1
0 ](t1, t2) − (q − 1)(q − 2)

2
Ψq−3

0 (t1, t2) Ψ2
1(t1, t2) ,

where the star product is defined by [A ? B](t1, t2) ≡
∫
dt3A(t1, t3)B(t3, t2). Now, we are

going to evaluate each term of this equation. For the first term in the l.h.s. is again given

by eq. (2.9) with ∆ = 1− 1/q and α = 1/q + 1 as

(l.h.s. 1st) = 2π B2 b
2q−2 q(q − 1)(3q − 2)

(q2 − 4) tan(πq )

sgn(t12)

|t12|4−
2
q

. (2.21)

For the first term of the r.h.s. , we need to use eq. (2.9) twice. First for the middle of the

term: Ψ1 ? Ψ−1
0 ? Ψ1, and then for the result sandwiched by the remaining Ψ−1

0 ’s. Then,

we have

(r.h.s. 1st) = −B2
1 b

3(q−1) 2π2q2(q − 1)(3q − 2)

(q − 2)2

sgn(t12)

|t12|4−
2
q

. (2.22)

The second terms in the l.h.s. and r.h.s. are trivially evaluated. Therefore, now one can

see that all terms have the same t12 dependence. Then, comparing their coefficients, we

finally fix B2 as

B2 = − B
2
1

b

(
q + 2

8q

)[
(q − 2) + (3q − 2) tan2

(
π

q

)]
. (2.23)

2.4 All order evaluation in q > 2

In this subsection, we extend our previous perturbative expansion of the classical solution

to all order contributions in the 1/J expansion. Because of the dimension of Ψ1 (2.17), the

time-dependence is already fixed for all order as in eq. (2.28). Therefore, we only need to

determine the coefficient Bn, and in this subsection we will give a recursion relation which

fixes the coefficients. However, we will not use this subsection’s result in the rest of the

paper, so readers who are interested only in the first few terms in the 1/J expansion (2.18)

may skip this subsection and move on to section 2.5. As we saw in section 2.2 and ap-

pendix B.2, the structure of the classical solution in q = 2 model is different from q > 2

case. In this subsection, we focus on q > 2 case.

We generalize the expansion (2.18) to all order by

Ψcl(t1, t2) = J
− 2
q

∞∑
m=0

J−m Ψm(t1, t2) . (2.24)
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Now, we substitute this expansion into the critical action Sc (1.6). As we saw before, the

kinetic term does not contribute to the perturbative analysis when q > 2; therefore, we

discard the kinetic term here. The contribution of the kinetic term will be recovered in

the full classical solution with correct UV boundary conditions. Hence, the saddle-point

equation is now formally written as

0 =

[ ∞∑
m=0

J−m Ψm(t1, t2)

]−1

+

[ ∞∑
m=0

J−m Ψm(t1, t2)

]q−1

. (2.25)

Using the multinomial theorem, each term can be reduced to polynomials of Ψm’s. Sub-

stituting these results into eq. (2.25) leads the saddle-point equation written in terms

polynomials with all order of 1/J expansion. From this equation, one can further pick up

order O(J−n) terms. For n = 0, it is the equation of Ψ0. Therefore, we consider n ≥ 1

case, which is given by

0 =
∑

k1+2k2+···=n

(−1)k1+k2+···
(k1 + k2 + · · · )!
k1!k2!k3! · · · ×

[
Ψ−1

0 ?
(

Ψ1 ?Ψ−1
0

)k1
?
(

Ψ2 ?Ψ−1
0

)k2
? · · ·

]
(t1, t2)

+
∑

k1+2k2+···=n

(q − 1)!

k0!k1!k2! · · · × Ψk0
0 (t1, t2) Ψk1

1 (t1, t2) Ψk2
2 (t1, t2) · · · , (2.26)

with k0 = q − (1 + k1 + · · · + kn−1). Let us consider this order O(J−n) equation more.

Because of the constraint k1 +2k2 + · · · = n, we know that kn+1 = kn+2 = · · · = 0. Also the

same constraint implies that kn = 0 or 1, and when kn = 1, then k1 = k2 = · · · = kn−1 = 0.

Therefore, it is useful to separate kn = 1 terms from kn = 0 ones. After this separation,

the order O(J−n) equation is reduced to a more familiar form:∫
dt3dt4K(t1, t2; t3, t4)Ψn(t3, t4) (2.27)

= −
∑

k1+2k2+···+(n−1)kn−1=n

(−1)k1+···+kn−1
(k1 + · · ·+ kn−1)!

k1! · · · kn−1!

×
[
Ψ−1

0 ?
(

Ψ1 ?Ψ−1
0

)k1
? · · · ?

(
Ψn−1 ?Ψ−1

0

)kn−1
]

(t1, t2)

−
∑

k1+2k2+···+(n−1)kn−1=n

(q − 1)!

k0!k1! · · · kn−1!
× Ψk0

0 (t1, t2) Ψk1
1 (t1, t2) · · · Ψ

kn−1

n−1 (t1, t2) ,

where k0 = q − (1 + k1 + · · · + kn−1). This is the equation which determines Ψn from

{Ψ0,Ψ1, · · · ,Ψn−1} sources. However, we already know the t12 dependence of Ψn(t1, t2).

