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1 Introduction

Certain conformal field theories that come in families defined by an integer N simplify in

the large-N limit. Notable examples are theories that can be described by weakly coupled

gravities via the holographic duality and O(N) vector models. The latter are deformations

of N massless free field theories. The deformation is called by abuse of term “double

trace.” It is defined as λNO2, with O = C
∑N

a=1 φ
aφa (for bosons) or O = C

∑N
a=1 ψ̄

aψa

(for fermions). Choosing C = O(1/N) the correct large-N scaling for the coupling λ of the

double-trace perturbation is λ = O(N0).

The deformed O(N) models are particularly interesting in three spacetime dimensions.

The deformation of the bosonic model is relevant and flows to a nontrivial infrared fixed

point [1, 2]. The deformation of the fermionic model is irrelevant, so non-renormalizable by

power counting. Nevertheless, a UV fixed point is believed to exist in the large-N limit [3–

6] and even at finite N .1 Both models can be solved exactly by using a method that easily

generalizes to the case of adjoint theories with holographic semiclassical gravity duals. In

the context of holographic duality, the correct treatment of multi-trace perturbations was

explained in [8] and further simplified in [9]. The analysis of [9] was further extended and

1See [7] for a recent review of evidence in favor of the existence of a UV fixed point.

– 1 –



J
H
E
P
1
1
(
2
0
1
6
)
0
4
0

generalized beyond AdS/CFT holography in [10]. We will review the results of [9, 10] —

for completeness and to fix notations and normalizations — in section 2.

The rediscovery of multi-trace perturbations in the context of AdS/CFT duality makes

clear that they can be studied exactly in an appropriately defined large-N limit,2 even when

the CFT is not free and the operator O has arbitrary conformal dimension ∆. A feature

of the exact solution of the deformed model is that, at the fixed points, the conformal

dimension of a deformation which is the product of primary fields O1, ...Om is the sum

of the individual dimensions ∆ = ∆1 + ... + ∆m, but the dimensions of the individual

operators at the two fixed points (UV and IR) are in general different.

The possibility of solving the deformed model raises several interesting questions, which

we shall try to answer in this paper. One such question arises already in the case of a double-

trace deformation O2 when 2∆ > d in d spacetime dimensions. In this case the deformation

is irrelevant in the IR, that is non renormalizable by power counting. Nevertheless the exact

solution of the deformed model at large “N” has a UV fixed point. A difficult question

is whether this UV fixed point exists at finite N . A simpler one is whether the fixed

point can be connected to the IR by a physical renormalization group (RG) flow. By

“physical” we mean the following: the deformed theory has both an IR and a UV fixed

point; therefore, it defines a field theory valid at all energies. The theory is thus a UV

complete one rather than merely an effective field theory, valid only up to a maximum

energy scale. To qualify as a “physical” this theory must be free of tachyons and ghosts.

Of course an “unphysical” theory, plagued by ghosts or tachyons, can still have physical

UV or IR fixed points. We will see several examples of such behavior in section 3. Such

theory may also describe an interesting statistical mechanics system, but not a relativistic,

local field theory. We call an RG flow “physical” when it is generated by a deformation

that produces a physical relativistic field theory. Ref. [8] shows that the RG flow due to

the double trace perturbation O2 connects a fixed point where the scaling dimension of O

is ∆+ = d/2 + ν to one where the dimension is ∆− = d/2− ν. In the range 0 < ν < 1 both

dimensions satisfy the unitarity bound ∆ ≥ d/2 − 1. Outside the range, ∆− violates the

unitarity bound, so the RG flow should be pathological. This turns out to be the case: the

pathology shows up in a particular UV completion of the theory because of the presence

of unphysical poles in the two-point function of the operator O [11].

We will recover this pathology in section 3, where we will refine the analysis of

refs. [11, 12] by giving a complete Källen-Lehmann representation of the two-point cor-

relator 〈O(x)O(0)〉. Section 3 will also study the case ν = 1, which is perhaps the most

intriguing of all double-trace perturbations for CFTs that are dual to semiclassical gravity

theories. Their bulk dual contains a scalar, Φ, with squared mass (mL)2 = −d2/2 + 1

(L=AdS radius). The standard quantization of such bulk theory associates to the bulk

scalar Φ an operator O of dimension d/2 + 1. The RG flow, if it existed, would end in a

theory where O had dimension d/2−1, which therefore would saturate the unitarity bound.

In a unitary CFT any operator saturating the unitarity bound must be a free field [13].3

2Here N denotes the order of magnitude of the number of degrees of freedom in the unperturbed CFT.

In even dimensions it is given, at least parametrically, by the coefficient of a conformal anomaly.
3See also [14], and [15] for a recent review.
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This free field should come from a different identification of sources and VEVs in a theory

with the same near-boundary behavior of the scalar field and the same bulk action [16].

