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1 Introduction

One of the most outstanding problems in physics today is understanding the nature of

quantum gravity. The AdS/CFT correspondence has led to many insights in recent years,

as it has furnished a number of exact dualities between quantum theories of gravity in

negatively curved space and conformal field theories in one lower dimension. Many of

these examples arise as solutions of string theory and M-theory [1]. It has also inspired

progress in the understanding of black holes and the quantum gravity S-matrix, among

other things.

The context of an extremal CFT was originally introduced by Witten in [2] (see also [3])

as an attempt to understand potential holographic duals to pure (super)gravity in AdS3.

In a sense, this is the simplest possible example of a holographic duality. The idea is,

with a few assumptions, to use modular properties of the 2d CFT and the holographic

principle to fix the full quantum gravity partition function in anti-de Sitter space. In three

dimensions, there are no bulk metric degrees of freedom, but there are boundary gravitons

corresponding to Virasoro descendants of the primaries. Because of this, he assumes that
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the only bulk solutions which contribute to the quantum gravity path integral are the

vacuum and BTZ black holes, and that the latter contribute to the CFT partition function

as primaries with dimension greater than c/24; with this information, and the fact that the

leading term in the expansion of the partition function around τ → i∞ is q−c/24, SL(2,Z)

invariance fixes the function to be of the form

Zk(τ) = q−k
∞
∏

n=2

1

1− qn
+O(q), (1.1)

where k ≥ 1 is an integer parametrizing the allowed values of the central charge, c = 24k,

and the infinite product comes from the Virasoro descendants of the vacuum.

Witten also makes a similar prediction for the partition functions of candidate duals

to pure supergravity in AdS3 in terms of an integer k∗ ≥ 1 which parametrizes the allowed

values of the central charge, now c = 12k∗. In this case, the only difference is that now

the partition function has slightly modified modular properties which take into account

the spin structure of the fermionic states on the torus, and the descendants of the vacuum

are generated by the full N = 1 enhancement of the Virasoro algebra. Nevertheless, this

is enough to fix the partition functions Zk∗(τ), as it was in the bosonic case.

One immediate surprise is that there are known chiral conformal theories with these

partition functions for k = 1 and k∗ = 1, 2, and that they have interesting connections

to the theory of sporadic groups, unimodular lattices, and error correcting codes. The

theory for k = 1 is the famous monster CFT of Frenkel, Lepowski, and Meurman [4],

which is a theory constructed from a Z2 orbifold of chiral bosons on the Leech lattice,

and whose symmetry group is the monster group, the largest of the sporadic finite simple

groups. The theories for k∗ = 1 and 2 are also interesting chiral theories which can be

realized as lattice orbifolds and with large symmetry groups related to the Conway group

Co0, the automorphism group of the Leech lattice. The theory with k∗ = 1 was originally

constructed in [4] as a Z2 orbifold of eight bosons compactified on the E8 root lattice with

their fermionic superpartners; properties of this theory were further studied in [5, 6]. A

theory with k∗ = 2 was constructed by Dixon, Ginsparg, and Harvey [7] as a nonlocal Z2

orbifold of the Leech lattice; this construction will be described in more detail in section 3.

One of the crucial assumptions underlying the predictions in [2] is the holomorphic

factorization of the partition functions of the dual CFTs. In [8], the authors studied what

happens when one relaxes this assumption from the perspective of the gravitational path

integral; this leads to some confusion, one possible resolution of which could be that these

theories do not exist in general for large k. Other investigations into extremal theories with

k > 1 have been similarly inconclusive, in that their existence has neither been proven nor

ruled out [9–15]. Finally, it has been suggested that one may interpret chiral conformal

field theories as duals to a theory of “chiral gravity” in AdS3 [16]; the viability of these

theories is somewhat controversial, but that discussion is not relevant to this paper.

The concept of an extremal CFT was extended to theories with N = 2 and N = 4

superconformal symmetry in [17]. The extremal condition imposes a constraint on the

elliptic genus, which, for a 2d N = (2, 2) theory, is given by

ZEG(τ, z) = trRR(−1)F e2πizJ0qL0−c/24q̄L̄0−c̄/24, (1.2)
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where J0 is the left-moving Υ(1) charge, c and c̄ are the left- and right-moving central

charges, respectively, and the trace is taken in the Ramond-Ramond sector of the theory.

ZEG is a purely holomorphic function of τ when the theory has a compact target space and

is given by a weak Jacobi form of weight zero and index c/6 [18]. It can be expanded as

ZEG(τ, z) =
∑

n≥0,ℓ

c(n, ℓ)qnyℓ (1.3)

where y = e2πiz. The extremality condition is a constraint on the coefficients c(n, ℓ) of terms

in the elliptic genus with negative “polarity” p, that is, states for which p = 4mn− ℓ2 < 0.

Here m = c/6 is the index of the Jacobi form. States with negative polarity can be viewed

as states which violate the cosmic censorship bound [19]; thus, if one assumes the only

such states arise from the NS vacuum and its N = 2 (or N = 4) descendants, one has a

constraint on all of the polar coefficients in the elliptic genus.

It turns out that this constraint is usually more restrictive for a given m than the space

of Jacobi forms at that index allows, and there exists only a handful of extremal N = 2 and

N = 4 elliptic genera under this definition [17]. It is an interesting question to consider

modifying this condition to some notion of “near extremality”, where a bounded number

of states contributes to the index up to a dimension parametrically smaller than c as the

central charge gets large. This is considered somewhat in [17], but it still merits further

investigation.

One advantage of the notion of extremality for theories with extended supersymmetry

is that, unlike in the case of N = 0 and N = 1 theories, one does not have to assume

holomorphic factorization of the 2d CFT. However, as already mentioned, there is only a

finite number of candidate elliptic genera satisfying this condition with very small central

charge. Additionally, the only known constructions of theories satisfying these extremality

conditions happen to be chiral in any case, and have partition function equal to the would-

be extremal elliptic genus at the corresponding left central charge. For central charge 12

(m = 2), the chiral CFTs discussed in [20] furnish examples of extremal N = 2 and N = 4

theories, and, similarly, the chiral theories constructed in [21] and this paper are examples

of extremal N = 2 and N = 4 theories with central charge 24 (m = 4), respectively. These

theories, along with the k = 1 and k∗ = 1, 2 theories introduced in [2] are the only known

extremal CFTs.1,2 It would be very interesting to find the first example of such a theory

with c > 24 with any amount of supersymmetry.

The rest of the paper is organized as follows. In section 2 we discuss the definition of

the extremal elliptic genus in more detail, reviewing the work of [17] and focusing on the

1Note that the c = 12 theory first discussed in [22] and analyzed in detail in [23] satisfies an analogous

type of extremal constraint, in that there are no (NS) primaries above the vacuum of dimension ≤ c/24.