Namely,

Ψn(t1, t2) = Bn
sgn(t12)

|t12|
2
q

+n
. (2.28)

Therefore, we only need to determine the coefficient Bn. Probably it is hard to evaluate

the star products in the r.h.s. of eq. (2.27) by direct integrations of t’s, and it is better to

use momentum space representations.

Ψm(t1, t2) = Bm

∫
dω

2π
e−iωt12 Ψm(ω) , (2.29)
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where we excluded the coefficient Bm from Ψm(ω) for later convenience, and Ψm(ω) =

Cm |ω|
2
q

+m−1
sgn(ω), with

Cm ≡ i 2
1−m− 2

q
√
π

Γ(1− 1
q −

m
2 )

Γ(1
q + m

2 + 1
2)
. (2.30)

With this definition of Cm, we can write the inverse of the critical solution as

Ψ−1
0 (t1, t2) =

∫
dω

2π
e−iωt12 Ψ−1

0 (ω) = − bq−1C2− 4
q

∫
dω

2π
e−iωt12 |ω|1−

2
q sgn(ω) . (2.31)

Now, we can evaluate each term in eq. (2.27) using these Fourier transforms. Then, every

term has the same ω integral; therefore, comparing the coefficients, one obtains

bq−2
[

(q − 1)C2+n− 4
q
− bq C2

2− 4
q

Cn

]
Bn

= −
∑

k1+2k2+···+(n−1)kn−1=n

(−1)k1+···+kn−1
(k1 + · · ·+ kn−1)!

k1! · · · kn−1!

×
(
− bq−1C2− 4

q

)k1+···+kn−1+1(
B1C1

)k1
· · ·
(
Bn−1Cn−1

)kn−1

−
∑

k1+2k2+···+(n−1)kn−1=n

(q − 1)!

k0!k1! · · · kn−1!
× bk0Bk1

1 · · ·B
kn−1

n−1 C2+n− 4
q
, (2.32)

with k0 = q− (1+k1 + · · ·+kn−1). This is the recursion relation which determines Bn from

{B1, B2, · · · , Bn−1}. Note that Cm’s are a priori known numbers as defined in eq. (2.30).

2.5 B1 from consistency condition

Now we can fix the so-far-unfixed coefficient B1 of Ψ1 from a consistency condition of the

equivalence of the two methods shown in section 1.2. This is done by evaluating the zero

mode eigenvalue shift explicitly. We will also give a comparison of our result of B1 with

the numerically approximated result found in [16].

Since the evaluation of the zero mode eigenvalue shift (1.22) is slightly technical, we

present a derivation in appendix C. Here, we simply give the result:

δk(ta, tb) = γ B1 ∂
2
a ∂

2
b δ(tab) , (2.33)

with

γ = −
tan(πq )

12πbq

[
2π(q − 1)(q − 2)

q sin(2π
q )

− (q2 − 6q + 6)

]
. (2.34)

Now we can fix B1 by equating the two results of the quadratic action of the collective

coordinates. From the result of δk, eq. (1.23) is reduced to

S2[ε] = − NB1γ

4J

∫
dt
(
ε′′(t)

)2
. (2.35)

On the other hand, in eq. (1.13), taking f(t) = t+ε(t) and from quadratic order of ε, we find

S2[ε] = − αN

48πJ

∫
dt
(
ε′′(t)

)2
. (2.36)
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Figure 1. The red line represents αG and the blue line represents the right hand side of eq. (2.40).

Equating the coefficients of the above two results, we obtain

B1 =
α

12πγ
=

8b(q − 1) cos2(πq )

2π(q − 1)(q − 2)− q(q2 − 6q + 6) sin(2π
q )

, (2.37)

where we used α = 1 − ε2 = 4(q − 1)/q2. We note that for q = 2, B1 = 0 and then the

recursion relation (2.32) implies Bn = 0 for all order. Therefore, the series of the q = 2

classical solution is triggered by a different solution as we discussed in appendix B.2.

Finally, we compare our result for B1 with the numerical result found in [16] . Their

αG is related to our B1 in the following way

αG
J

=
B1

bJ
, (2.38)

where their numerical approximated value of αG is

αG ≈
2(q − 2)

16/π + 6.18(q − 2) + (q − 2)2
. (2.39)

Since J =
√
q

2
q−1
1

J , we need to compare

αG =

√
q

2
q−1
2

B1

b
. (2.40)

The figure 1 shows the both hand sides of this equation. We can see that they agree very

well from q = 2 to q = 4.

3 Two-point function

In this section, we consider the bi-local two-point function:〈
Ψ(t1, t2)Ψ(t3, t4)

〉
, (3.1)

where the expectation value is evaluated by the path integral (1.4). After the Faddeev-

Popov prosedure and changing the integration variable as we discussed in section 1, this

two-point function becomes 〈
Ψf (t1, t2)Ψf (t3, t4)

〉
, (3.2)
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where now the expectation value is evaluated by the gauged path integral (1.10).

