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1 Introduction

The low-energy effective action in quantum field theory is a powerful tool that enables

one to study the vacuum state of the theory. The low-energy effective action cannot be

computed in the usual perturbation theory, and so to study it in the generic case, one

needs new essentially non-perturbative methods. The development of such methods for

the calculation of the heat kernel was initiated in our papers [1, 3] for a gauge theory in

flat space, which were then applied to study the vacuum structure of the Yang-Mills theory

in [4, 6]. These ideas were first extended to scalar fields on curved manifolds in [2, 5] and

finally to arbitrary twisted spin-tensor fields in [8]. In [9] we applied these methods to study

quantum gravity and Yang-Mills theory on any symmetric space. Further, we applied these

methods to study the thermal Yang-Mills theory on product of spheres, such as S1×S1×S2

and S1 × S3 in [11, 12].
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In the present paper we apply these methods to study the one-loop low-energy effective

action in quantum Einstein general relativity in the Einstein Universe background at finite

temperature. From the mathematical point of view, we compute the one-loop effective

action for the Einsten-Hilbert action with cosmological constant on the background S1×S3.

This paper is organized as follows. In section 2 we introduce all the relevant operators

for the calculation of the one-loop effective action in Einstein quantum gravity. We refer

to the paper [9] for the details. In section 3 we compute the heat trace coefficients. In

Sec 4. we study the quantum gravity on S3 and compute all relevant heat traces on S3.

We refer to the paper [12] for the details of the calculation of the heat traces on S3 for

any representation. In section 5 we compute the heat traces and the effective action on

S1 × S3. Finally, in section 6 we discuss the thermodynamic properties of the model.

2 One-loop Einstein gravity

In this section we follow our previous work [9, 10]. The dynamics of the gravitational field

parametrized by the Riemannian metric on a closed (compact without boundary) manifold

(M, g) of dimension n is described by the Hilbert-Einstein action of general relativity, which

(in Euclidean formulation) has the form

S =
1

16πG

∫

M

dx g1/2 (−R+ 2Λ) , (2.1)

where g = det gµν , G is the gravitational constant and Λ is the cosmological constant. The

classical vacuum Einstein equations are determined by the first variation of the action

16πGg−1/2 δS

δgµν
= Rµν − 1

2
Rgµν + Λgµν = 0 . (2.2)

In two dimensions the action is trivial

S =
1

16πG
{−4πχ(M) + 2Λvol (M)} , (2.3)

where χ(M) is the Euler characteristic of the manifold M and vol (M) is its volume.

Therefore, it does not have any extremal metrics; more precisely, in two dimensions every

metric satisfies the Einstein equations with zero cosmological constant,

Rab =
1

2
Rgab, (2.4)

and, therefore, the Einstein equations do not have any solutions for any Λ 6= 0, which

means that Einstein gravity in two dimensions is purely topological.

For this reason, we restrict ourselves to n > 2. In this case the Riemann tensor can be

decomposed as follows

Rab
cd = Cab

cd +
4

n− 2
R[a

[cδ
b]
d] −

2

(n− 1)(n− 2)
Rδ[a[cδ

b]
d], (2.5)
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where Cabcd is the Weyl tensor. The norm of the Riemann tensor is then

RabcdR
abcd = CabcdC

abcd +
4

n− 2
RabR

ab − 2

(n− 1)(n− 2)
R2. (2.6)

The solutions of the Einstein equations determine the Einstein spaces,

Rab =
2

n− 2
Λgab , (2.7)

and, therefore,

R =
2n

n− 2
Λ . (2.8)

In this case the Riemann tensor is

Rab
cd = Cab

cd +
4

(n− 1)(n− 2)
Λδ[a[cδ

b]
d], (2.9)

with the norm

RabcdR
abcd = CabcdC

abcd +
8n

(n− 1)(n− 2)2
Λ2. (2.10)

The case of three dimensions is special. In this case the Weyl tensor is equal to zero

identically, and, therefore, the Riemann tensor is fully determined by the Ricci tensor,

Rab
cd = 4R[a

[cδ
b]
d] −Rδ[a[cδ

b]
d]. (2.11)

Therefore, in particular,

RabcdR
abcd − 4RabR

ab +R2 = 0 . (2.12)

The Einstein equations take the form

Rab = 2Λgab (2.13)

and, therefore, the curvature tensor of Einstein spaces is fully determined by the metric,

Rab
cd = 2Λδ[a[cδ

b]
d] . (2.14)

This means that the only Einstein spaces in three dimensions are the (locally) maximally

symmetric spaces, the sphere S3 for Λ > 0, the hyperbolic manifolds H3/Γ for Λ < 0,

where Γ is a lattice in SO+(1, 3); for Λ = 0 the only solutions are flat manifolds, like a

torus T 3. In any case, gravity in three dimensions is rigid, that is, it does not have any

propagating degrees of freedom.

Notice that the same invariant (2.12) plays a role in higher dimensions as well. In par-

ticular, in dimension n = 4 the integral of that invariant determines the Euler characteristic

of the manifold

χ(M) =
1

32π2

∫

M

dx g1/2
(

RabcdR
abcd − 4RabR

ab +R2
)

=
1

32π2

∫

M

dx g1/2
(

CabcdC
abcd − 2RabR

ab +
2

3
R2

)

. (2.15)
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When the Einstein equations (2.7), (2.8), are satisfied the Ricci tensor is determined by

the metric. That is, for n = 4,

Rab = Λgab, R = 4Λ, (2.16)

and the integral norm of the Riemann tensor is determined by the Euler characteristic

χ(M) =
1

32π2

∫

M

dx g1/2RabcdR
abcd

=
1

32π2

∫

M

dx g1/2
(

CabcdC
abcd +

8

3
Λ2

)

. (2.17)

Note that the Euler characteristic of Einstein spaces in four dimensions is positive definite.

It is worth stressing that this disagrees with eq. (115) in [18].

The diffeomorphism invariance of the Einstein-Hilbert functional means that the metric

carries some non-physical (gauge) degrees of freedom described by a vector field. In n

dimensions a vector field has n independent components and a symmetric 2-tensor field has

n(n+1)/2 independent components. Therefore, the gravitational field in n dimensions has

N(n) =
n(n+ 1)

2
− 2n =

n(n− 3)

2
(2.18)

degrees of freedom. This number is equal to N(4) = 2 in four dimensions as expected;

however, it vanishes in three dimensions, N(3) = 0. In two dimensions it gives a mean-

ingless result, N(2) = −1. We will compute the effective action in three dimensions below

but one should realize that in three dimensions the Einstein gravity does not have any

dynamics [19, 20].

One of the fundamental problems of quantum Einstein gravity is that the Euclidean

Einstein-Hilbert action is unbounded from below, which leads to the divergence of the

Euclidean path integral over all metrics. This divergence is conceptual in nature and is

much more serious than the usual ultraviolet divergence of the quantum field theory. It is

well known [18] that under a conformal transformation

ḡµν = ω4/(n−2)gµν , (2.19)

where ω is a smooth positive function on M , the action takes the form

S =
1

16πG

8(n− 1)

(n− 2)

∫

M

dx g1/2
{

−1

2
ωY ω +

(n− 2)

4(n− 1)
Λω2n/(n−2)

}

, (2.20)

where Y is the Yamabe operator

Y = −∆+
n− 2

4(n− 1)
R. (2.21)

The Yamabe operator is nothing but the conformally covariant scalar Laplacian. It is a self-

adjoint elliptic partial differential operator with a positive leading symbol. The spectrum of
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such operator is real, discrete, and with finite multiplicities; it is bounded from below and

unbounded from above. This shows that the action functional is unbounded from below. It

is obvious that by keeping the metric gµν constant and taking the function ω to be bounded

and increasingly oscillating the action can be made arbitrarily large and negative. This

is a well known conformal problem of quantum gravity. It has been suggested [18] that

this problem can be avoided by deforming the contour of integration in the path integral

over the conformal factor to make it purely imaginary, which will turn the action into a

standard functional of quantum field theory. However, such an approach cannot be taken

seriously. This is a major problem of Einstein quantum gravity and it remains open. A

solution to this problem would require a modification of the Einstein-Hilbert action but we

do not attempt to solve it in the present paper.

The standard loop expansion of the Euclidean effective action has the form

Γ = S + ~Γ(1) +O(~2), (2.22)

where Γ(1) is the one-loop effective action. The one-loop effective action is determined

by the graviton operator L2 acting on symmetric two-tensor fields and the Faddeev-Popov

ghost operator L1 acting on vector fields. In the Euclidean formulation the zeta-regularized

one-loop effective action has the form

Γ(1) = −1

2
ζ ′GR(0) , (2.23)

where

ζGR(s) = ζL2
(s)− 2ζL1

(s) , (2.24)

and ζL1
(s) and ζL2

(s) are the zeta functions of the operators L1 and L2 defined by

ζL(s) =
µ2s

Γ(s)

∞
∫

0

dt ts−1e−tz2ΘL(t) , (2.25)

where

ΘL(t) = Tr exp(−tL). (2.26)

The renormalization parameter µ is introduced to preserve dimensions and z is a sufficiently

large infra-red regularization parameter, which should be set to zero at the end of the

calculation. Therefore,

ζGR(s) =
µ2s

Γ(s)

∞
∫

0

dt ts−1e−tz2ΘGR(t) , (2.27)

where

ΘGR(t) = ΘL2
(t)− 2ΘL1

(t) ; (2.28)

we will call this invariant the heat trace of quantum gravity.

