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1 Introduction

The Cachazo-He-Yuang representation (CHY representation) of tree-level amplitudes is

based on the solutions of the scattering equations. The scattering equations are a set of

algebraic equations, which associate to the n momentum vectors of a scattering event (n−

3)! inequivalent n-tuples of complex numbers z = (z1, . . . , zn). These scattering equations

have been studied in a series of papers by Cachazo, He and Yuang [1–7]. It is remarkable,

that tree amplitudes for gluons (spin 1) or gravitons (spin 2) can be expressed elegantly

either as a contour integral localised at the zeros of the scattering equations or equivalently

as a sum over the (n− 3)! inequivalent solutions of the scattering equations. The essential
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ingredients for the gluon amplitudes are the Parke-Taylor factor C(w, z), defining the cyclic

order and a permutation invariant function E(z, p, ε), containing the information on the

helicities of the external particles. In the gluon case, the permutation invariant function

E(z, p, ε) can be written as a (reduced) Pfaffian. The CHY representation has triggered

significant interest in the community [8–22]. In addition, there are interesting connections

with string theory [23–30] and gravity [31–36].

The CHY representation of the tree-level gluon amplitudes separates information: The

Parke-Taylor factor does not depend on the helicities of the external particles, the permu-

tation invariant function does not depend on the ordering of the external particles. We may

ask, if this separation of information exists for other cyclic ordered amplitudes. It is known

that this is the case for tree amplitudes in N = 4 super-Yang-Mills theories (SYM) and for

tree amplitudes in QCD with one massless quark-anti-quark pair and an arbitrary number

of gluons [14]. These amplitudes satisfy as the pure gluon amplitudes cyclic invariance, the

Kleiss-Kuijf relations [37] and the Bern-Carrasco-Johansson relations (BCJ relations) [38].

These relations among amplitudes with different cyclic order are encoded within the CHY

representation in the Parke-Taylor factor. As a consequence, amplitudes in N = 4 SYM

and QCD amplitudes with one quark-anti-quark pair have a CHY representation with the

same Parke-Taylor factor C(w, z) and a modified permutation invariant function Ê(z, p, ε).

The situation is more complicated for tree-level primitive QCD amplitudes with more than

one quark-anti-quark pair. These amplitudes do not satisfy the full set of BCJ relations

and the cyclic order can therefore not be represented by the standard Parke-Taylor factor.

These amplitudes will require in addition to the generalisation Ê(z, p, ε) of the permutation

invariant function a generalisation Ĉ(w, z) of the standard Parke-Taylor factor. For the

simplest case of the QCD tree-level four-point amplitude A4(q̄, q, q̄
′, q′) with two quark-anti-

quark pairs this has been discussed in [14]. However, what is still missing is a treatment

of an arbitrary tree-level primitive QCD amplitude. In order to construct a CHY repre-

sentation for these amplitudes, we need to know the relations among the amplitudes with

different external orderings. Quite recently it was discovered that tree-level primitive QCD

amplitude satisfy apart from some well-known “no-crossed-fermion-lines”-relations a well-

described restricted set of fundamental BCJ relations. This was first conjectured in [39]

and subsequently proven in [40]. Equipped with this information one may first construct a

minimal basis for the amplitudes, and as the number of the elements of the minimal basis

never exceeds (n− 3)! construct a CHY representation. This is the content of this paper.

In this paper we show that all tree-level primitive QCD amplitudes have a representa-

tion of the form

An (w, p, ε) =
i

(2πi)n−3

∫

dnz

dω

∏

′δ (fa (z, p)) Ĉ (w, z) Ê (z, p, ε) , (1.1)

or equivalently

An (w, p, ε) = i
∑

solutions j

J
(

z(j), p
)

Ĉ
(

w, z(j)
)

Ê
(

z(j), p, ε
)

. (1.2)

The precise definition of all quantities will be given later on in the main text: The argu-

ments of the amplitudes on the left-hand side will be defined in section 2.1, the integral
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measure of eq. (1.1) will be defined in section 4 and the Jacobian factor J(z, p) appearing

in eq. (1.2) will be defined in section 3.3. Central to this paper are the generalised cyclic

factor Ĉ(w, z) and the generalised permutation invariant function Ê(z, p, ε), which will

treated in section 4.2 and section 4.3, respectively.

Note that tree-level amplitudes in any theory defined by a Lagrangian can be computed

easily by a variety of methods (Feynman diagrams, Berends-Giele recursion relations [41],

BCFW-recursion relations [42]) and can be considered as known quantities. The purpose

of this paper is to show that these quantities have a representation in the form of eq. (1.1)

or eq. (1.2) and to provide a definition of the generalised cyclic factor Ĉ(w, z) and the

generalised permutation invariant function Ê(z, p, ε). The virtue of a representation in

the form of eq. (1.1) or eq. (1.2) lies in the fact that it separates the information on the

external ordering (contained in the generalised cyclic factor Ĉ(w, z)) from the information

on the helicities of the external particles (contained in the generalised permutation invariant

function Ê(z, p, ε)).

Our construction relies on one conjecture. The conjecture is stated in eq. (4.40). In

simple terms, the conjecture says that the external orderings of a minimal amplitude basis

for nq > 0 remain linearly independent, when viewed as the external orderings of the pure

gluonic (nq = 0) amplitudes. We have verified this conjecture for all amplitudes up to

10 points.

This paper is organised as follows: In section 2 we review basic facts about tree-

level primitive QCD amplitudes. It will be convenient to introduce words and shuffle

algebras. We summarise the relations among the primitive amplitudes and define a basis

of primitive amplitudes. In section 3 we introduce the scattering equations. Since we

are interested in primitive QCD amplitudes with massless or massive quarks, we present

the extension of the scattering equations to the massive case for QCD amplitudes. In this

section we also define the Jacobian J(z, p). Section 4 contains the main result of this paper.

We define the generalised cyclic factor Ĉ(w, z) and the generalised permutation invariant

function Ê(z, p, ε). We then prove that with these definitions all tree-level primitive QCD

amplitudes agree with the CHY representation. In order to illustrate our approach, we

work out in section 5 a non-trivial example. Finally, section 6 contains our conclusions.

In an appendix we collected a few technical details: The proof of an equation allowing

the orientation of fermion lines (appendix A), the explicit expressions of the coefficients

appearing in the general BCJ relation (appendix B) and a proof that a weaker statement

is sufficient to prove the above-mentioned conjecture (appendix C).

2 Tree-level primitive QCD amplitudes

In this section we introduce our notation. We define words and shuffle algebras and review

the various relations among primitive amplitudes. Dyck words are a convenient tool to

label amplitudes with several quark-anti-quark pairs. At the end of this section we present

a minimal amplitude basis.
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2.1 Basic definitions

Let us consider a tree-level primitive QCD amplitude with n external particles, out of which

nq particles are quarks, nq particles are anti-quarks and ng particles are gluons [43, 44].

We have the obvious relation

n = ng + 2nq. (2.1)

Without loss of generality we may assume that all quarks have different flavours. The

quarks may be massless or massive. We label the quarks by q1, q2, . . . , qnq , the correspond-

ing anti-quarks by q̄1, q̄2, . . . , q̄nq , and the gluons by g1, g2, . . . , gng . We call the set

A =
{

q1, q2, . . . , qnq , q̄1, q̄2, . . . , q̄nq , g1, g2, . . . , gng

}

(2.2)

an alphabet and the elements of this set letters. Ordered sequences of letters are called

words:

w = l1l2 . . . ln. (2.3)

We are in particular interested in words with n letters, such that every letter from the

alphabet occurs exactly once. We denote the set of these words by

W0 = { l1l2 . . . ln | li ∈ A, li 6= lj for i 6= j } . (2.4)

The set W0 has n! elements and each element of W0 can be considered as a permutation

of the n letters of the alphabet A. For later purpose we define the reversed word wT by

wT = ln . . . l2l1. (2.5)

The word of length zero is denoted by e. The words from an alphabet form an algebra.