On the other hand, a standard scalar action does not carry the singleton representation

corresponding to a free scalar [17].4 So, an obvious question to ask is whether the flow

induced by the “extremal” double trace perturbation O2, with O of dimension d/2 + 1,

is physical all the way up to the UV and really terminates in a free-field fixed point. We

will be able to answer this question (in the negative) at the end of section 3. Final re-

marks on operator mixing and connections to other papers on double-trace perturbations

— in section 4 — and an appendix summarizing the AdS/CFT holographic description of

multi-trace perturbations conclude the paper.

2 Multi trace deformations

As a warm-up example of multi-trace deformations let us consider the interacting O(N)

vector model. In three dimensions it was conjectured to be the holographic dual of AdS4

high spin theories in [19]. Its action is

ICFT =

∫
ddx

N∑
a=1

(
1

2
(∂φa)2 +

λ

2N
(φaφa)2

)
, λ > 0. (2.1)

The deformation is relevant in dimension d < 4.

This action can be expressed in terms of the bilinear φaφa by introducing an auxiliary

field Σ:

ICFT =

∫
ddx

N∑
a=1

(
1

2
(∂φa)2 + λ(φaφa)Σ− 1

2
NλΣ2

)
(2.2)

in which the expectation value 〈Σ〉 = 〈
∑N

a=1N
−1φaφa〉 is formally O(N0), i.e. finite in

the large-N limit. Integrating out Σ one recovers action (2.1); integrating out φa and

discarding a Σ-independent constant, one obtains instead a non-local action for Σ

S[Σ] =
N

2
log det

[
−∂2/2 + λΣ

]
− Nλ

2

∫
ddxΣ2 ≡ Ns[Σ]. (2.3)

The “intensive” action s[Σ] is independent of N . The generator of connected correlators

of the operator
∑N

a=1 φ
aφa, W [J ] ≡ Nw[J ] is defined by

Z[J ] = eNw[J ] =

∫
[dΣ] exp

[
−N

2
log det

[
−∂2/2 + λΣ− J

]
+
Nλ

2

∫
ddxΣ2

]
. (2.4)

It is convenient to define an effective action γλ[O], independent of N up to terms O(1/N),

as the Legendre transform of w[J ]:

γλ[O] =

∫
ddxOJ − w[J ], O(x) =

δw

δJ(x)
. (2.5)

4A dipole action for the singleton on a fixed AdS4 background was proposed in [18]. The action is

quadratic and propagates no degrees of freedom in the bulk.
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In the large-N limit the integration over Σ in eq. (2.4) reduces to computing a saddle point.

Therefore, the effective action is

γλ[O] =

∫
ddxJO +

1

2
log det

[
−∂2/2 + λΣ

]
− λ

2

∫
ddx(Σ + J/λ)2, (2.6)

computed at the stationary point in J and Σ. By computing first the stationary point in

J , it is easy to find that effective action of the deformed O(N) model is

γλ[O] = γ0[O] +
λ

2

∫
ddxO2. (2.7)

So, the effect of the deformation is additive in the effective action. Notice that this result

follows simply from the fact that at large N the integral in Σ can be evaluated using the

saddle point approximation.

As we mentioned before, W [J ] = Nw[J ] generates connected correlators of the op-

erator
∑N

a=1 φ
aφa, which are all O(N). This is another manner of checking that w[J ] is

independent of N in the large-N limit. Notice that the field O appearing in the free energy

is the expectation value of the normalized operator
∑N

a=1N
−1φaφa, which differs from the

operator sourced by J by the normalization factor N−1.

We see that the double-trace perturbation is additive in the effective action at lead-

ing order in 1/N . This simple result generalizes easily to any multi-trace deformation

NU(
∑N

a=1N
−1φaφa), when the function U(x) is independent of N [20], and to any theory

admitting a large-N limit [10].

In fact, in all theories with an effective action O(N∗), with O normalized to be O(1),

the perturbation
∫
ddxN∗U(O) shifts the effective action from the unperturbed value Γ =

N∗γ(O) to ΓU (O) ≡ N∗γ(O) +
∫
ddxN∗U(O). Here N∗ is a (large) number counting the

effective degrees of freedom of the theory. In even dimensions, this is proportional to the

coefficient one of the the conformal anomalies. For O(N) vector models N∗ = N while

for CFTs with fields in the adjoint representation of a rank-N algebra, such as those that

possess holographic duals N∗ = O(N2).

To prove additivity of the multi-trace perturbation we begin by writing the Feynman

integral representation of the free energy in Lorentzian signature, using the functional

Fourier transform of the Dirac delta function. We will denote by φ the fundamental fields

of the CFT and we will use the notation < A,B >≡
∫
ddxA(x)B(x) henceforward.

exp(−iW [J ]) =

∫
[dφdtdΩ] exp [+iI[φ]−i <N∗, U(Ω)>−iN∗ <J,Ω>+i <t,Ω−O[φ]>] .