This theory has an extended chiral superconformal algebra, known sometimes as the SW(3/2, 2) algebra,

or the algebra associated to string compactification on manifolds of Spin(7) holonomy. It could be of

interest to analyze extremal constraints for theories with extended chiral algebras such as W -algebras or

super-W -algebras. This was in fact originally mentioned in [2].
2It is not clear to me whether one should count the K3 conformal field theory as an extremal CFT, as,

though it is proportional to the m = 1 extremal elliptic genus of [17], it seemingly does not have the right

overall coefficient as predicted in that paper, at least for the case of N = 2.
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case of the extremal N = 4 genus for m = 4. In section 3 we review the salient points

of [7] necessary for constructing a chiral superconformal field theory from a Z2 orbifold

of a unimodular lattice. We explicitly construct the extremal chiral N = 4 theory with

c = 24 in section 4 by adapting the methods of [7] to an orbifold of chiral bosons on the

Niemeier lattice with root system A12
2 . That is, we show that from this orbifold theory,

one can construct a c = 24 N = 4 superconformal algebra with the correct OPEs, and

that the chiral partition function of this theory is precisely the extremal elliptic genus

with m = 4. Finally we conclude in section 5 with a number of interesting questions raised

given the recent growth in the collection of extant extremal CFTs. A number of appendices

collect useful formulae, character decompositions of the first few proposed extremal elliptic

genera, further details on the ternary Golay code and its connection to the Mathieu group

M12, and some explicit details of calculations involved in the construction of the N = 4

superconformal algebra.

2 Extremal elliptic genera

Recall that a weak Jacobi form of weight k and indexm is a holomorphic function φk,m(τ, z)

on H× C with the following modular transformation property,

φk,m

(

aτ + b

cτ + d
,

z

cτ + d

)

= (cτ + d)ke2πim
cz2

cτ+dφk,m(τ, z) ∀
(

a b

c d

)

∈ SL(2,Z), (2.1)

and elliptic transformation property

φk,m(τ, z + ℓτ + ℓ′) = e−2πim(ℓ2τ+2ℓz)φk,m(τ, z) ∀ℓ, ℓ′ ∈ Z. (2.2)

It can be expanded as

φk,m(τ, z) =
∑

n,ℓ∈Z

c(n, ℓ)qnyℓ, (2.3)

and the “weakness” is an additional condition that c(n, ℓ) = 0 for n < 0. The ring of

weak Jacobi forms has four generators: the two Eisenstein series E4(τ) and E6(τ), and two

weak Jacobi forms, ϕ−2,1(τ, z) and ϕ0,1(τ, z), of weight and index, (k,m), equal to (−2, 1)

and (0, 1), respectively. Formulas for these functions are given in appendix A. For more

information about the properties of Jacobi forms, see, e.g., [24].

In appendix B we list the first several cases of extremal N = 2 and N = 4 Jacobi forms,

as first discussed in [17]. We also give their decompositions into superconformal characters,

neglecting an overall constant coming from the degeneracy of right-moving Ramond ground

states which is derived in [17]. The extremal N = 2 and N = 4 elliptic genera coincide for

m = 1, 2. For m = 3, 4, 5, they differ, and for m > 5, the extremal N = 4 elliptic genus

very likely doesn’t exist [17].

Note that for the cases of evenm, the extremalN = 2(4) elliptic genus has the potential

to be interpreted as a partition function of a chiral N = 2(4) conformal field theory, since

the coefficients in the character expansion are all positive. In this case, the constant coming

from the degeneracy of right-moving Ramond ground states normally present in the elliptic
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genus must be one. In fact, for the case of m = 2, 4, corresponding extremal theories have

been constructed as chiral CFTs with N = 2 or N = 4 superconformal symmetry. This

paper provides a construction of an N = 4 ECFT with m = 4; see [20] for the case of the

N = 2, 4 ECFTs for m = 2 and [21] for the N = 2 theory with m = 4.

However, this property does not hold for the case of odd m. As one can see from the

decompositions in the appendix, there is always a negative contribution coming from a

short multiplet in the Ramond sector. In the case of the N = 2 extremal elliptic genus,

the multiplet with a negative coefficient is a BPS primary of dimension and Υ(1) charge

h = m
4 and Q = m; in the N = 4 case, it is a BPS primary of dimension and 1

2J3 charge

h = m
4 and j = m

2 . One can check that this property also holds for the proposed extremal

N = 2 elliptic genera of m = 7, 8, 11, 13 which are not given in the appendix. Thus for

cases of odd m, if an extremal theory exists, it will necessary not be chiral.

We will consider the extremal N = 4 elliptic genus for the case of m = 4. The relevant

weight zero Jacobi form is

Zm=4
N=4(τ, z) =

271

576
E2

4ϕ
4
−2,1 +

43

108
ϕ0,1ϕ

3
−2,1E6 +

37

288
ϕ2
0,1ϕ

2
−2,1E4 +

5

1728
ϕ4
0,1. (2.4)

The decomposition into c = 24, N = 4 superconformal characters can be written

ZN=4
m=4 (τ, z) = 55 ch4;1,0(τ, z) + ch4;1,2(τ, z)

+(18876 + 1315512q + . . .)
(

ch4;2, 1
2
(τ, z) + ch4;2,− 1

2
(τ, z)

)

+(12045 + 1152943q + . . .)(ch4;2,1(τ, z) + ch4;2,−1(τ, z))

+(1980 + 391974q + . . .)
(

ch4;2, 3
2
(τ, z) + ch4;2,− 3

2
(τ, z)

)

+(33 + 45990q + . . .) ch4;2,2(τ, z), (2.5)

where chm;h,j(τ, z) is the N = 4 superconformal charater of central charge 6m in the

Ramond sector for a primary of dimension h and 1
2J3 charge j. The primaries with h = 1

are BPS (short) multiplets and those with h > 1 are non-BPS (long) multiplets. Note that

for the long multiplets, the following character identity holds:

ch4;2+n,j(τ, z) = qn ch4;2,j(τ, z), ∀n ∈ Z, (2.6)

so we write the character expansion for the long multiplets entirely in terms the characters

for the states with dimension h = 2 times a power series in q. See appendix A for the

structure of N = 2 and N = 4 superconformal characters.

On the face of it, the coefficients in equation (2.5) may not seem particular meaningful;

however, in the course of constructing a chiral CFT with this partition function, we will

prove that they are naturally related to dimensions of irreducible representations of the

sporadic Mathieu group M11.

3 Chiral SCFTs from orbifolds of self-dual lattices

In this section we review the work of Dixon, Ginsparg, and Harvey [7], in which they show

how to construct a c = 24 chiral conformal field theory with N = 1 supersymmetry from

a Z2 orbifold of an even, unimodular lattice of dimension 24.

– 5 –
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Bosonic (chiral) conformal field theories with modular invariant partition functions can

be constructed from even, positive-definite, unimodular lattices with rank 24k, for k an

integer. In this case the CFT will have central charge 24k. In dimension 24, there are 24

such lattices, the Leech lattice, the unique even, positive-definite, unimodular lattice with

no roots (vectors of length-squared 2), and the 23 Niemeier lattices, which can be classified

by their root systems, which are a union of simply-laced root systems of the same Coxeter

number. The authors of [7] showed how one can construct a chiral N = 1 superconformal

field theory from one of these lattices by considering a Z2 orbifold of the theory.