Now, we expand the bi-local field around the shifted background classical solution

Ψcl = Ψ0 + J−1Ψ1. Namely,

Ψ(t1, t2) = Ψ0(t1, t2) +
1

J
Ψ1(t1, t2) +

√
2

N
η(t1, t2) , (3.3)

where we have rescaled the entire field Ψ by J2/q, and η is a quantum fluctuation, but the

zero mode is eliminated from its Hilbert space. Therefore, the two-point function is now

decomposed as〈
Ψf (t1, t2)Ψf (t3, t4)

〉
=
〈

Ψcl,f (t1, t2)Ψcl,f (t3, t4)
〉

+
2

N

〈
η(t1, t2)η(t3, t4)

〉
. (3.4)

The second term in the r.h.s. is the bi-local propagator D determined by eq. (1.16), which

was already evaluated in I for q = 4 (and also in [14, 16]) as

D(t1, t2; t3, t4) = − sgn(t−t
′
−)

8

N
√
π

∞∑
m=1

∫
dω

e−iω(t+−t′+)

sin(πpm)

p2
m

p2
m + (3/2)2

(3.5)

×

[
J−pm(|ωt−|) +

pm + 3
2

pm − 3
2

Jpm(|ωt−|)

]
Jpm(|ωt′−|) ,

where pm are the solutions of 2pm/3 = − tan(πpm/2), and t± = (t1 ± t2)/2 and t′± =

(t3 ± t4)/2.

Therefore, in this section let us focus on the first term in the r.h.s. of eq. (3.4). Ex-

panding the classical field up to the second order, one has〈
Ψcl,f (t1, t2)Ψcl,f (t3, t4)

〉
(3.6)

=
〈

Ψ0,f (t1, t2)Ψ0,f (t3, t4)
〉

+
1

J

[〈
Ψ0,f (t1, t2)Ψ1,f (t3, t4)

〉
+

(
t1 ↔ t3
t2 ↔ t4

)]
+ · · · ,

where

Ψ0,f (t1, t2) =
∣∣∣f ′(t1)f ′(t2)

∣∣∣ 1q Ψ0(f(t1), f(t2)) ,

Ψ1,f (t1, t2) =
∣∣∣f ′(t1)f ′(t2)

∣∣∣ 1q+ 1
2

Ψ1(f(t1), f(t2)) . (3.7)

Now, we consider an infinitesimal reparametrization f(t) = t + ε(t). Then, the classical

fields are expanded as

Ψ0,f (t1, t2) = Ψ0(t1, t2) +

∫
dt ε(t)u0,t(t1, t2) + · · · ,

Ψ1,f (t1, t2) = Ψ1(t1, t2) +

∫
dt ε(t)u1,t(t1, t2) + · · · , (3.8)

where

u0,t(t1, t2) ≡
∂Ψ0,f (t1, t2)

∂f(t)

∣∣∣∣
f(t)=t

, u1,t(t1, t2) ≡
∂Ψ1,f (t1, t2)

∂f(t)

∣∣∣∣
f(t)=t

. (3.9)
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Therefore, in the quadratic order of ε, the classical field two-point function is now written

in term of the two-point function of ε. For later convenience, it is better to write down

this as momentum space integral as〈
Ψcl,f (t1, t2)Ψcl,f (t3, t4)

〉
(3.10)

=

∫
dω

2π
〈ε(ω)ε(−ω)〉

[
u∗0,ω(t1, t2)u0,ω(t3, t4) +

1

J

(
u∗0,ω(t1, t2)u1,ω(t3, t4) +

(
t1 ↔ t3
t2 ↔ t4

))
+ · · ·

]
.

Let us first evaluate the ε two-point function. The collective coordinate action is given

in eq. (1.13). Expanding f(t) = t + ε(t), the quadratic action of ε is given by eq. (2.36).

Hence, the two-point function in momentum space is

〈ε(ω)ε(−ω)〉 =
24πJ

αN

1

ω4
. (3.11)

One can also Fourier transform back to the time representation to get

〈ε(t1)ε(t2)〉 =
2πJ

αN
|t12|3 . (3.12)

Next, we evaluate u0 and u1. Taking the derivative respect to f(t), one obtains

u0,t(t1, t2) =
1

q

[
δ′(t1 − t) + δ′(t2 − t) − 2

(
δ(t1 − t)− δ(t2 − t)

t1 − t2

)]
Ψ0(t1, t2) ,

u1,t(t1, t2) =
2 + q

2q

[
δ′(t1 − t) + δ′(t2 − t) − 2

(
δ(t1 − t)− δ(t2 − t)

t1 − t2

)]
Ψ1(t1, t2)

=
(2 + q)B1

2b

u0,t(t1, t2)

|t12|
. (3.13)

After some manipulation, one can show that the momentum space expressions are given by

u0,ω(t1, t2) = − ib
√
π

q

|ω|
3
2 sgn(ωt−)

|2 t−|
2
q
− 1

2

eiωt+ J 3
2
(|ωt−|) ,

u1,ω(t1, t2) =
(2 + q)B1

4b

u0,ω(t1, t2)

|t−|
. (3.14)

Using the two-point function of ε and above u0 and u1 expressions, finally the two-point

function (3.4) up to order J0 is given by〈
Ψf (t1, t2)Ψf (t3, t4)

〉
=

3q2

(q − 1)N

[
J +

(2 + q)B1

4b

(
1

|t−|
+

1

|t′−|

)]∫
dω

ω4
u∗0,ω(t1, t2)u0,ω(t3, t4)

+ D(t1, t2; t3, t4) . (3.15)

What we have established therefore is the following. What one has is first the leading

“classical” contribution to the bi-local two-point function which usually factorizes, due to

the dynamics of the reparametrization symmetry mode. It now represents the leading ‘big’

contribution, as in [16], and a sub-leading one. This is followed by the matter fluctuations

given by the zero mode projected propagator of I [15].
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4 Finite temperature classical solution

Up to here, we have been considering only zero-temperature solutions in the SYK model. In

this section, we will determine the finite-temperature solutions Ψ1,β and Ψ2,β and evaluate

their contributions to the tree-level free energy.