The operators L2 and L1 are determined by the second variation of the action and then

by imposing some gauge condition on the metric fluctuation (see, for example, [7, 15]). The
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second variation of the action defines a second-order partial differential operator P acting

on symmetric two-tensors by

16πGg−1/2 δ2S

δgµνδgαβ
hαβ =

1

2
Pµναβhαβ , (2.29)

where

Pµν,αβ = −
(

gα(µgν)β − gαβgµν
)

∆

−gµν∇(α∇β) − gαβ∇(µ∇ν) + 2∇(µgν)(α∇β)

−2R(µ|α|ν)β − gα(µRν)β − gβ(µRν)α +Rµνgαβ +Rαβgµν

+

(

gµ(αgβ)ν − 1

2
gµνgαβ

)

(R− 2Λ). (2.30)

In the minimal gauge the non-diagonal derivatives in both the graviton operator and

the ghost operator vanish and the operators take the form

L̃2
cd,ab =

(

ga(cgd)b − 1

2
gabgcd

)

(−∆+R− 2Λ)

−2R(c|a|d)b − ga(cRd)b − gb(cRd)a) +Rcdgab + gcdRab , (2.31)

L̃1
ab = −gab∆−Rab. (2.32)

We should stress that the operator L̃2 differs from the eq. (16.37) in [14].

The tensor

Ecd,ab = ga(cgd)b − 1

2
gabgcd (2.33)

here is the metric in the space of symmetric tensors. It is easy to see that it is positive

definite in the subspace of traceless symmetric tensors but it is negative definite in the

conformal (scalar) sector. This is exactly the problem of the conformal mode in quantum

gravity discussed above. Following the standard approach [13–15, 18] we simply assume

that it can be fixed somehow by some physical arguments and proceed as follows. We

factor out this metric from the operator L̃2 to define the graviton operator L2 and the

ghost operator L1 in the canonical Laplace-type form

Lj = −∆+Qj , (2.34)

where the potentials for both operators are [9]

(Q1)
a
b = −Ra

b , (2.35)

(Q2)
cd

ab = −2Rc
(a

d
b) − 2δ(c(aR

d)
b) +Rcdgab +

2

n− 2
gcdRab

− 1

(n− 2)
gcdgabR+ δc(aδ

d
b)(R− 2Λ) . (2.36)

We should stress here that the endomorphism Q2 does not coincide with the eq. (16.78)

in [14].

– 6 –
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It is well known that the heat trace of Laplace type operators has the asymptotic

expansion as t → 0

ΘL(t) ∼ (4πt)−n/2
∞
∑

k=0

tkBk(L), (2.37)

where Bk(L) are the so-called Hadamard-Minakshisundaram-DeWitt-Seeley coefficients (or

simply heat trace coefficients) of the operator L. This means that the function Θ(t) has

similar asymptotic expansion as t → 0

ΘGR(t) ∼ (4πt)−n/2
∞
∑

k=0

tkCk, (2.38)

where

Ck = Bk(L2)− 2Bk(L1) . (2.39)

It is easy to find the dependence of the effective action on the renormalization param-

eter; by integrating the equation

µ
∂

∂µ
Γ(1) = −ζGR(0) , (2.40)

we get

Γ(1)(µ) = Γ(1)(µ0)− log

(

µ

µ0

)

ζGR(0) . (2.41)

This enables one to study the high-energy asymptotics of the effective action as µ → ∞.

For the Laplace type operators the value of the zeta function at s = 0 is determined

by a specific heat trace coefficient

ζL(0) =

{

(4π)−n/2Bn/2(L), for even n,

0, for odd n.
(2.42)

Therefore,

ζGR(0) =

{

(4π)−n/2Cn/2, for even n,

0, for odd n.
, (2.43)

in particular, in four dimensions, n = 4,

ζGR(0) = (4π)−2C2. (2.44)

3 Heat trace coefficients

We will need the heat trace coefficients B0, B1 and B2 for the operators L1 and L2. They

have the following well-known form [7, 17] (we neglected the inessential total derivatives

– 7 –
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here which do not contribute to the global invariants)

B0(L) =

∫

M

dx g1/2tr I, (3.1)

B1(L) =

∫

M

dx g1/2tr

(

1

6
RI −Q

)

, (3.2)

B2(L) =

∫

M

dx g1/2tr

{

1

2
Q2 − 1

6
RQ+

1

12
RabRab

+ I

(

1

72
R2 +

1

180
RabcdR

abcd − 1

180
RabR

ab

)

}

. (3.3)

Here I is the identity endomorphism and Rab is the curvature of the spin connection of a

tensor field realizing a representation of the spin group defined by

Rµν =
1

2
Rab

µνΣab, (3.4)

where Σab are the generators of the spin group Spin(n) satisfying the commutation relations

[Σab,Σcd] = −gacΣbd + gbcΣad + gadΣbc − gbdΣac. (3.5)

For the vector representation the identity and the generators have the form

(I1)
c
d = δcd, (3.6)

(Σ(1),ab)
c
d = 2δc[agb]d, (3.7)

Therefore, tr I1 = n and

B0(L1) = nvol (M). (3.8)

Also, we have

trQ1 = −R, (3.9)

and, therefore,

B1(L1) =

∫

M

dx g1/2
1

6
(n+ 6)R. (3.10)

Further, we compute

trΣ(1),abΣ(1)
pq = −4δ[p[aδ

q]
b] (3.11)

and

trR(1),abR(1)
ab = −RabcdR

abcd. (3.12)

– 8 –
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We also have

tr (Q1)
2 = RabR

ab, (3.13)

and, therefore,

B2(L1) =

∫

M

dx g1/2
{

n− 15

180
RabcdR

abcd +
90− n

180
RabR

ab +
n+ 12

72
R2

}

. (3.14)

Next, we compute the heat trace coefficients for the operator L2. For the tensor

representation the identity and the generators have the form

(I2)
ef

cd = δ(e(cδ
f)

d), (3.15)

(Σ(2),ab)
ef

cd = 4δ(e[agb](cδ
f)

d). (3.16)

First, we have tr I2 = n(n+ 1)/2, hence,

B0(L2) =
1

2
n(n+ 1)vol (M). (3.17)

Now, we introduce the following endomorphisms

(V1)
cd

ab = Rc
(a

d
b), (3.18)

(V2)
cd

ab = δ(c(aR
d)

b), (3.19)

(V3)
cd

ab = Rcdgab, (3.20)

(V4)
cd

ab = gcdRab, (3.21)

(V5)
cd

ab = gcdgab. (3.22)

Then the endomorphism Q2 has the form

Q2 = Q̃2 + (R− 2Λ)I2, (3.23)

where

Q̃2 = −2V1 − 2V2 + V3 +
2

n− 2
V4 −

1

(n− 2)
RV5. (3.24)

Now, by using the traces

trV1 = −1

2
R, (3.25)

trV2 =
1

2
(n+ 1)R, (3.26)

trV3 = R, (3.27)

trV4 = R, (3.28)

trV5 = n. (3.29)

we compute

tr Q̃2 = −nR, (3.30)

– 9 –
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and, therefore,

trQ2 =
1

2
n(n− 1)R− n(n+ 1)Λ, (3.31)

which gives

B1(L2) =

∫

M

dx g1/2
{

− 1

12
n(5n− 7)R+ n(n+ 1)Λ

}

. (3.32)

Now, we have

tr (Q2)
2 = tr (Q̃2)

2 +
1

2
n(n− 3)R2 − 2n(n− 1)RΛ + 2n(n+ 1)Λ2. (3.33)

Next, by using the traces of the products

trV1V1 =
3

4
RabcdR

abcd, (3.34)

trV2V2 =
1

4
(n+ 2)RabR

ab +
1

4
R2, (3.35)

trV3V3 = R2, (3.36)

trV4V4 = R2, (3.37)

trV5V5 = n2, (3.38)

trV1V2 = −1

2
RabR

ab, (3.39)

trV1V3 = RabR
ab, (3.40)

trV1V4 = RabR
ab, (3.41)

trV1V5 = R, (3.42)

trV2V3 = RabR
ab, (3.43)

trV2V4 = RabR
ab, (3.44)

trV2V5 = R, (3.45)

trV3V4 = nRabR
ab, (3.46)

trV3V5 = nR, (3.47)

trV4V5 = nR, (3.48)

we obtain

tr (Q̃2)
2 = 3RabcdR

abcd +
n2 − 8n+ 4

n− 2
RabR

ab +
n+ 2

n− 2
R2. (3.49)