The shuffle product � of two words w1 = l1l2 . . . lk and w2 = lk+1 . . . lr is defined by

l1l2 . . . lk � lk+1 . . . lr =
∑

shuffles σ

lσ(1)lσ(2) . . . lσ(r), (2.6)

where the sum runs over all permutations σ, which preserve the relative order of l1, l2, . . . , lk
and of lk+1, . . . , lr. The shuffle product is commutative and associative:

w1 � w2 = w2 � w1,

(w1 � w2)� w3 = w1 � (w2 � w3) . (2.7)

The name “ordered permutations” is also used for the shuffle product. The empty word e

is the unit in this algebra:

e� w = w� e = w. (2.8)

We can use the words w ∈ W0 to encode the order of the external particles of tree-level

primitive QCD amplitudes and we will write

An (w) or An (l1l2 . . . ln) (2.9)
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for such an amplitude. The external momenta for this amplitude are denoted by p1, p2,

. . . , pn. The n-tuple of external momenta will be denoted by p = (p1, . . . , pn). In a similar

way we will denote the n-tuple of external polarisations by ε. The external polarisations

are given by polarisation vectors εj for external gluons, spinors ūj for out-going fermions

and spinors vj for out-going anti-fermions. For simplicity we will assume all particles to be

out-going. We will write

An (w, p, ε) (2.10)

if we would like to emphasize that the primitive amplitude depends apart from the external

ordering w also on the external momenta p and the polarisations ε. In situations, where the

main focus is on the dependence on w, we will simply write An(w) as in eq. (2.9). It will

be convenient to introduce the following notation: If λ1, λ2 are numbers and w1, w2 ∈ W0

words, we write

An (λ1w1 + λ2w2) (2.11)

for

λ1An (w1) + λ2An (w2) . (2.12)

In other words, we take An as a linear operator on the vector space of words with basis

W0. We will use this notation as a convenient way to express relations among primitive

amplitudes.

2.2 Relations among primitive amplitudes

The primitive amplitudes are cyclic invariant:

An (l1l2 . . . ln) = An (l2 . . . lnl1) . (2.13)

eq. (2.13) is a first (and trivial) example of relations among primitive amplitudes with

different external ordering. There are more relations among primitive amplitudes. A

further example are the Kleiss-Kuijf relations [37]. Let

w1 = lα1
lα2

. . . lαj
, w2 = lβ1

lβ2
. . . lβn−2−j

(2.14)

be two sub-words, such that

{l1} ∪ {lα1
, . . . , lαj

} ∪ {lβ1
, . . . , lβn−2−j

} ∪ {ln} = {l1, . . . , ln}. (2.15)

Then

An

(

l1lα1
. . . lαj

lnlβ1
. . . lβn−2−j

)

= (−1)n−2−j An

(

l1
(

w1 � wT
2

)

ln
)

. (2.16)

We recall that wT denotes the reversed word, defined in eq. (2.5), the symbol� denotes the

shuffle product, defined in eq. (2.6) and we used the notation of eq. (2.11). The Kleiss-Kuijf

relations in eq. (2.16) allow us to fix two legs at specified positions.
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A special case of the Kleiss-Kuijf relation is the case, where w1 is the empty word. In

this case the Kleiss-Kuijf relation reduces to the reflection identity for primitive amplitudes

An (w) = (−1)nAn

(

wT
)

. (2.17)

A second special case is given for the situation, where the set β contains only one element.

In this case the Kleiss-Kuijf relation reduces to the U(1)-decoupling identity

∑

σ∈Zn−1

An

(

lσ1
lσ2

. . . lσn−1
ln
)

= 0, (2.18)

where the sum is over the cyclic permutations of the first (n− 1) arguments.

For amplitudes with more than one quark line (nq > 1) there are some trivial relations

related to the fact that primitive amplitudes cannot have crossed fermion lines. Tree-

level primitive amplitudes have a fixed cyclic order and all Feynman diagrams contributing

to such an amplitude can be drawn in a planar way on a disc. If the amplitude has

crossed fermion lines the diagrams can only be drawn in a planar way with flavour-changing

currents. However, in QCD there are no flavour-changing currents and these amplitudes

are zero. Thus we have the relations:

An (. . . qi . . . qj . . . q̄i . . . q̄j . . .) = An (. . . qi . . . q̄j . . . q̄i . . . qj . . .) = 0. (2.19)

For amplitudes with at least one gluon there are further relations. Let us assume that

particle 2 is a gluon:

l2 = gα, α ∈ {1, . . . , ng}. (2.20)

The fundamental Bern-Carrasco-Johansson relations (BCJ relations) read

n−1
∑

i=2





n
∑

j=i+1

2p2pj



An (l1l3 . . . lil2li+1 . . . ln−1ln) = 0. (2.21)

These relations have first been conjectured for pure gluon amplitudes [38] and proven in

this case in [45–47]. The conjecture was later extended to all tree-level primitive QCD

amplitudes [39] and proven in [40].

Let us summarise: The relations among tree-level primitive QCD amplitudes are

1. Cyclic invariance, stated in eq. (2.13),

2. the Kleiss-Kuijf relations, given in eq. (2.16),

3. the “no-crossed-fermion-lines”-relation in eq. (2.19),

4. the fundamental BCJ relations stated in eq. (2.21).
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2.3 Dyck words

Primitive amplitudes with crossed fermion lines vanish. The ones with no crossed fermion

lines may be described by generalised Dyck words [48, 49]. In order to define these gener-

alised Dyck let us consider an alphabet consisting of nq distinct opening brackets “(i” and

nq corresponding closing brackets “)i”. Closing brackets of type i only match with opening

brackets of type i. A generalised Dyck word is any word from this alphabet with properly

matched brackets. Originally, Dyck did not consider brackets of different types. We will

use the term “Dyck word” if there is only one type of brackets and the term “generalised

Dyck word” in the case of brackets with more than one type. We are mainly interested in

the generalised Dyck words of length 2nq, where every opening and every closing bracket

occurs exactly once. There are

NDyck =
(2nq)!

(nq + 1)!
(2.22)

words of this type. The opening and the closing brackets of type i may be associated to

the fermion line i. There are two possible orientations for each fermion line, either

qi → (i, q̄i →)i, (2.23)

or

q̄i → (i, qi →)i. (2.24)

We define a standard orientation of the fermion lines by requiring, that every quark cor-

responds to an opening bracket and every anti-quark corresponds to a closing bracket, i.e.

the standard orientation is given for each fermion line by eq. (2.23). This definition is not

cyclic invariant, however we may always use the Kleiss-Kuijf relations to fix particle 1 to

be q1 and particle n to be q̄1. Let us define a projection P by

P (qi) = (i, P (gi) = e, P (q̄i) = )i. (2.25)

We then set

Dycknq
= { w ∈ W0 | P (w) is a generalised Dyck word } . (2.26)

This set contains all words without crossed fermion lines and where all fermion lines have

the standard orientation.

It is always possible to reduce an amplitude with an arbitrary orientation of the fermion

lines to the standard orientation of the fermion lines, by just using cyclic invariance, the

Kleiss-Kuijf relations and the “no-crossed-fermion-lines”-relations [48, 49]. In order to see

this, let us assign for amplitudes with no crossed fermion lines a level to each fermion line.

We draw the external order of the particles on the boundary of a disc and we draw on

the disc for each quark-anti-quark-pair a fermion line connecting the anti-quark with the

corresponding quark. With the help of the Kleiss-Kuijf relations we may always put the

quark q1 at position 1 and the corresponding anti-quark q̄1 at position n. We assign level

– 7 –
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0 to this fermion line. We assign level 1 to all fermion lines, which are not separated by

another fermion line from the fermion line of level 0. We then iterate this procedure and

we assign level k to all fermions line, which are not separated by another fermion line from

some fermion line of level (k − 1), and which have not been assigned any level before.

There is an iterative procedure, which allows us to express an amplitude with an ar-

bitrary orientation of the fermion lines as a linear combination of amplitudes with the

standard orientation. This procedure brings first all fermion lines of level 1 into the stan-

dard orientation, then all fermion lines of level 2, etc.. The fermion line of level 0 is trivially

brought into the standard orientation with the help of the Kleiss-Kuijf relations. At level

k consider the amplitude

An (xk−1qixkq̄jwk+1qjykq̄iyk−1) , (2.27)

where xk−1, xk, wk+1, yk and yk−1 are sub-words. We assume that the fermion line qi-q̄i
is of level (k − 1). This fermion line has already the standard orientation and we assume

that all fermion lines contained in the sub-words xk−1 and yk−1 have already been oriented.

The fermion line qj-q̄j is of level k and has the wrong orientation. The sub-words xk and

yk may contain further fermion lines of level k and higher level. The sub-word wk+1 may

contain fermion lines of level (k + 1) and higher. We are going to orient the fermion line

qj-q̄j , respecting the orientations of all fermion lines with level ≤ k. Let us write

xk = li1 li2 . . . lir , yk = lj1 lj2 . . . ljs . (2.28)

Then

An (xk−1qixkq̄jwk+1qjykq̄iyk−1) =

(−1)|wk+1|+1
r

∑

a=0

s
∑

b=0

An

(

xk−1qili1 . . . liaqjw
′
k+1q̄jljb+1

. . . ljs q̄iyk−1

)

, (2.29)

where |wk+1| denotes the length of the sub-word wk+1 and with

w′
k+1 =

(

lia+1
. . . lir

)

� wT
k+1 � (lj1 . . . ljb) . (2.30)

All fermion lines of w′
k+1 are of level (k + 1) or higher. We call eq. (2.29) the “fermion

orientation” relations. Note that some amplitudes in eq. (2.29) may be zero due to crossed

fermion lines. This is either the case if a quark-anti-quark pair from xk is split between

li1 . . . lia and w′
k+1 or if a quark-anti-quark pair from yk is split between w′

k+1 and ljb+1
. . . ljs .