As we saw in section 2, the 1/J expansion of the classical solution in the strongly

coupling region is given by

Ψcl(t1, t2) = J
− 2
q

[
Ψ0(t1, t2) + J−1 Ψ1(t1, t2) + J−2 Ψ2(t1, t2) + · · ·

]
, (4.1)

where

Ψ0(t1, t2) = b
sgn(t12)

|t12|
2
q

, Ψ1(t1, t2) = B1
sgn(t12)

|t12|
2
q

+1
, Ψ2(t1, t2) = B2

sgn(t12)

|t12|
2
q

+2
. (4.2)

In order to evaluate tree-level free energy, we first need finite-temperature versions of

these classical solutions. Ψ0 is the solution of the strict strong coupling limit, where the

model exhibits an emergent conformal reparametrization symmetry: t → f(t) with the

Ψ0 transformation (1.7). Therefore, to obtain the finite-temperature version of Ψ0, we

just need to use f(t) = β
π tan(πtβ ) with the above transformation [6]. This map maps the

infinitely long zero-temperature time to periodic thermal circle. Thus, this gives us

Ψ0,β(t1, t2) = b

[
π

β sin(πt12β )

] 2
q

sgn(t12) . (4.3)

Since Ψ1 and Ψ2 are the shifts of the classical solution from the strict IR limit, they

do not enjoy the reparametrization symmetry. Therefore, we cannot use the above method

to get their finite-temperature counterparts. However, we can obtain finite-temperature

solutions by mapping the zero-temperature solutions onto a thermal circle and summing

over all image charges:

Ψβ(t12) =

∞∑
m=−∞

(−1)m Ψβ=∞(t12 + βm) . (4.4)

By defining the finite-temperature solution by this way, the thermal two-point function (in

terms of the fundamental fermions) trivially satisfies the KMS condition. Of course, this

method works order by order in the 1/J expansion. Therefore, after separating positive m

and negative m and changing the labeling, one finds

Ψ1,β(t12) = B1

[ ∞∑
m=0

(−1)m

(βm+ t12)
2
q

+1
−

∞∑
m=1

(−1)m

(βm− t12)
2
q

+1

]
. (4.5)

The summations of m can be evaluated to give the Hurwitz zeta functions. However, this

form is more convenient for later evaluations of tree level free energy, so we stop here. In

the same way, we obtain finite-temperature Ψ2 as

Ψ2,β(t12) = B2

[ ∞∑
m=0

(−1)m

(βm+ t12)
2
q

+2
−

∞∑
m=1

(−1)m

(βm− t12)
2
q

+2

]
. (4.6)
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Figure 2. f0(y) and F0(y, q) with q = 2, 4, 1000 in the range of − 1
2 ≤ y ≤

1
2 .

In [16], Maldacena and Stanford found a first order shift of the classical solution in

finite-temperature through a numerical solution of the exact Schwinger-Dyson equation.

Therefore, let us compare our result of Ψ1,β with their result before we consider free energy.

The solution of [16] is shown in their eq. (3.122) reading:

δG(t1, t2)

Gc(t1, t2)
= − αG

βJ
f0(t12) , f0(t12) = 2 +

π − 2π|t12|
β

tan |πt12β |
. (4.7)

with the notation, Gc = Ψ0,β and δG = Ψ1,β . This thermal two-point function does not

satisfy the KMS condition; but as we will see below it gives a pretty good approximation.

It is more convenient to introduce a new variable

y ≡ |t12|
β
− 1

2
.

(
−1

2
≤ y ≤ 1

2

)
(4.8)

Then, we have

f0(y) = 2 + 2πy tan(πy) . (4.9)

Now, we can see that δG(y) is even function of y. This can be understood as a combination

of the following two anti-symmetries. (i) the two-point function is anti-symmetric under

t12 → t21. (ii) the two-point function is anti-symmetric under t1 → t1 +β, (or t2 → t2 +β).

We also note that

Gc(t1, t2) = Ψ0,β(t1, t2) = b

[
π

β cosπy

] 2
q

. (4.10)

Next, we consider our result of Ψ1,β . We can rewrite eq. (4.5) in the form of

Ψ1,β(t12) =
B1

β
2
q

+1

 ∞∑
m=0

(−1)m

(m+ t12
β )

2
q

+1
+

∞∑
m=0

(−1)m

(m+ 1− t12
β )

2
q

+1

 . (4.11)

Using an integral representation of the Hurwitz Zeta Function (for example, see 25.11.35

of [28]), one can see that indeed our result is also even function of y. We can also perform
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the summation in eq. (4.11) directly to get

Ψ1,β(t12)=
B1

(2β)
2
q +1

[
ζ

(
2

q
+1,

1

4
+
y

2

)
+ζ

(
2

q
+1,

1

4
− y

2

)
−ζ
(

2

q
+1,

3

4
+
y

2

)
−ζ
(

2

q
+1,

3

4
− y

2

)]
.