(2.8)

The composite operator O[φ] is normalized so that 〈O[φ]〉 = O(1) for N∗ � 1. The

functional Fourier transform∫
[dJ ] exp(−iW [J ] + iN∗ < J,O >) ≡ exp(iΓU [O]), (2.9)

defines the functional ΓU [O] in the perturbed theory in terms of the unperturbed functional

Γ[O] as

exp(iΓU [O]) =

∫
[dφ] exp [iI[φ]−i<N∗, U(O)>] δ[O−O[φ]] = exp(iΓ[O]−i <N∗, U(O)>).

(2.10)
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So far all manipulations have been formal, but exact in N∗. In the large N∗ limit, any

theory in which the free energy is W [J ] = N∗w[J ] + O(1), with w[J ] independent of N∗,

possesses two additional properties: 1) Γ[O] = N∗γ[O] + O(1), with γ[O] independent of

N∗; 2) γ[O] is the Legendre transform of w[J ]. The first property is obvious and the second

follows from the saddle-point approximation of the functional integral (2.9). The second

property also identifies Γ[O]U with the effective action of the perturbed theory and Γ[O]

with the effective action of the unperturbed theory.

3 Two-point functions of double trace perturbations and their Källen-

Lehmann representation

Consider an operator O of general conformal dimension ∆ = d/2 + ν. Unitarity requires

∆ ≥ d/2 − 1 (i.e. ν ≥ −1); when the bound is saturated, ∆ = d/2 − 1, O is necessarily

free [13] (see also [14, 15]).

Without any deformation, the connected two-point function of O is

〈O(x)O(0)〉 =
K

|x|2(d/2+ν)
≡ KGν(|x|). (3.1)

The positive pre-factor K is O(1/N∗), when the operator O is normalized as in the pre-

vious section. In momentum space, defining Õ(k) =
∫
ddxe−ik·xO(x), the two-point func-

tion is [16]

〈Õ(k)O(0)〉 = KG̃ν
(
k2
)

= KC

(
k2

4

)ν
(3.2)

for non-integer ν. The coefficient C = πd/2Γ(−ν)/Γ(ν+d/2) is negative for ν ∈ (2m, 2m+1)

(in particular 1 > ν > 0) and positive for 0 > ν ≥ −1 and ν ∈ (2m+ 1, 2m+ 2), m ∈ Z.

The cases where ν ∈ Z+ need to be considered separately due to the appearance of

ln k2 terms. In particular, for ∆ = d/2 + 1 one finds (see appendix)

G̃ν=1

(
k2
)

= K−1〈Õ(k)O(0)〉 = C ′k2 ln
(
k2/µ2

)
(3.3)

with C ′ positive for d > 2 and µ an arbitrary scale that can be changed by adding a contact

term proportional to k2.

Similarly, for ∆ = d/2,

G̃ν=0

(
k2
)

= −C ′′ ln
(
k2/µ2

)
, C ′′ > 0. (3.4)

The undeformed effective action is then

γ0[O] =
1

2

∫
ddk

(2π)d
Õ(k)

1

G̃ν(k2)
Õ(−k). (3.5)

Now we add a double-trace deformation to the effective action γ[O],

U [O] = +
λ

2Λ2ν
O2 (3.6)

– 5 –
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where λ is dimensionless. The cases λ > 0 and λ < 0 will be considered separately. This

deformation is IR-relevant for ∆ < d/2, marginal for ∆ = d/2 and irrelevant for ∆ > d/2.

It is tempting to identify Λ with the cut-off of the theory; the rest of this section will

substantiate such identification.

The deformed effective action becomes

γ[O] = +
1

2

∫
ddk

(2π)d
Õ(k)

(
1

G̃ν(k2)
+

λ

Λ2ν

)
Õ(−k). (3.7)

Thus we obtain the deformed two-point function

G̃ν,λ(k2) ≡ 1
1

G̃ν(k2)
+ λ

Λ2ν

. (3.8)

3.1 Case 1: 1 > ν > 0

It was pointed out in [8] that for 1 > ν > 0 such a double-trace deformation leads to

an RG flow in which the IR and UV fixed points are CFTs in which the operator O has

conformal dimension ∆ = ∆± = d/2± ν respectively. They are the two possible choices of

quantization in the AdS/CFT context for a massive scalar in the bulk [16] (see appendix

for a review). This flow can be achieved with λ positive or negative. Recall that, omitting

a positive coefficient, G̃ν(k2) = −k2ν . In the IR regime, k2ν � Λ2ν/|λ|,

G̃ν,λ
(
k2
)

= −k2ν 1

1− λk2ν

Λ2ν

≈ −k2ν

(
1 +

λk2ν

Λ2ν

)
≈ −k2ν (3.9)

= G̃ν,λ=0

(
k2
)

which reduces to the original undeformed CFT of ∆ = ∆+, as expected of an irrelevant

deformation.

