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1 Introduction

In our previous work [1] we found the general form of the six-loop anomalous dimension of

twist-2 operators in planarN = 4 SYM theory by exploiting the MATHEMATICA realisation [2]

of the solution of the weak coupling solution of the quantum spectral curve (QSC) [3,

24] to compute values at fixed spin, and using the LLL-algorithm [4]1 to reconstruct the

full result. This result, being analytically continued, provided us with information about

the generalised double-logarithmic equation [6–8] and the Balitsky-Fadin-Kuraev-Lipatov

(BFKL) equation [9–11]. The last information allowed a reconstruction of the eigenvalue of

the kernel of the BFKL equation in the next-to-next-to-leading logarithmic approximation

(NNLLA), which is very interesting for the study of the corrections to the BFKL equation.

Using some guesses, this reconstruction was done by one of the authors [12]. A result for

a similar quantity was obtained directly by solving the QSC perturbatively as a double

scaling expansion [13]. The seven loop contribution to the anomalous dimension of twist-2

operators will allow us to check this new result for the BFKL equation, and having in hand

all necessary tools we decided to extend our previous computations to one loop more.

The usage of the very powerful C++ realisation [5] of the LLL-algorithm [4] in the form

of the fplll-program, and the knowledge of the general form of the full six-loop anoma-

lous dimension, makes it possible to reconstruct the full seven loop anomalous dimension

directly from a set of fixed values, i.e. without subdividing into the parts coming from the

asymptotic Bethe ansatz (ABA) and the wrapping correction as we did in our computation

of the six loop result. Indeed, we were able to construct all parts of the result that are

1We used the fplll-program [5], a C++ realisation of the LLL-algorithm.
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proportional to zeta-values without this subdivision. However, for the rational part of the

result we were unable to produce enough data points from the QSC method,2 and thus

the subdivision was necessary in this case. As the basis for the rational part coming from

the ABA is very large, we numerically compute the same number of values as the number

of harmonic sums in the basis with a very high precision and solve the obtained system

of linear equations. To compute the rational part of the wrapping correction, i.e. the dif-

ference between the full result and the ABA result, we used a slightly modified version

of the MATHEMATICA realisation [1] of the QSC-method, which computes only the rational

part, and this allows to considerably extend our dataset as one of the most time-consuming

parts of the algorithm is the Laurent expansion of η-functions, which can be significantly

simplified when zeta-values are ignored.

In section 2 we describe the computation of the rational part of the contribution

coming from the ABA to the seven-loop anomalous dimension of twist-2 operators. In

section 3 we briefly describe the perturbative solution of the quantum spectral curve used

to compute the seven-loop anomalous dimension at fixed spin, and the modifications that

makes it possible to work with partial results. In section 4 we reconstruct the general form

of the seven-loop anomalous dimension from the fixed values. In section 5 we provide the

constraints which are used to verify the obtained result, together with the description of

their origin.

2 The seven-loop anomalous dimension from Bethe ansatz

In this section we briefly give formulas, which can be used for the computation of the ABA

part of the anomalous dimension of twist-2 operators in planar N = 4 SYM theory at seven

loops. Twist-2 operators are part of the sl(2) sub-sector and contain two scalar fields Z
and M covariant derivatives D

Tr
(

Z DM Z
)

. (2.1)

There is one primary operator of this type for each even M . At one loop at weak coupling,

these single-trace operators map to states of the non-compact sl(2) spin = −1
2 length-two

Heisenberg magnet with M excitations. The states have the total scaling dimension

∆ = 2 +M + γ(g) , with γ(g) =
∞
∑

ℓ=1

γ2ℓ g
2ℓ , (2.2)

where γ(g), called the anomalous part of the dimension, depends on the coupling constant

g2 =
λ

16π2
, (2.3)

and λ = N g2
YM

is the ’t Hooft coupling constant.

2The LLL-algorithm demands a lot of computer time, which can be resolved, in principle, with the

parallelisation of the computation, which is not available at this moment, as usual applications of the

LLL-algorithm do not involve such huge matrices and numbers as in our case.
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From the asymptotic Bethe ansatz [14], the anomalous dimension γ(g) can be deter-

mined exactly up to three loops, O(g6). In the sl(2) sector, the asymptotic Bethe equations

are [15, 16]

(

x+k
x−k

)L

=
M
∏

j=1
j 6=k

x−k − x+j

x+k − x−j

1− g2/x+k x
−
j

1− g2/x−k x
+
j

exp
(

2 i θ(uk, uj)
)

,
M
∏

k=1

x+k
x−k

= 1 , (2.4)

where the variables x±k are related to the Bethe roots uk through

x±k = x(u±k ) , u± = u± i
2 , x(u) =

u

2

(

1 +

√

1− 4
g2

u2

)

. (2.5)

The anomalous dimension is related to the Bethe roots by

γABA(g) = 2 g2
M
∑

k=1

(

i

x+k
− i

x−k

)

=
∞
∑

l=1

g2l γABA

2l (M) . (2.6)

As we are only interested in the rational part of γABA

14 (M), we put the dressing phase

θ(uk, uj) equal to zero, which considerably simplifies our computations.