(4.12)

Therefore, together with eq. (4.10), we have

Ψ1,β(t12)

Ψ0,β(t12)
=

B1

2(2π)
2
q bβ

[
ζ

(
2

q
+ 1,

1

4

)
− ζ

(
2

q
+ 1,

3

4

)]
× F0(y, q) , (4.13)

where

F0(y, q) ≡ (cosπy)
2
q

ζ
(

2
q

+ 1, 1
4

+ y
2

)
+ ζ

(
2
q

+ 1, 1
4
− y

2

)
− ζ

(
2
q

+ 1, 3
4

+ y
2

)
− ζ

(
2
q

+ 1, 3
4
− y

2

)
ζ
(

2
q

+ 1, 1
4

)
− ζ

(
2
q

+ 1, 3
4

)
 .

(4.14)

Here, we adjusted the normalization of F0 so that F0(y = 0, q) = 2 = f0(y = 0). A

numerical plots are given in figure 2, where we plotted f0(y) and F0(y, q) with q = 2, 4, 1000.

We can see that for any value of q, F0 is pretty close to f0 in all range of y.

4.1 Tree-level free energy

Now we use our finite-temperature solutions to determine their contributions to the tree-

level free energy. The order (βJ)0 contribution to the tree-level free energy, which comes

from Sc[Ψ0,β ], was already evaluated in [6, 16, 18]. Therefore in this section, we will

evaluate higher order contributions of the 1/βJ expansion to the tree-level free energy.

4.1.1 Contribution from S[f ]

The action of the collective time coordinate was evaluated in appendix A by using ε-

expansion with q = 2/(1− ε). The result is given by eq. (1.13). Now, we use the classical

solution: f(t) = β
π tan(πtβ ). Then, the integral can be evaluated to give 2π2/β. Therefore,

the S[f ] contribution to the tree-level free energy is

βF(0) = −π(1− ε2)

12

N

βJ
. (4.15)

Equivalently, this can be written as

logZ(0) = −βF(0) =
c

2β
, where c ≡ π(1− ε2)

6

N

J
. (4.16)

For q = 4 (ε = 1/2), we find c = (π/8) × (N/J) ≈ 0.393 × N/J , which agrees very well

with the value found in [16].

4.1.2 Contribution from Ψ1,β

Now we evaluate the contribution to tree-level free energy from the kinetic term of Ψ1,β :

S[Ψ1,β ] =
N

2J2

∫ β

0
dt1

[
∂1Ψ1,β(t1, t2)

]
t2→t1

. (4.17)
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Substituting the solution (4.5) into this kinetic term, the contribution to free energy is

given by

βF(0) =
NB1

2J2

[
∞∑
m=0

(−1)m
∫ β

0

dt1

[
∂1

1

(βm+ t12)2−ε

]
t2→t1

−
∞∑
m=1

(−1)m
∫ β

0

dt1

[
∂1

1

(βm− t12)2−ε

]
t2→t1

]
,

(4.18)

where we used q = 2/(1− ε). Then, we use ε-expansion to evaluate the limit and integral.

First, to make sure the contribution has the correct dimension, we rewrite the integrand as

1

(βm± t12)2−ε ≈
1

β2m2

1

(1± t12
βm)2−ε . (4.19)

We are interested in low temperature expansion (β � t12). Therefore, together with

ε-expansion, we have

1

(1± t12
βm)2−ε =

1

(1± t12
βm)2

× exp

[
ε log

(
1± t12

βm

)]
= 1 ∓ (2− ε)

βm
t12 + · · · . (4.20)

Therefore, now the limit and derivative in the free energy can be evaluated to lead

βF(0) =
NB1(2− ε)

(βJ)2

∞∑
m=1

(−1)m+1

m3
=

3(2− ε)B1ζ(3)

4

N

(βJ)2
. (4.21)

We note that for q = 2, B1 = 0. Therefore, this agrees with the result (B.14) in

appendix B.3. The delta function type of solution for Ψ(1) in q = 2 model does not have

any non-zero finite contribution to the free energy.

Now we evaluate the contribution to tree-level free energy from the critical action

Sc[Ψ1,β ]. The critical action is given by eq. (1.6). Substituting the expansion of the

classical field (4.1) into this critical action, one can find two terms in O(J−1) and four terms

in O(J−2). The order O(J−1) contribution is zero, due to the equation of motion of Ψ0.

Next, among the order O(J−2) contributions, two terms proportional to Ψ2 are canceled

each other due to the Ψ0 equation of motion again. The other terms can be written as

− N

4J2

∫
dt1dt2dt3dt4 Ψ1(t1, t2)K(t1, t2; t3, t4) Ψ1(t3, t4) = 0 . (4.22)

This contribution is again zero due to the equation of motion of Ψ1.

4.1.3 Contribution from Ψ2,β

Now, we consider the kinetic term of Ψ2,β :

S[Ψ2,β ] =
N

2J3

∫ β

0
dt1

[
∂1Ψ2,β(t1, t2)

]
t2→t1

. (4.23)

This evaluation is completely parallel to the one with Ψ1,β . The contribution to free

energy is

βF(0) =
NB2

2J3

[
∞∑
m=0

(−1)m
∫ β

0

dt1

[
∂1

1

(βm+ t12)3−ε

]
t2→t1

−
∞∑
m=1

(−1)m
∫ β

0

dt1

[
∂1

1

(βm− t12)3−ε

]
t2→t1

]
.