By using these results we get

tr (Q2)
2 = 3RabcdR

abcd +
n2 − 8n+ 4

n− 2
RabR

ab +
n3 − 5n2 + 8n+ 4

2(n− 2)
R2

−2n(n− 1)RΛ + 2n(n+ 1)Λ2. (3.50)

– 10 –
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We introduce yet another endomorphism

(Tpq)
cd

ab = δ(c[pgq](aδ
d)

b). (3.51)

By using

trTpqT
rs = −1

4
(n+ 2)δ[r [pδ

s]
q] (3.52)

we get

trΣ(2),abΣ(2)
pq = −4(n+ 2)δ[p[aδ

q]
b], (3.53)

and, therefore,

trR(2),abR(2)
ab = −(n+ 2)RabcdR

abcd. (3.54)

By using these results we get

B2(L2) =

∫

M

dx g1/2

{

α1RabcdR
abcd + α2RabR

ab + α3R
2 + γ1RΛ + γ2Λ

2

}

, (3.55)

where

α1 =
1

360
(n2 − 29n+ 480), (3.56)

α2 =
−n3 + 181n2 − 1438n+ 720

360(n− 2)
, (3.57)

α3 =
25n3 − 145n2 + 262n+ 144

144(n− 2)
, (3.58)

γ1 =
1

6
n(7− 5n), (3.59)

γ2 = n(n+ 1). (3.60)

Finally, by using these results we compute the coefficients Ck, (2.39),

C0 =
1

2
n(n− 3)vol (M), (3.61)

C1 =

∫

M

dx g1/2
{

− 1

12
(5n2 − 3n+ 24)R+ n(n+ 1)Λ

}

, (3.62)

C2 =

∫

M

dx g1/2
{

β1RabcdR
abcd + β2RabR

ab + β3R
2 + γ1RΛ + γ2Λ

2
}

, (3.63)

where

β1 =
1

360
(n2 − 33n+ 540), (3.64)

β2 =
−n3 + 185n2 − 1806n+ 1440

360(n− 2)
, (3.65)

β3 =
25n3 − 149n2 + 222n+ 240

144(n− 2)
. (3.66)

These results are also different from the ones given by eqs. (16.79)-(16.81) of [14].
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We will need these coefficients for n = 4. By using the above results we obtain in

this case

B0(L1) = 4vol (M), (3.67)

B1(L1) =

∫

M

dx g1/2
5

3
R, (3.68)

B2(L1) =

∫

M

dx g1/2
{

− 11

180
RabcdR

abcd +
43

90
RabR

ab +
2

9
R2

}

, (3.69)

B0(L2) = 10vol (M), (3.70)

B1(L2) =

∫

M

dx g1/2
{

−13

3
R+ 20Λ

}

, (3.71)

B2(L2) =

∫

M

dx g1/2

{

19

18
RabcdR

abcd − 55

18
RabR

ab +
59

36
R2 − 26

3
RΛ + 20Λ2

}

.

(3.72)

Therefore, we obtain the total coefficients (2.39)

C0 = 2vol (M), (3.73)

C1 =

∫

M

dx g1/2
{

−23

3
R+ 20Λ

}

, (3.74)

C2 =

∫

M

dx g1/2
{

53

45
RabcdR

abcd − 361

90
RabR

ab +
43

36
R2 − 26

3
RΛ + 20Λ2

}

=
1696

45
π2χ(M) +

∫

M

dx g1/2
{

− 1

90
RabR

ab +
7

36
R2 − 26

3
RΛ + 20Λ2

}

. (3.75)

Finally, when the Einstein equations are satisfied these coefficients in four dimensions take

the form

C0 = 2vol (M), (3.76)

C1 = −32

3
Λvol (M), (3.77)

C2 =
1696

45
π2χ(M)− 58

5
Λ2vol (M). (3.78)

This gives the quantity

ζGR(0) =
106

45
χ(M)− 29

40

Λ2

π2
vol (M), (3.79)

determining the scaling properties of the model. It is worth stressing that this result

coincides with the eq. (4.23) of [13] and disagrees with the results of [18], eq. (79), and [16],

where the second coefficient is 657/540 instead of −29/40; in particular, it is not positive

definite contrary to the claim of [18].
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4 Heat traces on S
3

4.1 Reduction to irreducible representations

In this section we compute the effective action and the relevant heat traces on the 3-sphere

S3 of radius a. We define the dimensionless cosmological constant by

λ = a2Λ. (4.1)

The curvature in the orthonormal frame has the form

Rab
cd =

1

a2
εfabεfcd =

1

a2

(

δac δ
b
d − δadδ

b
c

)

, (4.2)

Rab =
2

a2
δab, (4.3)

R =
6

a2
. (4.4)

Here and below εabc is the three-dimensional Levi-Civita symbol.

The volume of the sphere is

vol (S3) = 2π2a3 (4.5)

and the Euclidean classical Einstein-Hilbert action on S3 is equal to

S =
π

4G
a(−3 + a2Λ) . (4.6)

Note that the classical action is bounded from below and attains a minimum equal to

S0 = − π

2G
√
Λ

(4.7)

at the radius determined by the cosmological constant

a0 = Λ−1/2, (4.8)

so that classically the dimensionless cosmological constant is equal to 1, λ0 = 1 . We will

compute the heat trace of the Laplacian for the unit sphere S3 by setting a = 1; the

trivial dimensional factor a can be easily restored at the end of the calculation by replacing

t 7→ t/a2.

Let

(Π0)
ab

cd =
1

3
gabgcd (4.9)

be the projection to the scalar representation and

Π2 = I2 −Π0 (4.10)

be the projection onto the space of traceless symmetric tensors. Note that the projection

Π2 acts as identity in the subspace of traceless symmetric tensors. In three dimensions,

the dimensions of these subspaces are

tr I1 = 3, tr I2 = 6, (4.11)

trΠ0 = 1, trΠ2 = 5. (4.12)
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This is consistent with the dimension of the general irreducible representation labeled by an

integer j,

tr jΠj = 2j + 1 . (4.13)

Then the potential terms are

Q1 = −2I1 , (4.14)

Q2 = (4− 2λ)Π2 − (2 + 2λ)Π0 . (4.15)

We will reduce the calculation of the heat traces of the operators L1 and L2 to the cal-

culation of the heat trace on the unit sphere S3 of pure Laplacians ∆j acting on irreducible

representations j,

Θj(t) = Tr exp(t∆j). (4.16)

First of all, we immediately see that since the endomorphism Q1 is constant, we have

exp(−tQ1) = e2tI1, (4.17)

and, therefore, the heat trace of the ghost operator is

ΘL1
(t) = e2tΘ1 (t) . (4.18)

We also have a similar formula for the operator L2,

ΘL2
(t) = Tr exp(−tQ2) exp(t∆) . (4.19)

However, the general tensor representation contains the irreducible representation with

j = 2 (traceless symmetric two-tensors) and the scalar representation with j = 0 (trace).

The space of symmetric tensors decomposes canonically into the direct sum of the traceless

tensors and scalars with the corresponding projections Π2 and Π0. It is easy to see that

exp(−tQ2) = e(−4+2λ)tΠ2 + e(2+2λ)tΠ0. (4.20)

Therefore, the heat trace of the graviton operator takes the form

ΘL2
(t) = e(−4+2λ)tΘ2 (t) + e(2+2λ)tΘ0 (t) . (4.21)

4.2 Heat trace for irreducible representations

Because the graviton operator neatly splits, we only need to compute the heat traces for

Laplacians in irreducible representation j for integer j. This heat trace can be computed

by using the heat kernel diagonal for the Laplacian ∆j on the unit sphere S3 given by the

eq. (6.16) of our paper [12]. To get the heat trace we have to multiply the heat kernel

diagonal by the volume of the sphere S3 equal to vol (S3) = 2π2 and by the dimension of

the representation j equal to (2j + 1). This gives

Θj(t) =

√
π

4
t−3/2et[j(j+1)+1]

∞
∑

n=−∞

∑

|µ|≤j

exp

(

−π2n2

t
− µ2t

)(

1− 2µ2t− 2π2n2

t

)

. (4.22)
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Following [12] we introduce the function

Ω(t) =
∞
∑

n=−∞

exp

(

−n2π2

t

)

, (4.23)

which can be expressed in terms of the Jacobi theta function

Ω(t) = θ3

(

0, e−π2/t
)

, (4.24)

and satisfies the following duality relation

Ω(t) =

√

t

π
Ω

(

π2

t

)

=

√

t

π

∞
∑

n=−∞

e−tn2

=

√

t

π
θ3
(

0, e−t
)

. (4.25)

This enables us to express the function Θj in terms of the function Ω as follows

Θj(t) =

√
π

4
t−3/2et[j(j+1)+1]

∑

|µ|≤j

e−µ2t
[

(1− 2µ2t)Ω(t)− 2tΩ′(t)
]

. (4.26)

By using the duality relation, the function Θj takes the form

Θj(t) = et[j(j+1)+1]
∞
∑

n=−∞

∑

|µ|≤j

1

2

(

n2 − µ2
)

e−t(n2+µ2) . (4.27)

Finally by using the obvious equation

j
∑

µ=−j

j
∑

n=−j

(

n2 − µ2
)

e−t(n2+µ2) = 0 , (4.28)

we get the heat trace of pure Laplacian in the irreducible representation j

Θj(t) =
∞
∑

n=j+1

{

n2 exp
{

−t
[

n2 − j(j + 1)− 1
]}

+

j
∑

µ=1

2(n2 − µ2) exp
{

−t
[

n2 + µ2 − j(j + 1)− 1
]}

}

. (4.29)

In particular, the eq. (4.29) gives the eigenvalues and their multiplicities of the pure

Laplacian acting on an irreducible representation j of SU(2). It is labeled by two integers

n and µ such that

0 ≤ µ ≤ j < n. (4.30)

The eigenvalues are given by

λn,µ(−∆j) = n2 + µ2 − j(j + 1)− 1, (4.31)

and their multiplicities are

dn,0(−∆j) = n2, (4.32)
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for µ = 0 and

dn,µ(−∆j) = 2
(

n2 − µ2
)

, (4.33)

for 1 ≤ µ ≤ j.

