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1 Introduction

A consistent theory of quantum gravity should be able to provide the statistical interpre-

tation of Bekenstein-Hawking entropy which is given by one quarter of the area of the

horizon in Planck units [1, 2]. String theory being a candidate for the quantum theory of

gravity provides a natural framework to study classical and quantum properties of black

holes. In last decade there has been tremendous progress in this direction in the large cases

of supersymmetric extremal black hole after the work of Strominger and Vafa [3]. In par-

ticular, now we have a very good understanding of statistical degeneracy for a large class

of supersymmetric extremal black hole in N = 4 and N = 8 string theory which in the

thermodynamic limit reduces to Bekenstein-Hawking entropy [4–14]. In order to extend

this comparison beyond thermodynamic limit, one needs to understand how to compute

the corrections to Bekenstein-Hawking entropy in both microscopic and macroscopic level.

In a quantum theory one would expect that both the microscopic and macroscopic entropy

will receive corrections from perturbative and non-perturbative effects. At the microscopic

level understanding, these corrections involves computation of degeneracy to a greater ac-

curacy and its asymptotic expansion [15, 16]. On the other hand at the macroscopic level,

one needs a full quantum generalization of the entropy formula.

The area law is generalized to Wald entropy formula [17, 18] to take into account the

higher order derivative corrections which include the α′-corrections in string theories. For

the single centered extremal black case, the formula was further generalized by Sen [19, 20]

based on AdS2/CFT1. The extremal black hole has the AdS2 factor in its near horizon

geometry, so it is of the from, AdS2 × K, in 4 spacetime dimensions. Here, K becomes

S2 for the supersymmetric case because the supersymmetry requires the extremal black

holes to be spherically symmetric. According to this proposal, the full quantum entropy

associated with the horizon of an extremal black hole is given in terms of expectation value

of Wilson loop at the boundary of the AdS2. The proposal takes the form,

W (p, q) =

〈
exp

[
−iqi

∮
dθAiθ

]〉finite
AdS2

, (1.1)

where <>finiteAdS2
denotes the finite part of unnormalized Euclidean path integral and the

quantum entropy associated with the horizon is given by

Shor(p, q) = lnW (p, q). (1.2)

Since the proposal involves the path integral over all fields including the metric, there is

no notion of fixed background. But, as is denoted by the subscript in (1.1), the bound-

ary condition is fixed by the attractor values of the black hole background, which is the

AdS2 geometry. The Wilson loop wraps the boundary of AdS2. The insertion of the Wil-

son line at the boundary means that we change the boundary condition from Dirichlet

to Neumann condition for gauge field. Neumann condition fixes the electric fields at the

boundary i.e. electric charges and hence the proposal computes the entropy in the micro-

canonical ensemble. Further, we need to extract finite part of the functional integral to
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see the physically meaningful quantity. Since there is an IR divergence due to the infinite

volume of AdS2 space, the IR divergence should be removed by regularization and the

holographic renormalization.

The classical limit of this partition function reduces to exponential of Wald entropy.

Furthermore, one can use this proposal to compute the full quantum corrections. It includes

not only α′ correction but also gs quantum correction as well as the non-perturbative

correction to the entropy. To compute this, one has to integrate over all string fields on

each saddle point. Since this integral over all string fields is quite difficult and challenging,

the strategy we follow is to first integrate out all massive KK modes and stringy modes,

and write down a Wilsonian effective action. This effective action will be given in terms of

few massless supergravity fields and include all higher derivative corrections together with

non-perturbative corrections coming from worldsheet instantons. Thus we are left with the

path integral over massless fields with the above boundary conditions and we takes this

as our starting point. By computing the path integration, the proposal of the quantum

entropy function has been tested. Perturbative calculation on a classical saddle point and

comparing it with the similar expansion on the microscopic side has led to perfect match of

logarithmic correction in case of BPS black hole in N = 4 and N = 8 supergravities [21–24]

in 4-dimensions and BMPV black hole in 5-dimensions [25].

The computation of the path integral can also be performed by using, so called, super-

symmetric localization. It is a powerful method, making the exact computation possible

in a supersymmetric theory. This method has been used quite successfully in the cases

of supersymmteric gauge theories in various dimensions and on various compact mani-

folds [26–31]. The argument of the localization principle is so general that this principle

can also be applied to the supergravity computation. The argument of the supersymmetric

localization is following [32]. Let us suppose that Q be a fermonic symmetry which gives

rise to a compact bosonic symmetry,

Q2 = H . (1.3)

We would like to compute an integral of some Q invariant function h and Q invariant

action S,

Z =

∫
dµh e−S , (1.4)

where we let the measure dµ is also invariant under the Q. We deform a partition function

by adding the Q-exact function QV with parameter t,

Zt =

∫
dµh e−S−tQV . (1.5)

where V is a fermionic function and invariant under the H-transformation. Since the action

S, measure dµ and the localization action are invariant under the the supersymmetry Q,

the modified partition function Zt is independent of the parameter t.

d

dt
Zt = −

∫
dµQV h e−S−tQV = −

∫
dµQ

(
V h e−S−tQV

)
= 0 . (1.6)

– 3 –
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In the limit t→∞, the semiclassical approximation with respect to 1/t is exact. One left

with the integration over the submanifold MQ

Z = Z∞ =

∫
MQ

dµQ e
−SZ1−loop , (1.7)

whereMQ is the manifold where QV = 0 and dµQ is the induced measure on the subman-

ifold MQ. For supergravity case, a rigid supersymmetry parameter can be chosen, where

the Q2 should preserve the asymptotic boundary conditions. In the case of the black hole

entropy, we choose a Killing spinor of AdS2×S2.

The supersymmetric localization principle requires the off-shell closure of the super-

symmetry algebra. The N = 2 supergravities coupled to vector multiplets in 4-dimensions

has an off-shell formulation in terms of conformal supergravity [33–35]. It is a gauge theory,

where all the N = 2 superconformal symmetries are promoted to the local symmetries,

which couples to the matter fields, and gauge equivalent to the Poincare supergravities.

The Weyl multiplet having off-shell degrees of freedom includes the gauge fields for all the

local symmetries, where the graviton and gravitini are contained. To have the degrees of

freedom for N = 2 Poincare supergravity, one needs to add additional matter multiplets

which is called compensating multiplets. One of the advantages of this formulation is that

the off-shell supersymmetry algebra does not depend on the choice of prepotential and as a

result the solution for the localization equations and the computation of one-loop partition

function do not depend on the details of prepotential.

To utilize the advantage of the conformal supergravity, we use the freedom of a choice

of the gauge condition. Note that the metic gµν in Weyl multiplet is not the physical metric

and conformaly related to the metric in Einstein frame Gµν ,

gµν = Gµνe
K(X,X̄) , (1.8)

where K(X, X̄) is the Kähler potential that is function of the scalars in the vector multi-

plets. A conventional gauge for the scale symmetry is choosing the eK = 1, and it constrains

the the degree of freedom of nv + 1 scalars. Instead of this gauge, we use another choice:

the radius ` of the AdS2×S2 metric gµν to be constant, and all the nv + 1 scalars to be free

to fluctuate. Throughout this paper, we follow this gauge choice. Note that the conformal

mode of the physical metric Gµν is encoded in the fluctuating scalars in vectormultiplets.

The application of the supersymmetric localization to quantum entropy function was

initiated in [36–38]. In the work of [37], the authors consider 1
8th BPS black hole in N = 8

supersymmetric string theory for which microscopic answer is known. After considering

truncations of N = 8 supergravity to N = 2 supergravity with only vector multiplets,

and assuming that the one-loop determinant coming from localizing action is trivial, they

find that the on-shell action evaluated on the localization solutions together with proper

integration measure itself reproduces the modified Bessel function, which is the microscopic

answer for 1
8th BPS black hole in N = 8 theory. The agreement with microscopic answer

is remarkable, however we still need to understand the assumptions taken in this process.

The integration measure should be the result of the one-loop determinant coming from all

the multiplets including Weyl multiplets and gravitini multiplets.

– 4 –
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It is the purpose of this paper to verify these assumptions. As a first step, we focus on

the fluctuations of nv + 1 abelian vector multiplets and compute the Z1−loop while keeping

the Weyl multiplet and all other multiplets to their classical near horizon background. It

is essentially equivalent to that we are considering fluctuation of vectormultiplets on the

localizing saddle point of the Weyl multiplet as it is known that the Weyl multiplet localized

to its on-shell background AdS2×S2 [39]. In the computation of the functional integral, the

analytic continuation could be a subtle issue because the Euclidean action is not positive

definite. We will address two possible choices. One is motivated from the work of Pestun,

Hama, Hosomich [26, 31], the other is from the work of Dabholkar et al. [36, 37, 39].

Although we will choose the former one throughout this paper as it seems conceptually

easier and safer, we will argue that both choices will be consistent. The definition of the

functional integration measure would also be subtle. A non-linear sigma model specifies

its non-trivial functional integration measure by the principle of ultra locality [40, 41]. We

will follow this idea to suggest the path integration measure of the supereravities.

We summarize our results here. We first find the solutions of the localization equations

using our choice of reality properties and find that the solutions of localization equations

are labelled by 2 real parameters for each vector multiplet. We then compute the deter-

minant of the quadratic fluctuations of the Q-exact deformations about the localization

solution. Since we are dealing with the abelian vector multiplets, the answer does not

seem to depend on the parameters of the localization solutions. Also, since the off-shell su-

persymmetry transformations for the fields involve unphysical metric which has dilatation

weight −2, our answer of the one-loop determinant seems not scale invariant if the ordinary

path integration measure assumed. However, given that our calculation is in conformal su-

pergravity where all the symmetries are realized as gauge symmetry, one would expect

that with the gauge invariant measure the one-loop determinant should be scale invariant.

We propose the scale invariant path integral measure involving vector multiplet fields in-

cluding ghost fields. With the proposed measure we find that the answer does depend on

the localization solution through the physical metric which is scale invariant. It produces

the vector multiplet contribution to the classical measure assumed in [36–38], completing

the exact contribution of N = 2 vector multiplets to the black hole entropy. The result is

consistent with the logarithmic corrections from the on-shell computation [45].

The organization of the paper are as follows. In section 2, we describe N = 2 vector

multiplets on Euclidean background by taking the Euclidean continuation starting from

Minkowskian supergravity. We present two possible integration contour using further an-

alytic continuation for well defined Euclidean path integral. We then take the AdS2× S2

background and describe the supersymmetry algebra with a choice of localization super-

charge. In section 3, we present the localization Lagrangian and the solution of localization

equations. In section 4, we compute the one-loop determinant about the localization back-

ground by computing the index using Atiyah-Bott fixed point formula. In this section,

we assume the trivial functional integration measure and obtain our result in terms of

unphysical metric. In the next section, we propose the form of the scale invariant path

integral measure and reconsider the calculation of the one-loop determinant, and therefore

our main result is expressed in terms of physical variables. We end our paper by pointing

out issues and open problems in the discussion section.
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Note added. While this paper was being prepared for publication, we received commu-

nication from S. Murthy and V. Reys of a paper which contains overlapping results [42].

2 N = 2 vector multiplets

2.1 Euclidean continuation

In order to get off-shell N = 2 vector multiplets in Euclidean background, we start from

N = 2 conformal supergravity coupled to nv + 1 vector multiplets by setting the Weyl

multiplet as a background. Here we also translate the Lorenzian signature to Euclidean

signature. For the details of the conformal supergravties, convention of gamma matrices,

spinors and relation to those of Euclidean signature, we refer to the appendix A and B.

Let us see how the fermionic fields are translated to those in Euclidean signature. Since

the 4 dimensional Euclidean space does not allow the Majorana spinor representation, it is

useful to redefine fields in such a way that they satisfy the symplectic Majorana condition.

For the chiral and anti-chiral projection of the gaugino, poincare supersymmetry parameter

and conformal supersymmetry parameter, we use following redefinition,

Ωi → εijλ
j Ωi → −iλ̄i

εi → ξi , εi → iεij ξ̄
j , (2.1)

ηi → iεijη
j ηi → η̄i ,

where although we keep using four component notation, we use unbarred and barred nota-

tion to denote chiral and anti-chiral projected spinors. The symplectic Majorana condition

in Minkowski space is

(Ψi)†γ0 = −iεij(Ψ̄j)TC− , (Ψ̄i)†γ0 = −iεij(Ψj)TC− , (2.2)

where C− is the charge conjugation matrix. They satisfy

γTa = C−γaC
−1
− , CT− = −C− , C†− = C−1

− . (2.3)

Note that the chiral and anti-chiral projection is not compatible with the (symplectic)

Majorana condition, so the condition (2.2) relates the chiral spinors and anti-chiral spinors.