(4.24)
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Again, we expand the integrand as in eqs. (4.19) and (4.20), and the free energy is now

given by

βF(0) =
NB2(3− ε)

(βJ)3

∞∑
m=1

(−1)m+1

m4
=

7(3− ε)π4B2

720

N

(βJ)3
. (4.25)

Now we evaluate the contribution to tree-level free energy from the critical action

Sc[Ψ2,β ]: we again expand Sc[Ψcl] with the expansion of the classical solution (4.1). For

the order O(J−3), one finds six terms. Two terms proportional to Ψ3 are cancels each

other due to the Ψ0 equation of motion. Using the equation of motion for Ψ2, the other

four terms can be combined as

βF(0) =
2N

3J3

∫ β

0
dt1dt2dt3dt4 Ψ2(t1, t2)Kβ(t1, t2; t3, t4) Ψ1(t3, t4) . (4.26)

For q > 2 case, this is zero due to the Ψ1 equation of motion. However, when q = 2, the

equation of Ψ1 has the delta function source term. Therefore, using this we can rewrite

the contribution as

βF(0) = − 2N

3J3

∫ β

0
dt1

[
∂1Ψ2,β(t1, t2)

]
t2→t1

= − 7π4B2

180

N

(βJ)3
. (q = 2, ε = 0)

(4.27)

In the last step, we used the result of the kinetic term of Ψ2,β . Combining with the kinetic

term contribution, for q = 2 the total contribution to order O(J−3) free energy is

βF(0) = − 7π4B2

720

N

(βJ)3
=

7π3

2880

N

(βJ)3
, (q = 2) (4.28)

where we used B2 = −1/4π for q = 2. This result completely agrees with eq. (B.14).

4.1.4 Summary

Up to here, we have the following perturbative result for tree-level free energy.

βF(0)/N=− π

12βJ
+

7π3

2880

1

(βJ)3
+ · · · , (q = 2) (4.29)

βF(0)/N=−(1−ε2)π

12βJ
+

3(2−ε)B1ζ(3)

4

1

(βJ)2
+

7(3−ε)π4B2

720

1

(βJ)3
+· · · . (q > 2) (4.30)

5 Conclusion

In the present paper we have in the framework of the formulation given in (I) performed

perturbative calculations in the SYK model around the conformal IR point. These cal-

culations are systematic in the inverse of the strong coupling J . We are able to present

analytical calculations through the use of a suitably defined ε expansion representing a

perturbation around the exactly solvable q = 2 case. It turned out that in a number of

quantities (most notably the coefficient of the Schwarzian action S[f ]) this expansion trun-

cates. Our analytical calculations, for all quantities considered, agreed within the margin

of error with the numerical evaluations of [16]. It will be interesting to perform further
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analytical calculations in this strong coupling expansion, with further comparison with

improved numerical calculations. Also, the present calculations are done at tree level in

1/N . The formalism that we have given allows for loop level calculations with no difficulty,

due to projection of the zero mode the perturbation expansion is well defined, while the

Jacobian(s) of the changes of variables provide exact counter terms which are expected to

cancel infinities appearing in loop diagrams.

These higher order calculations and further detailed study of the model will be of

definite usefulness regarding the question of the exact AdS2 Gravity dual representing

this theory. A class of dilation Gravities related to the models developed by Almheiri and

Polchinski [17] shows features contained in SYK model [18–21]. The representation that we

have given with exact action featuring interaction between the dynamical (time) coordinate

and bi-local matter is the system that one might hope to recover from the corresponding

AdS2 theory.
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A ε-expansion for general q

In this appendix, we will give a derivation of the Schwarzian action (1.13) for general q.

This is done by using ε-expansion with q = 2/(1− ε) and treating ε as a small parameter.

We note that for any q in the range of 2 ≤ q ≤ ∞, the value of ε is 0 ≤ ε ≤ 1. Therefore,

the convergence of this ε-expansion is guaranteed. Even though we use the ε-expansion,

we can nevertheless calculate all order contributions of ε as we will see below. We first

rewrite the critical solution in the following way:

Ψ0,f (t1, t2) = − 1

πJ

(√
|f ′(t1)f ′(t2)|
|f(t1)− f(t2)|

)
(A.1)

×

1− ε log

(√
|f ′(t1)f ′(t2)|
|f(t1)− f(t2)|

)
+
ε2

2

(
log

√
|f ′(t1)f ′(t2)|
|f(t1)− f(t2)|

)2

+ · · ·

 ,
where the first term is the contribution from q = 2 case, which leads to the result eq. (1.13)

with α = 1. To evaluate higher order ε contributions, we use the following expansions of

the logarithm in the t1 → t2 limit:

log

(√
|f ′(t1)f ′(t2)|
|f(t1)− f(t2)|

)
= − log |t1−t2| −

1

8

|f ′′(t2)|2

|f ′(t2)|2
|t1−t2|2 +

1

12

|f ′′′(t2)|
|f ′(t2)|

|t1−t2|2 + · · · .

