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1 Introduction

In 1970, Vishveshwara found that there exist complex frequency modes in perturbations of

Schwarzschild black holes [1], which are called quasi-normal modes (QNMs). QNMs play

an important role in the physics of black holes [2], where many works have been done [3–8].

Various aspects of QNMs continue to be uncovered in recent years. Actually, there have

been some nice reviews of this subject, describing the methods to calculate QNMs and

introducing the developments of QNMs: ref. [9] shows some properties of eigenfrequencies

and potential applications of QNMs to gravitational wave asteroseismology; ref. [10] intro-

duces some analysis about the application of QNMs to relativistic stars and the detection
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of QNMs; ref. [11] discusses the applications of QNMs in the AdS/CFT duality and to

astrophysical black holes; ref. [12] discusses the gravitational instabilities in higher than

four dimensions and the AdS/CFT interpretation of QNMs.

The semi-classical interpretation of QNMs is particularly interesting. In 1984, Ferrari

and Mashhood [13] found that the quasi-normal frequency in Schwarzschild black hole can

be written as

ω ≈
(
l +

1

2

)
Ω− i

(
n+

1

2

)
γL

when l � 1. Here Ω is the frequency of circular photon orbits and γL is the Lyapunov

exponent of the orbits which describe how quickly the cross section of the null geodesic con-

gruence changed under infinitesimal radial perturbations. In the eikonal limit, the authors

of [14] studied the QNMs by the WKB approximation and obtained the expression of the

imaginary part of the quasi-normal frequency. The relationship between the QNMs and

the circular null geodesics was then studied in [15], which showed that the QNMs of black

holes in any dimensions are determined by the parameters of the circular null geodesics.

Recently, the authors of [16] made a detailed study of the geometric interpretation of the

QNMs of massless scalar field in general Kerr black holes by the WKB approximation.

Usually, people may think that the charge effect is unimportant since most celestial

bodies are electroneutral. But things are not always like that. Recently, some super-

Chandrasekhar white dwarfs have been found [19, 20] and this phenomenon can be ex-

plained by the charge effect [21–23]. Even if the particle is uncharged, the behaviors of

its trajectories near the singularity of Schwarzschild and Reissner-Nordstrom (RN) black

holes are quite different. For the RN black hole, the singularity is untouchable by geodesics,

but this phenomenon does not occur for the Schwarzschild black hole. Furthermore, when

the matter fields or perturbations in Kerr-Newman (KN) black hole are charged, the in-

teraction between matter fields and electromagnetic field in the KN black hole will have

significant influence on the QNMs, which has been studied in, e.g., [24–28].

So it is interesting to study the geometric interpretation of QNMs of the charged

scalar field in the KN black hole, which is the main motivation of this paper. In order to

achieve this geometric interpretation, we also need the behavior of particle motion in the

KN spacetime, which can be found in [29–31], and generalize the method in [16] to explore

the geometric correspondence between the QNMs and spherical orbits of charged particles

for the KN black hole, where special attention is paid to the non-geodesic nature of these

orbits. It is shown that, noting the U(1) gauge invariance of physical quantities, the QNMs

have perfect geometric interpretation by means of the non-geodesic world line congruence.

The influence of charge of the particle is also addressed.

We organize the rest of the paper as follows. In section 3 we will investigate the

Hamilton-Jacobi formalism of particle motion and study the geometric correspondence of

QNMs. We can verify that those relationships [16] also hold: in the leading order, the

real part of quasi-normal frequency corresponds to the energy E, the azimuthal quantum

number corresponds to the angular momentum Lz, and the real part of angular eigenvalue

corresponds to the Carter constant Q; in next-to-leading order, the imaginary part of

quasi-normal frequency corresponds to the Lyapunov exponent γL of radial motion, and
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the next-to-leading order correction of the angular eigenvalue corresponds to the imaginary

part of the Carter constant. In section 4 we obtain the geometric correspondence by some

specific example and study the influence of charge. We also study and find the condition

of the zero damping modes in extreme KN black hole. We can observe that the imaginary

part of the quasi-normal frequency will approach to zero under this condition. In section 5

we conclude with some discussion.