After hiding † operation on all spinors in the theory using the symplectic Majorana

condition (2.2), the action and the supersymmetry transformation rule do not distinguish

whether they are of Minkowkian or Euclidean theory. So, we are free to go to the Euclidean

theory by taking analytic continuation

t = −iθ . (2.4)

However, we note that the property of the fermions under the complex conjugation is

different. In the Euclidean 4-dimensional space, we treat the chiral and anti-chiral spinors

as independent fields, as they are no longer related by the complex conjugate. Instead,

we can impose the following reality condition, i.e. symplectic Majorana condition, for each

chiral and anti-chiral spinors,

(Ψi)† = Ψi , (Ψ̄i)† = Ψ̄i , (2.5)

– 6 –
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where the spinors with lower SU(2) index is defined as

Ψi ≡ −iεij(Ψj)TC− , Ψ̄i ≡ −iεij(Ψ̄j)TC− . (2.6)

However, while we will choose the Killing spinors for the supersymmetric localization to

satisfy this reality condition, spinor fields may not strictly follow this condition because

we will further impose analytic continuation in such a way that the path integration is

well defined.

The killing spinor equations are obtained from the variation of the gravitino,

2Dµξ
i − 1

16
γabT

abγµξ̄
i − γµη̄i = 0 ,

2Dµξ̄
i − 1

16
γabT̄

abγµξ
i − γµηi = 0 . (2.7)

Here Tab and T̄ab are self-dual and anti-self-dual auxiliary tensor in Weyl multiplet.1 And

the covariant derivative includes gauge fields of both SU(2)R and U(1)R. These equations

determine ηi in terms of killing spinors,

η̄i =
1

2
/Dξi , ηi =

1

2
/Dξ̄i . (2.8)

We also read off the auxiliary equations from variation of the auxiliary fermionic fields, χi

and φiµ, in the Weyl multiplet,

− 1

24
γab /DT

abξ̄i +Dξi +
1

24
iTabγ

abηi = 0

− 1

24
γab /DT̄

abξi +Dξ̄i +
1

24
iT̄abγ

abη̄i = 0

2faµγaξ
i +

1

16
/DTabγ

abγµξ̄
i − 2Dµη̄

i = 0 (2.9)

2faµγaξ̄
i +

1

16
/DT̄abγ

abγµξ
i − 2Dµη

i = 0.

2.2 Vector multiplets in Euclidean theory and analytic continuation

In this section, we present the vector multiplets in Euclidean theory that is compatible

with N = 2 supersymmetry, and then take the analytic continuation for the contour of the

path integration.

N = 2 vector multiplet consist of scalars X and X̄, one vector field Wµ, SU(2)R triplet

auxiliary field Yij and SU(2)R doublet fermion λi. For our purpose of extremal black hole,

we will only consider abelian vector multiplets. The supersymmetry transformations of the

1For convenience, we redefine the tensor T±ab in Lorenzian theory as T−ab = iTab and T+
ab = iT̄ab.

– 7 –
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vector multiplet fields are given by

QXI = −iξi λIi ,
QX̄I = −iξ̄i λ̄Ii ,

QλIi = 2iγaDaX
I ξ̄i +

1

2
FIabγabξi + Y I

kjε
jiξk + 2iXηi , (2.10)

Qλ̄Ii = 2iγaDaX̄
Iξi +

1

2
FIabγabξ̄i + Y I

kjε
jiξ̄k + 2iX̄η̄i ,

QW I
µ = −ξ̄iγµλiI − ξiγµλ̄iI ,

QY I
ij = 2ξ̄(i /Dλ

kIεj)k + 2ξ(i /Dλ̄
kIεj)k .

where the covariant derivatives are

DµX
I = ∂µX

I −AµXI ,

DµX̄
I = ∂µX̄

I +AµX̄
I ,

Dµλ
iI =

(
∂µ +

1

4
ωµabγ

ab − 1

2
Aµ

)
λiI +

1

2
VµijλjI , (2.11)

Dµλ̄
iI =

(
∂µ +

1

4
ωµabγ

ab +
1

2
Aµ

)
λ̄iI +

1

2
Vµij λ̄jI ,

and Fµν is defined as

FIµν = F Iµν − 1
4 iX̄

ITµν − 1
4 iX

I T̄µν . (2.12)

The square of the supersymmetry transformations are give by

Q2XI = υµDµX
I + (w + Θ)XI ,

Q2X̄I = υµDµX̄
I + (w −Θ) X̄I ,

Q2λIi = υµDµλ
Ii − 1

4
Labγ

abλIi +

(
3

2
w + i

1

2
Θ

)
λIi + Θi

jλ
Ij , (2.13)

Q2λ̄Ii = υµDµλ̄
Ii − 1

4
Labγ

abλ̄Ii +

(
3

2
w − i1

2
Θ

)
λ̄Ii + Θi

j λ̄
Ij ,

Q2W I
µ = υν(F + F̄ )Iνµ + ∂µΦI ,

Q2Y I
ij = υµDµY

I
ij + 2wY I

ij + Y I
kjΘ

k
i + Y I

ikΘ
k
j ,

where

υµ = 2ξ̄iγ
µξi , w = −1

2
(ηiξ

i + η̄iξ̄
i) ,

Θ =
1

2
(−ηiξi + η̄iξ̄

i) , (2.14)

Lab =
1

4
ξiξ

iT̄ ab +
1

4
ξ̄iξ̄

iT ab +
1

2
η̄iγ

abξ̄i − 1

2
ηiγ

abξi ,

Θi
j = ξ̄j η̄

i − ηjξi −
1

2
δij(η̄iξ̄

i − ηiξi) ,

ΦI = −2i(ξ̄iξ̄
iXI + ξiξ

iX̄I) .

The square of the supersymmetry (2.13) is summarized into

Q2 = Lv + Scale(w) +RSO(1,1)(Θ̂) + Lorentz(L̂ab) +RSU(2)(Θ̂
i
j) + Gauge(Φ̂I) , (2.15)

– 8 –
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where

Θ̂ = −vµAµ + Θ , L̂ab = −vµωµab + Lab , Θ̂i
j =

1

2
vµVµij + Θi

j , Φ̂I = −vµW I
µ + ΦI .

(2.16)

Note that the reality condition in (2.5) is compatible with the supersymmetry trans-

formation if the bosonic fields and the background Weyl multiplet satisfy

(XI)∗ = −XI , (X̄I)∗ = −X̄I , (Y I
ij)
∗ = Y ijI , (W I

µ)∗ = W I
µ

(Tab)
∗ = Tab , (T̄ab)

∗ = T̄ab , (Aµ)∗ = Aµ , (Vµij)∗ ≡ Vµij = εikε
jlVµkl . (2.17)

That is to say, the reality condition of fermions in (2.5) and bosons in (2.17) is preserved

under the supersymmetry transformation rules given in (2.11). In particular, the symmetry

parameters appeared in the algebra, (2.36), satisfy the following reality conditions,

(υµ)∗ = υµ , w∗ = w , Θ∗ = Θ , (Lab)∗ = Lab , (Θi
j)
∗ ≡ Θi

j = εikε
jlΘk

l , (ΦI)∗ = ΦI .

(2.18)

Therefore, the reality condition of all the fields is preserved. Here, the fact that parameter

Θ is real reflects that the abelian factor of the R-symmetry group for the Euclidean space

is SO(1, 1)R, whereas the U(1)R is for the Minkowskian space.

However, we may have to take further analytic continuation. As the Eulclidean La-

grangian is of the form LE ∼ ∂µX̄∂
µX − YijY ij which is not positive definite, the path

integration is ill-defined. One natural way is to take the path integral contour to fol-

low [26, 31]

(XI)∗ = X̄I , (Y I
ij)
∗ = −Y ijI , (2.19)

that make the Euclidean action positive definite. In this analytic continuation, the abelian

R-symmetry is U(1)R as of the Minkowskian theory.2 Another way is to use the localization

action −tQV as a regulator by taking t → ∞. Here we can allow the physical action not

being positive definite, but still positivity on the localization saddle point is required. This

way is motivated by the choice of the contour in [36, 39],

(XI)∗ = XI , (X̄I)∗ = X̄I , Y I
11 = −iKI

2e
iα , Y I

22 = iK1e
iβ , Y I

12 = Y I
21 = KI

3 , (2.20)

where KI
1,2,3 are real and α and β are appropriately chosen coordinate dependent phase.

The localization saddle point was obtained, and it turns out the physical action on the

localization manifold is positive. Both of the reality conditions are not compatible with

the supersymmetry transformation. The square of Q gives rise to a gauge transformation

with the parameter Φ as in the algebra (2.15) and it is not real value for both of (2.19)

and (2.20). Nevertheless, the argument of localization still holds because the action is

invariant under supersymmetry transformations [26].

Throughout this paper, we will be considering the first choice of the reality condi-

tion, (2.19). Nevertheless, we will argue that two choices are consistent, giving same result.

2 The abelian R-symmetry gauge fields should satisfy (Aµ)∗ = −Aµ.
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2.3 Supersymmetry on AdS2×S2

In 4-dimensions, a supersymmetric extremal black hole has near horizon geometry of the

form AdS2×S2. Also all other field configurations at the near horizon are consistent with

the isometry of the AdS2×S2. In the quantum entropy function, this background serves

as the boundary condition for fields in the path integral. In the Lorentzian signature,

AdS2×S2 geometry implies the following ansatz,

et
1 = `

√
(r2 − 1) , er

2 = `
√

1/(r2 − 1) , eφ
3 = ` sinψ , eψ

4 = ` ,

D = 0 , F Irt = eI∗ , F Iψφ = −pI sinψ , XI = XI
∗ , Y I

ij = 0 , T−rt = `2ω . (2.21)

And by the attractor equations, the constant ` and XI
∗ are fixed in terms of the electric

field and magnetic charges, eI∗ and pI∗, and the complex constant ω,

`2 =
16

ω̄ω
,

4
(
ω̄−1X̄I

∗ + ω−1XI
∗
)

= eI∗ , (2.22)

4i
(
ω̄−1X̄I

∗ − ω−1XI
∗
)

= pI .

Solving the above equations fixes the value of the scalar field XI
∗ in terms of electric field

and magnetic charge,

XI
∗ =

ω

8
(eI∗ + ipI) , X̄I

∗ =
ω̄

8
(eI∗ − ipI) . (2.23)

Using the global U(1)R rotation from the superconformal Weyl multiplet, we will set ω =

ω̄ = 4/`. Thus with this choice of ω and ω̄, the U(1)R symmetry is explicitly broken.

In the Euclidean AdS2×S2 case, the near horizon field configurations take following

form

eθ
1 = ` sinh η , eη

2 = ` , eφ
3 = ` sinψ , eψ

4 = ` ,

F Iθη = i sinh(η)eI∗ , F Iφψ = pI sinψ , XI = XI
∗ , Y I

ij = 0 , (2.24)

D = 0 , Tηθ = −4 sinh(η)` , T̄ηθ = −4 sinh(η)` .