We give a proof of eq. (2.29) in appendix A.

2.4 The amplitude basis

The relations among tree-level primitive QCD amplitudes allows us to express all ampli-

tudes for a given set of external particles in terms of a set of basis amplitudes. The size of

this basis is

Nbasis =

{

(n− 3)!, nq ∈ {0, 1},

(n− 3)!
2(nq−1)

nq !
, nq ≥ 2.

(2.31)

– 8 –
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For later purpose we set

Nsolutions = (n− 3)!, (2.32)

(the subscript is a reminder that (n − 3)! is the number of inequivalent solutions of the

scattering equations) and

Npermutations = n!. (2.33)

Note that

2 (nq − 1)

nq!
=

2

nq

1

(nq − 2)!
≤ 1, for nq ≥ 2, (2.34)

and therefore we always have

Nbasis ≤ Nsolutions. (2.35)

In order to find a CHY representation for tree-level primitive QCD amplitudes it is essential

that the number of basis amplitudes does not exceed the number of inequivalent solutions

of the scattering equations. Eq. (2.35) shows that this condition is always satisfied.

Let us now describe the amplitude basis for the various cases. For nq = 0 the set of

words corresponding to a possible basis is given by [39]

B = { l1l2 . . . ln ∈ W0 | l1 = g1, ln−1 = gn−1, ln = gn } . (2.36)

For nq = 1 we may choose

B = { l1l2 . . . ln ∈ W0 | l1 = q1, ln−1 = gn−2, ln = q̄1 } . (2.37)

For nq ≥ 2 we may choose

B =
{

l1l2 . . . ln ∈ Dycknq
| l1 = q1, ln−1 ∈ {q̄2, . . . , q̄nq}, ln = q̄1

}

. (2.38)

Let us briefly review how to express an arbitrary amplitude An(w) with w ∈ W0 as a

linear combination of amplitudes An(wj) with wj ∈ B, using the relations summarised in

section 2.2.

We first use cyclic invariance as in eq. (2.13) to fix particle 1 to be g1 (in the pure

gluonic case nq = 0) or to be q1 (in the case nq ≥ 1). Let us define a subset W1 of W0 by

W1 =

{

{ l1l2 . . . ln ∈ W0 | l1 = g1 } , nq = 0,

{ l1l2 . . . ln ∈ W0 | l1 = q1 } , nq ≥ 1.
(2.39)

The set W1 contains all words, where the first letter has been fixed. We then use the Kleiss-

Kuijf relations in eq. (2.16) to fix particle n to be gn (in the pure gluonic case nq = 0) or

to be q̄1 (in the case nq ≥ 1). We define a subset W2 of W1 by

W2 =

{

{ l1l2 . . . ln ∈ W1 | ln = gn } , nq = 0,

{ l1l2 . . . ln ∈ W1 | ln = q̄1 } , nq ≥ 1.
(2.40)

– 9 –
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The set W2 contains all words, where the first and the last letter have been fixed. If

nq ≥ 2 we then set to zero any amplitude with crossed fermion lines, in accordance with

eq. (2.19). We then use eq. (2.29) to express amplitudes with no crossed fermion lines

in terms of amplitudes with no crossed fermion lines and the standard orientation of the

fermion lines. The standard orientation of the fermion lines has been defined in eq. (2.23).

We define a subset W3 of W2 by

W3 =

{

W2, nq ≤ 1,
{

w ∈ W2 | w ∈ Dycknq

}

, nq ≥ 2.
(2.41)

The setW3 contains all words, where the first and the last letter have been fixed. In addition

W3 excludes all words, which either correspond to crossed fermion lines or correspond to

a non-standard orientation of the fermion lines. Finally, we use the fundamental BCJ

relation of eq. (2.21) to fix particle (n − 1) to be gn−1 (in the pure gluonic case nq = 0),

to be gn−2 (in the case nq = 1) or to remove any gluon from position (n− 1) (in the case

nq ≥ 2). In the latter case we then have necessarily an anti-quark at position (n − 1), as

we already have chosen the standard orientation. This brings us down to the basis

B =











{ l1l2 . . . ln ∈ W3 | ln−1 = gn−1 } , nq = 0,

{ l1l2 . . . ln ∈ W3 | ln−1 = gn−2 } , nq = 1,
{

l1l2 . . . ln ∈ W3 | ln−1 ∈ {q̄2, . . . , q̄nq}
}

, nq ≥ 2.

(2.42)

The set B contains all words corresponding to a possible basis, as already stated in

eqs. (2.36)–(2.38). We have the inclusions

W0 ⊇ W1 ⊇ W2 ⊇ W3 ⊇ B. (2.43)

We will use this chain of inclusions for constructions and proofs in this paper.

We already mentioned that we may view An as a linear operator on the vector space

of words with basis W0. Let us denote this vector space by V . The dimension of V is

Npermutations = n!. Let us assume, that there is another linear operator Ãn on V . We

would like to investigate, under which conditions An and Ãn are identical. This is the case

if and only if they agree on all basis vectors of V :

Ãn (w) = An (w) , ∀w ∈ W0. (2.44)

However, we further know that there are relations among the An(wj), and if An and Ãn

are identical operators, we must have the same relations among the Ãn(wj). Therefore it is

sufficient to check that Ãn and An agree on the smaller set B and to check that the images

Ãn(wj) satisfy all the relations of section 2.2. Actually it is sufficient to check, that

1. Ãn(w) satisfies for all w ∈ W0 cyclic invariance, stated in eq. (2.13).

2. Ãn(w) satisfies for all w ∈ W1 the Kleiss-Kuijf relations of eq. (2.16).

3. Ãn(w) satisfies for all w ∈ W2 the “no-crossed-fermion-lines”-relations of eq. (2.19)

and the fermion orientation relations of eq. (2.29).
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4. Ãn(w) satisfies for all w ∈ W3 the fundamental BCJ relations of eq. (2.21).

5. Ãn(w) agrees for all w ∈ B with An:

Ãn (w) = An (w) , ∀w ∈ B. (2.45)

In order to see that these conditions are sufficient let us start with w ∈ B. Condition 5

guarantees that Ãn(w) agrees with An(w) on B. Let’s then move to w ∈ W3\B. The

fundamental BCJ relations of condition 4 ensure, that Ãn(w) may be expressed as a linear

combination of Ãn(w
′) with w′ ∈ B. The same relation holds for An(w) with Ãn(w)

substituted by An(w) and Ãn(w
′) substituted by An(w

′). Since we already know that

Ãn(w) agrees with An(w) on B, we conclude that Ãn(w) agrees with An(w) on W3. We

may repeat this argumentation with condition 3 and show that Ãn(w) agrees with An(w) on

W2. Condition 2 allows us then to conclude that they agree on W1 and finally condition 1

ensures that Ãn(w) agrees with An(w) on W0.

3 The scattering equations

In this section we introduce the scattering equations. We first treat the massless case and

proceed afterwards to the massive case. We will also define the Jacobian J(z, p), which we

will need later on.

Let us denote by Φn the momentum configuration space of n external particles:

Φn =
{

(p1, p2, . . . , pn) ∈ (CM)n |p1 + p2 + . . .+ pn = 0, p2gj = 0, p2qj = p2q̄j = m2
qj

}

. (3.1)

In other words, a n-tuple p = (p1, p2, . . . , pn) of momentum vectors belongs to Φn if this

n-tuple satisfies momentum conservation and the mass-shell conditions. For gluons we

have p2gj = 0, while for quarks we have p2qj = p2q̄j = m2
qj
. The quarks may be massive or

massless, in the latter case we have mqj = 0. Note that a quark and an anti-quark of the

same flavour have the same mass.

We further denote by Ĉ = C∪{∞}. The space Ĉ is equivalent to the complex projective

space CP
1. For amplitudes with n external particles we consider the space Ĉ

n. Points in

Ĉ
n will be denoted by z = (z1, z2, . . . , zn). We use the convention that z without any index

denotes an n-tuple. We set for 1 ≤ i ≤ n

fi (z, p) =
n
∑

j=1,j 6=i

2pi · pj + 2∆ij

zi − zj
. (3.2)

The quantity ∆ij will be defined below. Differences like in the denominator will occur often

in this article and we use the abbreviation

zij = zi − zj . (3.3)
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3.1 The massless case

Let us start our discussion with the massless case, for which

∆ij = 0. (3.4)

The scattering equations, originally proposed in the massless case, read [3]

fi (z, p) = 0. (3.5)

For a fixed p ∈ Φn a solution of the scattering equation is a point z ∈ Ĉ
n, such that the

scattering equations in eq. (3.5) are satisfied.