(A.2)

The first log term gives an f -independent divergent term which we will eliminate in the

following. One also expands the factor representing q = 2 reparametrized critical solution
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and then one finds O(ε) = 0. For order O(ε2) contribution, from eq. (A.2), one can find

O(ε2) = − Nε
2

4πJ

∫
dt1 ∂1

[(
1

4

|f ′′(t2)|2

|f ′(t2)|2
− 1

6

|f ′′′(t2)|
|f ′(t2)|

)
|t1 − t2| log |t1 − t2|

]
t2→t1

=
Nε2

24πJ

∫
dt1

[
f ′′′(t1)

f ′(t1)
− 3

2

(
f ′′(t1)

f ′(t1)

)2
]
, (A.3)

where we again eliminated the divergence term and used integration by parts. Hence, the

total contribution up to O(ε2) for q = 2/(1− ε) action is given by

S[f ] = − Nα

24πJ

∫
dt

[
f ′′′(t)

f ′(t)
− 3

2

(
f ′′(t)

f ′(t)

)2
]
, (A.4)

where

α(ε) = 1 − ε2 + O(ε3) . (A.5)

In fact, there is no higher order contributions from O(ε3), and the expression for α in

eq. (A.5) is exact for all order of ε. Namely, α(ε) = 1 − ε2. This can be seen from an

expansion(
log

√
|f ′(t1)f ′(t2)|
|f(t1)− f(t2)|

)n
(A.6)

=
(
− log |t1 − t2|

)n
− n

(
1

8

|f ′′(t2)|2

|f ′(t2)|2
− 1

12

|f ′′′(t2)|
|f ′(t2)|

)
|t1 − t2|2

(
− log |t1 − t2|

)n−1

+ · · · .

This expansion together with the expansion of q = 2 reparametrized critical solution does

not give any non-zero finite contribution to the action after the limit when n ≥ 3. Namely,

the (log |t1 − t2|)n factor gives a strong divergence when n is large. However, if one wants

to lower the power of this logarithm, then one gets a higher power of |t1 − t2|n, which

strongly vanishes after setting t2 = t1. Therefore, we don’t have O(ε3) order contributions

and α = 1−ε2 is exact. Finally, we comment that our exact analytical results, for example,

α = 1 (q = 2) and α = 3/4 (q = 4) agree very well with the numerical results found in [16].

B q = 2 model

B.1 Exact classical solution

In section 2, we considered a shift of the classical solution from the critical IR point for a

general even integer q case. However, for q = 2 case the problem becomes very easy and

we can indeed obtain the exact classical solution as discussed in [16], which is valid for any

region from UV to IR.

The exact classical solution is determined by the saddle-point equation of the collective

action (1.5):

∂1 δ(t12) = Ψ−1
cl (t1, t2) + J2 Ψq−1

cl (t1, t2) . (B.1)

This equation can be solved exactly when q = 2. Using the Fourier transform defined as

in eq. (2.29), the exact solution is given by

Ψcl(ω) =
−iω + i sgn(ω)

√
ω2 + 4J2

2J2
= − 2

iω + i sgn(ω)
√

4J2 + ω2
. (B.2)
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The expansion of this exact solution in the strong coupling region J/ω � 1 is given by

Ψcl(ω) = − iω

2J2
+
i sgn(ω)

J

(
1 +

ω2

8J2
+ · · ·

)
. (B.3)

We can also go back to the bi-local time representation by the Fourier inverse transforma-

tion as

Ψcl(t1, t2) =
δ′(t12)

2J2
+

1

πJt12
− 1

4π(Jt12)3
+ · · · . (B.4)

B.2 Perturbative classical solution

Even though we know the exact solution for q = 2 model, we can also obtain the expan-

sion (B.4) of the exact solution by the perturbative analysis we did in section 2, and this

is what we will do in this subsection.

As we described in section 2.2, Ψ(1)(t12) ∼ |t12|−4/q type of solution does not exist for

any q. However when q = 2, we could have another type of ansatz:

Ψ(1)(t1, t2) = Ã1 δ
′(t12) , (B.5)

where Ã1 is a t-independent coefficient. This ansatz is antisymmetric and has the correct

dimension when q = 2. Therefore, let us start to analyze whether this ansatz satisfies

eq. (2.2): ∫
dt3dt4K(t1, t2; t3, t4)Ψ(1)(t3, t4) = ∂1δ(t12) , (B.6)

with the kernel

K(t1, t2; t3, t4) = Ψ−1
0 (t1, t3)Ψ−1

0 (t2, t4) + δ(t13)δ(t24) . (B.7)

For this purpose, it is convenient to use momentum space representation. The Fourier

transforms give us∫
dt3dt4K(t1, t2; t3, t4)Ψ(1)(t3, t4) = −i

∫
dω

2π
e−iωt12 2Ã1ω . (B.8)

Also expressing the r.h.s. of eq. (B.6) in momentum representation, one finds Ã1 = 1/2.

This agrees with the expansion of the exact solution (B.4).

Let us keep going this perturbative evaluation. For Ψ(2) we have an ansatz:

Ψ(2)(t1, t2) = Ã2
sgn(t12)

|t12|3
, (B.9)

where Ã2 is a t-independent coefficient. Then, we study eq. (2.20) to fix the coefficient Ã2.

Note that the second term in the r.h.s. is absent for q = 2. To evaluate the equation, we

again use Fourier transform. Then, we can obtain∫
dt3dt4K(t1, t2; t3, t4)Ψ(2)(t3, t4) = −iπÃ2

∫
dω

2π
e−iωt12 ω2 sgn(ω) , (B.10)
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and

− [Ψ−1
0 ?Ψ(1) ?Ψ−1

0 ?Ψ(1) ?Ψ−1
0 ](t1, t2) =

i

4

∫
dω

2π
e−iωt12 ω2 sgn(ω) . (B.11)

Therefore, now the coefficient is fixed as Ã2 = −1/4π. This again agrees with the expansion

of the exact solution (B.4). We expect that higher order perturbative calculation results

will also agree with the expansion of the exact solution. As we explained in section 2.2, the

delta function type ansatz for Ψ(1) is only available when q = 2. Also from the analysis in

section 2.5, we saw that B1 = 0 when q = 2, which implies Bn = 0 for all order. Therefore,

in this sense the expansion of the classical solution of q = 2 model is a different series from

that of q > 2 model.