The minimal eigenvalue of the Laplacian −∆j is

λmin(−∆j) = j (4.34)

with multiplicity dmin(−∆j) = (j + 1)2. In particular, this means that all Laplacians −∆j

for j ≥ 1 are positive and the scalar Laplacian ∆0 is non-negative, it has the obvious

constant zero mode.

We will need the functions Θ0, Θ1 and Θ2,

Θ0(t) =

√
π

4
t−3/2et

[

Ω(t)− 2tΩ′(t)
]

=
∞
∑

n=1

n2e−t(n2−1), (4.35)

Θ1(t) =

√
π

4
t−3/2

{[

e3t + 2(1− 2t)e2t
]

Ω(t)− 2t
[

e3t + 2e2t
]

Ω′(t)
}

=
∞
∑

n=2

{

n2e−t(n2−3) + 2
(

n2 − 1
)

e−t(n2−2)
}

, (4.36)

Θ2(t) =

√
π

4
t−3/2

{

[

e7t + 2(1− 2t)e6t + 2(1− 8t)e3t
]

Ω(t)

− 2t
[

e7t + 2e6t + 2e3t
]

Ω′(t)

}

=
∞
∑

n=3

{

n2e−t(n2−7) + 2
(

n2 − 1
)

e−t(n2−6) + 2(n2 − 4)e−t(n2−3)
}

. (4.37)

It is worth noting that the contribution of µ = 0 and µ = 1 for j = 1 corresponds to the

decomposition of the vector fields

ϕµ = A⊥
µ +∇µσ, (4.38)

where Aµ is the transversal (divergence free) vector, and the contribution of µ = 0, µ =

1 and µ = 2 for j = 2 corresponds to the decomposition of the trace-free symmetric

tensor fields

ϕµν = ϕ⊥
µν + 2∇(µA

⊥
ν) +∇µ∇νσ − 1

3
gµν∆σ, (4.39)

where ϕ⊥
µν is the transversal (divergence free) tracefree tensor and σ is a scalar.

4.3 Heat trace of quantum gravity

We introduce the trace-free tensor part and the scalar part of the graviton operator L2

L
(0)
2 = Π0L2Π0, (4.40)

L
(2)
2 = Π2L2Π2 . (4.41)
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Now, by using the eqs. (4.18) and (4.21) we compute the eigenvalues of the operators L1

and L2

λn,µ(L1) = λn,µ(−∆1)− 2 = n2 + µ2 − 5, n ≥ 2, µ = 0, 1, (4.42)

λn,µ(L
(0)
2 ) = λn,0(−∆0)− 2− 2λ = n2 − 3− 2λ, n ≥ 1, (4.43)

λn,µ(L
(2)
2 ) = λn,µ(−∆2) + 4− 2λ = n2 + µ2 − 3− 2λ, n ≥ 3, µ = 0, 1, 2. (4.44)

The minimal eigenvalues are

λmin(L1) = −1, (4.45)

λmin(L
(0)
2 ) = −2− 2λ, (4.46)

λmin(L
(2)
2 ) = 6− 2λ. (4.47)

Notice that the minimal eigenvalue of the ghost operator L1 is always negative, the minimal

eigenvalue of the conformal sector of the graviton operator L
(0)
2 is negative for λ > −1 and

the minimal eigenvalue of the graviton operator in the traceless tensor part L
(2)
2 is negative

for λ > 3. That is, the graviton operator is positive only for negative cosmological constant

when λ < −1.

Next, by using eq. (2.28) and (4.21) we get

ΘGR(t) = e(−4+2λ)tΘ2 (t) + e(2+2λ)tΘ0 (t)− 2e2tΘ1 (t) . (4.48)

We can write this either in terms of the function Ω

ΘGR(t) =

√
π

4
t−3/2

{

−2t
[

e2λt
(

2e3t + 2e2t + 2e−t
)

− 2e5t − 4e4t
]

Ω′(t) (4.49)

+
[

e2λt
(

2e3t+2(1−2t)e2t+2(1−8t)e−t
)

−2e5t−4(1−2t)e4t
]

Ω(t)

}

,

which is useful in the ultraviolet limit as t → 0, or in the spectral form

ΘGR(t) = e(2+2λ)t + 4e(−1+2λ)t − 8et − 12

+

∞
∑

n=3

{

e2λt
{

2n2e−t(n2−3) + 2
(

n2 − 1
)

e−t(n2−2) + 2
(

n2 − 4
)

e−t(n2+1)
}

− 2n2e−t(n2−5) − 4
(

n2 − 1
)

e−t(n2−4)

}

, (4.50)

which is useful in the infrared limit as t → ∞.

When the classical Einstein equations are satisfied, that is, when λ = 1, the heat trace

simplifies to

ΘGR(t) =

√
π

4
t−3/2

{

[

−2(1− 2t)e4t + 2(1− 8t)et
]

Ω(t)− 2t
[

−2e4t + 2et
]

Ω′(t)
}

= e4t − 4et − 12 +
∞
∑

n=3

{

−2
(

n2 − 1
)

e−t(n2−4) + 2
(

n2 − 4
)

e−t(n2−1)
}

. (4.51)
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The infrared properties are described by the limit t → ∞. By using the spectral

representation of the heat trace we immediately get

ΘGR(t) = e(2+2λ)t + 4e(−1+2λ)t − 8et − 12 +O
(

e(2λ−6)t
)

. (4.52)

The exponential growth of the heat trace indicates the presence of the negative modes.

It is instructive to study the asymptotics of the heat trace as t → 0. By using the

asymptotics of the function Ω as t → 0

Ω(t) ∼ 1, Ω′(t) ∼ 0, (4.53)

we obtain

ΘGR(t) =

√
π

4
t−3/2

{

C0 + tC1 + t2C2 +O(t3)
}

, (4.54)

where

C0 = 0, (4.55)

C1 = 2π2(12λ− 30), (4.56)

C2 = 2π2(12λ2 − 24λ− 3). (4.57)

These coefficients coincide with the coefficients Ck given by the general formulas (3.61)–

(3.63) in three dimensions, n = 3. Notice the absence of the constant term here. This

is the feature of three-dimensional quantum Einstein gravity since it does not have any

dynamics, that is, the number of degrees of freedom is equal to zero.

5 Heat traces on S
1
× S

3

5.1 Reduction of heat traces

In this section we study Einstein quantum gravity in the physical four-dimensional Einstein

Universe. Since we would like to study the thermal effects at the same time, we consider

the four-dimensional Riemannian manifold M = S1 × S3 with a circle S1 of radius a1 and

a sphere S3 of radius a. So, all indices in this section are four-dimensional, that is, they

run over 1, 2, 3, 4.

Let hab be the projection tensor on S3 and qab be the projection to S1 so that

δab = qab + hab, (5.1)

and

habh
b
c = hac, qabq

b
c = qac, habq

b
c = 0, (5.2)

haa = 3, qaa = 1 . (5.3)

Also, we introduce the Levi-Civita tensor εabc on S3 such that

εabcq
a
d = 0, (5.4)
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and

εabcε
def = 6hd[ah

e
bh

f
c], (5.5)

εabcε
dec = 2hd[ah

e
b], (5.6)

εabcε
dbc = 2hda. (5.7)

Then the curvature is

Rab
cd =

1

a2

(

hach
b
d − hadh

b
c

)

, (5.8)

Rab =
2

a2
hab, (5.9)

R =
6

a2
. (5.10)

The volume of the manifold M = S1 × S3 is

vol (M) = 4π3a1a
3, (5.11)

and the classical action is equal to

S =
π2

2G
a1a

(

−3 + a2Λ
)

. (5.12)

Thus, the potential terms (2.35), (2.36), of the operators L1 and L2 are

a2(Q1)
a
b = −2hab , (5.13)

a2(Q2)
ab

cd = (6− 2λ)δa(cδ
b
d) − 2h(a(ch

b)
d) − habhcd

−habqcd − qabhcd − 4q(a(ch
b)
d) − 3qabqcd. (5.14)

We need to compute the heat traces of the Laplace type operators Lj = −∆+Qj (2.34)

on M = S1 × S3. We note that since the potential terms are constant we have

exp(−tLj) = exp(−tQj) exp(t∆), (5.15)

and also

exp
(

t∆S1×S3
)

= exp
(

t∆S1
)

exp
(

t∆S3
)

. (5.16)

Therefore, the heat traces ΘLj
(t) of the operators Lj can be computed as follows

ΘLj
(t) = ΘS1

(

t

a21

)

ΘS3

Lj

(

t

a2

)

, (5.17)

where

ΘS1

(t) =

√

π

t
Ω(t), (5.18)

with Ω(t) defined by (4.23), is the heat trace on the unit circle S1 and

ΘS3

Lj
(t) = Tr exp

(

−tLS3

j

)

(5.19)

is the heat trace on the unit sphere S3.
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The heat trace ΘS3

Lj
(t) on S3 was computed in our paper [12]. We consider a ten-

sor representation of spin j of the spin group Spin(4) with generators Σab
(j) satisfying the

algebra (3.5). Recall that Spin(4) = SU(2)× SU(2). Therefore, the matrices

G(j)i =
1

2
εiabΣ

ab
(j), (5.20)

satisfy the algebra (no summation over j!)