In the UV, on the other hand, k2ν � Λ2ν/|λ|,

G̃ν,λ
(
k2
)

=
Λ2ν

λ

1

1− Λ2ν

λk2ν

≈ Λ2ν

λ

(
1 +

Λ2ν

λk2ν

)
=

(
Λ2ν

λ

)2
1

k2ν
+ contact terms (3.10)

∝ G̃−ν,λ=0

(
k2
)
.

Upon removing the contact term, this is the two-point function of a CFT with ∆ = ∆−.

Now we come to the heart of our paper. We express the two-point function in Källen-

Lehmann form.

– 6 –
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3.1.1 λ < 0

Consider first λ < 0.

G̃∆,λ<0

(
k2
)

= − 1
1
k2ν + |λ|

Λ2ν

= −Λ2ν

|λ|

(
1− 1

|λ| (k2/Λ2)ν + 1

)
= +

Λ2ν

|λ|

(
1

|λ| (k2/Λ2)ν + 1

)
+ contact terms. (3.11)

Let us introduce now the complex function f(z) = 1
|λ|zν+1 ; when its branch cut is placed

on the negative real axis it is meromorphic in the range (π ≥ arg z > −π).

In this case f(z) has no singularity in the first sheet. This implies that there are no

tachyonic or otherwise unphysical one-particle states among the states created by applying

O(x) to the vacuum. Using Cauchy’s formula, one finds

G̃ν,λ<0

(
k2
)

= +
Λ2ν

π

∫ ∞
0

dm2

k2 +m2

(
m2/Λ2

)ν
sinπν

1 + λ2 (m2/Λ2)2ν + 2|λ| (m2/Λ2)ν cosπν
. (3.12)

So, the spectral density is positive-finite and the spectrum is free of ghosts and tachyons.

Thus the deformation with λ < 0 may provide a healthy flow between the IR and UV fixed

points. Of course there is a (nonperturbative) fly in the ointment here, since λ < 0 means

that the potential λO2 is unbounded from below.

3.1.2 λ > 0

Consider next the case where λ > 0:

G̃ν,λ>0(k2) =
Λ2ν

λ

(
1

λ (k2/Λ2)ν − 1

)
, (3.13)

which has a pole of positive residue at k2/Λ2 = λ−1/ν on the positive real axis, signaling a

(non-ghost) tachyon mode. The Källen-Lehmann representation shows that the continuum

part of the spectral density is positive definite, so the tachyon is the only unphysical feature

of the deformed theory:

G̃∆,λ>0(k2) =
Λ2ν

λ

1

νλ1/ν
(
k2/Λ2 − λ−1/ν

)
+

1

π

∫ ∞
0

dm2

k2 +m2

m2ν sinπν

1 + λ2 (m2/Λ2)2ν − 2λ (m2/Λ2)ν cosπν
. (3.14)

Two limits are worth mentioning. The first is Λ → ∞. In this case the tachyon

moves to infinite mass and the perturbation disappears (since it becomes irrelevant at all

energy scales).

The second limit is less trivial. It is the UV limit in which Λ → 0. One interesting

question is whether the UV limit may exist as a CFT even if the deformation leading to it

– 7 –
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is unphysical. The answer is yes, because in that limit

G̃ν,λ>0

(
k2
)
≈ Λ2ν+2

λ

1

νλ1/ν k2
+

1

π

∫ ∞
0

dm2

k2 +m2

Λ4νm2ν sinπν

λ2m4ν

≈ 1

π

∫ ∞
0

dm2

k2 +m2

Λ4ν sinπν

λ2m2ν
. (3.15)

In other words, the tachyonic mode decouples.

3.2 Case 2: 0 > ν > −1

One natural question to ask is: do we get a flow similar to the one above by adding a

double-trace deformation for the operator associated to the alternative quantization d/2 >

∆ > d/2− 1 (0 > ν > −1)?

In this case

U [O] = +
λ

2Λ2ν
O2 (3.16)

is IR-relevant (and UV-irrelevant).

3.2.1 λ > 0

For λ > 0,

G̃ν,λ>0

(
k2
)

=
1

1
k2ν + λ

Λ2ν

= −Λ2ν

λ

1

λ (k2/Λ2)ν + 1
+ contact terms. (3.17)

In Källen-Lehmann form,

G̃ν,λ>0

(
k2
)

= +
Λ2ν

π

∫ ∞
0

dm2

k2 +m2

(
m2/Λ2

)ν
(− sinπν)

1 + λ2 (m2/Λ2)2ν + 2λ (m2/Λ2)ν cosπν
. (3.18)

Hence, the spectral density is positive-finite and the spectrum is free of ghosts and tachyons,

thus providing a flow between the IR and UV fixed points. One can check that the IR fixed

point of this flow is a CFT with an operator with ∆ = d/2+|ν|, while at the UV fixed point

∆ = d/2− |ν|. This is expected because the double-trace deformation is UV-irrelevant.