For the moment we leave the choice of lattice arbitrary. The partition function of the

un-orbifolded chiral theory is given by

ZΛ(τ) =
ΘΛ(τ)

η(τ)24
= J(τ) + (cΛ + 24) =

1

q
+ (cΛ + 24) + 196884q + . . . , (3.1)

where ΘΛ is the lattice theta function, cΛ is the number of roots of the lattice, and J(τ) is

the unique weight zero modular invariant function such that J(τ) ∼ 1
q +O(q) as τ → i∞.

The primary fields of the theory include the vacuum and products of 24 dimension one

currents Ji = i∂xi for i = 1, . . . 24, and vertex operators of dimension β2/2 of the form

Vβ(z) =: eiβ·x(z) : , ∀β ∈ Λ. (3.2)

There also exists a dimension two stress tensor given by

T (z) = −1

2
: ∂xi∂xi : (z) (3.3)

whose modes generate a Virasoro algebra.

We want to consider the theory under a Z2 orbifold which acts as g : xi → −xi ∀i.
The untwisted sector Hilbert space H splits into two spaces which we define as

H± := {ψ ∈ H | gψ = ±ψ}, (3.4)

based on whether the state is invariant or anti-invariant under the orbifold action. There

is also a twisted Hilbert space Htw introduced by the action of the orbifold, which can also

be decomposed in a similar way:

Htw
± := {ψtw ∈ Htw | gψtw = ±ψtw}. (3.5)

The fields in Htw satisfy boundary conditions xi(e2πiz) = −xi(z). There are 212

holomorphic twist fields σa which arise from the 224 fixed points Z2 orbifold, where the

holomorphic projection essentially acts as a square root on the number of fixed points.

The action of these twist fields on the vacuum state in the untwisted sector produces 212

degenerate twisted sector ground states with dimension h = 3/2. That is, they have OPE

with the stress tensor,

T (z)σa(w) ∼ 3

2

σa(w)

(z − w)2
+ . . . (3.6)

– 6 –
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and OPEs with each other which go like

σa(z)σb(w) ∼ δab

(z − w)3
+ . . . . (3.7)

The twisted sector Hilbert space Htw is composed of the σa acting on the untwisted pri-

maries, together with their descendants coming from the action of twisted oscillator modes.

The Hilbert space of the bosonic twisted theory is given by projecting onto Z2 invariant

states which lie in the untwisted and twisted Hilbert spaces: H+ +Htw.
+ . The projection

picks out the twisted sector states which have mutally local OPEs. These twisted theories

are discussed in, e.g., [25, 26]. The partition function is given by

Ztw
Λ (τ) = J(τ) + 12hΛ, (3.8)

where hΛ is the coxeter number of the root system of the lattice Λ, with hΛ = 0 when

Λ = ΛLeech. Notice that for the case of the Leech lattice theory, the orbifold projects out

the 24 dimension 1 currents i∂xi, and the resulting theory has an automorphism group

which is the monster group [4].

The authors of [7] showed that one can instead construct an N = 1 superconformal

theory by considering the full Hilbert space of the orbifolded theory including both invariant

and anti-invariant states. The first step is to note that the fields σa have the correct

dimension for a supercurrent. One then splits the Hilbert space into two sectors based on

whether the OPE with the supercurrent has a branch cut (R sector) or not (NS sector.)

One then finds the Hilbert space of the NS sector is

HNS = H+ +Htw.
− , (3.9)

and the R sector is

HR = H− +Htw.
+ . (3.10)

In the case of Λ the Leech lattice, there are no primary fields of dimension one in

the NS sector, so there is no way to construct a current algebra needed for extended

supersymmetry. However, for any of the other Niemeier lattices, there are dimension one

primary fields which one can use to construct an affine u(1)4 current algebra at level

four, which is necessary to enhance the N = 1 superconformal algebra to an N = 2

superconformal algebra with central charge 24. The authors of [21] explicitly construct

this algebra for the case of the theory with Λ = A24
1 , using the fact that if j(z) is a

dimension 1 operator in H+, its OPE with any of the twist fields obeys as

j(z)σa(w) ∼ qab
σb(w)

(z − w)
+ . . . ; (3.11)

i.e., the twist fields have charge with respect to the dimension one currents in H+. This

allows one to build an N = 2 superconformal algebra with the correct OPEs.

For the theory associated with Λ = A24
1 , this is as far as one can go in terms of

enhanced supersymmetry, since the orbifold leaves invariant 24 non-interacting dimension

– 7 –
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one primaries. This is equivalent to the fact that the N = 2 theory for Λ = A24
1 is an

extremal N = 2 theory with m = 4, whereas the N = 2 theories for all of the other

(orbifolded) Niemeier lattices are non-extremal. However, in this work we will consider

the theory with Λ = A12
2 , in which case one can use the invariant primaries to construct

an affine su(2)4 current algebra at level 4, which enhances the chiral algebra to an N = 4

superconformal algebra, and that, in fact, this theory satisfies the constraints to be an

extremal (chiral) N = 4 superconformal theory with m = 4.

4 An extremal chiral N = 4 theory

First we provide some details about the Niemeier lattice with root system A12
2 . The lattice

is generated by a union of 12 copies of the A2 root system together with additional points

which can be written in terms of “glue vectors”. We will call (xi, yi) the coordinates in the

plane of the ith A2 root system. A single root system has a basis of simple roots given by

a1 = (
√
2, 0) (4.1)

and

a2 =
1√
2
(−1,

√
3). (4.2)

Then we have a 24-dimensional basis of simple roots for the full lattice given by

f1 = (
√
2, 0, 0, 0 . . . , 0, 0), h1 =

1√
2
(−1,

√
3, 0, 0 . . . , 0, 0)

f2 = (0, 0,
√
2, 0, . . . , 0, 0), h2 =

1√
2
(0, 0,−1,

√
3, . . . , 0, 0)

. . .

f12 = (0, 0, 0, 0 . . . ,
√
2, 0), h12 =

1√
2
(0, 0, 0, 0 . . . ,−1,

√
3).

It is necessary to add glue vectors to the root lattice in order to make the full lattice

self-dual. Thus, the glue vectors can naturally be specified in terms of twelve components,

each of which lives in the dual lattice of the ith A2 root system. There is a specific set of

729 such glue vectors gw which make up a “glue code” such that the full lattice is defined as

ΛA12
2

=

{

12
∑

i=1

(mifi + nihi) +
∑

w

nwgw

∣

∣

∣ mi, ni, nw ∈ Z;
∑

w

nw = 0

}

. (4.3)

More details on the specification of the glue vectors and, in particular, their relation to the

ternary Golay code and the Mathieu group M12 can be found in appendix C.