In the above we have used the r = cosh η. With the above vielbein, the non vanishing

component of the spin connections are

ω12
θ = cosh(η) , ω34

φ = cos(ψ) . (2.25)

The background value of (2.24) implies that the auxiliary Killing spinor equations (2.9)

become

1

24
iTabγ

abηi =
1

24
iT̄abγ

abη̄i = 0 ,

−2Dµη̄
i = −2Dµη

i = 0 , (2.26)

which imply that ηi = 0 and η̄i = 0. Then, the main Killing spinor equations (2.7) become

0 = 2Dµξ
i − 1

16
γabT

abγµξ̄
i ,

0 = 2Dµξ̄
i − 1

16
γabT̄

abγµξ
i . (2.27)
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It is solved in [43] and there are 8 Killing spinors. For the purpose of the supersymmetric

localization, we will choose the following two Killing spinors among them. In terms of

Dirac spinor notation,

ζi := ξi + ξ̄i , (2.28)

and in the following gamma matrix representation,

γ1 = σ1⊗1 , γ2 = σ2⊗1 , γ3 = σ3⊗σ1 , γ4 = σ3⊗σ2 , γ5 = −γ1234 = σ3⊗σ3 , (2.29)

our choice of the Killing spinors are

ζ1 =
√

2ei(θ+φ)/2


sinh η

2 sin ψ
2

cosh η
2 sin ψ

2

sinh η
2 cos ψ2

cosh η
2 cos ψ2

 , ζ2 =
√

2e−i(θ+φ)/2


cosh η

2 cos ψ2
sinh η

2 cos ψ2
− cosh η

2 sin ψ
2

− sinh η
2 sin ψ

2

 . (2.30)

These Killing spinors satisfy the the symplectic Majorana condition

(ζ1)∗ = −iε12(σ1 ⊗ σ2)ζ2 , ε12 = 1 . (2.31)

Our choice of charges generates the killing vector field of the compact isometry trans-

formation as

2(ξ̄iγ
µξi)∂µ = 4

1

`
(∂θ − ∂φ) = −i4(L− J) , (2.32)

where we denote L as the rotation of the AdS2 and J as the rotation of the S2. We also

note that

ξiξ
i = 2(cosh η + cosψ) , ξ̄iξ̄

i = 2(cosh η − cosψ) . (2.33)

Then the symmetry parameters (2.14) are given by

vµ∂µ = 2(ξ̄iγ
µξi)∂µ = 4

1

`
(∂θ − ∂φ) ,

L12 =
1

2
cosh(η)(ω + ω̄) +

1

2
cosψ(ω̄ − ω) = 4

1

`
cosh(η) ,

L34 =
1

2
cosh(η)(ω − ω̄)− 1

2
cos(ψ)(ω + ω̄) = −4

1

`
cos(ψ) , (2.34)

ΦI = −4i cosh(η)XI
1 − 4 cos(ψ)XI

2 ,

w = Θ = Θi
j = 0 ,

where

XI
1 ≡ XI + X̄I , XI

2 ≡ −i(XI − X̄I) . (2.35)

Therefore, the parameters (2.16) in the supersymmetry algebra (2.15) are

Θ̂ = −vµAµ = 0 , L̂12 = 0 , L̂34 = 0 ,

Θ̂i
j =

1

2
vµVµij = 0 , Φ̂I = −vµW I

µ − 4i cosh(η)XI
1 − 4 cos(ψ)XI

2 . (2.36)

Note here that vµAµ = 0 and vµVµij = 0 as the background value of them are zero. It still

holds when we consider the Weyl multiplet as localization saddle point [39].

– 11 –



J
H
E
P
1
1
(
2
0
1
5
)
1
9
7

3 Localization

We deform the physical action by adding the following localization Lagrangian,

LQ = QV , V = (ξjξ
j + ξ̄j ξ̄

j)−1
nV∑
I=0

(QλiI)†λiI + (Qλ̄iI)†λ̄iI . (3.1)

Here, we take overall normalization factor (ξjξ
j + ξ̄j ξ̄

j)−1 such that we will get standard

kinetic terms for scalars and fermions. Note that the localization Lagrangian is by con-

struction positive definite as it involves the dagger operation. The dagger operation should

be taken carefully because it relies on which contour of integration that we choose. For

the positive definiteness of the Euclidean action, we gave up the the reality condition (2.5)

for fermions and performed further analytic continuation, following the contours defined

in (2.19).

3.1 Localization saddle points

To look at the localization saddle point, let us consider the bosonic part of the localiza-

tion Lagrangian. After some algebra, one can rewrite the bosonic part of the localization

Lagrangian (3.1) as follows,3

(ξjξ
j + ξ̄j ξ̄

j)LQb =
1

4

(
1

ξiξi
+

1

ξ̄iξ̄i

)[
(vµ∂µX

I
1 )2 + (vµ∂µX

I
2 )2
]

+ξiξ
i

∣∣∣∣F I+ab − 1

8
XI

2Tab +
1

ξjξj
v[a∂b]+X

I
2

∣∣∣∣2
+ξ̄iξ̄

i

∣∣∣∣F I−ab +
1

8
XI

2 T̄ab −
1

ξ̄j ξ̄j
v[a∂b]−X

I
2

∣∣∣∣2
+

1

2
ξlξ

l

∣∣∣∣iY I
ikε

kj +
1

8ξkξk
XI

1Tabξiγ
abξj +

1

(ξkξk)2
v[a∂b]+X

I
1ξiγ

abξj
∣∣∣∣2

+
1

2
ξ̄lξ̄

l

∣∣∣∣iY I
ikε

kj +
1

8ξ̄kξ̄k
XI

1 T̄abξ̄iγ
abξ̄j +

1

(ξ̄kξ̄k)2
v[a∂b]−X

I
1 ξ̄iγ

abξ̄j
∣∣∣∣2 ,
(3.2)

where the symbol ± indicates the self-dual or anti-self-dual parts such that,

F I±ab =
1

2

(
F Iab ±

1

2
εabcdF

Icd

)
, v[a∂b]± :=

1

2

(
v[a∂b] ±

1

2
εabcdv

[c∂d]

)
. (3.3)

• The localization solution. The condition 0 = LQb gives 6 localization saddle point

equations. Classical background is the trivial solution. On top of this we find the

other off-shell solutions. From the first and the last two lines in (3.2), one finds the

unique solution for XI
1 and Y I

ij [36, 39],

XI
1 =

CI1
` cosh η

, Y I
12 = − CI1

`2 cosh2 η
, Y I

11 = Y I
22 = 0 . (3.4)

3Here we set the U(1)R gauge field, Aµ, to be zero as the localization saddle point in Weyl multiplet [39].
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Similarly first three lines of (3.2) provides equations for F Iab and XI
2 . We find a

nontrivial smooth solution which is given by

XI
2 =

CI2 cosψ

` cosh η
, F I12 = − CI2

`2 cosh2 η
, F I23 =

CI2 sinh η sinψ

`2 cosh2 η
, F I34 =

2CI2 cosψ

`2 cosh η
,

F13 = F24 = F14 = 0 . (3.5)

However, we cannot prove that this is the unique smooth solution but we will provide

evidence in support of it in the appendix D. One important feature of the above

solution is that although there is a non trivial field strength along S2, the total flux

however is zero. Thus the magnetic charge for this off-shell solution is same as the

attractor value.

• At north/south pole and the origin. At the fixed points η = 0 with ψ = 0 or

ψ = π, it seems that further singular solutions can be enhanced because ξiξ
i = 0

or ξ̄iξ̄
i = 0 at this point and the number of localization equations are reduced.

However, we will argue that there are no nontrivial solutions that are localized at the

fixed points.

Consider the point η = 0 and ψ = 0. Using the fact that

ξ̄iξ̄
i = 0 , ξ̄iγ

aξj = 0 , T̄abξ̄jγ
abξ̄i = 0 , (3.6)

and after some algebra, one finds that the localization Lagrangian reduces to

LQ =
1

4

1

(ξiξi)2

[
(vµ∂µX

I
1 )2 + (vµ∂µX

I
2 )2
]

+ (∂µX1∂µX1 + ∂µX2∂µX2)

+

∣∣∣∣F I+ab − 1

8
XI

2Tab

∣∣∣∣2 +
1

2

∣∣∣∣iY I
ikε

kj +
1

8ξkξk
XI

1Tabξiγ
abξj

∣∣∣∣2 . (3.7)

From the first line, we get XI
1 and XI

2 to be constant. Since e1
θ = e3

φ = 0 at the north

pole, we get the anti-self dual equation from the first term of the second line,

F I+µν =
1

8
XI

2 e
a
µe
b
νTab = 0 . (3.8)

Similarly, at η = 0 and ψ = π, we get the self-dual equation,

F−µν = 0 . (3.9)

However, there is no U(1) instantons in 4-dimensions, so there is no localized non-

trivial solutions.

• Boundary mode (discrete zero modes) of the gauge field. Apart from the

zero mode in (3.4) and (3.5), the AdS2, which is a non-compact space, forces us to

consider so called boundary modes of gauge fields [44].

W l = dΦl , Φl =
1√
2π|l|

[
sinh η

1 + cosh η

]|l|
eilθ , l = ±1,±2,±3, · · · . (3.10)
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These modes are not actually the “localizing saddle points” in the sense of Q invariant

BPS states as it is obvious that Q2 6= 0 for those modes. However, these are the zero

modes making the localization action as well as the original action vanish since the

filed strength is zero. Yet, these are not pure gauge modes as the parameters Φl are

not normalizable. These modes do not vanish at the boundary of the AdS2, but they

are still normalizable. Thus the integration over theses boundary modes should be

taken into account for the partition function. Although it will be infinite product of

integrations, the regularized result is well understood [21].

4 1-loop partition function

In this section, we compute the 1-loop partition function by computing equivariant index.

For this, we introduce BRST symmetry to fix the gauge and combine it with the localization

supercharge. Through out this section, we assume the ordinary path integration measure.

The correct measure will be taken into account in the next section.

4.1 BRST and combined cohomology

• Cohomological variables and supersymmetry complex. It is useful to present

the supersymmetry in the cohomological form by changing the variables. Our

fermionic variables are reorganized as

ΨI ≡ QXI
2 = −ξiλiI + ξ̄iλ̄

iI ,

ΨI
µ ≡ QW I

µ = −ξ̄iγµλiI − ξiγµλ̄iI , (4.1)

ΞIij ≡ 2ξ(iC−λ
j)I + 2ξ̄(iC−λ̄

j)I .

Then the inverse relation is

−ξiΨI − γµξ̄iΨI
µ + iεjkξ

kΞIji = (ξjξ
j + ξ̄j ξ̄

j)λiI = 4 cosh(η)λiI ,

+ξ̄iΨI − γµξiΨI
µ + iεjkξ̄

kΞIji = (ξjξ
j + ξ̄j ξ̄

j)λ̄iI = 4 cosh(η)λ̄iI . (4.2)

In terms of these variable, the supersymmetry transformations are

QXI
2 = ΨI , QΨI = LvXI

2 ,

QW I
µ = ΨI

µ , QΨI
µ = LvW I

µ + ∂µΦ̂I , QΦ̂I = 0 , (4.3)

QΞIij = BIij , QBIij = LvΞIij .

Here Φ̂I contains the degree of freedom XI
1 as in (2.36), and BIij contains the degree

of freedom Y Iij as

BIij := 4ξ̄(iC−γ
µξj)∂µX

I
2 + i(ξkξ

k + ξ̄kξ̄
k)Y Iij

+ξ(iC−γ
abξj)

(
F I+ab −

1

4
iX̄ITab

)
+ ξ̄(iC−γ

abξ̄j)
(
F I−ab −

1

4
iXI T̄ab

)
. (4.4)

Note that all the bosonic variables are organized into (XI
2 ,W

I
µ , B

Iij , Φ̂I) and all the

fermionic variables are into (ΨI ,ΨI
µ ,Ξ

Iij). And the Q2 acts as

Q2 = Lv + Gauge(Φ̂) . (4.5)
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In general, Q could act as Q2 = Lv + Gauge(Φ̂) + Lorentz(L̂ab) + RU(1)(Θ̂) +

RSU(2)(Θ̂
i
j). However, we note from (2.36) that L̂ab = Θ̂ = Θ̂i

j = 0.

• BRST complex. To treat the gauge fixing of the U(1)nv+1 Yang-Mills gauge symme-

try, we introduce the ghost fields and use BRST quantization. The BRST complex is

QBW I
µ = ∂µc

I , QBcI = 0 ,

QB c̄I = BI , QBBI = 0 , (4.6)

QBλiI = QBλ̄iI = QBXI = QBX̄I = QBY I
ij = 0 .

Here the cI , c̄I and BI are the ghost, anti-ghost and the standard Lagrange multiplier,

so that the gauge fixing is performed by adding the terms, LGF = iBI∇µW Iµ+ ξ
2B

I2+

c̄I�cI . We assign the length dimension of the BRST operator [QB] = −1
2 , so the

length dimension for the ghost multiple is set by

[c] = −1

2
, [c̄] = −1

2
, [B] = −1 . (4.7)

Note that the AdS2×S2 space does not have normalizable zero mode of cI , c̄I and

BI . The boundary condition of the path integral does not allow the non-normalizable

modes, so we do not need special treatment for freezing out these kind of zero modes.

This differs from the case of S4 space. We refer to [26] as the S4 example where there

are constant zero modes so the additional constant fields are introduced to freeze out

those modes.

The gauge fixing Lagrangian is QB-exact, so

LQGF = QB
[
`−1c̄Ii∇µW Iµ + `−2 ξ

2
c̄IBI

]
, (4.8)

where we put constants factors `−1 and `−2 to set the length dimension −4 for the

Lagrangian.