3.2.2 λ < 0

Now for λ < 0,

G̃∆,λ<0

(
k2
)

=
1

1
k2ν − |λ|

Λ2ν

= −Λ2ν

|λ|
1

|λ| (k2/Λ2)ν − 1
+ contact terms

= +
Λ2ν

|λ|
1

|ν||λ|1/ν
(
k2/Λ2 − |λ|−1/ν

)
+

1

π

∫ ∞
0

dm2

k2 +m2

m2ν(− sinπν)

1 + λ2 (m2/Λ2)2ν − 2|λ| (m2/Λ2)ν cosπν
. (3.19)

The two-point function has a pole of positive residue at k2/Λ2 = |λ|−1/ν on the positive real

axis, signaling a (non-ghost) tachyon mode, while the smooth part of the spectral density

is positive definite.

– 8 –
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3.3 Case 3: ν > 1

The case ν > 1 6∈ Z+ has been studied in [11] and [12]. Those papers consider a UV

completion of the double-trace perturbation obtained by coupling a massive scalar to O.

In our analysis we do not introduce any such scalar or any other ad hoc UV completion. We

use instead a Källen-Lehmann representation, which can be obtained from those used in the

previous subsection by replacing (k2/Λ2)ν with ±(k2/Λ2)ν , depending on the value of ν.

For ν ∈ (2m+ 1, 2m+ 2), m ∈ Z+ with deformation λ
2Λ2νO

2,

G̃ν,λ
(
k2
)

=
1

+ 1
k2ν + λ

Λ2ν

= −Λ2ν

λ

1

λ (k2/Λ2)ν + 1
+ contact terms. (3.20)

The continuous part of the spectral density is positive-definite for both λ > 0 and λ < 0.

For λ > 0, the simple poles appear at complex values of k2/Λ2 in conjugate pairs. The

corresponding residues also form complex conjugate pairs, signaling tachyonic ghost modes.

For λ < 0, there is exactly one simple pole at real positive k2/Λ2, with negative residue,

i.e. tachyonic ghost.

These results are in agreement with the results of [12] for 2 > ν > 1.

On the other hand, for ν ∈ (2m, 2m+ 1), m ∈ Z+,

G̃ν,λ
(
k2
)

=
1

− 1
k2ν + λ

Λ2ν

= +
Λ2ν

λ

1

λ (k2/Λ2)ν − 1
+ contact terms. (3.21)

The spectral density is again positive-definite for any λ.

For λ > 0, there is exactly one simple pole at real positive k2/Λ2, with positive residue,

i.e. non-ghost tachyon.

For λ < 0, the simple poles are again at complex values of k2/Λ2 and appear in

conjugate pairs with, conjugate residues. At least one pair has a negative real part, signaling

a tachyonic ghost modes.

Therefore, the deformed theory is not physical, as expected because at the putative

UV fixed point the operator O would have dimension ∆− = d/2− ν, which is outside the

unitary range.

3.4 Case 4: ν = 0

Next we consider the case ∆ = d/2. The two-point function is G̃ν=0(k2) = − ln (k2/µ2).

The appearance of the scale µ does not break conformal invariance, since rescaling k

amounts only to changing the free energy w[J ] by a contact term ∼ J · J .

Introducing a (marginal) double-trace deformation U [O] = +λ
2O

2, we have

G̃ν=0,λ

(
k2
)

=
1

− 1
ln (k2/µ2)

+ λ
. (3.22)

The renormalization scale µ can be removed, as in [8, 10], by making the coupling constant

λ run with µ. A convenient renormalization condition on λ is to require that it diverges at

some fixed scale Λ. This defines an RG flow of λ

λ→ λ(µ) = +
1

ln (Λ2/µ2)
(3.23)
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and so

G̃ν=0,λ

(
k2
)

=
1

− 1
ln (k2/µ2)

+ 1
ln (Λ2/µ2)

= ln
(
Λ2/µ2

)
− ln2

(
Λ2/µ2

) 1

ln (Λ2/k2)
. (3.24)

By performing the wave function renormalization O = ZOR, Z = ln(Λ2/µ2), we obtain a

µ-independent renormalized two-point function

G̃
(ren)
ν=0,λ

(
k2
)

= − 1

ln (Λ2/k2)
. (3.25)

There is a simple pole at k2 = Λ2 with positive residue, i.e. a tachyon mode. This is

expected because this theory has a Landau pole for λ > 0 at Λ under our renormalization

condition. For µ > Λ, the coupling constant λ(µ) is negative and asymptotically free, while

λ is positive and the theory is IR free for µ < Λ. All of this is of course in agreement with

well known results for the λφ4 theory in four dimensions.