[G(j)i, G(j)k] = −εlikG(j)l (5.21)

and form a reducible representation of the group SU(2); with the Casimir operator (no

summation over j!)

G2
(j) = G(j)iG(j)i. (5.22)

We also define the matrix

G(j)(y) = G(j)iy
i, (5.23)

where y = (yi) is a unit vector. Let f be a real-valued function of x = (xi) ∈ R
3. Let

xi = ryi, where r = |x| =
√

xixi and y = (yi) is the unit vector such that |y| = 1. Of

course, the unit vector y lies on the unit sphere S2 in R
3. We introduce the average over

the unit sphere S2 of functions in R
3 by

〈f〉 (r) = 1

4π

∫

S2

dyS2f(ry); (5.24)

the integration goes over the unit sphere S2 with the appropriate induced metric on S2.

Then the heat trace of the Laplace type operator Lj = −∆ + Qj on the unit sphere

S3 has the form [12]

ΘS3

Lj
(t) =

√
π

4
t−3/2tr exp

[

−t(G2
(j) +Qj − Ij)

]

Sj (t) , (5.25)

where Sj(t)

Sj(t) =
∞
∑

n=−∞

exp

(

−π2n2

t

)

∞
∫

−∞

dr√
π
e−r2

(

2r2 − 2
π2n2

t

)

〈

exp
[

2r
√
tG(j)(y)

]〉

.

(5.26)

5.2 Generators

For the vector and the symmetric 2-tensor representation (3.7) and (3.16) the generators

have the form

(G(1)i)
c
d = εi

c
d , (5.27)

(G(2)i)
ef

cd = 2εi
(e
(cδ

f)
d) , (5.28)

so that

(G(1)(y))
a
b = εi

a
by

i , (5.29)

(G(2)(y))
ab

cd = 2εi
(a

(cδ
b)
d)y

i . (5.30)
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We compute the Casimir operators

(G2
(1))

c
d = −2hcd, (5.31)

(G2
(2))

ef
cd = −6h(e(ch

f)
d) + 2hefhcd − 4q(e(ch

f)
d) (5.32)

and the sums

(G2
(1) +Q1)

c
d = −4hcd, (5.33)

(G2
(2) +Q2)

ab
cd = (6− 2λ)δa(cδ

b
d) − 8h(a(ch

(b)
d) + habhcd

−habqcd − qabhcd − 8q(a(ch
(b)

d) − 3qabqcd. (5.34)

5.3 Algebra of constant symmetric endomorphisms

First of all, for the vector representation we immediately obtain

Lemma 1

exp
{

−t(G2
(1) +Q1)

}

= I1 −H + e4tH , (5.35)

where H is the matrix of the projection H = (hab).

To compute this exponential for the tensor representation we need to do some algebra.

We define the following basis of endomorphisms acting on symmetric two-tensors in four

dimensions

Iabcd = δ(a(cδ
b)
d), (5.36)

Aab
cd = h(a(ch

b)
d), (5.37)

Bab
cd = habhcd, (5.38)

Cab
cd = habqcd, (5.39)

Dab
cd = qabhcd, (5.40)

Eab
cd = q(a(ch

b)
d), (5.41)

F ab
cd = qabqcd. (5.42)

First, we note the identity

A+ 2E + F = I , (5.43)

so that

E =
1

2
(I −A− F ). (5.44)

Of course, I is the identity. We compute the squares of these endomorphisms

A2 = A, (5.45)

B2 = 3B, (5.46)

C2 = 0, (5.47)

D2 = 0, (5.48)

E2 =
1

2
E, (5.49)

F 2 = F, (5.50)
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and their products

AB = B, BA = B, (5.51)

AC = C, CA = 0, (5.52)

AD = 0, DA = D, (5.53)

AE = 0, EA = 0, (5.54)

AF = 0, FA = 0, (5.55)

BC = 3C, CB = 0, (5.56)

BD = 0, DB = 3D, (5.57)

BE = 0, EB = 0, (5.58)

BF = 0, FB = 0, (5.59)

CD = B, DC = 3F, (5.60)

CE = 0, EC = 0, (5.61)

CF = C, FC = 0, (5.62)

DE = 0, ED = 0, (5.63)

DF = 0, FD = D (5.64)

EF = 0, FE = 0. (5.65)

Next, we define the following endomorphisms

P1 = A− 1

3
B, (5.66)

P2 =
1

3
B, (5.67)

P3 = 2E, (5.68)

P4 = F, (5.69)

T = C +D, (5.70)

X =
1

2
(P4 − P2 − T ) , (5.71)

Π± =
1

2
(P2 + P4 ±X) . (5.72)

By using the algebra of these endomorphisms one can prove

Lemma 2 The endomorphisms P1, P2, P3 and P4 form a set of orthogonal projections

satisfying

P 2
i = Pi, (5.73)

PiPj = 0, if i 6= j, (5.74)

and

P1 + P2 + P3 + P4 = I . (5.75)
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The dimensions of the corresponding subspaces are determined by the traces

trP1 = 5, trP2 = 1, trP3 = 3, trP4 = 1 . (5.76)

Of course, the total dimension of the space of symmetric two-tensors in four dimen-

sions is

5 + 1 + 3 + 1 = 10 . (5.77)

Lemma 3 1. The endomorphism X satisfies the equations

XP1 = P1X = P3X = XP3 = 0 . (5.78)

(P2 + P4)X = X(P2 + P4) = X . (5.79)

X2 = P2 + P4. (5.80)

trX = 0, (5.81)

It has the eigenvalue 0 with multiplicity 8 and simple eigenvalues −1,+1.

2. The endomorphisms Π± are the projections to the eigenspaces of X corresponding to

the eigenvalues ±1. They satisfy the equations

Π2
± = Π±, (5.82)

Π−Π+ = Π+Π− = 0, (5.83)

XΠ± = ±Π±, (5.84)

Π+(P2 + P4) = Π+, Π−(P2 + P4) = Π−. (5.85)

trΠ± = 1, (5.86)

Proof. The projections Pi act on the matrices C and D by

P1C = 0, CP1 = 0, (5.87)

P2C = C, CP2 = 0, (5.88)

P3C = 0, CP3 = 0, (5.89)

P4C = 0, CP4 = C, (5.90)

P1D = 0, DP1 = 0, (5.91)

P2D = 0, DP2 = D, (5.92)

P3D = 0, DP3 = 0, (5.93)

P4D = D, DP4 = 0. (5.94)

and, therefore,

P1T = 0, TP1 = 0, (5.95)

P2T = C, TP2 = D, (5.96)

P3T = 0, TP3 = 0, (5.97)

P4T = D, TP4 = C, (5.98)

– 23 –



J
H
E
P
1
1
(
2
0
1
5
)
1
9
3

so that

P2T + TP2 = T, P4T + TP4 = T. (5.99)

Also, we have

T 2 = 3(P2 + P4). (5.100)

By using these equations one can prove all the equations of the lemma.

Since the matrix X is orthogonal to the projections P1 and P3, it has an obvious

eigenvalue equal to zero with multiplicity 8 = 5 + 3 making it essentially two-dimensional.

It acts nontrivially only on subspaces spanned by projections P2 and P4, which are both

one-dimensional. Since it is obviously traceless, the sum of its eigenvalues is equal to zero.

It is easy to see that it has two non-zero eigenvalues ±1. This follows from the eqs. (5.80).

The matrices Π± are the eigenprojections corresponding to the eigenvalues ±1; this

follows from the eqs. (5.84).