• Combined complex. Since the gauge fixing Lagrangian (4.8) is not Q invariant, we

need to consider new complex and modify the gauge fixing Lagrangian. Combining

the BRST symmetry with supersymmetry, we make the combined complex. For this

we define the supersymmetry for the ghost

QcI = −Φ̂I , QΦ̂I = 0 ,

QBI = Lv c̄I , Qc̄I = 0 , (4.9)

and we introduce the combined operator Q̂ := Q + QB. Then we get the following

combined Q̂-complex,

Q̂W I
µ = ΨI

µ + ∂µc
I , Q̂ΨI

µ = LvW I
µ + ∂µΦ̂I ,

Q̂XI
2 = ΨI , Q̂ΨI = LvXI

2 ,

Q̂cI = −Φ̂I , Q̂Φ̂I = −LvcI , (4.10)

Q̂BI = Lv c̄I , Q̂c̄I = BI ,

Q̂ΞIij = BIij , Q̂BIij = LvΞIij .
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In fact supersymmetry transformation for ghost (4.9) was defined such that the Q̂2

acts as

Q̂2 = Lv := H. (4.11)

All the bosonic and fermionic variables are organized as

X := (XI
2 ,W

I
µ) , Q̂X = (Q̂XI

2 , Q̂W I
µ) ,

Ξ := (ΞIij , c̄I , cI) , Q̂Ξ = (Q̂ΞIij , Q̂c̄I , Q̂cI) . (4.12)

We now use Q̂-exact gauge fixing term,

LQ̂GF = Q̂
(
i`−1c̄I∇µW Iµ + `−2 ξ

2
c̄IBI

)
. (4.13)

This is equivalent to the (4.8) as

LQ̂GF = LQGF − i`
−1c̄I∇µΨIµ − `−2 ξ

2
c̄ILv c̄I . (4.14)

and the terms, −ic̄I∇µΨIµ and − ξ
2 c̄
ILv c̄I , do not contribute to the determinant. It is

because c̄ can be connected only to c but there are no vertices in those extra terms con-

taining c.

Now, the physical action is Q̂ invariant since it is invariant under the Q and QB
symmetry. Also the gauge fixing Lagrangian is Q̂ invariant. For the supersymmetric

localization, we now deform the physical action by adding the following Q̂ exact terms,

Q̂V = Q̂
[

1

(ξjξj + ξ̄j ξ̄j)

(
(Q̂λiI)†λiI + (Q̂λ̄iI)†λ̄iI

)
+ i`−1c̄I∇µW Iµ + `−2 ξ

2
c̄IBI

]
. (4.15)

Since Q̂λiI = QλiI and Q̂λ̄iI = Qλ̄iI , the localization equation obtained from (3.2) will

not be changed. To express it in terms of the set of the cohomological variables in (4.12),

we use the inverse relation (4.2). Then we find,

Q̂V=Q̂
[

1

(4 cosh η)2

[
(Q̂ΨI)†ΨI+(Q̂ΨIµ)†ΨI

µ+
1

2
(Q̂ΞIij)†ΞIij

]
+i`−1c̄I∇µW Iµ+`−2 ξ

2
c̄IBI

]
,

(4.16)

where explicitly, we note that

Ψ = QX2 = Q̂X2 , ΨI
µ = QW I

µ = Q̂W I
µ − ∂µc , Q̂ΞIij = BIij , (4.17)

and their conjugation are given by

(Q̂Ψ)† = Q̂Ψ ,

(Q̂ΨI
µ)† = LvW I

µ + ∂µ[−vνW I
ν + 4i cosh(η)XI

1 − 4 cos(ψ)XI
2 ] (4.18)

= LvW I
µ − 2∂µ

(
vνW I

ν + 4 cosψXI
2

)
+ ∂µ

(
Q̂cI

)
,

(Q̂ΞIij)† = −4 εikεjlξ̄
(kC−γ

µξl)∂µX
I
2 + i(ξkξ

k + ξ̄kξ̄
k)Y I

ij

−εikεjl
[
ξ(kC−γ

abξl)
(
F I+ab +

1

4
iXITab

)
+ ξ̄(kC−γ

abξ̄l)
(
F I−ab +

1

4
iX̄I T̄ab

)]
= εikεjl

[
Q̂Ξkl − 8ξ̄(kC−γ

aξl)∂aX
I
2

−ξ(kC−γ
abξl)(2F I+ab −

1

4
XI

2Tab)− ξ̄(kC−γ
abξ̄l)

(
2F I−ab +

1

4
XI

2 T̄ab

)]
.
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4.2 Index and 1-loop determinant

To evaluate the 1-loop determinant, We formally write the quadratic terms of the localiza-

tion Lagrangian, in terms of the new variable set (4.12), as

Q̂V = Q̂

[
(Q̂X′ ,Ξ′)

(
D00 D01

D10 D11

)(
X′

Q̂Ξ′

)]
. (4.19)

Here, we denoted (X′ , Q̂X′ ,Ξ′ , Q̂Ξ′) to exclude the zero modes, yet X′ is to include the

boundary modes of the gauge field (3.10).4

Among the fluctuation modes of X′ and Ξ′, some of them can be annihilated by Q̂2 = H.

Let us classify the set of the path integration variable into two parts,

X′′ = {X′|HX′ 6= 0} , Ξ′′ = {Ξ′|HΞ′ 6= 0} ,
X′0 = {X′|HX′ = 0} , Ξ′0 = {Ξ′|HΞ′ = 0} .

(4.20)

Then, since H commutes with Q̂ and Dij , the terms in the localization Lagrangian can be

separated as

Q̂V = (X′′ , Q̂Ξ′′)K ′′b

(
X′′

Q̂Ξ′′

)
+ (X′0 , Q̂Ξ′0)K ′0b

(
X′0

Q̂Ξ′0

)

+ (Q̂X′′ ,Ξ′′)K ′′f

(
Q̂X′′

Ξ′′

)
+ (Q̂X′0 ,Ξ′0)K ′0f

(
Q̂X′0

Ξ′0

)
,

(4.21)

where the kinetic operators of bosons and fermions, Kb and Kf , are divided as

K ′′b =

(
−H 0

0 1

)(
D00 D01

D10 D11

)
+

(
DT

00 D
T
10

DT
01 D

T
11

)(
H 0

0 1

)
, K ′0b =

(
0 DT

10

D10 D11+DT
11

)
,

K ′′f =

(
1 0

0 −H

)(
DT

00 D
T
10

DT
01 D

T
11

)
−

(
D00 D01

D10 D11

)(
1 0

0 H

)
, K ′0f =

(
DT

00−D00 D
T
10

−D10 0

)
.

(4.22)

Note that the determinant of K ′0b and K ′0f cancels with each other since D10 is non degen-

erate for the corresponding modes. Also note that(
1 0

0 −H

)
K ′′b = K ′′f

(
H 0

0 1

)
. (4.23)

So the 1-loop determinant is given, up to a sign, by

Z1−loop =

(
det ′Kf

det ′Kb

)1/2

=

(
det ′′K ′′f
det ′′K ′′b

)1/2

=

(
detQ̂Ξ′′ H

detQ̂X′′ H

)1/2

=

(
detΞ′′ H

detX′′ H

)1/2

, (4.24)

where the last equality is due to that Q̂ commutes with H.

4 Although the boundary gauge modes are zero modes, the corresponding fermion modes in Q̂X′ are not

zero modes. It is known that there is no such infinite set of fermionic zero modes [22].

– 17 –



J
H
E
P
1
1
(
2
0
1
5
)
1
9
7

The 1-loop determinant expressed in (4.24) is encoded in the following quantity,

TrX′′e
tH − TrΞ′′e

tH , (4.25)

which will be expressed as a formal Laurent series in U(1) representation, i.e. eit/`. Calcu-

lating this, we can read off the eigenvalues and the degeneracies and then obtain the ratio

of the determinant as ∑
n

ωne
itεn −→ detX′′ H

detΞ′′ H
=
∏
n

(εn)ωn . (4.26)

To compute the (4.25), it is convenient to express the trace as the summation over the

complete set of basis. Firstly, we freely add the trace over X′0 and Ξ′0. Their contributions

cancel each other since operator D10 maps the fields X to the dual of the fields Ξ and

it is non-degenerate for those mode. Secondly, we add and subtract possible zero mode

contributions in X and Ξ. Then the (4.27) becomes

TrXe
tH − TrΞe

tH −N0
X +N0

Ξ . (4.27)

Since (4.25) does not give t-independent constant, (4.27) does not either. It will turn out

that the number N0
X−N0

Ξ should vanish as the first two term will not produce t-independent

constant later in (4.47). As we have a single zero mode (3.5) in X, i.e. N0
X = 1, we have a

single fermion zero mode in Ξ, i.e. N0
Ξ = 1.5,6

Now, what we need to compute remains the U(1)-equivariant index of D10,

TrXe
tH − TrΞe

tH = TrkerD10e
tH − TrCokerD10e

tH := indD10. (4.28)

To see this, note that the D10 maps the eigenmode of H on the bundle X to the eigen

mode with the same eigenvalues on the Ξ, unless these modes are in kernel or cokernel of

the operator D10.

To compute the index, (4.28), we will first show that the operator D10 is transver-

sally elliptic with respect to the U(1) action generated by H, i.e. elliptic in all directions

transversal to the H-orbit. If the operator is transversally elliptic on compact manifold, it

is guaranteed that each subspace with the same eigenvalue of H in kernal and cokernel is

finite dimensional [48, 49]. We will assume that it still holds for the AdS2×S2 and we will

compute the index (4.28) using Atiyah-Bott fixed point formula.

To show the transversally ellipticity, we compute the symbol of the operator D10. The

D10 appears as ΞD10X in the expression of V in (4.19). We take the relevant terms,

1

(4 cosh η)2

[
(Q̂ΨIµ)†ΨI

µ +
1

2
(Q̂ΞIij)†ΞIij

]
+ i`−1c̄I∇µW Iµ , (4.29)

and use the explicit expression in (4.18) with neglecting Q̂cI and Q̂ΞIij as they are not

relevant for the operator D10. To explicitly write the symbol of D10 operator, denoted

5In case of another analytic continuation (2.20), we would get N0
X = N0

Ξ = 0.
6The fermion mode should appear in pair, and the other fermion zero mode is in Q̂X. One can easily see

that the explicit solution is Ψ = ϑ cosψ/ cosh η ,Ψθ = −ϑ/ cosh η ,Ψφ = −ϑ sin2 ψ/ cosh η ,Ψη = Ψψ = 0

with the grassman parameter ϑ.
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as σ(D10), we consider only the highest derivative terms and replace ∂µ by ipµ. It is

convenient to introduce orthonormal four unit vector fields uµa as,

i(σa)i
j ξ̄jγ

µξi = 2
√

cosh2(η)− cos2(ψ)uµa , σa : Pauli’ sigma , a = 1, 2, 3 ,

ξ̄iγ
µξi = 2

√
cosh2(η)− cos2(ψ)uµ4 .

(4.30)

In particular,

Lv = vµ∂µ = 4

√
cosh2(η)− cos2(ψ)uµ4 ipµ = 4

√
cosh2(η)− cos2(ψ) ip4 . (4.31)

We also define

ΞIa := i
1

2
ΞIi

j(σa)j
i = i

1

2
εikΞ

Ikj(σa)j
i, (4.32)

equivalently

ΞIa(σa)j
i = iεjkΞ

Iki . (4.33)

Then, the highest derivative terms of ΞD10X term are

1

2ch2
η


ΞI1
ΞI2
ΞI3
c̄I

cI



T

·


cψp4 chηp3 −chηp2 −cψp1 αp1

−chηp3 cψp4 chηp1 −cψp2 αp2

chηp2 −chηp1 cψp4 −cψp3 αp3

−1
` ch

2
ηp1 −1

` ch
2
ηp2 −1

` ch
2
ηp3 −1

` ch
2
ηp4 0

1
2αp4p1

1
2αp4p2

1
2αp4p3 α(1

2p4p4 − papa) −cψpapa

·

W I

1

W I
2

W I
3

W I
4

XI
2

 , (4.34)

where we denoted

cψ = cos(ψ) , sψ = sin(ψ) , chη = cosh(η) , shη = sinh(η) , α =
√
ch2
η − c2

ψ . (4.35)

The matrix σ(D10) can be block diagonalized by suitable change of variables within X and

Ξ. By changing

W I
4 →

cψ
chη

W I
4 −

α

chη
XI

2 , XI
2 →

α

chη
W I

4 +
cψ
chη

XI
2 , (4.36)

c̄I → 1

`
chη c̄

I − 1

2

α

chη
p4 c

I , cI → 1

`
α
p4

papa
c̄I +

(
1− 1

2

α2

ch2
η

p4p4

papa

)
cI ,

we get

σ(D10) =
1

2ch2
η


cψp4 chηp3 −chηp2 −chηp1 0

−chηp3 cψp4 chηp1 −chηp2 0

chηp2 −chηp1 cψp4 −chηp3 0

−chηp1 −chηp2 −chηp3 −cψp4 0

0 0 0 0 −chηpapa

 . (4.37)

Nontrivial contribution to the index arises from the upper-left 4× 4 block of the matrix in

the middle,

σ(D′10) =


cψp4 chηp3 −chηp2 −chηp1

−chηp3 cψp4 chηp1 −chηp2

chηp2 −chηp1 cψp4 −chηp3

−chηp1 −chηp2 −chηp3 −cψp4

 . (4.38)
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We note that the above matrix is not invertible at the equator cos ψ = 0 of the S2. This is

because σσT = (cosh2 η(p2
1 + p2

2 + p2
3) + cos2 ψp2

4) · I and is zero for p1 = p2 = p3 = 0 and

p4 6= 0. However, if we restrict the momentum to be orthogonal to the Killing vector vµ,

then σ is invertible as long as (p1 , p2 , p3) are not all zero. Therefore the operator D10 is

transversally elliptic with respect to the symmetry Lv .