Our goal is to find a general expression for the anomalous dimension valid at arbitrary

M . To do this, we perform perturbative computations at fixed values of M and match

the coefficients to an appropriate ansatz which assumes the maximal transcendentality

principle [17]. The basis for the ansatz consists of harmonic sums, which can be defined

recursively by (see [18])

Sa(M) =

M
∑

j=1

(sgn(a))j

j|a|
, Sa1,...,an(M) =

M
∑

j=1

(sgn(a1))
j

j|a1|
Sa2,...,an(j) . (2.7)

To each sum Sa1,...,an we assign a transcendentality k, which is given by the sum of the

absolute values of its indices

k = |a1|+ . . . |an| , (2.8)

and the transcendentality of a product of harmonic sums equals the sum of the transcen-

dentalities of its factors. The maximal transcendentality principle [17] states that, at a

given order of perturbative theory, the anomalous dimension of twist-2 operators contains

only harmonic sums with maximal transcendentality. At the ℓ-loop order, corresponding to

transcendentality k = 2ℓ−1, the dimension of this basis is equal to ((1−
√
2)k+(1+

√
2)k)/2,

so at seven loops it contains more than 47000 combinations of harmonic sums, see table 1.

Due to the generalised Gribov-Lipatov reciprocity [19, 20] the usual harmonic

sums (2.7) combine into the reciprocity-respecting sums [20, 21], which significantly re-

duces the dimension of the basis. The reciprocity-respecting function P(M) [19, 20, 22] is

defined by

γ(M) = P
(

M +
1

2
γ(M)

)

(2.9)
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Contribution Rational ζ3 ζ5 ζ23 ζ7 ζ5ζ3 ζ33 ζ9 ζ25 ζ7ζ3 ζ11 Total

Transcendentality 13 10 8 7 6 5 4 4 3 3 2

γABA

14 47321 3363 577 99 17 51377

PABA

14 4096 512 128 32 8 4776

γwrap
14 8819 577 99 41 17 7 3 3 1 1 1 9569

Pwrap
14 256 32 8 4 2 1 1 1 305

Table 1. The number of harmonic sums in the basis for contributions of different transcendentality.

and is related to the reciprocity-respecting splitting function P(x) [19, 20] through a Mellin

transformation. At at all orders of perturbation theory, P(x) should satisfy the Gribov-

Lipatov relation [23]

P(x) = −xP
(

1

x

)

. (2.10)

An advantage is that P(M) can be expressed only in terms of the binomial sums (see [18])

Si1,...,ik(N) = (−1)N
N
∑

j=1

(−1)j
(

N

j

)(

N + j

j

)

Si1,...,ik(j) , (2.11)

and the basis of these sums is equivalent to the basis of the reciprocity-respecting sums.3

Note that the binomial sums are only defined for positive values of their indices i1, . . . , ik.

For transcendentality k the dimension of the basis of binomial sums equals 2k−1, so at seven

loops it contains 213−1 = 4096 binomial harmonic sums (see table 1), which is a significant

reduction compared to the basis of harmonic sums in γ14. To compute the rational part of

the ABA contribution, we thus need to fix 4096 coefficients, and thus the same number of

seven loop solutions of the Bethe equations at fixed M is required. The analytic solution

of the Bethe equations for the first 4096 values of M is beyond computer ability, but it was

possible to solve these equations up to seven loops numerically with an accuracy of about

10−5000. This accuracy is not sufficient to reconstruct the rational numbers that appear

in the anomalous dimension for a given M , but this is not necessary. What we need is

the coefficients that appear in front of the harmonic sums in the general ansatz, and these

coefficients were found numerically by using the MATHEMATICA function LinearSolve. The

obtained numbers turn out to be very close to integers, and the desired result for P14(M) is

given by their rounding. This result can be found in the ancillary files of the arXiv version

this paper. To compute the roots we used the clusters HLRN4 and CLOU5 and rewrote the

initial MATHEMATICA code as a GiNaC code.

Surprisingly, from the analysis of the six-loop anomalous dimension (see appendix A

in ref. [1]), we have found that some of the binomial sums, which enter in the result for

the reciprocity-respecting function, have the same coefficient. This property becomes more

3The relations between the binomial and the nested harmonic sums can be found in the ancillary files

of the arXiv version this paper or on the web-page http://thd.pnpi.spb.ru/~velizh/7loop/.
4Der Norddeutsche Verbund für Hoch- und Höchstleistungsrechnen (HLRN).
5Cluster of UNIX Machines (CLOU).
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clear if we return to the reciprocity-respecting sums instead of the binomial sums. The

strong definition of the reciprocity-respecting sums can be found in [20, 21], but as we are

only interested in the rational part, we ignore all terms containing ζi, which enter into these

sums. We denote such sums by Ri1,i2,··· ,ik ,
6 where the indices ik should be only positive

odd or negative even numbers (see [20, 21]). We have found that the combinations of

Ri1,i2,··· ,ik , which are related by permutations of the indices 1 and 3 inside the subset of

indices, which contains only 1 and 3, are multiplied by a common factor. For example, the

following reciprocity-respecting sums have the same coefficient at six loops:
(

R1,1,1,1,3,−4 + R1,1,1,3,1,−4 + R1,1,3,1,1,−4 + R1,3,1,1,1,−4 + R3,1,1,1,1,−4

)

(2.12)

and so on. At seven loops more than 1500 reciprocity-respecting sums will combine into

about 200 combinations, which reduces the basis to less than 2700 terms. We therefore

tried to find coefficients in front of terms in the redefined basis numerically, i.e. solving a

system of about 2700 equations on 2700 variables, and we found that this system has a

unique solution with coefficients that are numerically very close to integer numbers.