2 Quasi-normal modes in Kerr-Newman spacetime

We consider the charged massive scalar field u in KN spacetime in Boyer-Lindquist coor-

dinate system:

ds2 = −
(

1− 2Mr −Q2

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dθ2

+
1

ρ2

(
(r2 + a2)2 −∆a2 sin2 θ

)
sin2 θdφ2 − 2a

ρ2
(2Mr −Q2) sin2 θdtdφ (2.1)

with M is the mass of black hole, aM is the angular momentum of black hole, Q is the

black hole charge, ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2 + Q2 and the four potential

Aa = −Qr
ρ2

[(dt)a − a sin2 θ(dφ)a]. The equation of motion of u is the Klein-Gordon (KG)

equation with charge in curved spacetime:

gab(∇a − iqAa)(∇b − iqAb)u− µ2
?u = 0 (2.2)

with q is the charge of the scalar field, µ? is the mass of the field. We can obtain that

∇aAa = 0, AaAa = −Q2r2

ρ2∆
, A0 = Qr

ρ2∆
(r2 + a2), A3 = aQr

ρ2∆
under this gauge. We can

separate the scalar field as:

u(t, r, θ, φ) =
∑
l,m

∫
e−iωteimφR(r)uθ(θ) dω , (2.3)

and obtain the radial equation and the angular equation as:

d

dr

(
∆
dR

dr

)
+

(
(K + qQr)2

∆
− (Alm + a2ω2 − 2amω + µ2

?r
2)

)
R = 0 , (2.4)

1

sin θ

d

dθ

(
sin θ

d

dθ
uθ

)
+

(
(a2ω2 − a2µ2

?) cos2 θ − m2

sin2 θ
+Alm

)
uθ = 0 (2.5)

with K = −ω(r2 + a2) + am, Alm is the angular eigenvalue of the angular equation and

depend on quantum number l and m. This is the Teukolsky equation [32] with spin s and

source are zero.

2.1 The angular eigenvalue equation

Under the transformation

x = ln

(
tan

θ

2

)
, (2.6)
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namely dx = dθ
sin θ , the angular eigenvalue equation (2.5) can be written as

d2uθ
dx2

+ V θuθ = 0 (2.7)

with V θ = a2(ω2−µ2
?) cos2 θ sin2 θ−m2 +Alm sin2 θ. We can see that the influence of mass

can be reflected in ω2−µ2
?. We assume that m 6= 0 and the condition 0 < µ? < |ω| holds in

the following discussion. Since the quasi-normal frequency is complex with ω = ωR − iωI ,
the angular value Alm is also complex:

Alm = ARlm + iAIlm . (2.8)

We can use the WKB analysis to deal with this equation, the approximate solution is

uθ =
c− exp

(
−
∫ x−
x

√
−V θ(x′) dx′

)
|V θ(x′)|

1
4

, x < x− (2.9)

uθ =
a+ exp

(
i
∫ x
x−

√
V θ(x′) dx′

)
+ a− exp

(
− i
∫ x
x−

√
V θ(x′) dx′

)
|V θ(x′)|

1
4

, x−< x < x+ (2.10)

uθ =
c+ exp

(
−
∫ x
x+

√
−V θ(x′) dx′

)
|V θ(x′)|

1
4

, x > x+ (2.11)

where x− and x+ is the turning point of V θ(x), i.e. V θ(x) is equal to zero at these two

points. The wave propagates in the region x− < x < x+ and decay to zero when x→ ±∞.

The Bohr-Sommerfeld condition is∫ θ+

θ−

dθ

√
a2(ω2

R − µ2
?) cos2 θ − m2

sin2 θ
+ARlm =

(
L− |m|

)
π (2.12)

with L = l + 1
2 . We define µ ≡ m/L, αR(a, µ) ≡ ARlm/L2, m∗ ≡ µ∗/L, ΩR(a, µ) ≡ ωR/L.

We can treat a
√

Ω2
R −m2

? as a small parameter and expand this integration to obtain

αR ≈ 1−
a2(ω2

R − µ2
?)

2L2
(1− µ2) . (2.13)

Using the facts that ωR ∼ O(l), ωI ∼ O(1), m ∼ O(l) (see [16]), we obtain that ωR � ωI .

Then we can use the perturbation theory of eigenvalue equation [16], which leads to the

next-to-leading-order correction of Alm:

AIlm = −2a2ωRωI〈cos2 θ〉 = aωI

[
∂ARlm(z)

∂z

]
z=aωR

. (2.14)

Finally we can obtain the approximate expression of Alm in eikonal limit (l� 1) as

Alm ≈ l(l + 1)− a2(ω2 − µ2
?)