The scattering equations are invariant under the projective special linear group

PSL(2,C) = SL(2,C)/Z2. Here, Z2 is given by {1,−1}, with 1 denoting the (2 × 2)-unit

matrix. Let

g =

(

a b

c d

)

∈ PSL(2,C). (3.6)

Each g ∈ PSL(2,C) acts on a single zi ∈ Ĉ as follows:

g · zi =
azi + b

czi + d
. (3.7)

We further set

g · (z1, z2, . . . , zn) = (g · z1, g · z2, . . . , g · zn) . (3.8)

If (z1, z2, . . . , zn) is a solution of eq. (3.5), then also (z′1, z
′
2, . . . , z

′
n) = g · (z1, z2, . . . , zn) is a

solution. We call two solutions which are related by a PSL(2,C)-transformation equivalent

solutions. We are in particular interested in the set of all inequivalent solutions of the

scattering equations. As shown in [1, 2], there are (n − 3)! different solutions not related

by a PSL(2,C)-transformation. We will denote a solution by

z(j) =
(

z
(j)
1 , . . . , z(j)n

)

(3.9)

and a sum over the (n− 3)! inequivalent solutions by

∑

solution j

(3.10)

The n scattering equations in eq. (3.5) are not independent, only (n− 3) of them are. The

Möbius invariance implies the relations

n
∑

j=1

fj (z, p) = 0,
n
∑

j=1

zjfj (z, p) = 0,
n
∑

j=1

z2j fj (z, p) = 0. (3.11)
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3.2 The massive case

The extension of the scattering equations to the massive case has been considered in [11].

In the massive case the scattering equations remain invariant under PSL(2,C) provided

n
∑

j=1,j 6=i

∆ij = m2
i . (3.12)

The relations in eq. (3.11) remain valid provided that the quantities ∆ij satisfy in addition

∆ij = ∆ji. (3.13)

Let us now consider primitive multi-quark amplitudes with nq quarks, nq anti-quarks and

ng gluons. We may assume that the flavours of all nq quarks are distinct. In this case we

have that to every external quark qa corresponds an external anti-quark q̄a with the same

mass ma. Eq. (3.12) and eq. (3.13) are satisfied if we set

∆qaq̄a = ∆q̄aqa = m2
qa

(3.14)

and ∆ij = 0 in all other cases.

Eq. (3.14) is easily understood as follows: The massless scattering equations are valid

in any space-time dimensions. Starting from D = 4 space-time dimensions, let us consider

a theory in D + nq space-time dimensions (one time dimension and (D + nq − 1) spacial

dimensions), where the quark of flavour a carries in the a-th extra dimension a momentum

component mqa and the anti-quark of flavour a carries in the a-th extra dimension the

momentum component (−mqa). We take the signature of the metric to be (+,−,−,−, . . .).

3.3 The Jacobian

Let us define a n× n-matrix Φ(z, p) with entries

Φab (z, p) =
∂fa (z, p)

∂zb
=











2pa·pb+2∆ab

z2
ab

a 6= b,

−
n
∑

j=1,j 6=a

2pa·pj+2∆aj

z2aj
a = b.

(3.15)

Let Φijk
rst(z, p) denote the (n− 3)× (n− 3)-matrix, where the rows {i, j, k} and the columns

{r, s, t} have been deleted. We set

det ′ Φ (z, p) = (−1)i+j+k+r+s+t

∣

∣

∣
Φijk
rst(z, p)

∣

∣

∣

(zijzjkzki) (zrszstztr)
. (3.16)

With the above sign included, the quantity det ′ Φ(z, p) is independent of the choice of

{i, j, k} and {r, s, t}. One defines a Jacobian factor by

J (z, p) =
1

det ′ Φ (z, p)
. (3.17)
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4 The CHY representation of tree-level primitive QCD amplitudes

We would like to show that all tree-level primitive QCD amplitudes have a representation

in the form

An (w, p, ε) =
i

(2πi)n−3

∫

dnz

dω

∏

′δ (fa (z, p)) Ĉ (w, z) Ê (z, p, ε) (4.1)

or equivalently

An (w, p, ε) = i
∑

solutions j

J
(

z(j), p
)

Ĉ
(

w, z(j)
)

Ê
(

z(j), p, ε
)

. (4.2)

In eq. (4.1) the symbol dω denotes the invariant PSL(2,C) measure

dω = (−1)p+q+r dzpdzqdzr
(zp − zq) (zq − zr) (zr − zq)

. (4.3)

and the primed product of delta functions stands for

∏

′δ (fa (z, p)) = (−1)i+j+k (zi − zj) (zj − zk) (zk − zi)
∏

a 6=i,j,k

δ (fa (z, p)) , (4.4)

taking into account that only (n − 3) scattering equations are independent. The form of

eq. (4.1) or eq. (4.2) can be interpreted as a “factorisation of information”: The information

on the external polarisations enters only through ε in Ê, the information on the external

order only through w in Ĉ. The information on the flavours of the external particles enters

Ê (through ε) and Ĉ (through w). The Jacobian J is defined in eq. (3.17). Under a

PSL(2,C) transformation the Jacobian J transforms as

J (g · z, p) =





n
∏

j=1

1

(czj + d)4



 J (z, p) (4.5)

We require that Ĉ and Ê transform under PSL(2,C) transformations as

Ĉ (w, g · z) =





n
∏

j=1

(czj + d)2



 Ĉ (w, z) ,

Ê (g · z, p, ε) =





n
∏

j=1

(czj + d)2



 Ê (z, p, ε) . (4.6)

The expression on the right-hand-side of eq. (4.2) is then PSL(2,C) invariant. We further

require that Ê is gauge-invariant.

It will be convenient to introduce the following short-hand notation: We define a

Npermutations-dimensional vector Aw with components

Aw = An (w, p, ε) , (4.7)
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a Npermutations ×Nsolutions-dimensional matrix M̂wj by

M̂wj = J
(

z(j), p
)

Ĉ
(

w, z(j)
)

, (4.8)

and a Nsolutions-dimensional vector Êj by

Êj = Ê
(

z(j), p, ε
)

. (4.9)

Then eq. (4.2) may be written compactly as

Aw = i M̂wjÊj , (4.10)

where a sum over j is understood.

4.1 Normalisation

We may ask if a representation in the form of eq. (4.2) is unique. This is certainly not the

case. We may always multiply Ĉ by a non-zero constant λ and divide at the same time Ê

by the same constant. More generally, we may multiply Ĉ by any function of cross-ratios of

the variables z and divide Ê by the same function, as long as this function is independent

of the external ordering. A function of cross-ratios of the variables z will not change the

PSL(2,C) transformation laws in eq. (4.6). In order to eliminate this freedom we make a

choice.

We make the choice that the generalised cyclic factor Ĉ(w, z) agrees with the standard

Parke-Taylor factor C(w, z) for pure gluonic amplitudes (nq = 0) and for amplitudes with

one quark-anti-quark-pair (nq = 1). In the massless case these amplitudes are identical to

their N = 4 SYM counterpart.

For nq ≥ 2 we make the choice that for amplitudes with the standard orientation of

the fermion lines (defined in eq. (2.23)) the generalised cyclic factor Ĉ(w, z) agrees as well

with the standard Parke-Taylor factor C(w, z). Amplitudes with this orientation of the

fermion lines and one fermion line of the highest possible level (nq − 1) are identical to

their single-flavour cousins (any non-trivial permutation of the quarks while keeping the

anti-quarks fixed will lead to crossed fermion lines). In the massless case these single-

flavour amplitudes are in turn identical to their N = 4 SYM counterparts (the couplings of

the scalar particles in N = 4 are “flavour-changing”, therefore there is no scalar exchange

in single-flavour amplitudes). (These observations are the basic ideas behind the flavour

recursion discussed in [49]).