The seven-loop contribution to the reciprocity-respecting function

PABA(M) =
∞
∑

l=1

g2l PABA

2l (M) . (2.13)

is related to the anomalous dimension in the following way:

P̂14 = γ̂14 −
1

2
(γ̂6γ̂8 + γ̂4γ̂10 + γ̂2γ̂12)

′ +
1

8

(

γ̂24 γ̂6 + γ̂2γ̂
2
6 + 2 γ̂2γ̂4γ̂8 + γ̂22 γ̂10

)′′

− 1

24

(

γ̂2γ̂
3
4 + 3 γ̂22 γ̂4γ̂6 + γ̂32 γ̂8

)′′′
+

5

384

(

2 γ̂32 γ̂
2
4 + γ̂42 γ̂6

)′′′′

−
(

γ̂52 γ̂4
)′′′′′

3840
+

(

γ̂72
)′′′′′′

322560
, (2.14)

where P̂2ℓ = PABA, rational
2ℓ (M), γ̂2ℓ = γABA, rational

2ℓ (M) and each prime marks a derivative

with respect to M .

The final expression for the rational part of the ABA contribution to the seven-loop

anomalous dimension of twist-2 operators in the canonical basis of the usual harmonic

sums (2.7) and the result for PABA, rational
14 (M) can be found in the ancillary files.

3 Full seven-loop anomalous dimension at fixed M

The quantum spectral curve [3, 24] is currently the most concise integrability-based for-

mulation of the all-loop spectral problem of the AdS5/CFT4 correspondence. For twist-2

operators, the applications of the QSC has led to new results in the small spin limit [25], in

the BFKL regime [13, 26], at weak coupling [2], and numerically at any coupling [27]. The

QSC formulates the spectral problem in terms of a Q-system, which is a fundamental struc-

ture in integrable models. The involved Q-functions all depend on the spectral parameter

6The relations between the reciprocity-respecting sums Ri1,i2,··· ,ik and the binomial sums can be found

in the ancillary files of the arXiv version of this paper.
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and are related by finite difference equations. Furthermore, the QSC specifies the analytic

structure and asymptotic behavior at large spectral parameter of these functions. Each su-

perconformal multiplet of single-trace operators in N = 4 SYM correspond to a particular

solution of this system with certain boundary conditions in the form of large u asymptotics

dictated by the weights of the operators with respect to the superconformal algebra.

The perturbative solution of the system involves solving a number of finite difference

equations at each order. The involved operations introduce only a very limited set of

functions: rational functions and so-called η-functions of the spectral parameter. The

procedure is initialized by the solution of Bethe/Baxter equations (or equivalent) and this

is the only point where irrational algebraic numbers are, possibly, introduced.

For general operators, the known perturbative solution methods of the QSC involves

the full psu(2, 2|4) Q-system. However, for operators belonging to the sl(2) sector, it is

convenient to consider only a subset of the QSC, the so-called Pµ-system, a closed set of

9 independent functions [2].

Solving the Pµ-system perturbatively. The Pµ-system contains a 4 × 4 antisym-

metric matrix µab and four functions Pa satisfying the equations

µab − µ̃ab = P̃aPb − P̃bPa , P̃a = µabχ
bcPc , µ̃ab(u) = µab(u+ i) , (3.1)

where χab = antidiag(−1, 1,−1, 1) and a tilde denotes the analytic continuation through

a branch cut on the real axis. The functions are multi-valued functions of the spectral

parameter, u, and have branch points at ±2g + iZ. With short cuts between these branch

points, the functions Pa have branch points only at u = ±2g on their first Riemann sheet.

For g → 0 the branch points collide into points on the imaginary axis, and these are the

only points where the functions are allowed to be singular. Combined with their powerlike

asymptotics at u → ∞, this means that Pa are rational functions of u to all orders in

perturbation theory.

From (3.1) it is possible to derive a second order difference equation on µ12. For sl(2)

operators this equation is homogeneous at the leading order due to the important property

P1 = O(g2) and reads

1

P2
2

µ12 −







P3

P2
− P

[2]
3

P
[2]
2

+
1

P2
2

+
1

(

P
[2]
2

)2






µ
[2]
12 +

1
(

P
[2]
2

)2 µ
[4]
12 = 0 , (3.2)

where we used the notation f [n](u) ≡ f(u + in
2 ). For twist-2 operators, the u → ∞

asymptotics furthermore sets P2 =
A2

u
+O(g2), P3 = A3 +O(g2) and A2A3 = −iM(M +

1) + O(g2). If we identify the leading contribution to µ12 with the Baxter polynomial

through µ12(u) ∝ Q(u− i
2), this is exactly the well-known 1-loop Baxter equation.