3.5 Case 5: ν = 1

Now consider the special case, ∆ = d/2 + 1.

Recall that

G̃ν=1

(
k2
)

= +k2 ln
(
k2/µ2

)
. (3.26)

The two-point function of the alternative quantization ∆ = d/2 − 1 obtained by a naive

Legendre transformation (see appendix) is

G̃
(?)
ν=−1

(
k2
)

= − 1

k2 ln (k2/µ2)
. (3.27)

Notice that the value of µ in equation (3.26) does not spoil scale invariance, since it can

be changed by adding a contact terms. Instead eq. (3.27) is not scale invariant, since µ

cannot be removed by local counterterms. Moreover, the two-point function of an operator

saturating the unitarity bound is

G̃ν=−1

(
k2
)

=
1

k2
. (3.28)

So, eq. (3.27) is not the two point function of a ∆ = d/2 − 1 conformal field. In fact it is

altogether unphysical, because it decays faster than 1/k2 at large k2. The origin of this

unphysical feature can be seen by representing the two-point function in Källen-Lehmann

form, because such representation makes it manifest that there exists a simple pole at

k2 = µ2 with negative residue:

G̃
(?)
ν=−1

(
k2
)

= − 1

k2 − µ2
+O

((
k2 − µ2

)0)
. (3.29)

In other words, the spectrum contains a tachyonic ghost mode. Notice that µ is a physical

scale, not an auxiliary one that can be removed by local counterterms. In fact µ is physical

even at the UV fixed point, as pointed out earlier.
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Using Cauchy’s formula one obtains

− 1

k2 ln (k2/µ2)
= − 1

k2 − µ2
+

∫ ∞
0

dm2 1

k2 +m2

1

(m2/µ2)
(
ln2 (m2/µ2) + π2

) (3.30)

with ∫ ∞
0

dm2

m2
(
ln2m2 + π2

) = 1. (3.31)

Now add the double-trace deformation U [O] = λ
2Λ2O

2.

For λ > 0,

G̃ν=1,λ>0

(
k2
)

=
1

1
k2 ln (k2/µ2)

+ λ
Λ2

= −Λ2

λ

1

1 + λ k
2

Λ2 ln (k2/µ2)
+ contact terms

= two simple poles +

∫ ∞
0

dm2 1

k2 +m2

m2

π2 +
(
1−

(
λ

Λ2

)
m2 ln (m2/µ2)

)2 . (3.32)

The branch-cut in the complex k2/Λ2 plane is logarithmic. The spectral density is positive-

definite, but now there are two simple poles.

For λµ2/Λ2 > e, the poles are at real and positive k2. The pole at larger k2 has

a negative residue and that at the smaller k2 a positive residue, with the latter pole

approaching 0 as λµ2/Λ2 →∞.

For λµ2/Λ2 < e, the poles are complex and are conjugates of each other. The residues

have a positive real part and complex conjugate imaginary parts.

For λ < 0,

G̃ν=1,λ<0

(
k2
)

=
1

1
k2 ln (k2/µ2)

− |λ|
Λ2

= −Λ2

|λ|
−|λ| k2

Λ2 ln
(
k2/µ2

)
1− |λ| k2

Λ2 ln (k2/µ2)

= +
Λ2

|λ|
1

1− |λ| k2

Λ2 ln (k2/µ2)
+ contact terms, (3.33)

which again decays faster than 1/k2 at large k2 for any |λ|/Λ2 6= 0, so it is again unphysical.

A contour integration gives

G̃∆=d/2+1,λ<0

(
k2
)

= one simple pole +

∫ ∞
0

dm2 1

k2+m2

m2

π2+
(

1+
(
|λ|
Λ2

)
m2 ln(m2/µ2)

)2

(3.34)

in which the spectral density in the second term is positive. The pole is at real and positive

k2 with negative residue, signaling the propagation of a ghost tachyon mode.
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Therefore, one concludes that the flow to the theory with ∆ = d/2 − 1 in the UV

is unphysical for all values of λ. Moreover, the very fact that the two-point function in

eq. (3.27) is non-unitary shows that the UV limit Λ→ 0 is meaningless in this case.

The singleton point is reached the limit λ → 0, µ exp(−1/λ2) = constant. This limit

does decouple all ghost and physical states and leads to a two-point function ∝ 1/k2, but it

cannot be achieved as an RG trajectory. A different singular limit leading to the singleton

is described in [21].

4 Summary

After reviewing the method that allows to find the two-point function of certain primary

operators O in large-N theories deformed by interactions proportional to O2, we studied

the RG flow that is determined by the deformation. To get an understanding that goes

beyond what is available in the (vast) existing literature on the subject, we used the Källen-

Lehmann representation of the two-point function. This representation allows for a clear

and unambiguous detection of unphysical features such as tachyons or ghosts. The presence

of such features has a natural interpretation in the case ν < −1, where one of the possible

dimensions for the operator O, ∆− = d/2− ν, violates the unitarity bound ∆ ≥ d/2− 1.