One can also represent the lattice as an unrestricted sum over 24 basis vectors; it turns

out this will be more useful for computation. A full (minimal) basis for the lattice which

will be convenient for our purposes can be given in terms of 24 vectors, 18 of which are

root vectors, and 6 of which arise from “glue”:

ΛA12
2

=

{

12
∑

i=1

mifi +
6

∑

i=1

nihi +
6

∑

i=1

ℓivi

∣

∣

∣
mi, ni, ℓi ∈ Z

}

, (4.4)
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where, defining

α =

(

1√
2
,
1√
6

)

, (4.5)

the additional vectors can be written as

v1 = (0, α, α, α, α, α, α, 0, 0, 0, 0, 0)

v2 = (−α, 0, α,−α,−α, α, 0, α, 0, 0, 0, 0)

v3 = (−α, α, 0, α,−α,−α, 0, 0, α, 0, 0, 0)

v4 = (−α,−α, α, 0, α,−α, 0, 0, 0, α, 0, 0)

v5 = (−α,−α,−α, α, 0, α, 0, 0, 0, 0, α, 0)

v6 = (−α, α,−α,−α, α, 0, 0, 0, 0, 0, 0, α). (4.6)

Note that each component of vi is a vector in the plane of the ith root system; i.e., “0”

means the two-dimensional zero vector. One can check that the other six root vectors can

be written in terms of linear combinations of these basis vectors with coefficients in Z. It

is possible to check that the representations of the lattice in equations (4.3) and (4.4) are

equivalent using, e.g., properties of the ternary Golay code discussed in appendix C.

The full theta function of the lattice, which counts the number of lattice vectors of

each length, is given by

ΘA12
2
(τ) = E4(τ)

3 − 81

32
θ2(τ)

8θ3(τ)
8θ4(τ)

8. (4.7)

The partition function of chiral bosons on this lattice is then

ΘA12
2
(τ)

η(τ)24
= J(τ) + 96, (4.8)

where the entrance of 1/η(τ)24 accounts for the 24 dimension one currents ∂xi, and the

Virasoro descendents of all of the primaries.

From the representation of the lattice given in (4.3), it is easy to understand its sym-

metry group. The automorphism group of the glue code is the sporadic group M12. The

automorphism group of the A2 root system consists in the Weyl group, which acts as re-

flections of the roots, and a Z2 action which exchanges the simple roots a1 and a2. Thus,

the full automorphism group of the lattice modded out by the Weyl group is the sporadic

group 2.M12, where the 2 indicates a nontrivial double cover of M12 [27]. This will be

the discrete part of the symmetry group of the (untwisted) bosonic conformal field theory

associated to this lattice. There is also a continuous part generated by the zero modes of

the currents and which corresponds to the Lie algebra of the root system.

4.1 Current algebra

We would like to understand the structure of the lattice CFT under the Z2 orbifold which

acts as xi → −xi, and in particular, to compute the partition function in the Ramond

sector to verify that it is equal to the extremal elliptic genus with m = 4. First we will

analyze the invariant and anti-invariant states under the Z2 action. It turns out we will
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only need to understand the behavior of the dimension one currents in order to fix the

partition function of this theory in the Ramond sector. There are eight dimension one

currents associated with each copy of the A2 root system. We write them as

J i,−
x = i : ∂xi :, J i,−

y ≃ i : ∂yi :

J+
λi

=
1√
2

(

: eiλi·~x : σλi
+ : e−iλi·~x : σ−λi

)

J−
λi

=
1√
2i

(

: eiλi·~x : σλi
− : e−iλi·~x : σ−λi

)

where λi = fi, hi, fi + hi denotes one of the three positive roots of the ith A2 root system,

~x = (x1, y1, . . . , x12, y12), and :: denotes the usual normal ordering. The σλs are cocycle

factors needed to ensure mutually local OPEs of these vertex operators. With these factors

included, together these currents generate an affine ŝu(3)1 current algebra at level one.

Here we have labeled the currents with a plus or minus sign based on their eigenvalue

under the Z2 orbifold action. Therefore, we see that there are three invariant currents in

the NS sector: J+
fi
, J+

hi
, and J+

fi+hi
. Choosing a particular copy of A2 root system, say

i = 1, and redefining the three Z2-invariant currents as

J1 = 2J+
f1+h1

, J2 = 2J+
h1
, J3 = 2J+

f1
, (4.9)

we see that their OPE satisfies

Ji(z)Jj(w) ∼
4δij

(z − w)2
+ i

√
2ǫijk

Jk(w)

(z − w)
+ reg. (4.10)

These are precisely the OPEs of an ŝu(2)4 current algebra. In order to verify this, one

needs the following properties of the cocycle factors

σxσy = (−1)x·yσyσx = ǫ(x, y)σx+y (4.11)

and

ǫ(x, y)ǫ(x+ y, z) = ǫ(x, y + z)ǫ(y, z). (4.12)

We choose a gauge where σ0 = 1, ǫ(x, 0) = ǫ(0, x) = 1, ǫ(x,−x) = −1, and ǫ(f1, h1) = i.

For more discussion of these cocycle operators, see, e.g., [28].

Now we would like to compute the charges of the Ramond sector currents which are

eigenstates of a suitably chosen Cartan element of this su(2). Let’s select J3 and compute

its OPE with the 60 Ramond sector currents. First, it’s obvious that for i 6= 1, the OPE

will be completely regular since the currents are composed of fields which commute with

those in J3. Second, it is clear for the same reason that the OPE of J3 with J1,−
y will be

regular for the same reason. So we need to compute the OPE of J3 with the four Ramond

sector currents J1,−
x , J−

f1
, J−

h1
, J−

f1+h1
.

After some work, we find

J3(z)J
1,−
x (w) ∼ −2

√
2i

J−
f1
(w)

(z − w)
, J3(z)J

−
f1
(w) ∼ −2

√
2i
J1,−
x (w)

(z − w)
(4.13)
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and

J3(z)J
−
h1
(w) ∼ i

√
2
J−
f1+h1

(w)

(z − w)
, J3(z)J

−
f1+h1

(w) ∼ i
√
2
J−
h1
(w)

(z − w)
. (4.14)

We see that by taking suitable linear combinations of J1,−
x and J−

f1
we get one charge

2 state and one charge −2 state, and similarly, linear combinations of J−
h1

and J−
f1+h1

give

states of charge ±1. This fixes the form of the elliptic genus in the Ramond sector to be

1

y4
+

1

y2
+ 56 + y2 + y4 +O(q), (4.15)

where the charge grading is given by 2J3 as is usual for an N = 4 elliptic genus. With

these leading coefficients, the entire Ramond sector partition function is fixed given that

it is a weight 0 index 4 weak Jacobi form.3 Therefore we see this reproduces the extremal

N = 4 elliptic genus defined in [17] as the partition function of the Ramond sector in this

chiral theory.

4.2 Superconformal algebra

In addition to the stress tensor and su(2) current algebra, the N = 4 SCA has four

supercurrents G±
1,2. These transform as doublets under the su(2) with OPEs

Ji(z)G
+
a (w) ∼ − 1√

2(z − w)
σi
abG

+
b (w)

Ji(z)G
−
a (w) ∼ 1√

2(z − w)
(σi

ab)
∗G−

b (w), (4.16)

and their OPEs with each other are

G+
a (z)G

−
b (w) ∼ δab

(

16

(z − w)3
+

2T (w)

z − w

)

−
√
2σi

ab

(

2Ji(w)

(z − w)2
+

∂Ji(w)

z − w

)

G+
a (z)G

+
b (w) ∼ G−

a (z)G
−
b (w) ∼ 0. (4.17)

We want to construct four dimension-3/2 supercurrents, G±
1,2 that precisely satisfy the

OPEs of the N = 4 superconformal algebra. We need to check the OPEs of the currents

with each other and with the su(2) currents such that equations (4.16) and (4.17) hold, and

the OPEs with all other dimension one currents are regular. As we have discussed, there

are 4096 dimension 3/2 twist fields which form a basis for the dimension 3/2 operators.