Now, we use the Atiyah-Bott fixed point formula to compute the equivariant in-

dex (4.28). The Atiyah-Bott formula is reviewed in the appendix E and the formula is

give by

ind(D10) =
∑
A

TrX(γ)− TrΞ(γ)

det(1− ∂f(x)/∂x)
, A = {x|f(x) = x} , (4.39)

where the γ is the transformation of the section induced by the f(x). The formula reduces

the trace of the operator etH into the summation over the fixed point of the operator H. In

our case, there are two fixed points. One is the north pole of the S2 together with the origin

of the AdS2 and the other is the south pole of the S2 together with the origin of the AdS2.

Near the fixed points the space is locally R2×R2 so it is parametrized by the orthonormal

coordinate (x1 , x2 , x3 , x4), where the (x1 , x2) are the local coordinate on the AdS2 and

(x3 , x4) are the local coordinate on the S2. Let us define the complexified coordinates

z1 := x1 + ix2 , z2 := x3 + ix4 , at north pole ,

w1 := x1 + ix2 , w2 := x3 + ix4 , at south pole .
(4.40)

Under the operator etH they transform as

z1 → eit/`z1 := qz1 , z2 → e−it/`z2 := q̄z2 ,

w1 → eit/`w1 := qw1 , w2 → eit/`w2 := qw2 .
(4.41)

Note here that the operator H generates as the L − J rotation, where L and J are the

rotation on the AdS2 and S2. So the the coordinate z2 rotates in the opposite way to the

z1. Also, the coordinate w2 rotates the opposite again to the z2 coordinate as it is the

coordinate at the south pole of the S2.

Let us consider how the fields transform. The nontrivial part is for Ξij . One can explic-

itly see from (4.34) that the fermions (Ξ1 ,Ξ2 ,Ξ3) defined in (4.33) are dual of self-dual field

at the north pole and the dual of anti-self-dual field at south pole such that they are con-

tracted with (F+
14 , F

+
13 , F

+
12) and (F−14 , F

−
13 , F

−
12) respectively.7 In terms of the complexified

coordinates, the self-dual and anti-self-dual field strength have the following basis,

F+
12 ∼ dz1 ∧ dz̄1 + dz2 ∧ dz̄2 , F−12 ∼ dw1 ∧ dw̄1 − dw2 ∧ dw̄2 ,

F+
13 ∼ dz1 ∧ dz2 + dz̄1 ∧ dz̄2 , F−13 ∼ dw1 ∧ dw̄2 + dw̄1 ∧ dw2 ,

F+
14 ∼ dz1 ∧ dz2 − dz̄1 ∧ dz̄2 , F−14 ∼ dw1 ∧ dw̄2 − dw̄1 ∧ dw2 .

(4.42)

7In the case we choose another Killing spinor which squares to L + J , we get opposite transformation

rule for the z2 and w2. But now (Ξ1 ,Ξ2 ,Ξ3) are dual of (F−14 , F
−
13 , F

−
12) at North pole and (F+

14 , F
+
13 , F

+
12)

at South pole respectively, so we get same transformation rule as in (4.45) and (4.46), giving the same

result (4.47). Notice that in the S4 computation, for the similar killing spinor which squares to L+ J , the

fields (Ξ1 ,Ξ2 ,Ξ3) are dual of (F+
14 , F

+
13 , F

+
12) at North pole and (F−14 , F

−
13 , F

−
12) at South pole respectively.

This is the main difference of the index computation in S4 and AdS2× S2.
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By the definition (4.33), we see that the fermions (Ξ11 ,Ξ22 ,Ξ12) have the following basis

at north pole,

Ξ11 ∼ ∂

∂z1
∧ ∂

∂z2
, Ξ22 ∼ ∂

∂z̄1
∧ ∂

∂z̄2
, Ξ12 ∼ ∂

∂z1
∧ ∂

∂z̄1
+

∂

∂z2
∧ ∂

∂z̄2
, (4.43)

and at the south pole,

Ξ11 ∼ ∂

∂w1
∧ ∂

∂w̄2
, Ξ22 ∼ ∂

∂w̄1
∧ ∂

∂w2
, Ξ12 ∼ ∂

∂w1
∧ ∂

∂w̄1
− ∂

∂w2
∧ ∂

∂w̄2
. (4.44)

We now spell the transformation of fields at the fixed points. At the north pole,

γ[X2] = 1 , γ[Wz1 ] = q , γ[Wz̄1 ] = q̄ , γ[Wz2 ] = q̄ , γ[Wz̄2 ] = q ,

γ[Ξ11] = q−1q̄−1 =1 , γ[Ξ22] = q̄−1q−1 =1 , γ[Ξ12] = 1 , γ[c] = 1 , γ[c̄] = 1 .

(4.45)

and similarly we get at the south pole

γ[X2] = 1 , γ[Ww1 ] = q , γ[Ww̄1 ] = q̄ , γ[Ww2 ] = q , γ[Ww̄2 ] = q̄ ,

γ[Ξ11] = q−1q̄−1 =1 , γ[Ξ22] = q̄−1q−1 =1 , γ[Ξ12] = 1 , γ[c] = 1 , γ[c̄] = 1 .

(4.46)

Applying the fixed point formula (4.39) and using the (4.41), (4.45) and (4.46), we

obtain the following result for each vector multiplet,

indD10 =

[
2q

(1− q)2

]
+

+

[
2q

(1− q)2

]
−
. (4.47)

The first term is from origin of AdS2 and north pole of S2 and the second term is from

origin of AdS2 and south pole of S2. One obtains the degeneracies of eigen values of H

by expanding this expression in power series of q. Here we follow the way of expansion as

was done in [26, 49]. The result for the determinant is in fact independent on the way of

expansions for the index. By expanding[
1

1− q

]
+

=
∞∑
n=0

qn ,

[
1

1− q

]
−

= −q−1
∞∑
n=0

q−n , (4.48)

we finally arrive at

indD10 =
∞∑

n=−∞
|2n|qn . (4.49)

From the result (4.47), we read off the 1-loop partition function for nv + 1 vector

multiplets,

Z1−loop =

(
detKf

detKb

) 1
2

(nv+1)

=

∞∏
n=1

(n
`

)−2n(nv+1)
. (4.50)

Using the ζ-function regularization,

logZ1−loop = −(nv + 1)
∞∑
n=1

(2n) log `−1 = −nv + 1

6
log ` . (4.51)
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For given radius `, we get the exact 1-loop partition function. However, we note that this

radius ` is not the physical radius because it can be chosen to be an arbitrary constant

value as the choice of D-gauge fixing. In the next section, we will show that, by appropriate

integration measure, the 1-loop partition function is independent of the gauge choice and

depends on the radius of the physical AdS2× S2 metric.

5 Integration measure

In the previous section, we assumed that the integration measure is trivial. As a result, the

one-loop partition function is not independent of the choice of D-gauge. This implies that

the trivial path integration measure is not scale invariant. In this section, we will properly

define the path integration measure and show that the result of the 1-loop partition function

is indeed gauge invariant. Further, the result depends on the solutions of localization

equations through the radius of the physical AdS2×S2 metric. To define the measure we

use the ultra locality arguments [40, 41], as well as the condition that the result should be

in terms of the physical quantities.

Let us consider the kinetic terms in the action,∫
dx4√g

[
e−KRg +NIJ

(
∂µX

I∂νX̄
Jgµν + F IµνF

J
λρg

µλgνρ + λ̄I /∂gλ
J − Y I

ijY
Jij
)]

. (5.1)

The metric gµν is not a physical metric (it has dilatation weight -2) and is related to

physical metric Gµν which is the metric in Einstein frame by redefinition,

Gµν = gµνe
−K , e−K =

`2P
`2
. (5.2)

Note that the radius of the AdS2× S2 metric gµν is fixed to the constant ` and the physical

radius `P is not fixed but depends on the scalars, i.e. `P = `P (X , X̄) as the Kähler

potential K is the function of the scalars. In terms of the physical metric, we get standard

Einstein-Hilbert action, and the kinetic term of the vector multiplets fields are∫
dx4
√
GNIJ

[
eK∂µX

I∂νX̄
JGµν + F IµνF

J
λρG

µλGνρ + e
3
2
K λ̄I /∂Gλ

J − e2KY I
ijY

Jij
]

+ · · · .
(5.3)

Looking at the factors in front of the each kinetic term, the definition of the norm for each

field is defined as

||δX||2 :=

∫
d4x
√
GeKNIJδX

IδX̄J =

∫
d4x
√
g0`

2`2PNIJδX
IδX̄J ,

||δW ||2 :=

∫
d4x
√
GNIJδW

I
µδW

J
ν G

µν =

∫
d4x
√
g0`

2
PNIJδW

I
µδW

J
ν g

µν
0 , (5.4)

||δλ||2 :=

∫
d4x
√
Ge

3
2
KNIJ(δλIi δλ

Ji+δλ̄Ii δλ̄
Ji)=

∫
d4x
√
g0`

3`PNIJ(δλIi δλ
Ji+δλ̄Ii δλ̄

Ji) ,

||δY ||2 := −
∫

d4x
√
Ge2KNIJδY

I
ijδY

Jij = −
∫

d4x
√
g0`

4NIJδY
I
ijδY

Jij ,
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where we denote g0µν as AdS2×S2 metric with unit radius. By following the normalization

conditions,

1 =

∫
DXDX̄e−||δX||2 =

∫
DWe−||δW ||

2
=

∫
DλDλ̄e−||δλ||2 =

∫
DY e−||δY ||2 , (5.5)

the integration measure is determined as

DXDX̄ =
∏
x,I

dXI(x)dX̄I(x) det(`2P `
2NIJ) ,

DW =
∏
x,I,µ

dW I
µ(x)

√
det `2PNIJ ,

DY =
∏
x,i,j,I

dY I
ij(x)

√
det `4NIJ , (5.6)

Dλ(x)Dλ̄(x) =
∏
x,I,i

dλIi(x)dλ̄Ii(x) det(`P `
3NIJ)−1 .

Similarly, we determine the measure for the ghost multiplet by looking at the gauge fixing

action in Einstein frame,∫
dx4√g

[
`−1ic̄I�gc

I + i`−1BI∇µW Iµ + `−2 ξ

2
BI2

]
(5.7)

=

∫
dx4
√
G

[
eK`−1ic̄I�Gc

I + ie2K`−1BI∇µW Iµ + e2K`−2 ξ

2
BI2 + · · ·

]
.

The definition of norm,8

||c||2 :=

∫
d4x
√
GeK`−1c̄IcJ =

∫
d4x
√
g0`

2
P `c̄

IcJ (5.8)

||δB||2 :=

∫
d4x
√
Ge2K`−2δBIδBJ =

∫
d4x
√
g0`

2δBIδBJ

and the normalization condition,

1 =

∫
DcDc̄e−||c||2 =

∫
DBe−||δB||2 , (5.9)

determine the integration measure for the ghost multiplets

DcDc̄ =
∏
x,I

dcI(x)dc̄I(x)(``2P )−1 , (5.10)

DB =
∏
x,I

dBI(x)` .

The measure (5.6) and (5.11) will give the result in terms of the physical quantities. One

can consistently see that the 1-loop determinant for each kinetic operator for each field

will be given in terms of det�G and det /∂G , not in terms of det�g and det /∂g. It seems

8We do not need NIJ because the gauge fixing action is chosen as (4.13).
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that a naive counting of the scale factor and radius factor, ` and `P , bosonic measure and

fermionic measure seems to be completely canceled. However, they are infinite product.

The regularized number of those factors should not be canceled each other and should

cancel the scale factor appears in the 1-loop partition function (4.50) such that the result

should be only in terms of the physical radius `P .