2

[
1− m2

l(l + 1)

]
. (2.15)
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2.2 The radial eigenvalue equation

We define

ur =
√
r2 + a2R ,

d

dr?
=

∆

r2 + a2

d

dr
, (2.16)

and

V r = − ∆

(r2 + a2)2

[
λlm+µ2

?r
2+

∆ + 2r(r −M)

r2 + a2
− 3∆r2

(r2 + a2)2

]
+

(
ω−ma+ qQr

r2 + a2

)2

(2.17)

with λlm = Alm + a2ω2 − 2amω. Then the radial eq. (2.4) can be transformed as

d2ur
dr2
?

+ V rur = 0 . (2.18)

In the condition of eikonal limit (l� 1), we can neglect the terms ∆+2r(r−M)
r2+a2

− 3∆r2

(r2+a2)2
in

the expression of the effective potential V r, we rewrite the effective potential as

V r =
[ω(r2 + a2)−ma− qQr]2 −∆(Alm + a2ω2 − 2maω + µ2

?r
2)

(r2 + a2)2
. (2.19)

Under this transformation, when r → +∞, we have r? → +∞ and the effective potential

V r → ω2 − µ2
?; when r → r+, we have r? → −∞ and V r →

(
ω − ma+qQr+

r2++a2

)2
. In order to

obtain QNMs, we require that the wave is outgoing at r? → +∞ and ingoing at r? → −∞.

By comparing handling with the stationary Schrödinger equation, we know that boundary

condition require that there is a point r?0 such that the effective potential V r is zero here.

We can expand effective potential V r here as

V r(r?) = V0 + V ′0(r? − r?0) +
V ′′0
2

(r? − r?0)2 +O
(
(r? − r?0)3

)
(2.20)

with V ′0 = 0, V0 = V r(r?0), V ′0 = ∂V r

∂r?

∣∣
r?0

, V ′′0 = ∂2V r

∂r2?

∣∣
r?0

. Taking this Taylor expansion into

radial equation and using the result of Schutz and Will [14] as well as boundary conditions,

we can obtain

n+
1

2
=

iV0

(2V ′′0 )
1
2

. (2.21)

Due to the spirit of QNMs, we write ω = ωR − iωI , where the imaginary part is a

small parameter in contrast to the real part. When we take this into (2.21) and V ′0 = 0,

and expand with respect to ω, we obtain

V r(r?0, ωR) = 0 =
∂V r

∂r?

∣∣
r?0
, (2.22)

ωI =

(
n+

1

2

)√2
(
d2Vr
dr2?

)
r?0 ,ωR(

∂Vr
∂ω

)
r?0 ,ωR

. (2.23)

In other words, there is a radius r0 such that

V r(r0, ωR) = 0 =
∂V r

∂r
(r0, ωR) , (2.24)

ωI =

(
n+

1

2

)√2
(
d2Vr
dr2?

)
r0,ωR(

∂Vr
∂ω

)
r0,ωR

. (2.25)
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Then we can use (2.24) to calculate the position of apex of effective potential and the real

part of frequency, and obtain the imaginary part of frequency.

3 QNMs and the motion of particle in KN spacetime

3.1 Geometric optics in KN spacetime

The massive charged scalar field in curved spacetime satisfy the KG equation

gab(∇a − iqAa)(∇b − iqAb)u− µ2
?u = 0 . (3.1)

We assume that the wave function can be expressed as

u = AeiΦ. (3.2)

When we taking this formula (3.2) into the KG equation (3.1) and define kµ = ∂µΦ, the

leading order equation is

gµν(kµ − qAµ)(kν − qAν) + µ2
? = 0 , (3.3)

and the next-to-leading order equation is

2(kµ − qAµ)∂µ lnA+∇µ(kµ − qAµ) = 0 . (3.4)

We know that the mechanical moment kµ − qAµ is how wave propagate in curved back-

ground from leading order (3.3) and we note Uµ = kµ−qAµ to represents the four-velocity.

The electromagnetic field makes particle’s worldline no longer geodesic and that the phase

will change along the particle’s worldline:

(Uµ − qAµ)∂µΦ = −µ2
? +

q2Q2r2

ρ2∆
. (3.5)

Furthermore, we can obtain Uµ∇µUρ = qF ρµUµ from the leading order, that is the

equation of motion of a charged massive particle in a curved spacetime with a electromag-

netic field. It is interesting to know that the mechanical moment Uµ is different from the

canonical momentum kµ. As we all know that the electromagnetic field is gauge field and

possesses the U(1) gauge invariance, when we do the gauge transformation

Aµ → A′µ = Aµ + ∂µχ , (3.6)

then the phase of wave function will changed correspondingly:

AeiΦ → AeiΦ+iχ Φ→ Φ′ = Φ + χ , (3.7)

and the canonical momentum will change like the following:

kµ → k′µ = kµ + ∂µχ . (3.8)

We can obtain that the wave front will change under gauge transformation but the four

velocity will invariant Uµ = U ′µ.