4.2 Definition of Ĉ

In this section we define the generalised cyclic factor Ĉ(w, z). We label the external particles

of a primitive amplitude An by 1, . . . , n and the associated complex variables zj occurring

in the scattering equations by z1, . . . , zn, such that the complex variable zj corresponds

to particle j. Our alphabet is then A = {1, 2, . . . , n} and a word w = l1l2 . . . ln ∈ W0 is

equivalent to a permutation of (1, 2, . . . , n). We define the standard cyclic factor C(w, z)

for w = l1l2 . . . ln by

C (l1l2 . . . ln, z) =
1

(zl1 − zl2) (zl2 − zl3) . . . (zln − zl1)
. (4.11)
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The standard cyclic factor in eq. (4.11) is also called the Parke-Taylor factor. The standard

cyclic factor C(w, z) satisfies for z a solution of the scattering equations cyclic invariance,

the Kleiss-Kuijf relations and the fundamental BCJ relations with any choice of letter for

l2. In other words, the standard cyclic factor C(w, z) satisfies all the relations of the pure

gluonic primitive tree amplitudes. The requirement that z is a solution of the scattering

equations is needed for the BCJ relations, but not for cyclic invariance nor for the Kleiss-

Kuijf relations. It will be convenient to view C(w, z) and Ĉ(w, z) as linear operators on

the vector space of words with basis W0, similar to eq. (2.11):

C (λ1w1 + λ2w2, z) = λ1C (w1, z) + λ2C (w2, z) ,

Ĉ (λ1w1 + λ2w2, z) = λ1Ĉ (w1, z) + λ2Ĉ (w2, z) . (4.12)

Let us now give the definition of the generalised cyclic factor Ĉ:

1. For w ∈ W3 we set

Ĉ (w, z) = C (w, z) , (4.13)

i.e. the generalised cyclic factor Ĉ(w, z) agrees on W3 with the standard cyclic factor

C(w, z), in agreement with the comments of section 4.1.

2. For w ∈ W2\W3 we first define

Ĉ (w, z) = 0 (4.14)

for all words corresponding to crossed fermion lines. For words with no crossed

fermion lines we relate Ĉ(w, z) as in eq. (2.29) (by substituting Ĉ for An) to a linear

combination of Ĉ(wj , z)’s with wj ∈ W3. With the notation as in section 2.3 we have

for sub-words

xk = li1 li2 . . . lir , yk = lj1 lj2 . . . ljs . (4.15)

the relation

Ĉ (xk−1qixkq̄jwk+1qjykq̄iyk−1, z) =

(−1)|wk+1|+1
r

∑

a=0

s
∑

b=0

Ĉ
(

xk−1qili1 . . . liaqjw
′
k+1q̄jljb+1

. . . ljs q̄iyk−1, z
)

, (4.16)

with

w′
k+1 =

(

lia+1
. . . lir

)

� wT
k+1 � (lj1 . . . ljb) . (4.17)

This relation allows us to define recursively the generalised cyclic factor for words

with w ∈ W2\W3 in terms of generalised cyclic factors of words with w ∈ W3. The

recursion proceeds along the levels of the fermion lines, as explained in section 2.3.

Eq. (4.14) defines Ĉ(w, z) for words with crossed fermion lines. For these words Ĉ

is simply zero. Eq. (4.16) defines recursively the generalised cyclic factor Ĉ(w, z) for

words with a non-standard orientation of the fermion lines in terms of generalised

cyclic factors for words with a standard orientation of the fermion lines. The latter

have already been defined in step 1.
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3. For w ∈ W1\W2 we set

Ĉ (l1w1lnw2, z) = (−1)|w2| Ĉ
(

l1
(

w1 � wT
2

)

ln, z
)

. (4.18)

eq. (4.18) defines the generalised cyclic factor for words, where the letter ln does

not appear in the last place in terms of already defined generalised cyclic factors for

words, where the letter ln occurs in the last place. We recognise in eq. (4.18) the

Kleiss-Kuijf relation.

4. For w ∈ W0\W1 we set

Ĉ (w1l1w2, z) = Ĉ (l1w2w1, z) . (4.19)

eq. (4.19) defines the generalised cyclic factor for words, where the letter l1 does not

appear in the first place in terms of already defined generalised cyclic factors for

words, where the letter l1 occurs in the first place. We recognise cyclic invariance in

eq. (4.19).

4.3 Definition of Ê

In this section we define the generalised permutation invariant function Ê(z, p, ε). We

recall that we defined a Npermutations ×Nsolutions-dimensional matrix M̂wj by

M̂wj = J
(

z(j), p
)

Ĉ
(

w, z(j)
)

. (4.20)

Let us consider a Nbasis × Nsolutions-dimensional sub-matrix M̂ red
wj by restricting w ∈ B.

Note that we always have

Nbasis ≤ Nsolutions, (4.21)

therefore the matrix M̂ red
wj has less rows than columns. For w ∈ B the generalised cyclic

factor Ĉ agrees with the standard Parke-Taylor factor C

Ĉ
(

w, z(j)
)

= C
(

w, z(j)
)

(4.22)

and the entries of M̂ red
wj are given by

M̂ red
wj = J

(

z(j), p
)

C
(

w, z(j)
)

, w ∈ B. (4.23)

On a technical level, we will now do the following: We first establish that the matrix M̂ red
wj

has full row rank:

rank M̂ red
wj = Nbasis. (4.24)

If M̂ red
wj has full row rank, a right-inverse N̂ red

jw exists. The right-inverse might not be unique.

We are interested in a right-inverse N̂ red
jw such that the entries in the j-th row of N̂ red

jw depend

only on z(j), but not on the other solutions z(1), z(2), . . . , z(j−1), z(j+1), . . . , z(n−3)! of the

scattering equations.
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The entries of the matrix M̂ red
wj are defined in eq. (4.23) in terms of the standard Parke-

Taylor factor C(w, z) and the Jacobian J(z, p). Information on the flavour of the particles

does not enter the definition of the individual entries of the matrix M̂ red
wj . The flavour

information will only affect the set B, giving all the possible first indices w ∈ B of M̂ red
wj .

As the flavour information is to a large extent irrelevant, let us for simplicity consider the

alphabet

A = {1, 2, . . . , n} , (4.25)

with the implicit understanding that we may recover the information on the flavour of the

particles if needed. The set W2 is then

W2 = { l1l2 . . . ln ∈ W0 | l1 = 1, ln = n } . (4.26)

The set W2 has (n− 2)! elements.

Let us first consider the case nq ≤ 2. For nq ≤ 2 we have

Nbasis = Nsolutions, (4.27)

and an amplitude basis is given by

Bnq≤2 = { l1l2 . . . ln ∈ W0 | l1 = 1, ln−1 = n− 1, ln = n } . (4.28)

The basis Bnq≤2 has Nsolutions = (n− 3)! elements. For nq ≤ 2 the matrix M̂ red
wj is a square

Nsolutions ×Nsolutions matrix. We will need this special matrix in the sequel and we denote

this matrix without a hat:

M red
wj = J

(

z(j), p
)

C
(

w, z(j)
)

, w ∈ Bnq≤2. (4.29)

It is known that M red is invertible. We can give an explicit expression for the inverse

matrix. Let w = l1l2 . . . ln−2ln−1ln ∈ Bnq≤2 be a word with l1 = 1, ln−1 = n−1 and ln = n.

We denote by w̄ the word

w̄ = l1l2 . . . ln−2lnln−1, (4.30)

i.e. the word where the last two letters are exchanged. We then define for w1 = l1 . . . ln ∈

Bnq≤2 and w2 = k1 . . . kn ∈ Bnq≤2 [2, 50–52]

S [w1|w̄2] = (−1)n
n−2
∏

i=2



2pl1 · pli + 2∆l1li +
i−1
∑

j=2

θw̄2
(lj , li)

(

2plj · pli + 2∆lj li

)



 , (4.31)

with

θw̄2
(lj , li) =

{

1 if lj comes before li in the sequence k2, k3, . . . , kn−2,

0 otherwise.
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We then set

N red
jw =

∑

v∈Bnq≤2

S [w|v̄]C
(

v̄, z(j)
)

. (4.32)

The Nsolutions ×Nsolutions-dimensional matrix N red
jw is the inverse matrix to M red

wj . Thus we

have

M red
w1j

N red
jw2

= δw1w2
, N red

j1w
M red

wj2
= δj1j2 . (4.33)

Of course, the inverse matrix is unique and a inspection of eq. (4.32) shows that the j-th

row of N red
jw depends only on z(j) and not on the other solutions z(i) if i 6= j.