We prove the following

Lemma 4

exp
{

−t
[

G2
(2) +Q2

]}

= e2λt
{

P1e
2t + P3e

−2t +Π− +Π+e
−4t
}

. (5.101)

Proof. We have

G2
(2) +Q2 = (2− 2λ) I − 4P1 + 2X, (5.102)

Therefore,

exp
{

−t
[

G2
(2) +Q2

]}

= exp {−t (2− 2λ)} exp (4tP1) exp(−2tX) (5.103)

We compute

exp (4tP1) = P1e
4t + P2 + P3 + P4 . (5.104)

The only thing left to compute is the exponential exp(−2tX). By using

X2n = P2 + P4, X2n+1 = X, (5.105)

we get

exp(−2tX) = P1 + P3 +Π−e
2t +Π+e

−2t. (5.106)

This finally gives the eq. (5.101).

5.4 Algebra of symmetric endomorphisms on S
3

Let y = (yi) be a unit vector orthogonal to qab, that is, satisfying ya = haby
b. We introduce

two matrices

Za
b = yiεi

a
b , (5.107)

and

P a
b = hab − yayb . (5.108)
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The square of the matrix Z is equal to

Z2 = −P, (5.109)

and the matrix P is obviously a projection so that

P 2 = P, (5.110)

PZ = ZP = Z, (5.111)

PH = HP = P, (5.112)

and

trZ = 0, trP = 2, trH = 3. (5.113)

First, we prove

Lemma 5 The exponential of the matrix G(1)(y) is

exp[2rG(1)(y)] = cos(2r)P + sin(2r)Z (5.114)

with the trace

tr exp(2rG(1)(y)) = 2 cos(2r). (5.115)

Proof. This follows from the fact that

G(1)(y) = Z (5.116)

and the eq. (5.109).

Next, we introduce the following endomorphisms acting on symmetric two-tensors

Kab
cd = Z(a

(cδ
b)
d), (5.117)

Lab
cd = Z(a

(cZ
b)
d), (5.118)

W ab
cd = Z(a

(cP
b)
d), (5.119)

Mab
cd = P (a

(cδ
b)
d), (5.120)

Nab
cd = P (a

(cP
b)
d), (5.121)

Sab
cd = P abPcd, (5.122)

Uab
cd = P abgcd, (5.123)

Y ab
cd = gabPcd. (5.124)

We compute the traces

trK = 0, (5.125)

trL = −1, (5.126)

trM = 5, (5.127)

trN = 3, (5.128)

trW = 0. (5.129)
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We need to compute the algebra of these endomorphisms. First, we have

K2 = −1

2
M +

1

2
L, (5.130)

M2 = M, (5.131)

L2 = N, (5.132)

N2 = N, (5.133)

LM = L, (5.134)

ML = L, (5.135)

KM =
1

2
(K +W ), (5.136)

KL = −W, (5.137)

NM = N, (5.138)

NL = L, (5.139)

KN = W, (5.140)

KW =
1

2
(−N + L). (5.141)

We prove the following

Lemma 6 The exponential of the endomorphism G(2)(y) has the form

exp[2rG(2)(y)] = γ(r)I + µ(r)M + ν(r)N + λ(r)L+ η(r)W + κ(r)K, (5.142)

where

γ(r) = 1, (5.143)

µ(r) = 2 cos(2r)− 2, (5.144)

ν(r) =
1

2
cos(4r)− 2 cos(2r) +

3

2
, (5.145)

λ(r) =
1

2
− 1

2
cos(4r), (5.146)

η(r) = sin(4r)− 2 sin(2r), (5.147)

κ(r) = 2 sin(2r). (5.148)

with the trace

tr exp[2rG(2)(y)] = 4 + 4 cos(2r) + 2 cos(4r). (5.149)

Proof. We note that

G(2)(y) = 2K. (5.150)

Let

J(r) = exp(4rK). (5.151)
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It satisfies the differential equation

∂rJ = 4KJ (5.152)

with initial condition

J(0) = I. (5.153)

We decompose it according to

J = γI + µM + νN + λL+ ηW + κK. (5.154)

Then by using the algebra of the matrices M,N,L,W,K we have

KJ = −κ

2
M − η

2
N +

1

2
(η + κ)L+

(µ

2
+ ν − λ

)

W +
(µ

2
+ γ
)

K. (5.155)

Therefore, the coefficients of this expansion must satisfy the differential equations

∂rγ = 0, (5.156)

∂rµ = −2κ, (5.157)

∂rν = −2η, (5.158)

∂rλ = 2η + 2κ, (5.159)

∂rη = 2µ+ 4ν − 4λ, (5.160)

∂rκ = 2µ+ 4γ, (5.161)

with the initial conditions

γ(0) = 1, µ(0) = ν(0) = λ(0) = η(0) = κ(0) = 0 . (5.162)

The solution of this system gives the result (5.143)–(5.148). Now the trace can be easily

computed.

5.5 Group averages

Next, we need to compute the group averages (5.24) of the functions given by (5.114)

and (5.142). Thus, we need to compute the averages of the polynomials. We prove

Lemma 7 The averages of the monomials are

〈1〉 = 1, (5.163)
〈

yi1 · · · yi2k+1
〉

= 0, (5.164)

〈

yi1 · · · yi2k
〉

=
1

2k + 1
δ(i1i2 · · · δi2k−1i2k). (5.165)

Proof. The first two equations are obvious. To prove the eq. (5.165) we consider the

Gaussian integral
∫

R3

dx e−|x|2xi1 · · ·xi2n = π3/2 (2n)!

n!22n
δ(i1i2 · · · δi2n−1i2n). (5.166)
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By changing the variables here by xi = ryi and using the integral

∞
∫

0

dr r2n+2e−r2 =
√
π

(2n+ 2)!

(n+ 1)!22n+3
(5.167)

we get eq. (5.165).

Corollary 1 Let h be the projection onto the three-dimensional subspace V = R
3 of R4

and y = (yi) be a four-dimensional unit vector lying in V . Then the eq. (5.165) is modified

as follows

〈ya1 · · · ya2k〉 = 1

2k + 1
h(a1i2 · · ·ha2k−1a2k). (5.168)

We define the characters of an irreducible representation j of SU(2) by

χj(r) = tr j
〈

exp[2rG(j)(y)]
〉

, (5.169)

where tr j is the trace in the irreducible representation j. For an irreducible representation

j the average of a group element over the S2 is given by eq. (5.55) of [12]:

〈

exp[2rG(j)(y)]
〉

=
1

2j + 1

∑

|µ|≤j

cos(2µr)Πj , (5.170)

so that

χj(r) =
∑

|µ|≤j

cos(2µr). (5.171)

in particular,

χ1(r) = 1 + 2 cos(2r) , (5.172)

χ2(r) = 1 + 2 cos(2r) + 2 cos(4r) . (5.173)

Using the averages of the monomials calculated above we obtain

〈Z〉 = 0, (5.174)

〈P 〉 = =
2

3
h, (5.175)

〈M〉 =
2

3

(

P1 + P2 +
1

2
P3

)

, (5.176)

〈N〉 =
7

15
P1 +

2

3
P2, (5.177)

〈L〉 =
1

3
(2P2 − P1), (5.178)

〈W 〉 = 0, (5.179)

〈K〉 = 0. (5.180)
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This allows us to calculate the group averages of the exponentials

〈

exp[2rG(1)(y)]
〉

=
2

3
H cos(2r), (5.181)

〈

exp[2rG(2)(y)]
〉

=
1

5
[1 + 2 cos(2r) + 2 cos(4r)]P1 + P2 + P4

+
1

3
[1 + 2 cos(2r)]P3. (5.182)

5.6 Heat trace of operator L1 on S
3

To compute the functions Sj we will need the integrals

∞
∫

−∞

dr e−r2 cos
(

2µ
√
tr
)

=
√
π e−tµ2

, (5.183)

∞
∫

−∞

dr e−r2 cos
(

2µ
√
tr
)

r2 =
√
π

(

1

2
− µ2t

)

e−tµ2

. (5.184)

By using these integrals we obtain
∫ ∞

−∞
dr e−r2

(

2r2 − 2π2n2

t

)

cos(2r
√
t) =

√
π

(

1− 2t− 2π2n2

t

)

e−t, (5.185)

and we finally obtain from (5.26)

SL1
(t) =

∞
∑

n=−∞

exp

(

−π2n2

t

)

[

(

1− 2π2n2

t

)

(I1−P )+

(

1− 2t− 2π2n2

t

)

e−tP

]

. (5.186)

The heat trace is calculated now by using (5.25) and (5.35)

ΘS3

L1
(t) =

√
π

4
t−3/2et

∞
∑

n=−∞

exp

(

−π2n2

t

)

×tr

{

(

1− 2π2n2

t

)

(

I1 −H +He4t − Pe4t
)

+

(

1− 2t− 2π2n2

t

)

e3tP

}

.

=

√
π

4
t−3/2

∞
∑

n=−∞

exp

(

−π2n2

t

)

(5.187)

×
{

(

1− 2π2n2

t

)

(et + e5t) + 2

(

1− 2t− 2π2n2

t

)

e4t

}

.

The heat trace can be written in terms of the function Ω,

ΘS3

L1
(t) =

√
π

4
t−3/2

{

[

e5t + et + 2(1− 2t)e4t
]

Ω(t)− 2t
[

e5t + et + 2e4t
]

Ω′(t)

}

.