One of the key steps in the algorithm is to solve an inhomogeneous version of this

equation at each loop, and in that sense, the QSC approach is somewhat similar in philos-

ophy to the ABA approach. The difference is that the perturbative corrections to µ12 are

not rational functions of u.

– 6 –
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The conformal dimension, along with the remaining quantum numbers, enters through

the asymptotics of Pa and is fixed order by order as part of the algorithm. For example,

the seven-loop anomalous dimension for M = 4 is found to be

γ14(4) = −25166596925125

4251528
+

290741688625

19683
ζ3 +

11516727625

4374
ζ5 −

1808233750

729
ζ23

−17907365875

2916
ζ7 +

975687500

243
ζ3ζ5 −

1756580750

243
ζ9 +

12500000

27
ζ33

−71875000

27
ζ25 − 140000000

27
ζ3ζ7 +

42350000

3
ζ11 . (3.3)

Working with partial results. With increasing M , the complexity of the functions µab

grows. For example, the function µ12 is a polynomial of order M at the leading order. This

means that the computation time and memory usage also grows significantly with M , and

it limits the results that are within reach, even on high-performance computer clusters. To

be able to generate enough data, we exploited the fact that it is possible to work with only

partial results.

For fixed M , all functions are built from parts that are proportional to different ζ-

values, e.g.

Pa = Prational
a + ζ3P

ζ3
a + ζ5P

ζ5
a + ζ23P

ζ2
3
a + . . . (3.4)

All operations in the algorithm simply multiply these terms, so a term proportional to ζ3
will never contribute to the part without ζ-value dependence, a term proportional to ζ5
will never influence the ζ3 part, etc.

This means that it is possible to run the algorithm keeping only parts of the results,

and the obtained partial functions still satisfy the analytical requirements imposed in the

algorithm. To generate more results for the reconstruction of γrational14 (M) and γζ314(M), we

have used this property in two modifications of our Mathematica-implementation of the

algorithm: one keeping only the ζ-value independent part of the results, and another

keeping also the part proportional to ζ3. Sample computation times for the different

versions of the code are given in table 2.

We computed the full seven-loop anomalous dimension for the 32 lowest even integer

spins, i.e. for M = 2, 4, . . . , 64. This is enough to reconstruct all ζi contributions to P14

except for the ζ3 and rational contributions. To be able to reconstruct Pζ3
14, we additionally

computed the rational and ζ3 contributions for the next 25 even integer values (M =

66, 68, . . . , 114). Finally, the rational contribution for all even integers up to M = 290 were

calculated in order to be able to reconstruct the wrapping contribution to Prational
14 .

4 Reconstruction of the seven-loop anomalous dimension at arbitrary M

As described in section 2 we will reconstruct the reciprocity function P(M), which has the

following structure at seven loops

P14 = Prational
14 + ζ3Pζ3

14 + ζ5Pζ5
14 + ζ23P

ζ2
3

14 + ζ7Pζ7
14 + ζ3ζ5Pζ3ζ5

14 + ζ33P
ζ3
3

14

+ζ9Pζ9
14 + ζ25P

ζ2
5

14 + ζ3ζ7Pζ3ζ7
14 + ζ11Pζ11

14 (4.1)

– 7 –
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M 2 4 6 8 10 20 30 40 50 60 70

full 1 2.1 3.3 4.8 7.0 27 113

rational and ζ3 0.55 1.3 1.8 2.7 3.7 11 26 51 87 132 201

rational 0.33 0.65 1.0 1.5 2.0 6.4 14 26 45 74 108

Table 2. Computation time normalized by the M = 2 computation time for the full result (120

seconds on a standard laptop). Note that the reduced codes use significantly less memory than the

full code which makes it possible to go to much higher M before lack of memory becomes an issue.

and is related to γ14 through eq. (2.14) with the replacement of γ̂2ℓ by the full ℓ-loop

anomalous dimension γ2ℓ.

The basis for P14 consists of the binomial harmonic sums (2.11) and the number of

such sums in the corresponding basis are listed in the table 1. Using the first 32 even

values of the full seven-loop anomalous dimension we found the results for all Pζi
14 down

to Pζ7
14 exactly, while Pζ2

3

14 and Pζ5
14 was reconstructed with the help of the LLL-algorithm.

Pζ3
14, which has 210−1 = 512 binomial harmonic sums in the basis, was reconstructed with

the help of the LLL-algorithm from the first 57 even values. The simplest Pζi
14 have the

following form:

Pζ11
14 = 813120 S21 , (4.2)

Pζ2
5

14 = −36800 S31 , (4.3)

Pζ7ζ3
14 = −71680 S31 , (4.4)

Pζ3
3

14 = 1536 S41 , (4.5)

Pζ9
14 = −64

3
S1

(

−11424 S2,1 + 1901 S31 + 24444 S1S2 − 10332 S3
)

, (4.6)

Pζ5ζ3
14 =

64

3
S
2
1

(

−892 S2,1 + 253 S31 + 3426 S1S2 − 2532 S3
)

(4.7)

and all other contributions to P14 can be found in the ancillary files of the arXiv version

of the paper.