We will construct G±
1,2 by taking linear combinations of these twist fields.

First, note that equations (4.16) show that the four supercurrents are all eigenvectors

with respect to J3(z). We can take a basis of the 4096 σa(z) twist fields that is diagonal with

respect to J3(z). There will be 2048 states with positive and negative eigenvalues, which

3Strictly speaking, one must also prove the existence of an N = 2 spectral flow symmetry. This amounts

to showing that there are two chiral generators ε± of dimension ∆ = 4 and Υ(1) charges J0 = ±8 (of an

N = 2) [29]. We can show this using the same argument in [21]. The ε± generators they construct are also

present in our lattice theory and thus there also exists an N = 2 spectral flow, which, with the relation

J0 = 2J3, is all that is needed to prove the N = 4 partition function is a weak Jacobi form of the correct

weight and index.
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we will write as σ+,i(z) and σ−,i(z), respectively. We can construct four supercurrents

which are eigenstates with respect to J3(z) and manifestly satisfy equations (4.16) as,

G±
1 (z) =

2048
∑

i=1

c1∓,iσ
∓,i(z)

G±
2 (z) =

2048
∑

i=1

c2±,iσ
±,i(z), (4.18)

where c1,2±,i are complex coefficients. The OPEs of equation (4.16) imply they satisfy

c2±,i = ∓c1∓,i, (4.19)

where we have defined the σ±,i such that J1σ
±,i ∼ σ∓,i. Here we see that G−

1 (z) and G+
2 (z)

have J3 eigenvalue +1 and G+
1 (z) and G−

2 (z) have J3 eigenvalue −1.

An easier way to verify the OPEs will be to work with expectation values. Define

the following two twisted sector ground states to be the ones with either all positive or all

negative eigenvalues with respect to the 12 Υ(1) currents Jfi :

||±〉 ≡ | ± ± ±±±±±±±±±±〉. (4.20)

We claim the following combinations of twisted sector ground states form supercharges

which satisfy the OPEs of equation (4.17)

G±
2 =

12
∏

n=2

(1± iJn
1 )||±〉 (4.21)

for a = b = 2. Acting with the su(2) generators and using (4.16) can then generate the

other OPEs including G±
1 . Here it is convenient to define Jn

1 = Jfn+hn
, Jn

2 = Jhn
, Jn

3 = Jfn
as su(2) generators associated to the n other A2 root systems. Note that Jn

1 ||±〉 yields the
state | ±± . . .∓ . . .±〉 where the nth eigenvalue flips sign. With these definitions, it is not

difficult to verify that the following expectation values hold,

〈G−
2 |J i

3|G+
2 〉 ∼ δi1

〈G−
2 |J i

1,2|G+
2 〉 ∼ 0

〈G−
1 |J i

3|G+
2 〉 ∼ 0

〈G−
1 |J i

1,2|G+
2 〉 ∼ δi1,

which in turn imply the OPEs of equation (4.17) after proper normalization. In addition,

one has to check for decoupling of dimension two operators besides the stress tensor. This

is discussed in appendix D.

Finally, we point out that this choice of su(2) current algebra singles out one of the A2

root systems, breaking the automorphism group of the theory from 2.M12 to 2×M11, where

M11 is the subgroup of M12 which stabilizes a point in the 12-dimensional permutation

represenation.
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5 Discussion

In this section, we mention a few natural questions given the growing number of explicit

extremal (chiral) CFTs which have been constructed.

• The first and perhaps most obvious question is: are there any other examples of

N = 2 or N = 4 theories with an extremal elliptic genus according to [17]? Are there

any non-chiral examples (that don’t admit holomorphic factorization)?

• Is there a suitable modification to the definition of [17] that loosens the restrictions

on states with negative polarity and generalizes to arbitrarily high central charge?

Are there families of theories we can construct which satisfy this?

• Some theories withN = 4 superconformal symmetry have vanishing elliptic genus due

to right-moving fermion zero modes. An example of this is given by the elliptic genus

of T 4 and its symmetric products (T 4)N/SN [30]. Another example where an elliptic

genus vanishes is theories with large N = 4 superconformal symmetry [31]. However,

one can define an index for each of these theories that does not vanish [30, 32]. One

can try to impose extremal constraints on these functions and see if there are theories

which satisfy such constraints.4

• A natural thing to consider in 2d chiral conformal field theories with a large symmetry

group G is a “twined” version of the partition function, with the insertion of some

element g ∈ G in the trace:

Zg(τ, z) = tr(gy2J3qL0−c/24). (5.1)

In the monster theory, these functions are called McKay-Thompson series, and they

have interesting modular properties under congruence subgroups of SL(2,Z). It may

be interesting to study these functions for the theories with N = 2, 4 superconformal

symmetry and central charge 24, similar to what was done in [20] for the c = 12

extremal theories, where the functions were shown to have some interesting mathe-

matical properties.

• It is natural to organize the massive states in this theory and that of [21] into vector-

valued mock modular forms [33, 34], similar to [20]. Recently there have been a num-

ber of connections uncovered between mock modular forms and finite groups [35]. It

may be interesting to investigate these extremal SCFTs and their “twining” function

further from this point of view, or that of Rademacher sums [19, 36].

• All extremal CFTs found thus far have states which form representations of large

discrete sporadic symmetry groups. These sporadic groups are mathematically in-

teresting because of their connections with unimodular lattices and error-correcting

4Or, if one considers chiral theories with large N = 4 superconformal symmetry, one could impose

constraints on its holomorphic partition function. It does not seem like any of the Z2 orbifold theories

of the Niemeier lattices gives rise to a theory with large N = 4 symmetry since this algebra necessarily

includes dimension 1/2 currents. This does not preclude the possibility of a more complicated orbifold

yielding such a theory.
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codes [27]. It would be interesting to find a CFT interpretation for these error-

correcting codes, and see if these connections manifest in theories with large central

charge and semi-classical AdS3 gravity duals.

• It could be interesting to study the superconformal theories of the Z2 orbifolds of the

21 other Niemeier lattices. They will not be extremal with respect to N = 2, 4 super-

conformal algebras, but they may be extremal with respect to some extended chiral

algebra, or have other interesting mathematical properties. It would be satisfying if

they were somehow related to the moonshine of [35].