– 6 –
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The next-to-leading order equation (3.4) gives rise to

∇µUµ = −2Uµ∂µ lnA . (3.9)

Similar to [16], this equation is related to the fluid expansion equation

∇µUµ = Uµ∂µ ln A (3.10)

with A represents the area of cross section of the congruence. So the right hand side of

above equation shows the change rate of cross section along the worldline. After comparing

these two equations we have

Uµ∂µ ln
(
A

1
2A
)

= 0 , (3.11)

so

A ∝ A −
1
2 . (3.12)

It is well-known that the square of the length of amplitude represents the probability of

the appearance of particle, this result tells us that the more the area of cross section of

congruence, the less the probability of the appearance of particle.

3.2 Equation of motion for particles in KN spacetime

We will use the Hamilton-Jacobi formalism to study the motion of charged massive particle:

gµν(∂µS − qAµ)(∂νS − qAν) + µ2
? = 0 (3.13)

with S represents the Hamilton principal function. With two Killing vector fields
(
∂
∂t

)a
and

(
∂
∂φ

)a
, S can be written into the following form:

S =
µ2
?τ

2
− Et+ Lzφ+ Sr(r) + Sθ(θ) , (3.14)

where E represents the total energy of particle with gravitational as well as electromagnetic

energy, Lz represents the z-directed specific angular momentum. The property of timelike

and axial Killing vectors ensure us that E and Lz are conserved constants. And τ is the

proper time of particle. The angular and radial equations are

(S′θ)
2 = Q− cos2 θ

(
L2
z

sin2 θ
− a2E2 + a2µ2

?

)
, (3.15)

∆2(S′r)
2 =

(
E(r2 + a2)− aLz − qQr

)2 −∆
(
(Lz − aE)2 +Q+ µ2

?r
2
)
, (3.16)

where S′θ represents derivative with respect to θ and S′r with respect to r, Q is Carter

constant which is the third conserved quantity. We can see how the charge and mass

influence the radial equation (qQr and µ2
?r

2), but there is no charge influence in angular

equation. We define

R(r) =
(
E(r2 + a2)− aLz − qQr

)2 −∆
(
(Lz − aE)2 +Q+ µ2

?r
2
)
, (3.17)

Θ(θ) = Q− cos2 θ

(
L2
z

sin2 θ
− a2E2 + a2µ2

?

)
. (3.18)

– 7 –
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Then we have

Sr(r) =

∫ r
√
R

∆
dr , (3.19)

Sθ(θ) =

∫ θ√
Θ dθ . (3.20)

So the Hamilton principal function has the form

S =
µ2
?τ

2
− Et+ Lzφ+

∫ r
√
R

∆
dr +

∫ θ√
Θ dθ . (3.21)

From ∂S
∂µ2?

= 0 and ∂S
∂Q = 0, we can obtain∫ r r2

√
R
dr +

∫ θ a2 cos2 θ√
Θ

dθ = τ , (3.22)∫ r 1√
R
dr =

∫ θ 1√
Θ
dθ . (3.23)

Taking derivatives of these two equations with respect to λ:

d

dλ
= ρ2 d

dτ
, (3.24)

we have

r2

√
R
dr

dλ
+
a2 cos2 θ√

Θ

dθ

dλ
= ρ2, (3.25)

1√
R
dr

dλ
=

1√
Θ

dθ

dλ
. (3.26)

We assume the second eq. (3.26) is equal to f(λ) and take it into the first equation (3.25),

we can obtain that f(λ) = 1. Then these two equations will be recast into

dr

dλ
=
√
R , (3.27)

dθ

dλ
=
√

Θ . (3.28)

From ∂S
∂E = 0 and ∂S

∂Lz
= 0, we have

t =

∫ r (r2 + a2)
(
E(r2 + a2)− aLz − qQr

)
− a∆(aE − Lz)

∆
√
R

+

∫ θ a2E2 cos2 θ√
θ

, (3.29)