We also found that the Källen-Lehmann representation automatically contains extra

massive scalars, signaled by simple scalar poles in the two-point function. We can say

that the Källen-Lehmann representation “integrates in” massive scalar. One result of our

study is that, when the perturbation O2 is relevant, the extra massive scalar found using

the Källen-Lehmann representation is physical when λ > 0 and tachyonic when λ < 0.

The example of the bosonic O(N) vector model in three dimensions shows that this is the

expected behavior, because the potential (λ/2N)(
∑N

a=1 φ
aφa)2 is stable only for λ > 0. On

the other hand, the massive scalar used in [11, 12] to define a UV completion of double-

trace deformations has the opposite behavior: it is tachyonic for λ > 0 and physical for

λ < 0. One possible reason for the disagreement is that the UV completion used in [11, 12]

can be pathological in the IR. This is manifest in the case of the O(N) vector model, where

the scalar potential is unbounded below for either sign of λ.

An especially interesting case is ν = 1, because the conformal dimensions allowed by

the alternative quantization of ref. [16] appears to saturate the unitarity bound ∆ = d/2−1.

This would be a free field that does not have a dual in a putative semiclassical AdS gravity

in d + 1 dimensions. The flow generated by a double trace perturbation would define a

theory where ∆ = d/2 + 1 flows to the problematic UV fixed point with ∆ = d/2− 1. We

found that the flow is unphysical, because the two-point function of the operator O always

contains unphysical states and the UV fixed point itself is unphysical.

Finally we should remark that our analysis agrees with ref. [22], which studies double-

trace deformations involving two different operators. Here we will restrict our analysis to

the most interesting case that one of the two operators, O1, saturates the unitarity bound

(∆1 = d/2 − 1) while the other, O2, has dimension ∆2 > ∆1, ∆2 < d/2. Ref. [22] studies

a relevant flow from the UV, where O1 saturates the unitarity bound, to the IR. It is thus

quite different from the situation considered in this paper, which considers an irrelevant
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flow to a putative UV fixed point. Nevertheless, the flow can be studied easily using the

methods described in this paper. The deformation studied in [22] is

N

∫
ddxfO1O2 + g1O

2
1 + g2O

2
2, f, g1, g2 ∈ R. (4.1)

One can check that when g1g2 > f2, g1 > 0, g2 > 0 the flow is physical;5 on the other hand,

whenever g1 6= 0 one is simply giving a mass to a free scalar, so the flow is rather trivial:

a massive scalar decouples in the IR. So, let us consider the case g1 = 0.

At large N the deformation changes the two point functions 〈Õi(k)Oj(0)〉, i, j = 1, 2 as

〈Õi(k)Oj(0)〉 =

(
k2 f

f kd−2∆2 + g2

)−1

=
1

kd+2−2∆2 + g2k2 − f2

(
kd−2∆2 + g2 −f
−f k2

)
. (4.2)

In the extreme infrared, k2(1+d/2−∆2) � f2

〈Õi(k)Oj(0)〉 = −k
d−2∆2

f2

(
1 −k2

f

−k2

f
k4

f2

)
+ contact terms. (4.3)

The matrix in (4.3) has rank one and is independent of g2, meaning that O1 = f�O2 in

the extreme infrared, where O2 has dimension d − ∆2. All this is in perfect agreement

with ref. [22]. We conclude by observing that, while some of the UV-complete theories

with g1 > 0, g2 > 0 are physical, those with g1 = 0 are plagued by unphysical states, since

the two point function in (4.2) has, among other unpleasantnesses, a tachyonic pole for

any value of g2. The RG flow generated by the deformation (4.1) with g1 = 0 is therefore

unphysical, according to our general definition.
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A Alternative quantization in AdS/CFT

In this appendix we review the standard AdSd+1/CFTd correspondence and the relation-

ship between the two choices of quantization explained in [16]. Euclidean AdSd+1 admits

the Poincaré metric

ds2 =
1

z2

(
dz2 +

d∑
i=1

dx2
i

)
, (A.1)

where we set the AdSd+1 radius to one. A scalar field φ(z, ~x) of mass m in the bulk has

the asymptotic form near the boundary (z � 1)

φ(z, ~x) = zd−∆
(
φ0(~x) +O

(
z2
))

+ z∆

(
A(~x)

2∆− d
+O

(
z2
))

(A.2)

in which ∆ = ∆± = d
2 ±

√
d2

4 +m2 ≡ d
2 ± ν for ∆ 6= d/2, ν /∈ Z.