Let us now discuss the general case nq ∈ N0. For nq > 2 we have

Nbasis < Nsolutions (4.34)

and the matrix M̂ red
wj is now a rectangular Nbasis ×Nsolutions-dimensional matrix, with first

index given by w ∈ B. We first have to establish that M̂ red has full row rank, i.e.

rank M̂ red
wj = Nbasis. (4.35)

This would be easy, if

B ⊆ Bnq≤2. (4.36)

However, this is not the case. For nq > 2 the elements of B do not have a unique letter at

position (n− 1) and in general we have

B 6⊆ Bnq≤2. (4.37)

In order to get around this obstruction we recall that the standard cyclic factors C(w, z(j))

satisfy the BCJ relations and we may express the standard cyclic factor C(w, z(j)) for

w ∈ B as a linear combination of standard cyclic factors C(w′, z(j)) with w′ ∈ Bnq≤2:

C
(

w, z(j)
)

= Fww′ C
(

w′, z(j)
)

, (4.38)

where a sum over w′ ∈ Bnq≤2 is understood. Fww′ defines a Nbasis ×Nsolutions-dimensional

matrix. The explicit expressions of the entries of Fww′ are given in appendix B. We note

that the entries of the matrix Fww′ depend only on the scalar products 2pipj , but not on

z(j). We then have

M̂ red
wj = Fww′M red

w′j . (4.39)

The case nq ≤ 2 is trivially included in eq. (4.39) by taking Fww′ to be the Nsolutions ×

Nsolutions identity matrix. The matrix M red has rank Nsolutions and is invertible. It follows

that M̂ red
wj has rank Nbasis if and only if the Nbasis×Nsolutions-matrix Fww′ (with w ∈ B and

w′ ∈ Bnq≤2) has rank Nbasis. We have verified for all cases with n ≤ 10 external particles
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and for generic kinematical configurations that the matrix Fww′ (and hence M̂ red
wj ) has rank

Nbasis. Based on this evidence we will in the sequel assume that Fww′ has rank Nbasis:

rank Fww′ = Nbasis, (4.40)

Note that eq. (4.40) is a purely kinematical statement, independent of flavour and inde-

pendent of the variables z(j). We further note that by a suitable ordering of the bases B

and Bnq≤2 the matrix Fww′ can be brought into an upper triangle block structure. It is

therefore sufficient to show that all (square) matrices on the main diagonal have full rank.

The details are given in appendix C.

Assuming from now on that the matrix Fww′ has maximal row rank, the Nbasis×Nbasis-

dimensional matrix FF T is invertible and the Nsolutions ×Nbasis-dimensional matrix

G = F T
(

FF T
)−1

(4.41)

defines a right inverse to F :

Fw1w′Gw′w2
= δw1w2

. (4.42)

We then set

N̂ red = N redG. (4.43)

The Nsolutions ×Nbasis-dimensional matrix N̂ red is then a right inverse to M̂ red:

M̂ red
w1j

N̂ red
jw2

= δw1w2
. (4.44)

Having defined N̂ red
jw , we set

Êj = −iN̂ red
jw Aw, (4.45)

where a sum over all w ∈ B is understood. Putting everything together, we arrive along

the lines of ref. [14] at the definition of the generalised permutation invariant function

Ê(z, p, ε):

Ê (z, p, ε) = −i
∑

u,v∈Bnq≤2

∑

w∈B

S [u|v̄]GuwC (v̄, z)An (w, p, ε) . (4.46)

A few comments are in order: The attentive reader may ask, why we did not simply define

N̂ red as

M̂ redT
(

M̂ redM̂ redT
)−1

. (4.47)

The reason is as follows: We would like to have that Êj depends only on the j-th solution

of the scattering equations, but not on all the other solutions. Within our definition this

is manifest. F and G are independent of z, and so is S[w1|w̄2]. The z-dependence comes

entirely from C
(

v̄, z(j)
)

in eq. (4.32). Therefore N̂ red
jw depends only on z(j) and not on z(i)
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if i 6= j. We can therefore define a function Ê (z, p, ε) on Ĉ
n as done in eq. (4.46). On the

other hand, this is far from clear for the expression in eq. (4.47).

A second comment is related to the uniqueness of our definition in eq. (4.46). For

nq > 2 the right-inverse Gw′w to the matrix Fww′ is not unique. It is of course unique

for invertible matrices, i.e. the case nq ≤ 2. We may parametrise the general form of the

right-inverse as

Gw′w +
(

δw′w′
2
−Gw′w1

Fw1w
′
2

)

Xw′
2
w (4.48)

with an arbitrary Nsolutions×Nbasis-dimensional matrix Xw′w. Plugging this into eq. (4.46)

we find

Ê (z, p, ε) → Ê (z, p, ε)− i
∑

u,v∈Bnq≤2

S [u|v̄]
(

δuw′
2
−Guw1

Fw1w
′
2

)

xw′
2
C (v̄, z) , (4.49)

or equivalently

Êj → Êj − iN red
jw′

(

δw′w′
2
−Gw′w1

Fw1w
′
2

)

xw′
2
, (4.50)

with some arbitrary Nsolutions-dimensional vector xw′ . This arbitrariness does not affect

expressions of the form

i
∑

solutions j

J
(

z(j), p
)

Ŷ
(

z(j)
)

Ê
(

z(j), p, ε
)

, (4.51)

as long as Ŷ has an expansion in Ĉ(w, z(j)) with w ∈ B:

Ŷ
(

z(j)
)

=
∑

w∈B

cwĈ
(

w, z(j)
)

. (4.52)

Then we may write

J
(

z(j), p
)

Ŷ
(

z(j)
)

=
∑

w∈B

cwM̂
red
wj (4.53)

and we have

i
∑

solutions j

∑

w∈B

cwM̂
red
wj

[

Êj−iN red
jw′

(

δw′w′
2
−Gw′w1

Fw1w
′
2

)

xw′
2

]

= i
∑

solutions j

∑

w∈B

cwM̂
red
wj Êj ,

(4.54)

since

M̂ red
wj N

red
jw′ = Fww′

3
M red

w′
3
jN

red
jw′ = Fww′ and Fww′

(

δw′w′
2
−Gw′w1

Fw1w
′
2

)

= 0. (4.55)

For the tree-level primitive QCD amplitudes we will always have that the factor Ŷ appear-

ing in the sum as in eq. (4.51) is of the form as in eq. (4.52) with w ∈ B for Ĉ(w, z(j)).

Therefore the non-uniqueness of the right-inverse does not affect tree-level primitive QCD

amplitudes.
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4.4 Proof of the CHY representation

Let us set

Ãn (w) = i
∑

solutions j

J
(

z(j), p
)

Ĉ
(

w, z(j)
)

Ê
(

z(j), p, ε
)

, (4.56)

with Ĉ defined in section 4.2 and Ê defined in section 4.3. We would like to show that

Ãn (w) = An (w) , ∀w ∈ W0. (4.57)

It is sufficient to check the five conditions at the end of section 2.4.

1. We start with w ∈ B. We have

Ãn (w) = iM̂wjÊj = M̂wjN̂
red
jw′Aw′ . (4.58)

Since w ∈ B we may replace the matrix row M̂wj with the matrix row M̂ red
wj (the two

rows are identical). We therefore have

Ãn (w) = M̂ red
wj N̂

red
jw′Aw′ = Aw, (4.59)

where we used eq. (4.44). Switching back to the word notation we have

Ãn (w) = An (w) . (4.60)

2. Let us now consider w ∈ W3\B. We have to verify the fundamental BCJ relation:

n−1
∑

i=2

(

n
∑

k=i+1

2p2pk

)

Ãn (l1l3 . . . lil2li+1 . . . ln−1ln) = 0. (4.61)

In the definition of Ãn only Ĉ depends on the cyclic order and therefore we should

have

n−1
∑

i=2

(

n
∑

k=i+1

2p2pk

)

Ĉ
(

l1l3 . . . lil2li+1 . . . ln−1ln, z
(j)

)

= 0 (4.62)

for all solutions z(j) of the scattering equations. For w ∈ W3 the cyclic factor Ĉ

agrees with the standard Parke-Taylor factor:

Ĉ (w, z) = C (w, z) . (4.63)

The validity of

n−1
∑

i=2

(

n
∑

k=i+1

2p2pk

)

C
(

l1l3 . . . lil2li+1 . . . ln−1ln, z
(j)

)

= 0 (4.64)

can be inferred from the pure gluon case. Note that we have to require that the z(j)’s

are solutions of the scattering equations.
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3. Let us now consider w ∈ W2\W3. We have defined Ĉ(w, z) = 0 whenever w corre-

sponds to an external ordering with crossed fermion lines. This implies

Ãn (w) = 0 (4.65)

for words corresponding to crossed fermion lines. For words w ∈ W2\W3 with no

crossed fermion lines we have defined Ĉ through eq. (4.16). As Ãn(w) depends on

the external ordering only through Ĉ(w, z), a similar relation holds for Ãn(w). In

other words, Ãn satisfies eq. (2.29).

4. We may repeat this argumentation for w ∈ W1\W2 and afterwards for w ∈ W0\W1.

In both cases we have defined Ĉ(w, z) such that the required relations (Kleiss-Kuijf

relations for w ∈ W1\W2 and cyclic invariance for w ∈ W0\W1) are fulfilled.

This completes the proof of eq. (4.57) and we have shown that any tree-level primitive QCD

amplitude has a CHY representation in the form of eq. (4.2), with Ĉ defined in section 4.2

and Ê defined in section 4.3.