For the reconstruction of the rational part, we propose the following general ansatz for

the basis of Pwrap
14

Basis
[

Pwrap
14

]

=
{

P2
2 T14,

[

P2P4T12
]

,
[

P4
2T12

]

,
[

P2P6T10
]

,
[

P3
2P4T10

]

,
[

P6
2T10

]

,
[

P2
4T10

]

,
[

P2P8T8
]

,
[

P2P2
4T8

]

,
[

P3
2P6T8

]

,
[

P5
2P4T8

]

,
[

P8
2T8

]

,
[

P4P6T8
]}

, (4.8)

where P2ℓ is the ℓ-loop reciprocity function of the full ℓ-loop anomalous dimension γ2ℓ, and

T2ℓ is the part of the ℓ-loop Pwrap
2ℓ , which contains the products of binomial harmonic sums

including Pk
2 ∼ S

k
1 with k ≥ 2, for example, T8 is defined as:

γwrap
8 = Pwrap

8 = P2
2 T8 , (4.9)

T8 =
(

− 5 ζ5 + 2 S2 ζ3 + (S2,1,2 − S3,1,1)
)

, (4.10)

γ2 = P2 = 4 S1 . (4.11)

– 8 –
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and T10 and T12 can be found in ref. [28] and ref. [1] correspondingly. The square brackets

on the right hand side of the equation mean that all terms in the expansion of the expression

will enter in the basis, e.g.
[

P2P4T8
]

=
[

S1

(

S1S2 − S3 − S2,1

)(

S2,1,2 − S3,1,1

)

]

=

=
{

S1S1S2S2,1,2, S1S3S2,1,2, S1S2,1S2,1,2, S1S1S2S3,1,1, S1S3S3,1,1, S1S2,1S3,1,1

}

.

(4.12)

The function T14 from eq. (4.8) has the transcedentality 11 and the basis for this structure

consists of 211−1 = 1024 binomial harmonic sums. Some terms in eq. (4.8) are linearly

dependent and in total they add about 400 binomial harmonic sums, i.e. our basis for

Pwrap
14 contains about 1400 binomial harmonic sums.

With the QSC method we computed the anomalous dimension γ(M) for the first 145

even values: M = 2, 4, · · · , 290. The direct application of the LLL-algorithm with the

fplll-code did not give us any reasonable result, spending about a month for the LLL-

reduction with the fastest set of parameters.7 To speed up the computation, we would

either need to produce more data points for γ(M) or optimise the fplll-code, which can

in both cases be done by parallelisation. However, we found a simpler way to find the

desired results without such complications.

The idea that we used is based on the fact that the general expression for the anomalous

dimension of twist-2 operators with arbitrary M can be rewritten in the following form:

γ(M) =
∑

i

g2i γ2i(M) =
∑

i

g2i
∑

|~i |=2i−1

Cj
i1,...,ik

Si1,...,ik

=
∑

i

g2i
2i−1
∑

j=0

Sj
1

∑

|~i |=2i−1−j
i1 6=1

Cj
i1,...,ik

Si1,...,ik . (4.13)

In other words, we can extract the powers of the simplest harmonic sum S1 multiplied by

sums for which the first index is not equal to 1. In our case, for Pwrap
14 we have

Pwrap
14 =

13
∑

j=0

S
j
1

∑

|~i |=13−j
i1 6=1

Cj
i1,··· ,ik

Si1,··· ,ik . (4.14)

So, our initial task is subdivided into several parts, and we will reconstruct the parts with

different powers of S1 separately. If we are able to find the part which does not contain S1

at all, we can subtract it from the full result and factorize S1 in the remaining part:

Pwrap
14 −

∑

|~i |=13
i1 6=1

C0
i1,··· ,ik

Si1,··· ,ik = S1

12
∑

j=0

S
j
1

∑

|~i |=12−j
i1 6=1

Cj
i1,··· ,ik

Si1,··· ,ik . (4.15)

7The LLL-algorithm and its fplll realisation have some parameters, which can be changed to choose

accuracy/time for the reduction procedure. The default value for the η-parameter in the fplll-code is

equal to 0.51 (see manual for fplll-code [5]), the same as in the original LLL-algorithm, while we have

found, by trying on lower loops, that for our purpose it is possible to set this parameter to 0.98, which

increases the speed of the LLL-reduction drastically.
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This means that the left-hand side of eq. (4.15), in which Pwrap
14 is known for fixed values

of M , should be divisible by S1 with the same M , and as a consequence the numerator of

this rational number should be divisible by the numerator of S1(M). In this way we put on

the left-hand side of eq. (4.15) all binomial harmonic sums from the basis (4.8) without S1
with unknown coefficients C0

i1,··· ,ik
, compute the result for each M , and find the common

denominator. Then take the numerator from the obtained expression and divide it by the

numerator of the corresponding S1(M) - the obtained number should be an (small) integer

number, when we substitute all unknown coefficients C0
i1,··· ,ik

. As the numbers in the front

of the coefficients C0
i1,··· ,ik

are huge numbers (usually prime numbers), we can work with

the remainders of the initial numbers modulo the numerator of the corresponding S1(M)

(

[Pwrap
14 ] mod N[S1]

)

−
∑

|~i |=13
i1 6=1

C 0
i1,··· ,ik

(

[Si1,··· ,ik ] mod N[S1]

)

= c0M N[S1] . (4.16)

where N[S1] means the numerator of S1 and values for Pwrap
14 , Si1,··· ,ik and S1 are taken

for the same M . For each M , c0M is an integer number to be fixed along with C0
i1,··· ,ik

.