• The authors of [37] studied an eight-dimensional compactification of the heterotic

string where the left-movers were compactified on a Z2 orbifold of ΛLeech. They were

able to interpret some interesting properties of the McKay-Thompson series of the

monster theory as symmetries acting on two-dimensional spacetime BPS states. It

may be interesting to study this for the supersymmetric theories of [7, 21], or the

theory constructed in this paper. In do this, one will likely need to overcome some

difficulties in defining a heterotic compactification including this nonlocal orbifold of

the left-movers.
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A Useful formulas

A.1 Modular and Jacobi forms

We start by defining the Dedekind eta function,

η(τ) = q1/24
∞
∏

n=1

(1− qn). (A.1)

We define the Jacobi theta functions θi(τ, z) as follows for q = e(τ) and y = e(z):

θ1(τ, z) = −iq1/8y1/2
∞
∏

n=1

(1− qn)(1− yqn)(1− y−1qn−1) , (A.2)

θ2(τ, z) = q1/8y1/2
∞
∏

n=1

(1− qn)(1 + yqn)(1 + y−1qn−1) , (A.3)

θ3(τ, z) =
∞
∏

n=1

(1− qn)(1 + y qn−1/2)(1 + y−1qn−1/2) , (A.4)

θ4(τ, z) =
∞
∏

n=1

(1− qn)(1− y qn−1/2)(1− y−1qn−1/2) . (A.5)
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Using these functions, we can defined the generators of the ring of weak Jacobi forms which

are used in the text. The weight four Eisenstein series E4 can be written as

E4(τ) = 1 + 240
∞
∑

n=1

n3qn

1− qn
, (A.6)

and the weight six Eisenstein series E6 is

E6(τ) = 1− 504
∞
∑

n=1

n5qn

1− qn
. (A.7)

The remaining generators can be written as

ϕ0,1(τ, z) = 4

(

θ2(τ, z)
2

θ2(τ, 0)2
+

θ3(τ, z)
2

θ3(τ, 0)2
+

θ4(τ, z)
2

θ4(τ, 0)2

)

(A.8)

and

ϕ−2,1(τ, z) =
θ1(τ, z)

2

η(τ)6
. (A.9)

A.2 N = 4 superconformal characters

Recall (cf. [38]) that the N = 4 superconformal algebra contains subalgebras isomorphic

to the affine SU(2) and Virasoro Lie algebras. In a unitary representation the former of

these acts with level m, for some integer m ≥ 1, and the latter with central charge c = 6m.

The unitary irreducible highest weight representations vN=4
m;h,j are labeled by the eigen-

values of L0 and 1
2J

3
0 acting on the highest weight state, which we denote by h and j,

respectively. Cf. [39, 40]. The superconformal algebra has two types of highest weight

Ramond sector representations: the massless (or BPS ) representations with h = c
24 = m

4

and j ∈ {0, 12 , · · · , m2 }, and the massive (or non-BPS ) representations with h > m
4 and

j ∈ {1
2 , 1, · · · , m2 }. We will define their graded characters as

chN=4
m;h,j(τ, z) = trvN=4

m;h,j

(

(−1)J
3
0 yJ

3
0 qL0−c/24

)

. (A.10)

A.3 N = 2 superconformal characters

For the SCA with central charge c = 3(2ℓ+1) = 3ĉ, the unitary irreducible highest weight

representations vN=2
ℓ;h,Q are labeled by the two quantum numbers h and Q which are the

eigenvalues of L0 and J0, respectively, when acting on the highest weight state [41, 42]. Just

as in the N = 4 case, there are two types of Ramond sector highest weight representations:

the massless (or BPS ) representations with h = c
24 = ĉ

8 and Q ∈ {− ĉ
2 + 1,− ĉ

2 + 2, . . . , ĉ2 −
1, ĉ2}, and the massive (or non-BPS ) representations with h > ĉ

8 and Q ∈ {− ĉ
2 + 1,− ĉ

2 +

2, . . . , ĉ2 − 2, ĉ2 − 1, ĉ2}, Q 6= 0. From now on we will concentrate on the case when ℓ is

half-integral, and hence ĉ and c are even. We write the graded characters as

chN=2
ℓ;h,Q(τ, z) = trvN=2

ℓ;h,Q

(

(−1)J
3
0 yJ̃

3
0 qL0−c/24

)

. (A.11)

See, e.g., [20] for explicit formulas for the characters discussed in this section and the

next one.
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B Extremal elliptic genera and their character expansions

Using the characters discussed in the previous section, we decompose the first five examples

of extremal N = 2 and N = 4 elliptic genera defined in [17]. When possible, we point

out cases for which a SCFT with such elliptic genus (or chiral partition function) has

been constructed, and comment on their symmetry groups. It is the hope that, given the

relationship between known extremal CFTs and discrete sporadic groups, including those

connected to the monster [4] and Conway [5, 6] groups, looking at coefficients of these

functions may help in discovering more examples of extremal theories and/or in unifying

our understanding of extremal theories in general. As mentioned earlier in the text, if there

are theories not yet discovered which have extremal elliptic genera for m = 1, 3, 5, they will

necessarily be non-chiral.

• m = 1.

In this case the extremal N = 2 and N = 4 elliptic genera are the same and given by

ZN=2
m=1 (τ, z) = ZN=4

m=1 (τ, z) = ϕ0,1(τ, z). (B.1)

The decomposition in N = 2 characters is

ZN=2
m=1 (τ, z) = 11 chN=2

1
2
; 1
4
,0
(τ, z)− chN=2

1
2
; 1
4
,1
(τ, z) +

∞
∑

n=1

An ch
N=2
1
2
; 1
4
+n,1

(τ, z) (B.2)

and the decomposition into N = 4 characters is

ZN=4
m=1 (τ, z) = 10 chN=4

1; 1
4
,0
(τ, z)− chN=4

1; 1
4
, 1
2

(τ, z) +
∞
∑

n=1

Ãn ch
N=4
1; 1

4
+n, 1

2

(τ, z), (B.3)

where An = Ãn = {45, 231, 770, 2277, . . .} for n = {1, 2, 3, 4, . . .}.
It is interesting to note that the elliptic genus of a K3 surface is 2ϕ0,1(τ, z) and

could be considered extremal under some definition. The coefficients An are the same

numbers which were seen to be related to dimensions of irreducible representations

of the Mathieu group M24 as first noticed by [43] when studying the expansion of the

K3 elliptic genus in N = 4 superconformal characters.

• m = 2.

In this case the central charge is 12 and we notice that the extremal N = 2 and

N = 4 elliptic genera are again the same function:

ZN=2
m=2 (τ, z) = ZN=4

m=2 (τ, z) =
5

6
E4ϕ

2
−2,1 +

1

6
ϕ2
0,1. (B.4)

The character decompositions are

ZN=2
m=2 (τ, z) = 23 chN=2

3
2
; 1
2
,0
(τ, z) + chN=2

3
2
; 1
2
,2
(τ, z) +

∞
∑

n=1

∑

k=±1,2

An,k ch
N=2
3
2
; 1
2
+n,k

(τ, z)
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where An,1 = An,−1 = {770, 13915, 132825+ . . .} and An,2 = {231, 5796, 65505+ . . .}.
Similarly, the N = 4 decompositions are

ZN=4
m=2 (τ, z) = 21 chN=4

2; 1
2
,0
(τ, z) + chN=4

2; 1
2
,1
(τ, z) +

∞
∑

n=1

2
∑

k=1

Ãn, k
2

chN=4
2; 1

2
+n, k

2

(τ, z) (B.5)

where Ãn, 1
2
= {560, 8470, 70576, . . .} and Ãn,1 = {210, 4444, 42560, . . .}. A chiral the-

ory with this graded partition function and N = 2, 4 supersymmetry was constructed

in [20]. The coefficients An,k and Ãn,k are related to dimensions of irreducible repre-

sentations of the Mathieu groups M23 and M22, respectively.