5We thank M. Bertolini for pointing this out to us.
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Evaluating the on-shell action and discarding possible contact terms, one finds for

∆ = ∆+ > d/2

SAdSd+1
[φ0] = −1

2

∫
ddx φ0(x)A(x)

= −1

2
(2∆− d)π−d/2

Γ(∆)

Γ(∆− d/2)

∫
ddx

∫
ddx′

φ0(x)φ0(x′)

|x− x′|2∆
. (A.3)

In the case ∆ = d/2,

φ(z, ~x) = zd/2
(
ln (z/z0)φ0(~x) +A(~x) +O

(
z2
))
. (A.4)

This asymptotic behavior implies that [23]

SAdSd+1
[φ0] = −1

2

Γ(d/2)

2πd/2

∫
ddx

∫
ddx′ φ0(~x)

1

|~x− ~x′|d
φ0(~x). (A.5)

The AdS/CFT correspondence then reads

exp (−N∗SAdSd+1
[φ0]) =

〈
exp

(
−N∗

∫
φ0 O

)〉
CFTd

=

∫
[dO] e−ICFTd [O]−

∫
N∗φ0O.

(A.6)

We have multiplied the exponent by a factor of N∗ � 1 such that φ0 and O are both O(1).

For the O(N) model, N∗ = N .

The corresponding operator O(x) is of conformal dimension ∆ = ∆+. Unitarity re-

quires ∆ ≥ d/2− 1 [17].

By virtue of eqs. (A.3), (A.5), we identify −N∗SAdSd+1
[φ0] with W [J ], the generating

functional of connected correlators of the boundary CFT defined in the main body of the

paper. The boundary field φ0(x) is identified with the source J of the boundary conformal

operator O(x) as

J = −φ0, (A.7)

and

O = +
δSAdSd+1

[φ0]

δφ0
= −A. (A.8)

The two-point function of O(x) can be immediately read off from the action. For

∆ > d/2

N∗〈O(x)O(0)〉 = (2∆− d)π−d/2
Γ(∆)

Γ(∆− d/2)

1

|x|2∆
≡ Gν(|x|) (A.9)

and for ∆ = d/2, N∗〈O(x)O(0)〉 = Γ(d/2)

2πd/2
1
|x|2∆ .

The two-point function in momentum-space representation in the case ∆ = d/2 + 1

contains gamma functions in the prefactor that appear divergent, see eq. (3.2). However,
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one notes that(
d

dk2

)2

N∗〈Õ(k)O(0)〉

=

(
d

dk2

)2 [(
(2∆− d)π−d/2

Γ(∆)

Γ(∆− d/2)

)∫
ddx e−ik·x

1

x2∆

]
∆=d/2+1

= 2π−d/2Γ(d/2 + 1)

∫
ddx e−ik·x

1

x2((d/2+1)−2)

= 2π−d/2Γ(d/2 + 1)

∫
ddx e−ik·x

∫ ∞
0

dt

t
td/2−1e−x

2t/Γ(d/2− 1)

= 2π−d/2Γ(d/2 + 1)

∫ ∞
0

dt

t
td/2−1

(π
t

)d/2
e−

k2

4t /Γ(d/2− 1)

s= 1
t= 2π−d/2Γ(d/2 + 1)

πd/2
∫∞

0
ds
s se

− k
2

4
s

Γ(d/2− 1)

= 2d(d− 2)
1

k2
. (A.10)

Integrating twice, getting rid of contact terms, and introducing a fictitious scale µ, one

arrives at

G̃ν=1

(
k2
)

= N∗〈Õ(k)O(0)〉 = 2d(d− 2)k2 ln
(
k2/µ2

)
, (A.11)

with a positive prefactor for d > 2.

For d/2+1 ≥ ∆ > d/2, the alternative quantization in which ∆ = ∆− is also allowed by

unitarity. To obtain a correspondence to another CFT where the operator O has conformal

dimension ∆−, one needs to exchange the roles of φ0 and A. Since φ0 and A are conjugate

variables, the exchange is done by a Legendre transformation [16].

Define the effective “intensive” action

γ[O] = SAdSd+1
[φ0]− φ0O (A.12)

such that
δ(γ[O])

δO
= −φ0 (A.13)

Recall that

− Ã(k) = Õ = +
δSAdSd+1

[φ̃0]

δφ̃0

= −G̃ν
(
k2
)
φ̃0(−k), (A.14)

the effective action of the (undeformed) CFT is

γ0[Ã] = +
1

2

∫
ddk

(2π)d
Ã(k)

1

G̃ν(k2)
Ã(−k)

= −1

2

∫
ddk

(2π)d
Ã(k)G̃−ν

(
k2
)
Ã(−k). (A.15)

Instead of interpreting γ0[Ã] as the effective action for O, one can interpret it as the free

energy of the CFT operator O′ of conformal dimension ∆− because the two-point function

in the alternative quantization is G̃−ν(k2) = −1/G̃ν(k2).
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