[Pwrap
14 ] and [Si1,··· ,ik ] denote the values of Pwrap

14 and Si1,··· ,ik when their common denom-

inator is factored out, that is in MATHEMATICA language we apply the function Together

to the expression in the square brackets, factor out the common denominator, and use the

expression in the round brackets:

Together











Pwrap
14 −

∑

|~i |=13
i1 6=1

C 0
i1,··· ,ik

Si1,··· ,ik











=
1

[Denominator]











[Pwrap
14 ]−

∑

|~i |=13
i1 6=1

C 0
i1,··· ,ik

[Si1,··· ,ik ]











. (4.17)

We evaluated the expression (4.16) for M = 2, 4, · · · , 290 and applied the LLL-

algorithm with the fplll-code for the obtained system of linear Diophantine equations

on 62 coefficients C 0
i1,··· ,ik

(the number of the binomial harmonic sums in the basis from

eq. (4.8)) and 145 coefficients c0M , i.e. a system of 145 linear equations on 207 unknowns.

The obtained LLL-reduced matrix contains a line with the desired coefficients C 0
i1,··· ,ik

.

In the next step we look for the coefficients C 1
i1,··· ,ik

, which are proportional to S1

Pwrap
14 −

∑

|~i |=13
i1 6=1

C 0
i1,··· ,ik

Si1,··· ,ik − S1

∑

|~i |=12
i1 6=1

C 1
i1,··· ,ik

Si1,··· ,ik

= S
2
1

11
∑

j=0

S
j
1

∑

|~i |=11−j
i1 6=1

Cj
i1,··· ,ik

Si1,··· ,ik . (4.18)
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For this case eq. (4.8) gives us a basis with 327 combinations of binomial harmonic sums.

However, from the analysis of the corresponding result for the ζ3-contribution, we have

found that eq. (4.8) does not give all necessary binomial harmonic sums in the basis and

the missing sums can be generated from the following outer product

S1 ⊗
[

T10
]

⊗
{

S5, S3,2, S2,3, S2,1,2, S3,1,1

}

, (4.19)

where
[

T10
]

denotes all combinations of binomial harmonic sums, which are contained

in T10 (see eq. (4.12)). This gives 14 additional terms in the basis (other terms will be

linearly dependent). To find the coefficients C 1
i1,··· ,ik

we have 145 equations on 341 + 145

unknowns and the fplll-code produces the LLL-reduced matrix after about 20 hours on

a standard computer.

Proceeding in the same way for all other terms, which are proportional to S
2
1, S

3
1 . . . we

are able to find all coefficients Cj
i1,··· ,ik

. Finally, we check that eq. (4.14) is indeed satisfied.

5 Weak coupling constraints

Having reconstructed the full seven-loop anomalous dimension at arbitrary M , we can

check the consistency of our result by analytical continuation to negative spin, where

known constraints apply. We will consider three classes of constraints coming from the

BFKL equation and from the generalised double-logarithmic equation at M = −2+ω and

at M = −r + ω, where r = 4, 6, 8, . . .. The analytic continuation can be done with the

help of HARMPOL [29] and SUMMER packages [18] for FORM [30]. At one loop, the analytic

continuation is straightforward since

γ2(M) = 8 g2 S1(M) = 8 g2 (Ψ(M + 1)−Ψ(1)) , (5.1)

where Ψ(x) = d
dx

log Γ(x) is the digamma function. At any loop order singularities are

expected to appear at all negative integer values of M .

5.1 BFKL equation

The first in this series of singular points,

M = −1 + ω , (5.2)

where ω is infinitesimal, corresponds to the so-called Balitsky-Fadin-Kuraev-Lipatov

(BFKL) pomeron. The BFKL equation [9–11] relates γ(g) and ω, and it predicts that,

when expanded in g, the ℓ-loop anomalous dimension γ2ℓ(ω) exhibits poles in ω. The

residues and the order of these poles can be derived directly from the BFKL equation. The

BFKL equation has been formulated up to the next-to-leading logarithm approximation

(NLLA) [31, 32] and next-to-next-to-leading logarithm approximation (NNLLA) [12, 13, 33]

and determines the leading, next-to-leading and next-to-next-to-leading poles of γ2ℓ(ω). So,

we can control the three highest poles of the analytically continued anomalous dimension
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at M = −1 + ω, which have the following form:

γ =
(

2 + 0ω − 2 ζ2 ω
2
)

(−4 g2

ω

)

+
(

0 + 0ω + 4 ζ3 ω
2
)