The generalised cyclic factor Ĉ(w, z) defined in section 4.2 is always a linear com-

bination of standard Parke-Taylor factors C(w, z) with z-independent coefficients. Since

the standard Parke-Taylor factors C(w, z) transform under PSL(2,C) transformations as

in eq. (4.6), it follows that Ĉ(w, z) transforms as well as in eq. (4.6). A similar argu-

ment applies to the PSL(2,C) transformation properties of Ê(z, p, ε). Eq. (4.46) shows

that Ê(z, p, ε) is a linear combination of standard Parke-Taylor factors C(v̄, z) with z-

independent coefficients. Therefore it follows that Ê(z, p, ε) transforms as in eq. (4.6)

under PSL(2,C) transformations.

Finally, let us comment on the gauge invariance of Ê(z, p, ε): In section 4.3 we defined

Ê(w, p, ε) in terms of amplitudes An(w) from the basis w ∈ B. The amplitudes are gauge-

invariant and the gauge-invariance of Ê(z, p, ε) follows trivially.

5 An example

We would like to illustrate our construction with a concrete example. A non-trivial example

is the six-point amplitude A6 with three quark-anti-quark-pairs. We label the external

particles from 1 to 6 and we set

q1 = 1, q2 = 2, q3 = 3, q̄3 = 4, q̄2 = 5, q̄1 = 6. (5.1)

Our alphabet is then

A = {q1, q2, q3, q̄3, q̄2, q̄1} = {1, 2, 3, 4, 5, 6} . (5.2)

The basis B consists of four elements:

B = {123456, 125346, 132546, 134256} . (5.3)

The set Bnq≤2 contains six elements:

Bnq≤2 = {123456, 124356, 132456, 134256, 142356, 143256} . (5.4)

– 23 –



J
H
E
P
1
1
(
2
0
1
5
)
2
1
7

Note that in the basis B we will have either particle 4 or particle 5 at position 5, while all

elements in the set Bnq≤2 have particle 5 at position 5. Since the permutation invariant

function Ê(z, p, ε) involves Parke-Taylor factors with particle 6 at position 5 and particle

5 at position 6 we introduce the set B̄nq≤2 given by

B̄nq≤2 = {123465, 124365, 132465, 134265, 142365, 143265} . (5.5)

The set B̄nq≤2 is just the set Bnq≤2 with particles 5 and 6 exchanged. The permutation

invariant function is then given as a double sum in amplitudes An(w, p, ε) from the basis

w ∈ B and Parke-Taylor factors C(v̄, z) from the set v̄ ∈ B̄nq≤2 as

Ê (z, p, ε) = −i
∑

v̄∈B̄nq≤2

∑

w∈B

cv̄w (p)C (v̄, z)An (w, p, ε) . (5.6)

The coefficients cv̄w(p) depend only on the kinematical variables 2pipj (and the masses mj)

and are given by

cv̄w (p) =
∑

u∈Bnq≤2

S [u|v̄]Guw. (5.7)

Due to the inverse matrix in eq. (4.41) the explicit expressions for cv̄w(p) are rather long

and not reported here.

Let us now consider the generalised cyclic factor Ĉ(w, z). For w ∈ B the generalised

cyclic factor agrees with the standard Parke-Taylor factor. If w corresponds to an exter-

nal ordering with crossed fermion lines, the generalised cyclic factor equals zero. Let us

therefore consider as an example the word w = 153426. This word does not correspond to

crossed fermion lines. However the fermion line 2-5 does not have the standard orientation.

With the definitions of section 4.2 we have

Ĉ (153426, z) = −Ĉ (124356, z) = Ĉ (123456, z) = C (123456, z) . (5.8)

6 Conclusions

In this paper we have shown that a CHY representation exists for all tree-level primi-

tive QCD amplitudes. We provided a definition of the generalised cyclic factor Ĉ(w, z)

and a definition of the generalised permutation invariant function Ê(z, p, ε). The virtue

of the CHY representation lies in the fact that it separates the information on the exter-

nal ordering (contained in the generalised cyclic factor Ĉ(w, z)) from the information on

the helicities of the external particles (contained in the generalised permutation invariant

function Ê(z, p, ε)).
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A Orientation of fermion lines

In this appendix we prove eq. (2.29). A slightly modified form of eq. (2.29) has been stated

in [49] and the idea of the proof can be found in [48]. We consider

An = An (xk−1qixkq̄jwk+1qjykq̄iyk−1) . (A.1)

Let us assume that the sub-words xk and yk consist of r letters and s letters, respectively:

xk = li1 li2 . . . lir , yk = lj1 lj2 . . . ljs . (A.2)

It will be convenient to set

wk−1 = yk−1xk−1. (A.3)

Using cyclic invariance we have

An = An (qixkq̄jwk+1qjykq̄iwk−1) . (A.4)

We now use the Kleiss-Kuijf relation to flip xk:

An = (−1)r An (qiq̄j (wk+1qjykq̄iwk−1)� (lir . . . li1)) . (A.5)

If we would work out the shuffle product, we would obtain words, where the first a letters

of xk occur after qj and the remaining (r− a) letters of xk occur before qj , with a ranging

from 0 to r. Writing this out we have

An = (−1)r
r

∑

a=0

An

(

qiq̄j
[

wk+1 �
(

lir . . . lia+1

)]

qj [(ykq̄iwk−1)� (lia . . . li1)]
)

. (A.6)

We then use a second time the Kleiss-Kuijf relation to flip the sub-word q̄j [wk+1 �

(lir . . . lia+1
)]:

An=
r

∑

a=0

(−1)|wk+1|+1−aAn

(

qiqj
{[

wT
k+1�

(

lia+1
. . . lir

)]

q̄j
}

�[(ykq̄iwk−1)�(lia . . . li1)]
)

.

(A.7)

The shuffle product is associative and therefore

An=
r

∑

a=0

(−1)|wk+1|+1−aAn

(

qiqj
{[

wT
k+1�

(

lia+1
. . . lir

)]

q̄j
}

�(ykq̄iwk−1)�(lia . . . li1)
)

.

(A.8)

We may then use the (inverse) Kleiss-Kuijf relation to bring back (lia . . . li1) between qi
and qj :

An = (−1)|wk+1|+1
r

∑

a=0

An

(

qili1 . . . liaqj
{[

wT
k+1 �

(

lia+1
. . . lir

)]

q̄j
}

� (ykq̄iwk−1)
)

. (A.9)

– 25 –



J
H
E
P
1
1
(
2
0
1
5
)
2
1
7

In the shuffle product of [wT
k+1� (lia+1

. . . lir)]q̄j with ykq̄iwk−1 only the terms where q̄j oc-

curs before q̄i are non-zero. The other terms have a crossed fermion line and the amplitude

is zero for those. Writing the sub-word yk in terms of letters we obtain

An = (A.10)

(−1)|wk+1|+1
r

∑

a=0

s
∑

b=0

An(qili1 . . . liaqj [
(

lia+1
. . . lir

)

�wT
k+1�(lj1 . . . ljb)]q̄jljb+1

. . . ljs q̄iwk−1).

Finally, using cyclic invariance one arrives at

An = (−1)|wk+1|+1
r

∑

a=0

s
∑

b=0

An

(

xk−1qili1 . . . liaqjw
′
k+1q̄jljb+1

. . . ljs q̄iyk−1

)

, (A.11)

with

w′
k+1 =

(

lia+1
. . . lir

)

� wT
k+1 � (lj1 . . . ljb) . (A.12)

B The matrix Fww
′

In this appendix we define the entries of the matrix Fww′ , occurring in eq. (4.38). We may

neglect flavour and it is therefore convenient to consider the alphabet

A = {1, 2, . . . , n} . (B.1)

We set as before

W0 = { l1l2 . . . ln | li ∈ A, li 6= lj for i 6= j } (B.2)

and

W2 = { l1l2 . . . ln ∈ W0 | l1 = 1, ln = n } ,

B = { l1l2 . . . ln ∈ W0 | l1 = 1, ln−1 = n− 1, ln = n } . (B.3)

For a sub-word w = l1l2 . . . lk we set

S (w) =
∑

σ∈Sk

lσ(1)lσ(2) . . . lσ(k). (B.4)

Let w1 = l1l2 . . . lj and w2 = lj+1lj+2 . . . ln−3 be two sub-words, such that w = 1w1(n −

1)w2n ∈ W2. For convenience we set ln−2 = n− 1. The standard cyclic factors C(w, z(j))

satisfy the BCJ relations and we have

C
(

w, z(j)
)

=
∑

w′

Fww′C
(

w′, z(j)
)

. (B.5)

The sum is over all words occurring in

1 (w1 � S(w2)) (n− 1)n. (B.6)
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For a given w we define Fww′ = 0 if w′ does not appear in the sum of eq. (B.5). Otherwise,

the coefficients are given for w′ = 1σ1σ2 . . . σn−3(n− 1)n = 1σ(n− 1)n by [38]