B.3 Tree-level free energy

In [16], Maldacena and Stanford computed the exact tree-level free energy of q = 2 model

using the free fermion picture. The result is given in eq. (2.34) of [16]. We want to give

an expression for the low temperature (βJ � 1) expansion of this free energy. This can be

done as follows. First, we expand the logarithm by Taylor series, because βJ � 1. Then,

the θ integral is now given by the modified Struve function

logZ/N = − 1

2βJ

∞∑
n=1

(−1)n+1

n2
M1(2βJn) . (B.12)

Using the large argument expansion of the modified Struve function (for example, see 11.6.2

of [28]), one finds

logZ/N =
1

πβJ

∞∑
n=1

(−1)n+1

n2
− 1

4π(βJ)3

∞∑
n=1

(−1)n+1

n4
− 3

16π(βJ)5

∞∑
n=1

(−1)n+1

n6
+ O

(
(βJ)−7

)
.

(B.13)

After evaluating the summations, the low temperature expansion of the free energy is

given by

logZ/N =
π

12βJ
− 7π3

2880

1

(βJ)3
− 31π5

161280

1

(βJ)5
+ O

(
(βJ)−7

)
. (B.14)

C Explicit integrations of δk

In this subsection, we explicitly evaluate the integrals of δk in eq. (1.22):

δkt δ(t− t′) =

∫
dt1dt2dt3dt4 u0,t(t1, t2) δK(t1, t2; t3, t4)u0,t′(t3, t4) , (C.1)

where the zero mode u0,t is given in eq. (3.13). For the integrals in eq. (C.1), it is more

convenient to use the momentum representation of this zero mode:

u0,t(t1, t2) =

∫
dω

2π
e−iωt u0,ω(t1, t2) , (C.2)
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where

u0,ω(t1, t2) =
1

q

[
iω
(
eiωt1 + eiωt2

)
− 2

(
eiωt1 − eiωt2

t1 − t2

)]
Ψ0(t1, t2) . (C.3)

After some manipulation, one can obtain the expression given in eq. (3.14), which we will

use in the following calculation. Next, we consider the shift of the kernel δK defined in

eq. (1.21). The explicit form is given by

δK(t1, t2; t3, t4) = −
∫
dtadtb Ψ−1

0 (t1, ta) Ψ(1)(ta, tb) Ψ−1
0 (tb, t3) Ψ−1

0 (t2, t4)

−
∫
dtadtb Ψ−1

0 (t1, t3) Ψ−1
0 (t2, ta) Ψ(1)(ta, tb) Ψ−1

0 (tb, t4)

+ (q − 1)(q − 2) δ(t13) δ(t24) Ψq−3
0 (t1, t2) Ψ(1)(t1, t2) . (C.4)

It’s useful to perform the ta and tb integrals first of all. For these integrals, we again use

eq. (2.9). Then, now we can write the shift of the kernel as

δK(t1, t2; t3, t4) = − 2πq(q − 1)B1b
3q−3

(q − 2) tan(πq )

[
sgn(t13) sgn(t24)

|t13|3−
2
q |t24|2−

2
q

+ (t13 ↔ t24)

]

−B1b
q−3(q − 1)(q − 2)δ(t13)δ(t24)

1

|t12|3−
4
q

. (C.5)

We denote the first line in the r.h.s. as δK(1) and the second line as δK(2). These are

analog of what called “rail” and “rung” in [16], respectively. The contribution to δk from

the second line is easily evaluated. Using the Fourier transform for the zero modes, we have

δk(2)(ta, tb) = −B1b
q−3(q − 1)(q − 2)

∫
dωdω′

(2π)2
eiωta−iω

′tb

∫
dt1dt2

u∗0,ω(t1, t2)u0,ω′(t1, t2)

|t12|3−
4
q

.

(C.6)

The t1, t2 integrals are evaluated by changing the integral variables to t± = (t1 ± t2)/2 as

follows.∫
dt1dt2

u∗0,ω(t1, t2)u0,ω′(t1, t2)

|t12|3−
4
q

=
π2b2

q2
|ω|3 δ(ω − ω′)

∫
dt−
|t−|2

J 3
2
(|ωt−|) J 3

2
(|ωt−|)

=
πb2

q2
ω4 δ(ω − ω′) . (C.7)

Substituting this result into eq. (C.6), one finds

δk(2)(ta, tb) = − B1b
q−1(q − 1)(q − 2)

2q2
∂2
a ∂

2
b δ(tab) . (C.8)

The contribution from the first line is more involved, but can be evaluated (for example,

see appendix.E of [16]). After evaluating the integrals, the total contribution is given by

δk(ta, tb) = γ B1 ∂
2
a ∂

2
b δ(tab) , (C.9)
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with

γ = −
tan(πq )

12πbq

[
2π(q − 1)(q − 2)

q sin(2π
q )

− (q2 − 6q + 6)

]
. (C.10)

This result is used in section 2.5 to fix the coefficient B1 of Ψ1 together with the consistency

condition.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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