(−4 g2

ω

)2

+

(

0 + ζ3 ω − 29

4
ζ4 ω

2

) (−4 g2

ω

)3

+

(

−4 ζ3 −
5

4
ζ4 ω +

(

5 ζ2ζ3 +
77

4
ζ5

)

ω2

) (−4 g2

ω

)4

+

(

0−
(

2 ζ2 ζ3 + 16 ζ5

)

ω −
(

21 ζ23 ζ3 +
61

3
ζ6

)

ω2

)(−4g2

ω

)5

+

(

−4 ζ5 −
(

3 ζ23 − 143

48
ζ6

)

ω +

(

277

3
ζ3 ζ4 + 8 ζ2 ζ5 −

631

32
ζ7

)

ω2

)(−4g2

ω

)6

+

(

24 ζ23 −
(

25

2
ζ3ζ4 − 2ζ2ζ5 − 38ζ7

)

ω

+

(

32

171
h5,3 −

160

57
h7,1 − 51 ζ2 ζ

2
3 − 8127

38
ζ3 ζ5 +

91543

5472
ζ8

)

ω2

)(−4g2

ω

)7

, (5.3)

where

hi1,i2,...,ik = H−i1,−i2,...,−ik(1) (5.4)

and Hi1,...,ik(x) are the harmonic polylogarithms [29]. The last line of the above equation

exactly matches the prediction written in the paper [12].8

5.2 Generalised double-logarithmic equation at M = −2 + ω

Further constraints on the anomalous dimension arises in the vicinity of M = −2. These

constraints are related to the double-logarithmic asymptotics of scattering amplitudes,

which were studied in QED and QCD in [6, 7] (see also the arXiv version of [17]). The

double-logarithmic equation has the form

γ (2ω + γ) = −16 g2 , (5.5)

and its solution predicts the highest pole (g2k/ω2k−1) in all orders of perturbation theory:

γ = −ω + ω

√

1− 16g2

ω2
= 2

(−4 g2)

ω
− 2

(−4 g2)2

ω3
+ 4

(−4 g2)3

ω5
− 10

(−4 g2)4

ω7

+28
(−4 g2)5

ω9
− 84

(−4 g2)6

ω11
+ 264

(−4 g2)7

ω13
+ . . . . (5.6)

Motivated by the study of the analytic properties of the anomalous dimension of twist-2

operators in N = 4 SYM theory, a simple generalisation of the double-logarithmic equation

has been suggested [8].9 The proposal is that only the right-hand side of the leading order

8S. Caron-Huot informed us that the result for the expansion of the NNLLA eigenvalues of the kernel

of the BFKL equation, which is given explicitly in [12], is the same as for the results presented in refs. [13]

and [33].
9Originally, a such generalisation was suggested by L. N. Lipatov and A. Onishchenko in 2004, but was

not published. It was later improved by L. N. Lipatov in ref. [34].
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equation (5.5) is modified, and that this modification, besides an expansion in the coupling

constant g2, consists of only regular terms depending on ω (and, possibly, γ).

By substituting the analytic continuation to the regime M = −2 + ω of our result

for the anomalous dimension into eq. (5.5) we indeed obtain the following form of the

generalised double-logarithmic equation [8]10

γ (2ω + γ) = −16 g2 − 64 g4ζ2 + g6(128 ζ3 + 256 ζ4)

+g8
(

2560 ζ2 ζ3 + 384 ζ23 − 128 ζ5 +
1888

3
ζ6

)

+g10
(

−114688

171
h5,3 +

573440

57
h7,1 + 7168 ζ2 ζ

2
3 − 37888 ζ2 ζ5

+19456 ζ3 ζ4 −
237568

19
ζ3 ζ5 − 11520 ζ7 −

2198944

171
ζ8

)

+g12
(

26968064

4749
h7,3 −

755105792

4749
h9,1 −

3276800

513
h5,3 ζ2 +

16384000

171
h7,1 ζ2

+
44565768064

270693
ζ10 − 12288 ζ2 ζ

2
3 − 13583360

57
ζ2 ζ3 ζ5 + 486400 ζ2 ζ7

−13312 ζ33 + 96768 ζ4 ζ
2
3 − 4096 ζ3 ζ5 −

384512

3
ζ3 ζ6 +

254253056

1583
ζ3 ζ7

−464384 ζ4 ζ5 +
123298944

1583
ζ25 +

2388992

9
ζ9

)

+g14
(

− 5523846987776

223994619
h5,3 ζ3 −

32178176

513
h5,3 ζ4 −

1150303600640

74664873
h5,3,3

−572512010240

8296097
h5,5,1 +

30965188526080

74664873
h7,1 ζ3 +

160890880

171
h7,1 ζ4

+
1421475840000

8296097
h7,1,3 +

116916224

1583
h7,3 ζ2 +

1917059072000

8296097
h7,3,1

−210501632

47475
h7,5 −

3273654272

1583
h9,1 ζ2 −

13601813299200

8296097
h9,1,1

−7340032

211
h9,3 +

7901544448

3165
h11,1 +

59192446673984

24888291
ζ11

−443833733896402112

986682752325
ζ12 − 471040 ζ2 ζ

3
3 + 286720 ζ2 ζ3 ζ5

+
5494323712

1583
ζ2 ζ3 ζ7 +

2740777984

1583
ζ2 ζ

2
5 − 154231727792128

24888291
ζ2 ζ9

−24064 ζ43 − 8192 ζ33 − 790528 ζ4 ζ
2
3 +

9034356327424

24888291
ζ5 ζ

2
3

−885248

3
ζ6 ζ

2
3 − 235947008

57
ζ3 ζ4 ζ5 −

738162401615104

223994619
ζ3 ζ8

−497325824

211
ζ3 ζ9 +

74232684685824

8296097
ζ4 ζ7 −

60861992014336

24888291
ζ5 ζ6

−2479374592

1055
ζ5 ζ7 + 98304 ζ3 ζ7 + 4096 ζ25

)