(5.188)
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This heat trace has the asymptotic expansion as t → 0

ΘS3

L1
(t) =

√
π

4
t−3/2

(

4 + 10t+ 13t2 +O(t3)
)

. (5.189)

This can be put in the spectral form by using the identities

Ω(t)− 2tΩ′(t) =
2t3/2√

π

∑

n∈Z

n2e−tn2

, (5.190)

(1− 2t)Ω(t)− 2tΩ′(t) =
2t3/2√

π

∑

n∈Z

(n2 − 1)e−tn2

. (5.191)

We get

ΘS3

L1
(t) =

1

2

∑

n∈Z

e−tn2
[

n2
(

e5t + et
)

+ 2
(

n2 − 1
)

e4t
]

. (5.192)

The asymptotic behavior of the heat trace in the limit t → ∞ is

ΘS3

L1
(t) = 4et + 7 +O

(

e−4t
)

. (5.193)

5.7 Heat trace of the operator L2 on S
3

Now, by using the integrals (5.183) and (5.184), we compute first

∫ ∞

−∞
dr e−r2

(

2r2 − 2π2n2

t

)

=
√
π

(

1− 2π2n2

t

)

, (5.194)

∫ ∞

−∞
dr e−r2

(

2r2 − 2π2n2

t

)

cos(4r
√
t) =

√
π

(

1− 8t− 2π2n2

t

)

e−4t. (5.195)

and then by using (5.26) we find

S2(t) =

∞
∑

n=−∞

exp

(

−π2n2

t

)

[

(

1

5
P1 + P2 +

1

3
P3 + P4

)(

1− 2π2n2

t

)

(5.196)

+

(

2

5
P1+

2

3
P3

)(

1−2t− 2π2n2

t

)

e−t+
2

5
P1

(

1−8t− 2π2n2

t

)

e−4t

]

.

Further, by using (5.101) and the algebra of symmetric endomorphisms we get

exp
[

−t
(

G2
(2)+Q2

2

)]

S2(t)=e2λt
∞
∑

n=−∞

exp

(

−π2n2

t

)

(5.197)

×
{

[

1

5

(

1− 2π2n2

t

)

e2t+
2

5

(

1−8t− 2π2n2

t

)

e−2t+
2

5

(

1−2t− 2π2n2

t

)

et
]

P1

+

[

1

3

(

1− 2π2n2

t

)

e−2t+
2

3

(

1−2t− 2π2n2

t

)

e−3t

]

P3+
(

Π−+Π+e
−4t
)

(

1− 2π2n2

t

)

}

.
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Finally, by taking the trace we obtain from eq. (5.25) the heat trace

ΘS3

L2
(t) =

√
π

4
t−3/2e2λt

∞
∑

n=−∞

exp

(

−π2n2

t

)

×
{

(

1− 2π2n2

t

)

e3t + 2

(

1− 2t− 2π2n2

t

)

e2t

+

(

1− 2π2n2

t

)

et +

(

3− 16t− 6π2n2

t

)

e−t

+ 2

(

1− 2t− 2π2n2

t

)

e−2t +

(

1− 2π2n2

t

)

e−3t)

}

. (5.198)

We can rewrite this in terms of the function Ω as

ΘS3

L2
(t) =

√
π

4
t−3/2e2λt

{

[

e3t + 2(1− 2t)e2t + et + (3− 16t)e−t + 2(1− 2t)e−2t + e−3t
]

Ω(t)

− 2t
[

e3t + 2e2t + et + 3e−t + 2e−2t + e−3t
]

Ω′(t)

}

. (5.199)

To second order in t, the exponentials may be expanded

ΘS3

L2
(t) =

√
π

4
t−3/2

[

10 + (−26 + 20λ)t+ (35− 52λ+ 20λ2)t2 +O(t3)
]

. (5.200)

By using the identities (5.190)–(5.191) and

(3− 16t)Ω(t)− 6tΩ′(t) =
2t3/2√

π

∑

n∈Z

(3n2 − 8)e−tn2

, (5.201)

the heat trace can be rewritten in the spectral form

ΘS3

L2
(t) =

1

2
e2λt

∑

n∈Z

e−tn2

{

n2e3t + 2(n2 − 1)e2t + n2et + (3n2 − 8)e−t

+ 2(n2 − 1)e−2t + n2e−3t

}

.

The asymptotic behavior of the heat trace in the limit t → ∞ is

ΘS3

L2
(t) = e2λt

[

1 +O(e−3t)
]

. (5.202)

6 Effective action

Now, by using (5.17), (5.18), the heat trace of quantum gravity (2.28) on S1 × S3 takes

the form

ΘGR(t) = a1

√

π

t
Ω

(

t

a21

){

ΘS3

L2

(

t

a2

)

− 2ΘS3

L1

(

t

a2

)}

. (6.1)
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It will be convenient to separate the asymptotic behavior at t → 0

ΘGR(t) =
π

4

a1a
3

t2
Ω

(

t

a21

)

W

(

t

a2

)

, (6.2)

where

W (t) =
4√
π
t3/2

{

ΘS3

L2
(t)− 2ΘS3

L1
(t)
}

. (6.3)

Note that the function W depends also on the radius a through the dimensionless cosmo-

logical constant λ = a2Λ. The asymptotics of the function W as t → 0 are

W (t) = c0 + c1t+ c2t
2 +O(t3), (6.4)

where the coefficients ck are computed from eqs. (5.189) and (5.200)

c0 = 2, (6.5)

c1 = −46 + 20λ, (6.6)

c2 = 9− 52λ+ 20λ2. (6.7)

The coefficients ck differ from the coefficients Ck, (2.39), by the volume factor vol (S1 ×
S3) = 4π3a1a

3 and a uniform factor a2k. The asymptotics of the function W as t → ∞ are

W (t) =
4√
π
t3/2

{

e2λt − 8et − 14 +O(e−4t) +O
(

e(2λ−3)t
)}

. (6.8)

Now, following [12] the one-loop effective action can be presented in the form

Γ(1) = −π

8

a1
a

{

β log
µ2

µ2
0

+Φ

}

, (6.9)

where

Φ = a4
∞
∫

0

dt

t3
e−tz2

{

Ω

(

t

a21

)

W

(

t

a2

)

−RGR

(

t

a2

)}

, (6.10)

RGR (t) = e−tµ2
0

{

2 +
(

c1 + 2µ2
0

)

t+
(

c2 + c1µ
2
0 + µ4

0

)

t2
}

, (6.11)

β = c2 − z2a2c1 + z4a4, (6.12)

z is an infrared regularization parameter, and µ0 is an arbitrary renormalization parameter.

The total effective action including the classical term in the one-loop approximation is

Γ =
π2

2G
a1a(−3 + λ)− ~

π

8

a1
a

{

β log
µ2

µ2
0

+Φ

}

+O(~2). (6.13)

We neglect the terms of order ~2 and set ~ = 1.
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7 Thermodynamics

The effective action is a function of two variables, Γ = Γ(a1, a), where a1 is the radius of

the circle S1 and a is the radius of the 3-sphere S3. The temperature T is determined by

the radius of the circle a1 by T = 1/(2πa1) and the spatial volume V of the system is the

volume of the sphere S3, equal to V = 2π2a3. We introduce a dimensionless temperature

x =
a

a1
, (7.1)

so that the the temperature is

T =
x

2πa
. (7.2)

Then for a canonical statistical ensemble with fixed T and V the free energy F is determined

by the effective action Γ by

F = TΓ =
x

2πa
Γ. (7.3)

By using the results of the previous section for the effective action we obtain the free energy

F =
π

4G
a(−3 + λ)− 1

16a

(

β log
µ2

µ2
0

+Φ(x, a)

)

. (7.4)

This enables one to compute all other thermodynamic parameters of the graviton gas

such as the entropy

S = −∂F

∂T
= −2πa∂xF, (7.5)

the energy

E = F + TS = F − x∂xF, (7.6)

the pressure

P = −∂F

∂V
= − 1

6π2a2
∂F

∂a
, (7.7)

and the heat capacity at constant volume

Cv =
∂E

∂T
= −T

∂2F

∂T 2
= −2πax∂2

xF. (7.8)

We see that the classical term and the renormalization term in the free energy (7.4)

do not depend on the temperature; therefore, the entropy and the heat capacity do not

depend on those terms. Therefore, the entropy and the heat capacity at constant volume

are given by the derivatives of the function Φ,

S =
π

8
∂xΦ, (7.9)

Cv =
π

8
x∂2

xΦ. (7.10)

By changing the integration variable t 7→ a2t we rewrite the function Φ as

Φ =

∞
∫

0

dt

t3
e−tz2a2

{

Ω
(

x2t
)

W (t)−RGR (t)
}

. (7.11)
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Differentiating the function Φ with respect to x, we get

∂xΦ = 2x

∞
∫

0

dt

t2
e−ta2z2Ω′

(

x2t
)

W (t) , (7.12)

∂2
xΦ = 2

∞
∫

0

dt

t2
e−ta2z2

{

Ω′
(

x2t
)

+ 2x2tΩ′′
(

x2t
)}

W (t). (7.13)

We will need the asymptotics of the function Ω(t) obtained in [11]. We have as t → 0

Ω(t) = 1 + 2 exp

(

−π2

t

)

+O
(

e−4π2/t
)

, (7.14)

and as t → ∞,

Ω(t) =
1√
π

[

t1/2 + 2t1/2e−t +O
(

e−4t
)

]

. (7.15)

Because of the asymptotic behavior of Ω′ as t → 0, the integrals converge at t → 0.