Let us reconsider the computation of the 1-loop partition function. By the supersym-

metric localization, the measure depends only on the saddle point value, i.e. `P = `P ( ~C),

where ~C parametrizes all saddle point of the scalar in the vector multiplets. We now

redefine the cohomological variables by following field redefinition,

X̃ = (X̃2 , W̃µ) := (X2``P ( ~C) ,Wµ`P ( ~C)) ,

Ξ̃ = (Ξ̃ij , c̃ , ¯̃c) := (Ξij`3/2`P ( ~C)1/2 , c `1/2`P ( ~C)3/2 , c̄ `1/2`P ( ~C)1/2) . (5.11)

We also redefine the Q̂ operator

Q̃ := `1/2`
−1/2
P ( ~C)Q̂ . (5.12)

Since the `P ( ~C) is function of the saddle points, Q̃ does not act on the `P ( ~C). Using this

operator we define the other primed cohomological variables,

Q̃X̃ := (Ψ̃ , Ψ̃µ) = (Ψ`3/2`P ( ~C)1/2 ,Ψµ`
1/2`P ( ~C)1/2) ,

Q̃Ξ̃ := (B̃ij ,−Φ̃ , B̃) = (Bij`2 ,−Φ̂``P ( ~C) , B`) . (5.13)

In terms of these new variables and new supercharge, X̃ , Q̃Ξ̃ , Q̃X̃ , Ξ̃, we rewrite the

localization lagrangian as in (4.19),

√
gQ̂V =

√
g0Q̃

[
(Q̃X̃′ , Ξ̃′)

(
D̃00 D̃01

D̃10 D̃11

)(
X̃′

Q̃Ξ̃′

)]
, (5.14)

where the D̃ij are properly defined by multiplying diagonal matrices whose elements are

composed of ` and `P . We can follow the same analysis as below the (4.19) and arrive at

computing the U(1) equivariant index

indD̃10 = TrX̃e
tH̃ − TrΞ̃e

tH̃ . (5.15)

Here H̃ := Q̃2 so the H̃ and H are related by

H̃ :=
`

`P ( ~C)
H . (5.16)

Therefore, the q factor defined in (4.41) is now replaced by

q = e−it/`P , (5.17)

and we get the 1-loop partition function in terms of scale invariant length

Z1−loop =
∞∏
n=1

(
n

`P ( ~C)

)−2n(nv+1)

= exp

[
−nv + 1

6
log(`P ( ~C))

]
. (5.18)
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6 Conclusion and discussion

In this paper, we considered the nv+1N = 2 vector multiplets on the AdS2×S2 background

and used the supersymmetric localization to compute their exact contribution to the quan-

tum entropy function. We obtained the localization saddle point and computed the exact

1-loop partition function. In order to express the result in terms of physical radius of the

AdS2×S2, we proposed the scale invariant functional integration measure using the ultra

locality argument. Collecting the result (5.18) and the zero mode integral measure with

the scale factors in (5.6) or with the redefined fields as in (5.11), the functional integration

of the quantum entropy function reduced to the following finite dimensional integration,

W =

∫ nv+1∏
I=1

∏
l 6=0

dW̃ Il
µ dX̃I0

1 dX̃I0
2 dλ̃Ii0d

¯̃
λIi0 Z1−loop e

Sren

=

∫ nv+1∏
I

`−1
P (dCI1`P )(dCI2`P )(dϑIdϑ̄I`−1

P ) `
− 1

6
(nv+1)

P eSren

=

∫
dCI1dCI2dϑIdϑ̄I (`P ( ~C))−

1
6

(nv+1) eSren . (6.1)

Here, the Sren is the classical action on the localization manifold with the IR divergence

removed. Since there is one zero mode for X2, a pair of fermion zero mode appears as

is argued in (4.27). The ϑ , ϑ̄ parametrize the fermion zero mode. The measure of each

field has its own power of `P . Particularly, the infinite product of the boundary gauge

modes integral gives us the regularized number of power, `−1
P [21]. Adding all the factors

from measure and the 1-loop partition function, we result in the factor `
−1/6
P for each

vector multiplet.

The result explains the one of the key assumptions along the line to compute the

exact quantum black hole entropy [36, 37, 39], where the classical measure was properly

assumed in order to reproduce the result from the microstate counting. We derived the

contribution to the measure from the vector multiplets. Once computing all the 1-loop

determinant for the hyper multiplets, gravitini multiplets and Weyl multiplet, one will be

able to derive the measure for the N = 8 supergravity (see the complementary work [42]).

A slight difference from [36, 37, 39] though is that we get additional integration dCI2dϑIdϑ̄I .

If we chose the different choice of analytic continuation (2.20), the additional integration

would not be appear. It is the artifact of the different choice of analytic continuation. To

be consistent, we expect that the fermion integration dϑIdϑ̄I will cancel the contribution

from the integration of dCI2 . While we left the explicit computation, a consistency one can

see is that the the `P factor coming from the fermion zero mode cancels the power of `P
from the X2 zero mode.

The 1-loop determinant is scale invariant and depends on the physical metric. It is

remarkable that although we are considering abelian vector multiplets, the 1-loop result

depends on the continuous parameters ~CI of localizing solutions through the physical

metric. It is due to the proposed functional integral measure based on the fact that

the measure should be scale invariant and the results in the one-loop determinant being
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dependent only on the physical quantities. In fact, not only for the scale symmetry but

also for supersymmetry, the measure should be invariant for the purpose of the localization.

We were not able to show this and assumed that supersymmetric invariance is satisfied.

Our result for the one-loop partition function matches with the on-shell computation of

the logarithmic correction in N = 2 black hole entropy [45]. In the on-shell computation the

contribution of each vector multiplet to the logarithmic correction is − 1
12 lnAH where AH =

4π`2P is the area of horizon. It is consistent that our measure factor (`P ( ~C))−1/6 reproduces

this logarithmic correction obtained from the on-shell computation. The integration over
~C will not give further logarithmic correction as in [37].

For completing the story for the exact computation of the black hole entropy, we still

have many open problems to solve. We have to incorporate the quantum fluctuation of all

other multiplets, particularly Weyl multiplets. In particular, including the hypermultiplets

would be one of the tricky issues since there is no off-shell formulation of the hypermultiplets

with finite number of auxiliary fields in supergravity, but it should be very important to

treat the general N = 2 supergravities because the hypermultiplets should be incorporated

to complete the off-shell conformal supergravity as a compensating multiplets. It will

also help to have complete analysis of localization for the Weyl multiplets as mentioned

in [39]. Furthermore, one needs to also consider gravitini multiplets. It is particularly

necessary for theories with higher supersymmetries like N = 4 or N = 8. Here, we may

have to understand similar issues that was appeared in our work on vector multiplets. For

example, we may need to specify the analytic continuations of all the fields, properly treat

the gauge fixing of all the gauge symmetries in the conformal supergravity and should

properly define the gauge invariant functional measure for the path integral. We left these

exercises for the future work.
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A Gamma matrices and spinors

Our convention of gamma matrices and the reality properties follows the paper, [46].

A.1 (1, 3) dimensions

In Minkowskian four dimensions, there are two choices, C± and B±, such that

γ†a = −AγaA−1 , A = γ0 , A† = A−1 = −γ0 = −A ,
γTa = ∓C±γaC−1

± , CT± = −C± , C†± = C−1
± ,

γ∗a = ±B±γaB−1
± , BT

± = C±A
−1 , B†± = B−1

± , B∗±B± = ±1 .

(A.1)
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Two representations are related by C+ = C−γ5.

Chirality operator

γ5 = iγ0123 . (A.2)

Useful relations

(C±γ1···n)T = −(−)n(n−1)/2(∓)nC±γ1···n ,

(C±γ5)T = −C±γ5 . (A.3)

The choice of C+ and B+ allows us to set Majorana spinor, defined as

ψ†A = ψTC+ , (A.4)

or equivalently,

ψ∗ = B+ψ , (A.5)

whereas, for the choice of C− and B−, the symplectic Majorana spinors can be defined,9

(λi)∗ = −iεijB−λj , ε12 = ε12 = 1 . (A.6)

These spinors are not compatible with Weyl representation, such that under the chiral

decomposition,

(ψ±)∗ = B+ψ∓ ,

(λi±)∗ = −iεijB−λj∓ . (A.7)

Two chirally projected Majorana spinors ψi± symplectic Majorana spinors λi± can be re-

lated by

ψi+ = λi+ , ψi− = iεijλ
j
− . (A.8)

A.2 (0, 4) dimensions

In Euclidean four dimensions we also have two choices such that,

γ†a = AγaA
−1 , A = 1 ,

γ∗a = γTa = ∓B±γaB−1
± , B†± = B−1

± , BT
± = −B± ⇔ B∗±B± = −1 .

(A.9)

Since all gamma matrices are hermitian, the complex conjugation and the transpose are

same.

Chirality operator

γE5 = −γ1234 . (A.10)

For two choices of B+ and B−, only symplectic Majorana-Weyl spinors can be defined,

(ρi)∗ = −iεijB±ρj , (A.11)

and compatible with Weyl condition,

(ρi±)∗ = −iεijB±ρj± . (A.12)
9In general, −iεij may be replaced by arbitrary antisymmetric matrix satisfying Ω∗Ω = −1.
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A.3 Fierz identities

It is useful to note the following gamma matrix algebra,

γam···a1γ
b1···bn =

min[m,n]∑
l=0

l!

(
m

l

)(
n

l

)
γ[am···al+1

[bl+1···bnδ b1
a1
· · · δ bl]

al]
. (A.13)

In particular for γ5 = iγ0123,

γa1···anγ5 = i
1

(4− n)!
εan···a1

b4−n···b4γ
b4−n···b4 ,

γ5γ
a1···an = i

1

(4− n)!
γb4−n···b4εb4−n···b4

an···a1 , ε0123 = 1 . (A.14)

For example

γaγ5 = i
1

3
εab1b2b3γb1b2b3

γa1a2γ5 = i
1

2
εa2a1b1b2γb1b2 (A.15)

γa1a2a3γ5 = iεa3a2a1bγb

γabcdγ5 = iεabcd .

Gamma matrices form a complete basis so it is followed by the Fierz arrangement,

CαγCδβ =
1

4

4∑
n=0

1

n!
(Cγan···aa)δγ(Cγa1···an)αβ ,

(CP±)αγ(CP±)δβ =
1

2
(CP±)δγ(CP±)αβ +

1

8
(CγbaP±)δγ(CγabP±)αβ , (A.16)

(CP±)αγ(CP∓)δβ =
1

2
(CγaP±)δγ(CγaP∓)αβ ,

where C can be either C+ or C− in (A.1).

For example, with bosonic fermions η± , ξ± and λ± with positive or negative chiralities,

η±(ξ±Cλ±) =
1

2
(ξ±Cη±)λ± +

1

8
(ξ±Cγbaη±)γabλ± ,

η±(ξ∓Cλ∓) =
1

2
(ξ∓Cγaη±)γaλ∓ . (A.17)

A.4 Minkowskian theory to Euclidean theory for N = 2

While the Minkowskian space allows the Majorana representation, the Euclidean theory

does not. They have different properties under the complex conjugation. So in order to

relate Minkowskian and Euclidean theory, we have to hide the complex conjugate operation.

We change the Dirac conjugation of spinors, ψ̄ := ψ†A, into the charge conjugation ψTC−γ5

using the Majorana relation given in (A.4) and the relation between C+ and C− in (A.1).

Now, since the same C− can be used both Minkowskian and Euclidean spacetime, as

in (A.1) and (A.9), Euclideanization is straightforward.
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In the case of N = 2 theory, it is convenient to use the symplectic Majorana spinor

representation because it is allowed both in Minkowskian and Euclidean theory. Using the

relation (A.8), we can redefine spinor fields to satisfy the symplectic Majorana condition.

After hidding the † operation in the theory using the symmplectic Majorana conjugate,

one cannot distinguish whether it is Minkowskian or Euclidean theory and we are free to

move by analytic continuation t = −iθ.
Tensor density that can be used in self or anti- selfdual equation should also be modified.

eµνλρ :=
1√
−g

εµνλρ , εt123 = 1 . (A.18)

In Euclidean space t = −iθ

eµνλρ := i
1
√
g
εµνλρ , εθ123 = 1 . (A.19)

In both of Minkowskian and Euclidean space, the self or anti-selfdual condition is written

in terms of the tensor density, eµνλρ, in (A.18) and (A.19),

Tµν± = ±i1
2
eµνλρT ±λρ = ∓ 1

√
g
εµνλρT ±λρ , (A.20)

where Tµν± are self and anti-selfdual tensor respectively.

B Superconformal calculus for d = 4 and N = 2 SUGRA

We review the superconformal calculus for d = 4 and N = 2 off-shell supergratives. We

refer the reader to [47] for detailed review, and to [33–35] for the original development.