• m = 3.

This case corresponds to central charge 18. At this point, and for all higher values

of c where they exist, the extremal N = 2 and N = 4 elliptic genera are distinct

functions. For this case we have

ZN=2
m=3 (τ, z) =

13

24
ϕ−2,1E6 +

7

16
ϕ2
−2,1ϕ0,1E4 +

1

48
ϕ3
0,1

= 35 chN=2
5
2
; 3
4
,0
(τ, z)− chN=2

5
2
; 3
4
,3
(τ, z) +

∞
∑

n=1

∑

k=±1,±2,3

An,k ch
N=2
5
2
; 3
4
+n,k

(τ, z),

where the first few coefficients are An,1 = An,−1 = {5984, 262140, 5078546, . . .},
An,2 = An,−2 = {2244, 132396, 2920005, . . .}, and An,3 = {187, 30261, 911098, . . .}.

The N = 4 form is given by

ZN=4
m=3 (τ, z) =

59

108
ϕ−2,1E6 +

31

72
ϕ2
−2,1ϕ0,1E4 +

5

216
ϕ3
0,1

= 36 chN=4
3; 3

4
,0
(τ, z)− chN=4

3; 3
4
, 3
2

(τ, z) +
∞
∑

n=1

3
∑

k=1

Ãn, k
2

chN=4
3; 3

4
+n, k

2

(τ, z)

where the first few coefficients are Ãn, 1
2
={3780, 131328, . . .}, Ãn,1={2016, 98118, . . .},

and Ãn, 3
2
= {189, 22267, . . .}. Neither an extremal N = 2 nor N = 4 SCFT has been

discovered with this central charge.

• m = 4.

The N = 2 theory is the case discussed in [21], and was shown to have M23 symmetry.

The Jacobi form is

ZN=2
m=4 (τ, z) =

67

144
ϕ4
−2,1E

2
4 +

11

27
ϕ3
−2,1ϕ0,1E6 +

1

8
ϕ2
−2,1ϕ

2
0,1E4 +

1

432
ϕ4
0,1

= 47 chN=2
7
2
;1,0

(τ, z) + chN=2
7
2
;1,4

(τ, z) +
∞
∑

n=1

∑

k=±1,±2,±3,4

An,k ch
N=2
7
2
;1+n,k

(τ, z)

where the coefficients are: An,1 = An,−1 = {32890, 2969208, . . .}, An,2 = An,−2 =

{14168, 1659174, . . .}, An,3=An,−3={2024, 485001, . . .}, and An,4={23, 61894, . . .}.
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The extremal N = 4 Jacobi form is the one discussed in this paper and is

given by

ZN=4
m=4 (τ, z) =

271

576
ϕ4
−2,1E

2
4 +

43

108
ϕ3
−2,1ϕ0,1E6 +

37

288
ϕ2
−2,1ϕ

2
0,1E4 +

5

1728
ϕ4
0,1

= 55 chN=4
4;1,0 (τ, z) + chN=4

4;1,2 (τ, z) +

∞
∑

n=1

4
∑

k=1

Ãn, k
2

chN=4
4;1+n, k

2

(τ, z),

where the coefficients are: Ãn, 1
2
={18876, 1315512, . . .}, Ãn,1 = {12045, 1152943, . . .},

Ãn, 3
2
= {1980, 391974, . . .}, and Ãn,2 = {33, 45990, . . .}. These coefficients are related

to dimensions of representations of the sporadic group M11.

• m = 5.

The central charge in this case is c = 30. No such extremal N = 2 or N = 4 theory

has been found. In the N = 2 cases, the extremal elliptic genus is,

ZN=2
m=5 (τ,z) =

2975

6912
ϕ4
−2,1ϕ0,1E

2
4 +

1979

5184
ϕ5
−2,1E4E6 +

835

5184
ϕ3
−2,1ϕ

2
0,1E6

+
275

10368
ϕ2
−2,1ϕ

3
0,1E4 +

5

20376
ϕ5
0,1 (B.6)

= 59chN=2
9
2
; 5
4
,0
(τ,z)− chN=2

9
2
; 5
4
,5
(τ,z) +

∞
∑

n=1

∑

k=±1,±2,±3,±4,5

An,kch
N=2
9
2
; 5
4
+n,k

(τ,z),

where the coefficients are: An,1 = An,−1 = {146566, 24757474, . . .}, An,2 = An,−2 =

{69426, 14772861, . . .}, An,3 = An,−3 = {13224, 5026222, . . .}, An,4 = An,−4 =

{551, 868927, . . .}, and An,5={0, 57798, . . .}.
Finally, the extremal N = 4 elliptic genus is,

ZN=4
m=5 (τ, z) =

2941

6912
ϕ4
−2,1ϕ0,1E

2
4 +

1999

5184
ϕ5
−2,1E4E6 +

827

5184
ϕ3
−2,1ϕ

2
0,1E6

+
301

10368
ϕ2
−2,1ϕ

3
0,1E4 +

7

20376
ϕ5
0,1 (B.7)

= 78 chN=4
5; 5

4
,0
(τ, z)− chN=4

5; 5
4
, 5
2

(τ, z) +
∞
∑

n=1

5
∑

k=1

Ãn, k
2

chN=4
5; 5

4
+n, k

2

(τ, z),

where the coefficients are: Ãn, 1
2
={78078, 10007569, . . .}, Ãn,1={56056, 9655568, . . .},

Ãn, 3
2
= {12441, 4017663, . . .}, Ãn,2 = {572, 742456, . . .}, and Ãn, 5

2
= {0, 44682, . . .}.

At this point we have exhausted all possible extremal N = 4 elliptic genera as defined

in [17]. There are functions satisfying the extremal N = 2 condition also for m = 7, 8, 11

and 13, but we don’t reproduce them here.

C The ternary Golay code and the Mathieu group M12

The discussion in this section in large part comes from chapter 3 of [27]. A binary code

of length n is a set of binary vectors called codewords with n coordinates taking values in
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the field Fn
2 where F2 = {0, 1}. Similarly, a q-ary code of length n is a set of codewords

taking values in the field Fn
q where Fq is the finite field with q elements where q = pa for

some prime p. When q = p is itself prime, Fp is just the field of integers mod p. For the

purposes of error-correction, one wants to choose codewords which are in some sense easy

to distinguish from each other in case some errors have occurred. A precise measure of this

is what is known as the Hamming distance between two codewords

u = (u1, . . . , un), v = (v1, . . . , vn),

defined to be the number of coordinates where they differ,

d(u, v) = |{i : ui 6= vi}|. (C.1)

The Hamming weight of a vector u, denoted as wt(u), is the number of nonzero coordinates

of u; therefore

d(u, v) = wt(u− v). (C.2)

The minimal distance d of a code is the “closest distance possible” between two code-

words, i.e.

d = min{d(u, v) : u, v ∈ C, u 6= v}. (C.3)

A code with minimal distance d has “packing radius” ρ where

ρ =
1

2
(d− 1) (C.4)

denotes the radius of disjoint “Hamming spheres” around the codewords; such a code can

correct ρ errors.