Fww′ =
n−3
∏

k=j+1

F (1σ(n− 1)|lk)

ŝn,lk,...,ln−3

, (B.7)

where for ρ = 1σ(n− 1) the function F(ρ|lk) is given by

F (ρ|lk) = (B.8)


















tlk−1
∑

r=1
G (lk, ρr) if tlk < tlk+1

−
n−1
∑

r=tlk+1
G (lk, ρr) if tlk > tlk+1



















+











ŝn,lk,...,ln−3
if tlk−1

< tlk < tlk+1

−ŝn,lk,...,ln−3
if tlk−1

> tlk > tlk+1

0 else











.

ta denotes the position of leg a in the string ρ, except for tln−2
and tlj , which are always

defined to be

tln−2
= tln−4

, tlj = n. (B.9)

For j = n− 4 this implies

tln−2
= tln−4

= n. (B.10)

The function G is given by

G (lk, ρr) =











2plkpρr + 2∆lkρr if ρr = 1, (n− 1)

2plkpρr + 2∆lkρr if ρr = lt and t < k

0 else











. (B.11)

We used the notation

ŝα1,...,αk
=

∑

i<j

(

2pαi
pαj

+ 2∆αiαj

)

. (B.12)

Let us mention that the coefficients Fww′ are the ones appearing in the general BCJ relations

for tree-level primitive QCD amplitudes [38, 39]. We presented them here in a form which

holds also for the massive case. The general form of the BCJ relations is as follows:

Let w1 = l1l2 . . . lj be a sub-word, where particles of any type may occur and w2 =

lj+1lj+2 . . . ln−3 a second sub-word consisting only of gluon legs. We further assume that

w = 1w1(n− 1)w2n ∈ W2. The general BCJ relation reads

An (w) =
∑

w′

Fww′An

(

w′
)

. (B.13)

As before, the sum is over all words occurring in

1 (w1 � S(w2)) (n− 1)n, (B.14)

and the coefficients Fww′ are defined as above. The general BCJ relations of eq. (B.13)

follow from the fundamental BCJ relations [47].
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C Comments on the rank of Fww
′

We recall that the matrix Fww′ is a Nbasis × Nsolutions-dimensional matrix with Nbasis ≤

Nsolutions, w ∈ B and w′ ∈ Bnq≤2. The conjecture in eq. (4.40) states that the matrix F

has full row rank:

rank Fww′ = Nbasis. (C.1)

In this appendix we show that in order to prove eq. (C.1) it is sufficient to prove a weaker

statement. We first show that the matrix F has an upper triangle block structure. We do

this by defining a suitable partial order for the elements of the basis B and for the elements

of the basis Bnq≤2. A sufficient condition for eq. (C.1) is therefore that all (square) matrices

on the main diagonal have full rank.

Let us start with w ∈ B. Let us write

w = 1w12w2wg(n− 1)w3n, (C.2)

with the condition that w2 is either empty or ends with an antiquark and wg is either empty

or contains only gluons. This defines uniquely the sub-words w1, w2, w3 and wg. The sub-

words may be empty. The sub-word w1 encodes all particles which come after particle 1

and before particle 2 in the cyclic order, the sub-word w3 encodes all particles which come

after particle (n − 1) and before particle n in the cyclic order. The sub-word wg encodes

all gluons which directly precede particle (n− 1), the sub-word w2 encodes the remaining

particles which come after particle 2 and before particle (n− 1) in the cyclic order.

Let us now look at the antiquarks in w3. The corresponding quarks may either be

in w3 or in w1. They cannot be in w2 (nor in wg) since in this case they would have to

cross the fermion line 2-(n − 1). We denote by n1 the number of antiquarks in w3, where

the corresponding quark is again in w3. We denote by n2 the number of antiquarks in

w3, where the corresponding quark is in w1. Furthermore we denote by n3 the sum of the

numbers of gluons in w3 and wg. We associate to w ∈ B the triple

N(w) = (n1, n2, n3) . (C.3)

We define an order for these triples through

(

n′
1, n

′
2, n

′
3

)

> (n1, n2, n3) (C.4)

if there is an i such that n′
i > ni and n′

j = nj for all j < i. This is just the lexicographical

order for the triples (n1, n2, n3). The triples N(w) induce a partial order on B.

Let us now turn to w′ ∈ Bnq≤2. Let us write

w′ = 1w′
12w

′
2(n− 1)n. (C.5)

Let us assume that

w′
2 = l′1l

′
2 . . . l

′
k. (C.6)
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We now consider all possible splitting of w′
2 into two sub-words (with the empty words

included)

w′
2 = u′v′, u′ = l′1l

′
2 . . . l

′
j , v′ = l′j+1 . . . l

′
k, (C.7)

such that

w = 1w′
12u

′(n− 1)v′Tn (C.8)

is an element of B. There is either one or no possibility for such a splitting. In the first

case we set

N ′
(

w′
)

= N (w) , (C.9)

with N(w) defined by eq. (C.3), in the latter case we set

N ′
(

w′
)

= (−1,−1,−1) (C.10)

This defines a partial order for Bnq≤2. It is easy to see that there cannot be more than

one possible splitting. Suppose w′
2 = u′v′ is a possible splitting. Then v′ is either empty or

must start with an antiquark. All antiquarks in u′ have the standard orientation and do

not cross other fermion lines, while all antiquarks in v′ either have the opposite orientation

or cross the fermion line 2-(n − 1). These requirements make the splitting unique. If

N ′(w′) = (n1, n2, n3) 6= (−1,−1,−1), then n1 counts the number of antiquarks in v′ with

the opposite orientation, while n2 counts the number of antiquarks in v′, which cross the

fermion line 2-(n − 1). The variable n3 gives the sum of the trailing gluons of u′ and the

number of gluons in v′.

We may now order the basis B by putting the elements w with the highest N(w) first.

In a similar way we order the basis Bnq≤2 by putting the elements w′ with the highest

N ′(w′) first. With respect to this ordering the matrix Fww′ has an upper triangle block

structure. This means that

Fww′ = 0 if N(w) < N ′(w′). (C.11)

eq. (C.11) is easily understood as follows: Let us consider a word w = 1w12w2wg(n −

1)w3n ∈ B with N(w) = (n1, n2, n3). The non-zero elements of the line Fww′ with w′ ∈

Bnq≤2 are the ones, where the letters of the sub-word w3 are inserted in arbitrary positions

between the letters 1 and (n− 1). Suppose now that w′ = 1w′
12u

′v′(n− 1)n with N ′(w′) =

(n′
1, n

′
2, n

′
3) such that eq. (C.8) is satisfied. The maximal number of antiquarks with the

opposite orientation which may appear in v′ is exactly the number n1 of antiquarks in w3,

where the corresponding quark belongs also to w3. Thus we have n′
1 ≤ n1.

Let us now assume that n′
1 = n1. Then the maximal number of antiquarks appearing in

v′ and crossing the line 2-(n− 1) is exactly (under the assumption n′
1 = n1) the number n2

of antiquarks in w3, where the corresponding quark belongs to w1. Thus we have n′
2 ≤ n2.

Let us now look at the gluons. The maximal number of gluons appearing in v′ is

exactly the number n3 of gluons appearing in w3 and wg. Thus we have n′
3 ≤ n3. This

completes the proof of eq. (C.11).
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Having established the upper triangle block structure it follows that a sufficient condi-

tion for the matrix Fww′ having full rank is the situation, where all the square matrices on

the main diagonal have full rank. In other words, we may consider the square sub-matrices

F red
ww′ with N(w) = N ′(w′) 6= (−1,−1,−1). (C.12)

If for all sectors N(w) = N ′(w′) 6= (−1,−1,−1) the corresponding sub-matrices F red
ww′ have

full rank, then it follows that Fww′ has full rank. Eq. (C.12) allows us to work with matrices

of smaller dimensions and reduces therefore the complexity of the problem.

We remark that for some sectors the matrix F red
ww′ has a diagonal block form and

can be reduced further to smaller square sub-matrices. This is the case for sectors with

0 < n1 < nq−2, where we may decompose F red
ww′ with respect to the inequivalent antiquark

flavour sets contributing to n1. Sectors with 0 < n2 ≤ nq − 2 decompose with respect

to the ordered sequences of antiquarks in w3 contributing to n2 (and the corresponding

reversed sequences in v′). The sector (n1, n2, n3) = (0, 0, 0) contains all words w, which are

at the same time elements of B and Bnq≤2. The matrix F red
ww′ for this sector is always the

unit matrix. However, the highest sector (n1, n2, n3) = (nq − 2, 0, ng) does in general not

decompose further.

We have checked for all cases with n ≤ 10 external particles and generic external

momenta that the corresponding matrices F red
ww′ have full rank.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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