B.1 Weyl multiplet

The first step is to construct superconformal gauge theory by promoting all the N = 2

superconformal generator as local symmetries. By all the local superconformal transfor-

mation, the covariant derivative is defined as

Dµ := ∂µ −
∑
T

δ(hµ(T )) (B.1)

where the sum is for all superconformal generators except the translation generator [46]

and the δ is gauge transformation with the gauge field, hµ(T ), as parameter. Later, we will

introduce Dµ as a covariant derivative with respect to M,D,A, V . The gauge fields hµ(T )

and the symmetry parameters for each symmetry generators are contained in the table 1,

and the table 2 shows the charges of the gauge field and supersymmetry parameters.

The contents of the Weyl multiplet is given by the following 24 + 24 off-shell degrees

of freedom,

(eµ
a , ψiµ , bµ , Aµ ,Vµij , T

ij
ab , χ

i , D) , (B.2)

where the ωabµ , faµ , φ
i
µ are not included because they are not independent fields but com-

posite fields in terms of others. The constrained relations are presented in (B.7). The fields
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generator T P a Mab D Ka Qi Si (VΛ)ij A

Connection hµ(T ) eµ
a ωabµ bµ faµ

1
2ψµ

i 1
2φ

i
µ −1

2Vµ
i
j −iAµ

parameter ξa εab ΛD ΛaK εi ηi ΛV
i
j ΛA

Table 1. Table of superconformal gauge fields and transformation parameters

eµ
a ψiµ bµ Aµ Vµij T ijab χi D ωabµ faµ φiµ εi ηi

ω −1 −1
2 0 0 0 1 3

2 0 0 1 1
2 −1

2
1
2

c 0 −1
2 0 0 0 −1 −1

2 0 0 0 −1
2 −1

2 −1
2

γ5 + + − + −

Table 2. Weyl weight ω, U(1)R weight c and fermion chirality with respect to γ5 for each the

Weyl multiplet component field and supersymmetry parameters.

T ijab , χ ,D are the auxiliary tensor, spinor and scalar fields, and the auxiliary tenor satisfies

antiselfdual condition

T ijab = −1

2
iεabcdT

cdij , ε0123 = 1 , (B.3)

whose complex conjugation gives selfdual tensor,

Tabij = (T ijab)
∗ . (B.4)

Conventional notations are

T+
ab := Tabijε

ij , T−ab := T ijabεij , εijε
ij = 2

Tabij =
1

2
T+
abεij , T ijab =

1

2
T−abε

ij . (B.5)

The SU(2) gauge fields Vµ
i
j is anti-hermitian and traceless

Vµij + Vµji = 0 , Vµii = 0 , where Vj i := (Vj i)∗ . (B.6)

• Conventional constraints. In order to relate ωabµ , φiµ , f
i
µ with other fields, we

impose the following constraints,

Rµν(P ) =0 ,

γµ(R̂µν(Q)i + σµνχ
i) =0 , σµν :=

1

2
γµν ,

eb
νR̂µν(M)a

b − i ˜̂Rµa(A) +
1

8
TabijT

ij
µb −

3

2
Deµa =0 . (B.7)
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Here, the modified field strengths are

R̂µν(Q)i = 2D[µψ
i
ν] − γ[µφ

i
ν] −

1

4
σabT ijabγ[µψν]j

R̂µν(A) = 2∂[µAν] − i
(

1

2
ψ̄i[µφν]i +

3

4
ψ̄i[µγν]χi − h.c.

)
R̂µν(V)ij = 2∂[µVν]

i
j + V[µ

i
kVν]

k
j

+
(

2ψ̄i[µφν]j − 3ψ̄i[µγν]χj − 2ψ̄[µjφ
i
ν] + 3ψ̄[µjγν]χ

i
)

−1

2
δij

(
2ψ̄k[µφν]k − 3ψ̄k[µγν]χk − 2ψ̄[µkφ

k
ν] + 3ψ̄[µkγν]χ

k
)

(B.8)

R̂µν(M)ab = 2∂[µω
ab
ν] − 2ωac[µω

cb
ν] − 4f[µ

[aeν]
b] + (ψ̄i[µσ

abφν]i + h.c.)

1

2
ψ̄i[µT

ab
ij ψ

j
ν] −

3

2
ψ̄i[µγν]σ

abχi − ψ̄[µγν]R̂
ab(Q)i + h.c.

and the dual tensors are defined as,

˜̂
Rµν(A) =

1

2
iεµνλρR̂(A)λρ . (B.9)

Under the conventional constraints, (B.7), the composite fields are expressed in terms

of Weyl multiplet,

ωabµ = −2eν[a∂[µeν]
b] − eν[aeb]σeµc∂σeν

c − 2eµ
[aeb]νbν

−1

4

(
2ψ̄iµγ

[aψ
b]
i + ψ̄aiγµψ

b
i + h.c.

)
φiµ =

(
σρσγµ −

1

3
γµσ

ρσ

)(
Dρψiσ −

1

8
σabT ijabγρψσj +

1

2
σρσχ

i

)
fµ
i =

1

2
R̂µ

a − 1

4

(
D +

1

3
R̂

)
eµ
a − 1

2
iR̃µa(A) +

1

16
T ijµbT

ab
ij , (B.10)

where

R̂µ
a = R̂(M)µν

abeb
ν |f=0 , R̂ = R̂µ

aea
µ . (B.11)

• The transformation law and the superconformal algebra. Q−S−K− trans-

formation rules for the Weyl multiplet fields are,

δeµ
a = ε̄iγaψµi + h.c.

δψµ
i = 2Dµεi −

1

8
γaγbT

abijγµεj − γµηi

δbµ =
1

2
ε̄iφµi −

3

4
ε̄iγµχi −

1

2
η̄iψµi + h.c. + ΛaKeµ

a

δAµ =
1

2
iε̄iφµi +

3

4
iε̄iγµχi +

1

2
iη̄iψµi + h.c.

δVµij = 2ε̄jφµ
i − 3ε̄jγµχ

i + 2η̄jψµ
i − 2ε̄iφµj + 3ε̄iγµχj − 2η̄iψµj

−1

2
δij(2ε̄kφµ

k − 3ε̄kγµχ
k + 2η̄kψµ

k − 2ε̄kφµk + 3ε̄kγµχk − 2η̄kψµk)

δT ijab = 8ε̄[iR̂ab(Q)j] (B.12)
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δχi = − 1

12
γaγb /DT

abijεj +
1

6
R̂(V)ijµνγ

µγνεj − 1

3
iR̂(A)µνγ

µγνεi

+Dεi +
1

12
T ijabγ

aγbηj

δD = ε̄i /Dχi + h.c. ,

δωµ
ab = −ε̄iσabφµi −

1

2
ε̄iT abij ψ

j
µ +

3

2
ε̄iγµσ

abχi

+ε̄iγµR̂
ab(Q)i − η̄iσabψµi + h.c. + 2Λ

[a
Keµ

b]

δφµ
i = −2faµγaε

i − 1

4
/DT ijcdσ

cdγµεj +
3

2

[
(χ̄jγ

aεj)γaψµ
i − (χ̄jγ

aψµ
j)γaε

i
]

(B.13)

+
1

2
R̂(V)cd

i
jσ
cdγµε

j + iR̂(A)cdσ
cdγµε

i + 2Dµηi + ΛaKγaψ
i
µ

δfaµ = −1

2
ε̄iψjµDbT

ba
ij −

3

4
eµ
aε̄i /Dχi −

3

4
ε̄iγaψµiD

+ε̄iγµDbR̂
ba(Q)i +

1

2
η̄iγaφµi + h.c. +DµΛaK .

SUSY algebra

[δQ(ε1), δQ(ε2)] = δ(cov)(ξ) + δM (ε) + δK(ΛK) + δS(η) + δgauge , (B.14)

where

δ(cov)(ξ) := δgct(ξ) +
∑
T

δT (−ξµhµ(T )) . (B.15)

The sum over T is for all superconformal transformation except the general coordinate

transformation, and the parameters are10

ξµ = 2ε̄i2γ
µε1i + h.c.

εab = ε̄i2ε
j
1T

ab
ij + h.c.

ΛaK = ε̄i1ε
j
2DbT

ab
ij −

3

2
ε̄i2γ

aε1iD + h.c. (B.16)

ηi = 6ε̄i[1ε
j
2]χj ,

and the δgauge in general includes additional abelian, non-abelian or central charge

gauge transformations.

[δS(η), δQ(ε)] = δM

(
−2η̄iσabεi + h.c.

)
+ δD

(
η̄iε

i + h.c.
)

+ δA
(
iη̄iε

i + h.c.
)

+δV

(
−2η̄iεj + 2η̄jε

i + δij η̄
kεk − δij η̄kεk

)
, (B.17)

[δS(η1), δS(η2)] = δK (ΛaK) , with ΛaK = η̄2iγ
aηi1 + h.c. . (B.18)

B.2 Vector multiplets

Consider Nυ + 1 vector multiplet, restricting ourselves to the case of abelian gauge sym-

metries,

(XI ,ΩI
i ,W

I
µ , Y

I
ij) , I = 0, · · · , Nυ (B.19)

10The sign convention for the Lorentz transformation is δM (ε)eµ
a = −εabeµb.
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XI Ωi W I
µ Y I

ij

ω 1 3
2 0 2

c −1 −1
2 0 0

γ5 +

Table 3. Weyl weight ω, U(1)R weight c and fermion chirality with respect to γ5 for each vector

multiplet component field

Complex scalar XI , a vector gauge field W I
µ , SU(2) triplet auxiliary scalars Y I

ij

Y I
ij = Y I

ji , Yij = εikεjlY
klI , (B.20)

where Y ijI := (Y I
ij)
∗.

One linear combination of the abelian gauge symmetries corresponds to the gauged

central charge transformation, and the corresponding field strength belongs to the gravipho-

ton. Note that we must have at least one vector multiplet in the theory in order to make

contact with N = 2 Poincaré supergravity, because the Weyl multiplet does not account

for the graviphoton.

SUSY

δXI = ε̄iΩI
i

δΩI
i = 2 /DXIεi +

1

2
εijFIµν−γµγνεj + Y I

ijε
j + 2XIηi

δW I
µ = εij ε̄iγµΩI

j + 2εij ε̄
iX̄Iψjµ + h.c.

δY I
ij = 2ε̄(i /DΩI

j) + 2εikεjlε̄
(k /DΩl)I . (B.21)

δFIab = −2εij ε̄iγ[aDb]Ω
I
j − 2εij η̄iσabΩ

I
j + h.c. (B.22)

Here the covariant field strength is

FIµν = F Iµν −
(
εijψ̄

i
[µγν]Ω

jI + εijX̄
I ψ̄iµψ

j
ν +

1

4
εijX̄

IT ijµν + h.c.

)
, (B.23)

which satisfies the Bianchi identity

Db

(
F+I
ab −F

−I
ab +

1

4
XITabijε

ij − 1

4
X̄IT ijabεij

)
=

3

4

(
χ̄iγaΩ

Ijεij − χ̄iγaΩI
jε
ij
)
, (B.24)

where,

F±Iab :=
1

2

(
FIab ± i

1

2
εabcdFIcd

)
. (B.25)

The covariant derivatives are

DµX
I = ∂µX

I − bµXI + iAµX
I − 1

2
ψ̄iµΩI

i ,

DµΩI
i =

(
∂µ +

1

4
ωµabγ

ab − 3

2
bµ +

1

2
iAµ

)
ΩI
i +

1

2
VµijΩI

j

− /DXIψµi −
1

4
εijFIab−γaγbψjµ −

1

2
Y I
ijψ

j
µ −XIφµi . (B.26)
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and the SUSY transformation of them are

δ(DaX
I) = ε̄iDaΩ

I
i +

3

2
(ε̄iγaχ

i)XI −
(

1

16
ε̄jγaT

ji
bcγ

bc +
1

2
η̄iγa

)
ΩI
i

δ(DaX̄
I) = ε̄iDaΩ

iI +
3

2
(ε̄iγaχi)X̄

I −
(

1

16
ε̄jγaTbcjiγ

bc +
1

2
η̄iγa

)
ΩiI . (B.27)

The algebra includes central charge gauge symmetry,

θI = 4εij ε̄2iε1jX
I + h.c. (B.28)

Prepotential, F (X) is a holomorphic function, which is homogeneous of seconde-

gree, i.e.,

F (λX) = λ2F (X) , (B.29)

for any complex parameter λ. Some identities are

F (X) =
1

2
FIX

I , FI = FIJX
J , FIJKX

K = 0 . (B.30)

Kähler potential

K = i(F̄IX
I − FIX̄I) = NIJX

IX̄J (B.31)

Metric

NIJ = ∂I ∂̄JK = −i(FIJ − F̄IJ) = 2ImFIJ . (B.32)

Lagrangian(Bosonic):

e−1L ∼
[
iF̄IX

I

(
1

6
R−D

)
+ iDµFIDµX̄I

+
1

4
iFIJ

(
F−Iab −

1

4
X̄IT ijabεij

)(
F−Jab −

1

4
X̄JT ijabεij

)
− 1

8
iFI

(
F+I
ab −

1

4
XITabijε

ij

)
T abij ε

ij

−1

8
iFIJY

I
ijY

Jij − 1

32
iF (Tabijε

ij)2

]
+ h.c. (B.33)

Conventional gauge fixing conditions:

K-gauge: bµ = 0 ,

D-gauge: − i(XI F̄I − FIX̄I) = 1 ,

U(1)-gauge: X0 = X̄0 .
(B.34)

B.3 Chiral notation

In the Minkowskian N = 2 supereravities, we adopt the so-called chiral notation, which is

to keep track of spinor chiralities through writing the SU(2)R index as an upper or lower

index. For instance, consider two Majorana spinors, ψi. The chiral projection of them are

Ψi :=
1

2
(1 + γ5)ψi , Ψi :=

1

2
(1− γ5)ψi . (B.35)
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Depending on the spinor an upper index might be associated with left or with right chirality.