The function W (t) increases exponentially at infinity with exponent et or e2λt, the function

Φ has a singularity for z2 < max
{

1
a2
, 2Λ

}

. We may then view the maximum of these

parameters as analogous to ΛQCD, an infrared cutoff below which our analysis ceases to

describe this system.

When z is taken to zero, the integrals (7.11) and (7.13) do not converge, and so we

do not examine the free energy or entropy past this point. However, as we will see later,

because the asymptotic behavior of Ω′ (t) + 2tΩ′′ (t) as t → ∞ is proportional to e−t, the

heat capacity may converge even in the limit z → 0. We decompose W according to

W (t) =
4√
π
t3/2

(

e2λt − 8et − 14
)

+ V (t) , (7.16)

where the function V is exponentially small as t → ∞. We may then split the integral for

∂2
xΦ into four parts:

∂2
xΦ = I1 + I2 + I3 + I4 , (7.17)

where

I1 =
8√
π

∞
∫

0

dt

t1/2
e−t(a2z2−2λ)

{

Ω′
(

x2t
)

+ 2x2tΩ′′
(

x2t
)}

, (7.18)

I2 = − 64√
π

∞
∫

0

dt

t1/2
e−t(a2z2−1)

{

Ω′
(

x2t
)

+ 2x2tΩ′′
(

x2t
)}

, (7.19)

I3 = −112√
π

∞
∫

0

dt

t1/2
e−ta2z2

{

Ω′
(

x2t
)

+ 2x2tΩ′′
(

x2t
)}

, (7.20)

I4 = 2

∞
∫

0

dt

t2
e−ta2z2

{

Ω′
(

x2t
)

+ 2x2tΩ′′
(

x2t
)}

V (t). (7.21)
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Figure 1. Phase diagram of the graviton gas.

Notice that the function in the integrand is exponentially small at infinity, namely,

Ω′(t) + 2tΩ′′(t) =
2t1/2√

π
(2t− 3)e−t +O

(

e−4t
)

(7.22)

Therefore, the integrals I3 and I4 converge for any x. The integral I1 converges only for

x2 > 2λ−a2z2 and the integral I2 converges for x
2 > 1−a2z2. Allowing the infrared cutoff

z to go to zero, the integral I1 converges only for x2 > 2λ and the integral I2 converges for

x2 > 1.

Therefore, all of the integrals converge at high temperature but the heat capacity has

a singularity either at the temperature xc =
√
2λ (for positive λ > 1/2) or at xc = 1 if

λ < 1/2 (including the case of negative cosmological constant Λ). Recalling that λ = a2Λ

and x = 2πaT , this defines the critical temperature

Tc =

√

max

{

Λ

2π2
,

1

4π2a2

}

, (7.23)

below which the system will undergo a phase transition. Notice that the smallest value of

the critical temperature is

Tc,min =

√

max

{

Λ

2π2
, 0

}

. (7.24)

The phase diagram of the graviton gas for the positive cosmological constant has the form

illustrated on the graph figure 1.

We also study the high temperature limit as x → ∞. The asymptotic behavior of the

combination of derivatives of Ω (7.22) implies that the high temperature limit corresponds

to the limit of t → ∞. We find the limit of I1 through I3 replacing the Ω functions by their
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leading asymptotics and integrating:

I1 ∼ − 16

πx
, (7.25)

I2 ∼ 128

πx
, (7.26)

I3 ∼ 224

πx
. (7.27)

The integral I4 is evaluated by changing variables t → t/x2 and using V (0) = W (0) = 2;

we get

I4 ∼ 4x2ν , (7.28)

where ν is the constant defined by the integral

ν =

∞
∫

0

dt

t2
{

Ω′ (t) + 2tΩ′′ (t)
}

. (7.29)

The integral I4 dominates in the high temperature limit and determines the heat capacity

per volume
Cv

V
∼ ν1

4πa3
x3 = 2π2νT 3 . (7.30)

The T 3 dependence is characteristic of the photon gas and, as has been found in our

previous paper [12], of the gluon gas as well.

Next we study the behavior of the heat capacity near the critical temperature. By

using eq. (7.22) and setting z = 0 we get

I1 ∼ 32x3

π

∫ ∞

0
dt te−t(x2−2λ), (7.31)

I2 ∼ −256x3

π

∫ ∞

0
dt te−t(x2−1) . (7.32)

We obtain, as x →
√
2λ

+
,

I1 ∼ 32λ

π

(

x−
√
2λ
)−1

, (7.33)

and as x → 1+,

I2 ∼ −128

π
(x− 1)−1. (7.34)

The critical exponent of (−1) is indicative of a second-order phase transition.

The temperature at which the phase transition occurs depends on the value of the

cosmological constant. In the case that Λ > (2a2)−1, the phase transition occurs at the

temperature Tc =
√

Λ/(2π2) and if Λ ≤ (2a2)−1 (also if Λ < 0) the phase transition occurs

at the temperature Tc = 1/(2πa). The asymptotics of the heat capacity near the critical

temperature are: if Λ > (2a2)−1 then as T → Tc

Cv ∼ 23/2

π
a2Λ3/2 (T − Tc)

−1 , (7.35)
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Figure 2. Heat capacity as a function of temperature.

with Tc =
√

Λ/(2π2). Since the heat capacity at constant volume as a function of temper-

ature grows at infinity, this means that the heat capacity must have a minimum at some

temperature T1 > Tc. Further, if Λ < (2a2)−1 then as T → Tc

Cv ∼ − 8

πa
(T − Tc)

−1 , (7.36)

with Tc = 1/(2πa); in the case that Λ = (2a2)−1 we have

Cv ∼ − 7

πa
(T − Tc)

−1, (7.37)

with Tc = 1/(2πa). This means that the heat capacity must vanish at some temperature

T2 > Tc (see figure 2.).

8 Discussion

It is well-known that the gravitational action is unbounded from below and unstable. The

primary goal of this paper was to study the quantum gravitational field restricted to a

set of manifolds which have an action that is classically bounded from below, and then

examine how one-loop quantum effects disturb that stability. In order to calculate the

one-loop effective action exactly, it is necessary to study a spacetime with a great degree of

symmetry. We studied the thermal Einstein universe S1 × S3 with non-zero cosmological

constant, varying the model only with respect to the radii, a1 and a, of the circle S1 and

the sphere S3 respectively. This spacetime is off-shell, so, strictly speaking, it does depend

on the gauge of the quantum field. However, we used the generally accepted minimal

covariant De Witt’s gauge in which all operators become Laplace type.

We computed the exact trace of the heat kernels of all relevant operators, which enabled

us to calculate the one-loop effective action exactly. The lowest value of the of the graviton
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operator can be chosen to be positive by adjusting the cosmological constant, but the ghost

operator always yields a negative eigenvalue, indicating an unstable mode for any radius of

the Einstein universe. This may indicate a problem with the gauge condition and requires

a detailed further study.

We also studied the thermal properties of the model. We found that while the free

energy and entropy are ultraviolet divergent, the heat capacity is well-defined even in the

infrared limit. In the high-temperature limit, the heat capacity of the graviton gas has a

T 3 dependence which is typical of a photon gas, and has also been found in our previous

paper [12] to be consistent with a gluon gas.

We also computed the asymptotics of the heat capacity near the critical temperature

and found that the heat capacity has a branching singularity ∼ (T − Tc)
−1 at a finite

critical temperature Tc given by (7.23).

In the case of negative or small positive cosmological constant, Λ < (2a2)−1, the

system exhibits a rather anomalous peculiar behavior with the negative heat capacity

due to the presence of the unstable mode of the ghost operator. It is common in bound

gravitational systems to have negative heat capacity. For instance, the temperature of a

black hole decreases as heat is added to it. The fact that the heat capacity changes sign

at some temperature T2 indicates that the system has a minimum internal energy at that

temperature.

It is interesting to play with the minimal value of the critical temperature given

by (7.24). If we substitute the observed value of the cosmological constant, Λ ∼ 10−52m−2,

then the minimum critical temperature is approximately

Tc,min =
~c

kB

√

Λ

2π2
∼ 5× 10−4K. (8.1)

One can speculate that if the universe cools below the critical temperature, it is likely that

some degrees of freedom would be frozen leaving a cosmic background thermal graviton

radiation with temperature Tc.

The techniques used in this paper are very general. It would be interesting to extend

this model to higher-derivative quantum gravity or to supergravity, in which the one-loop

action vanishes on-shell.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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