. (5.7)

10We used DATAMINE [35] tables for the substitution of the multiple zeta functions, or multiple polyloga-

rithms at x = 1 through usual Euler zeta-functions ζi and the minimal numbers of multiple zeta-functions

up to weights 12.
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The absence of the poles in ω is a very strong test for the correctness of our seven-loop

result, as the analytically continued anomalous dimension at M = −2 + ω has about two

hundred poles terms up to g14/w2 (with the different combinations of ζi and other special

numbers). Note that the generalised double-logarithmic equation (5.7) can be used to

control even the ζ11-term in the seven-loop anomalous dimension coming from eq. (4.1) as

its analytic continuation is proportional to ζ11/ω
2, which is not possible from the BFKL

equation (5.3).

5.3 Generalised double-logarithmic equation: M = −r + ω, r = 4, 6, . . .

Finally, we can consider the analytic continuation of our result to the regimes around

other even negative integer values, M = −r + ω, with r = 4, 6, . . ., where a generalisation

of the double-logarithmic was found in ref. [8]. The generalisation states that around

M = −r + ω , r = 2, 4, 6, . . . the reciprocity-respecting function P(M) can be written as

PDL(ω, r) = 2
∑

k=1

∑

m=0

Dk
m(r)ωm

(−4 g2

ω

)k

. (5.8)

Some of the coefficients Dk
m(r) are given in ref. [8]. To test our result, we check the fact

that according to eq. (5.8) P14(M) should not contain poles higher than 1/ω7, and this is

indeed true.

6 Conclusion

The main result of this paper is the planar seven-loop anomalous dimension of twist-2

operators with arbitrary Lorentz spin M in N = 4 SYM theory. This result, assumed to

satisfy the maximal transcendentality principle, was reconstructed from a set of values at

fixed spin which where found by solving the quantum spectral curve perturbatively. How-

ever, to reconstruct the rational part, we had to split the contribution into a part coming

from the asymptotic Bethe ansatz plus a wrapping correction and then reconstruct these

terms separately. In some parts of the reconstruction, in particular of the wrapping part of

the rational contribution, we needed to solve a system of linear equations of significantly

lower rank than the number of unknowns. This was done using a special method from

number theory, namely the floating point realization [5] of the LLL-algorithm [4]. All of

these computations were done on the level of the reciprocity-respecting function P(M),

from which the anomalous dimension can be generated using eq. (2.9). The expression

for the anomalous dimension is very lengthy and therefore not written explicitly in the

paper, but it is available in the ancillary files of the arXiv version of the paper and on the

web-page: http://thd.pnpi.spb.ru/∼velizh/7loop/.
The obtained result was thoroughly tested against the constraints coming from the

BFKL equation (5.3) and the generalised double-logarithmic equations (5.7), (5.8). These

equations provide more than two hundred constraints. The complete agreement with these

constraints confirms the correctness of the result.

One of the main aims of this work was to obtain new information about the analytic

properties of the anomalous dimension of twist-2 operators. The result for the analytic
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continuation at M = −2 can be found in eq. (5.7) and provide us with new information

about the generalised double-logarithmic equation. The result for the analytic continuation

atM = −1, written in eq. (5.3), confirm the prediction from ref. [12] (and also from refs. [13]

and [33]). For future calculations related with the BFKL equation, we write down the next-

to-next-to-next-to-leading poles of the anomalous dimension at M = −1, which have the

following form

γN
3LLA

BFKL = 2ζ3ω
3

(−4g2

ω

)

− 31

4
ζ4ω

3

(−4g2

ω

)2

+
(

35ζ5 − 8ζ2ζ3
)

ω3

(−4g2

ω

)3

+

(

5

2
ζ23 − 349

6
ζ6

)

ω3

(−4g2

ω

)4

+

(

3761

16
ζ7 −

39

4
ζ2ζ5

)

ω3

(−4g2

ω

)5

+

(

−112

171
h53 +

560

57
h71 + 36ζ2ζ

2
3 − 45575

152
ζ3ζ5 −

2484067

10944
ζ8

)

ω3

(−4g2

ω

)6

+

(

201

32
ζ2ζ7 +

1

2
ζ33 +

1088

3
ζ3ζ6 +

839

16
ζ4ζ5 +

33719

48
ζ9

)

ω3

(−4g2

ω

)7

, (6.1)

and can be used for the test of the BFKL pomeron eigenvalue at four loops (N3LLA).
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