The assignments are listed in various tables 1, 2, 3. This chiral decomposition is not

compatible with Majorana condition as we also see in (A.7),

(Ψi)
∗ = B+Ψi , or equivalently (Ψi)

†A = ΨiC+ . (B.36)

Since we can take B+ = 1, the complex conjugation can be thought as raising and lowering

the SU(2)R indices.

Dirac conjugation is defined as

Ψ̄i := (Ψi)
†A = ΨiC+ . (B.37)

Note that

Ψ̄iγ5 = Ψ̄i , Ψ̄iγ5 = −Ψ̄i , (B.38)

which is followed by

Ψ̄i
1γa1···anΨj

2 = 0 , for odd n

Ψ̄i
1γa1···anΨ2j = 0 , for even n .

(B.39)

We have further useful relations,

Ψ̄i
1γa1···anΨ2j = (−1)

1
2
n(n+1)Ψ̄2jγa1···anΨi

1 (B.40)

(Ψ̄i
1γa1···anΨ2j)

† = (−1)
1
2
n(n+1)Ψ̄j

2γa1···anΨ1i = Ψ̄1iγa1···anΨj
2 . (B.41)

C Bispinors

We presents explicit values of some bispinors, which are useful for detailed calculation.

Tabξ1γ
abξ1 = −Tabξ2γ

abξ2 = −16i(1 + cosψ cosh η) ,

Tabξ1γ
abξ2 = Tabξ2γ

abξ1 = 16i sinψ sinh η ,

T̄abξ̄1γ
abξ̄1 = −T̄abξ̄2γ

abξ̄2 = 16i(−1 + cosψ cosh η) , (C.1)

T̄abξ̄1γ
abξ̄2 = T̄abξ̄2γ

abξ̄1 = −16i sinψ sinh η .

To obtain (4.34), we note that

i(σ1)i
j(ξjγ

mnξi + ξ̄jγ
mnξ̄i)Fmn = −8 cosψF14 − 8 cosh ηF23 ,

i(σ2)i
j(ξjγ

mnξi + ξ̄jγ
mnξ̄i)Fmn = 8 cosh ηF13 − 8 cosψF24 , (C.2)

i(σ3)i
j(ξjγ

mnξi + ξ̄jγ
mnξ̄i)Fmn = −8 cosh ηF12 − 8 cosψF34 .

D Solution of localization equations for X2

In this section, we discuss solutions for X2 to the localization equations. Our conjecture

is that the normalizable regular solution is uniquely given as (3.5). As evidence, we find

asymptotic solutions and show that all possible solutions except (3.5) that correspond to

the asymptotic solutions may diverge at r = cosh η = 1.
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Two of localization equations from (3.2) are F I+ab = 1
8X

I
2Tab − 1

ξjξj
v[aDb]+X

I
2 and

F I−ab = −1
8X

I
2 T̄ab + 1

ξ̄j ξ̄j
v[aDb]−X

I
2 . Substituting those equations into the Bianchi identity

0 = ∂θFηψ + ∂ψFθη + ∂ηFψθ, we obtain the following differential equation for X2,

−(∂2
η + ∂2

ψ)X2
sinh η cosh η sinψ

sinh2η + sin2 ψ

+∂ηX2 sinψ

[
2 cos2 ψ − cosh2η

sinh2η + sin2 ψ
+ 2

sinh2η cosh2η − sin2 ψ cos2 ψ

(sinh2η + sin2 ψ)2

]
+∂ψX2 cosψ

[
4

sin2 ψ sinh η cosh η

(sinh2η + sin2 ψ)2
− sinh η cosh η

sinh2η + sin2 ψ

]
−∂2

θX2
cosh η

sinh η sinψ
= 0 . (D.1)

The asymptotic solutions to the above equation at η → ∞ are eimθ Y`,m(ψ, φ)/cosh`η up

to a multiplicative constant, where Y`,m are spherical harmonics on S2 and `,m are non

negative integer and r = cosh η.

If we multiply the above differential equation with sinh η sinψ (sinh2η + sin2 ψ)2 and

use the variable r = cosh η and x = cosψ, we obtain the following equation

−(r2 − 1)r(1− x2)(r2 − x2)
[
(r2 − 1)∂2

r + r∂r + (1− x2)∂2
x − x∂x

]
X2

+(r2 − 1)(1− x2)
[
(2x2 − r2)(r2 − x2) + 2((r2 − 1)r2 − (1− x2)x2)

]
∂rX2

+(x2 − 1)x
[
4(1− x2)(r2 − 1)r − (r2 − 1)r(r2 − x2)

]
∂xX2

−r(r2 − x2)2 ∂2
θX2 = 0 . (D.2)

First let us restrict to solutions that are independent of θ and φ. In this case, the

asymptotic behavior is Y`,0(ψ, φ)/r` = P`(x)/r`, where P` is Legendre polynomial. Since

all the coefficient of the differential operators are polynomial of r and x, we assume that

the solutions can be written as

X2 =
P`(x)

r`
+

∞∑
n=`+1

∞∑
p=0

cn,p x
p

rn
. (D.3)

In case where ` = 1, the solution X2 = x/r is a solution that is presented in (3.5). In

case where ` = 2, the simplest solution is

X2 =
∞∑
n=0

(
3

4n+ 2
x2 − 3

4n+ 6

)
1

r2n+2
, (D.4)

and it diverges at r = 1. We can rewrite it as follows

X2 =
1

4r

[
6r + (r2 − x2)log

r − 1

r + 1

]
. (D.5)

Although there are other solutions with ` = 2, if we fix the coefficient of the highest power

and subtract the above solution from other solutions, the highest power of r becomes less

than −2. So we can consider them as solutions with ` > 2.
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In case where ` = 3, the simplest solution is

X2 =
∞∑
n=0

(
15

4n+ 6
x3 − 15

4n+ 10
x

)
1

r2n+3
, (D.6)

which diverges at r = 1 again. It can be rewritten as

X2 =
5x

2r

[
1 + 3(r2 − x2)

(
1 +

r

2
log

r − 1

r + 1

)]
. (D.7)

We conjecture that for any positive integer `, there is a unique solution of the following form

X2 =
P`(x)

r`
+
∞∑
k=1

b `
2
c∑

p=0

c`+2k,2p+e x
2p+e

r`+2k
, (D.8)

where e is 0 or 1 when ` is even or odd respectively and the floor function b `2c denotes the

largest integer not greater than `
2 . The series expansion of r continues infinitely for ` ≥ 2.

Next let us consider solutions whose asymptotic behaviors are eimθY`,`(ψ, φ)/r`. We

propose that

X2 = ei`θ
Y`,`(ψ, φ)

sinh` η
(D.9)

are the solutions. They also diverge at η = 0.

E Fixed point formula

In this appendix we will show a proof of Atiyah-Bott fixed point formula [48, 49], which

we used in the section 4.2. Let E0 → E1 be an complex of vector bundles over a manifold

X and D10 : Γ(E0) → Γ(E1) is a differential operator. For a given map f : X → X,

we can define f∗Ei, which is a pullback of Ei by f . Moreover the map f induces a map

γ : Eif(p) → Eip , where p ∈ X.

Let us define a map T := γ ◦f∗. If the fixed points on X under f are isolated, we have

the following formula

TrKerD10T − TrCokerD10T =
∑

x∈fixed point set

TrE0
x
γ − TrE1

x
γ

|detTxX(1− df(x))|
, (E.1)

if the left-hand side is well-defined. This is called Atiyah-Bott formula.

Since we focus on cases where D10 commutes with T here, TrKerD10 T −TrCokerD10 T =

TrΓ(E0) T −TrΓ(E1) T . Let us take an example where E0 is an cotangent bundle and prove

the following part in the formula11

TrΓ(E0) T “ = ”
∑

x∈fixed point set

TrE0
x
γ

|detTxX(1− df(x))|
, (E.2)

11The quotation mark “ = ” is to emphasize that this equality holds only when the left hand side is

well-defined. The left hand side is well-defined only when we take the difference of traces TrΓ(E0)−TrΓ(E1).

If the equality were strictly true, there would be no need to check transversally ellipticity of the operator,

D10.
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in that case. The above equality holds if the left-hand side is well-defined. Since Γ(E0) is

infinite dimensional, one should be careful about it.

An element of Γ(E0) can be written as
∑

µAµ(x)dxµ. If x goes to y = f(x) by f ,

Aµ(x)dxµ is mapped to Aµ(y)dyµ by f∗ and it is further mapped to Aν(y)(dyν/dxµ)dxµ

by γ. Generally if a given operator Q maps uµ(x)dxµ to vµ(x)dxµ =: (Qνµuν)dxµ, we can

define the kernel KQνµ for the operator Q such that
∫
dyKQνµ(x, y)uν(y) = vµ(x). In our

case, the kernel for T is

KT νµ(x, y) = δ(f(x)− y)
dyν

d(f−1(y))µ
. (E.3)

For a general operator Q, the trace of Q over Γ(E0) can be rewritten as follows

TrΓ(E0)Q “ = ”

∫
dx
∑
µ

KQµµ
(x, x) , (E.4)

if the left-hand side is well-defined. Let us derive the above relation. Fist we choose a

complete set of orthonormal basis {|A{p}〉}{p} in Γ(E0) . Each component Aµ of one-form

field
∑

µAµdx
µ can take different field configuration labeled by pµ and {p} is the set {pµ}µ

of labels for all components. We can rewrite the trace in the left-hand side of the above

relation as∑
{p}

〈A{p}|QA{p}〉 =
∑
{p}

∫
dx
∑
µ

(A{p}µ(x))∗
∫
dy
∑
ν

KQνµ(x, y)A{p}ν (y) , (E.5)

where we used the definition of the kernel KQνµ . By applying the following completeness

condition ∑
{p}

(A{p}µ(x))∗A{p}ν (y) = δ(x− y)δµν (E.6)

to the right-hand side of (E.5), we can derive (E.4).

Let us apply the relation (E.4) to the operator T . By using (E.3) and replacing the

integration variable x with z := x− f(x), we can derive the formula (E.2) as follows

TrΓ(E0) T “ = ”

∫
dx
∑
µ

KTµµ
(x, x) =

∫
dx
∑
µ

δ(f(x)− x)
dxµ

d(f−1(x))µ

=

∫
dz |dx

dz
| δ(z)

∑
µ

dxµ(z)

d(f−1(x(z)))µ

=

∫
dz

δ(z)
∑

µ
dxµ

d(f−1(x))µ)

|det(1− df
dx)|

=
∑

x s.t. x=f(x)

TrE0
x
γ

|det(1− df
dx)|

. (E.7)

For general Ei, we can also derive the formula (E.2) in the same way. Although TrΓ(Ei) T

itself may not be well-defined, TrΓ(E0) T−TrΓ(E1) T is well-defined in the following cases. If

T commutes with D10, TrΓ(E0) T−TrΓ(E1) T = TrKerD10T−TrCokerD10T . Let us decompose

the spaces KerD10 and CokerD10 into subspaces such that each subspace has different
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eigenvalue for T . If each subspace is finite dimensional, TrKerD10T − TrCokerD10T is well-

defined and the following formula holds

TrKerD10T − TrCokerD10T =
∑

x∈fixed point set

TrE0
x
γ − TrE1

x
γ

|detTxX(1− df(x))|
. (E.8)
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