A linear code is a subspace of Fn
q , codewords are vectors in this subspace, and the code

is closed under vector addition and multiplication by elements of Fq. The dimension k of

a code C is the dimension of this subspace; there are in total M := qk codewords. In a

linear code, the minimal distance is just the minimal nonzero weight of any codeword

d := min{wt(u) : u ∈ C, u 6= 0}, (C.5)

where wt(u) denotes the number of nonzero entries in u. For purposes of error-correction,

it is desirable to have a small n and large M to increase efficiency, and large d to correct a

greater number of errors. A linear code of length n, dimension k, and minimal distance d

is often called an [n, k, d] code. An [n, k, d] code C can be specified by a generator matrix,

which is a k × n matrix such that C consists of all linear combinations of the rows of the

matrix with coefficients in Fq.

Given a code C, one can define its dual code, C∗, as

C∗ = {x ∈ Fn
q : x · ū = 0 ∀u ∈ C} (C.6)

where ū denotes conjugation in the field Fq, that is

u 7→ ū = up
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when q = pa for prime p. A code where C = C∗ is said to be self-dual. A self-dual code

necessarily has even n and k = n/2.

For linear codes, let Ai denote the number of codewords of weight i. Then the weight

enumerator of a linear code C is defined to be

WC(x, y) =

n
∑

i=0

Aix
n−iyi (C.7)

and counts the number of codewords of each weight.

A cyclic code is a code such that if c0c1 . . . cn−1 is a codeword, then c1c2 . . . cn−1c0
is also a codeword. Representing a codeword c = c0c1 . . . cn−1 by a polynomial c(x) =

c0 + c1x + . . . cn−1x
n−1, a linear cyclic code can be completely specified by a generator

polynomial g(x) which divides xn−1 over Fq. If p and n are primes, a quadratic residue code

of length n over Fp is a cyclic code whose generator polynomial has roots {αi : i 6= 0, i = x2

mod n}. This code has dimension (n + 1)/2. An extended quadratic residue code is

obtained from a quadratic residue by appending a zero-sum check digit. That is, for each

codeword c0c1 . . . cn−1 one adds an extra digit

cn = −
n−1
∑

i=0

ci. (C.8)

Then if n = 3 mod 4, the extended code is self dual.

At this point, we are in position to define the ternary Golay codes. The [11, 6, 5]

ternary Golay code C11 is defined as the quadratic residue code of length 11 over F3. It is a

perfect code, which means that it saturates the “Hamming bound”; i.e. its packing radius

is equal to its covering radius. The (extended) ternary Golay code C12 is a [12, 6, 6] code

which is self-dual and obtained from C11 by appending a zero-sum check digit. A possible

generator matrix is


















0 1 1 1 1 1 1 0 0 0 0 0

−1 0 1 −1 −1 1 0 1 0 0 0 0

−1 1 0 1 −1 −1 0 0 1 0 0 0

−1 −1 1 0 1 −1 0 0 0 1 0 0

−1 −1 −1 1 0 1 0 0 0 0 1 0

−1 1 −1 −1 1 0 0 0 0 0 0 1



















, (C.9)

and it has weight enumerator

x12 + 264x6y6 + 440x3y9 + 24y12.

The Mathieu group M12 is the automorphism group of C12, and it acts naturally as a

subgroup of the permutation group S12 on twelve elements.

D Gamma matrix algebra, supercurrents, and OPEs

We want to understand the nature of the twisted sector ground states in order to construct

the supercurrents of the N = 4 algebra. We define the twisted sector ground states as

|a〉 = lim
z→0

σa(z)|0〉 (D.1)
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where |0〉 is the NS sector vacuum. These 212 twisted sector ground states form an irre-

ducible representation of the untwisted sector operator algebra. In [28] it is shown that

a vertex operator corresponding to a lattice vector λ ∈ Λ acts on twisted sector ground

states as

lim
z→0

(4z)λ
2/2Vλ(z)|a〉 = γλ|a〉, (D.2)

where the nontrivial action is encoded in the cocycle factor γλ. In order for the vertex

operators to be mutually local, these factors must satisfy

γλγµ = (−1)λ·µγµγλ = ǫ(λ, µ)γλ+µ. (D.3)

The nontrivial part of the operator algebra is given by Λ/2Λ since all vectors in 2Λ yield

commuting vertex operators; in the case of a Z2 orbifold of a 24-dimensional lattice, this

algebra is a 24-dimensional Clifford algebra.

Now we give an explicit representation of this algebra for the case of Λ = ΛA12
2
. A

basis for Λ/2Λ can be given in terms of the basis for lattice vectors in equation (4.4), and

one can verify that a choice of gamma matrix algebra satisfying (D.3) is

γf1 = σ3 ⊗ 1⊗ . . .⊗ 1

γf2 = 1⊗ σ3 ⊗ . . .⊗ 1

. . . (D.4)

γf12 = 1⊗ 1⊗ . . .⊗ σ3

γh1
= σ2 ⊗ 1⊗ . . .⊗ 1

γh2
= 1⊗ σ2 ⊗ . . .⊗ 1

. . .

γh6
= 1⊗ 1⊗ 1⊗ 1⊗ 1⊗ σ2 ⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1

for the root vectors, and

γv1 = 1⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1

γv2 = σ2 ⊗ 1⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ 1⊗ σ2 ⊗ 1⊗ 1⊗ 1⊗ 1

γv3 = σ2 ⊗ σ2 ⊗ 1⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ 1⊗ 1⊗ σ2 ⊗ 1⊗ 1⊗ 1

γv4 = σ2 ⊗ σ2 ⊗ σ2 ⊗ 1⊗ σ2 ⊗ σ2 ⊗ 1⊗ 1⊗ 1⊗ σ2 ⊗ 1⊗ 1

γv5 = σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ 1⊗ σ2 ⊗ 1⊗ 1⊗ 1⊗ 1⊗ σ2 ⊗ 1

γv6 = σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1⊗ σ2 (D.5)

for the rest of the basis.

We can now use this to verify some of the properties of the supercurrents defined in

the text. With this choice of gamma matrix algebra, it is easy to verify the expectation

values from section 4. For example

〈G+
2 |Jn

3 |G−
2 〉 ∼ δn1 (D.6)
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since terms with positive and negative charge with respect to Jn
3 cancel in the sum when

n 6= 1. One also has to check that no dimension two currents couple to the supercurrents

besides the stress tensor. As in [21], there are three types of dimension two currents of

the form: a) ∂xi∂xj , b) e
iλ·~x for λ the some of two (distinct) root vectors, and c) eiλ·~x for

λ =
∑6

i=1 aivi such that λ2 = 4. The argument for the decoupling of operators of type a)

is the same as in [21]. It is possible, given the form of the gamma matrix algebra and the

supercurrents defined in the text to explicitly check the decoupling of operators of types

b) and c). Note that each vi itself leads to a dimension two operator and these vi each

individually decouple and commute with each other, implying the decoupling of all such

operators of type c).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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