φ+

∫ r a
(
aLz + qQr − E(r2 + a2)

)
−∆(L− aE)

∆
√
R

−
∫ θ Lz cos2 θ√

θ sin2 θ
= 0 . (3.30)

When we derivative these two equations with respect to λ we can obtain

dt

dλ
=
r2 + a2

∆

(
E(r2 + a2)− aLz − qQr

)
− a(aE sin2 θ − Lz) , (3.31)

dφ

dλ
= −

(
aE − Lz

sin2 θ

)
+
a
(
E(r2 + a2)− aLz − qQr

)
∆

. (3.32)

Based on the above two equations, the mass of the particle plays no role but the charge of

the particle will have physical effects.
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3.3 Leading order correspondence with QNMs

Based on the WKB method, the phase of the wave function corresponds to the Hamil-

ton principal function, the leading order approximation of wave equation corresponds to

Hamilton-Jacobi equation. So the wave function has the following form:

u = eiS = e−iEteiLzφe±iSθe±iSr . (3.33)

By comparing to the preceding equations of QNMs, we can still find that the conserved

particle energy E corresponds to the real part of quasi-normal frequency ωR, the z-directed

angular momentum Lz corresponds to the azimuthal quantum number m. When we regard

uθ as eiSθ , we can obtain Q = ARlm −m2. These is the same as what we get in Kerr back

ground. However we cannot get the damping behaviour in leading order. In the next

section we will discuss the next-to-leading order behaviour.

3.4 Next-to-leading order correspondence with QNMs

3.4.1 The imaginary part of quasi-normal frequency with Lyapunov exponent

of radial motion

In last section we show that the conserved quantities of particle orbit (E,Q, Lz) corre-

spond to the real part of parameters of a QNMs (ωR, A
R
lm,m). They are the leading order

behaviour. The damping behaviour of QNMs will appear in the next-to-leading order. In

this section we will discuss this phenomenon. By the symmetry, we can obtain that there

should not be any correction in φ-direction. QNMs tell us that the correction of t- direction

will decay. Then we write the wave function as [16]

u = AeiS = e−γtAr(r)Aθ(θ)e
−iEteiLzφe±iSθe±iSr . (3.34)

We define A(t, r, θ) = e−γtAr(r)Aθ(θ). Then the next-to-leading order condition (3.4)

gives rise to

ρ2d lnA

dτ
= −1

2

(
∂r(∆∂rSr) +

1

sin θ
∂θ(sin θ∂θSθ)

)
(3.35)

with τ the affine parameter. We should note that Uµ∇µ = d
dτ which is different from kµ∇µ.

The transformation d
dλ = ρ2 d

dτ can change the left hand side of this equation as:

d lnA

dλ
=
d lnAr
dλ

+
d lnAθ
dλ

− γ dt
dλ

. (3.36)

The expression of dt
dλ can be separated into two part: one is only depend on r and

another on θ:
dt

dλ
= ¯̇t+ ˜̇t (3.37)

with ¯̇t is the function of r and ˜̇t is the function of θ.

We assume that Ar is a good function near r = r0 or analytic, then we have Ar(r) ∼
(r − r0)n around r0 with n is a integer. Then we can obtain

γ =

(
n+

1

2

)√
R′′0/2
¯̇t

=

(
n+

1

2

)
lim
r→r0

1

r − r0

dr/dλ

〈dt/dλ〉θ
, (3.38)

where R′′0 ≡ R′′(r0).
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The physical interpretation here is that the motion in the θ-direction is independent

of r. Then we can choose a worldline congruence whose r-value is a little bigger than r0

but very different θ. When they return their respective initial value of θ, the change of

radial r ∆r is far less than r0. And we have that motion along a period of θ:

1

r − r0

∆r

∆t
≡ γL (3.39)

with right side will approach to a constant. As we all know the definition of Lyapunov

exponent:

λ = lim
t→∞
|∆X0|→0

1

t
ln
|∆X(X0, t)|
|∆X0|

(3.40)

with |∆X0| represents the interval between two paths at initial time in phase space,

|∆X(X0, t)| represents the interval between these two paths after time t. Under these

circumstances, one path is a unstable circular orbit which the initial radial position is r0

and will be at r0 after a period ∆t of θ motion, the initial position of another path is a

little bigger than r0, for example r, and will be at r + ∆r after ∆t. By the definition of

Lyapunov exponent, we have:

λ ≈ 1

∆t
ln
r + ∆r − r0

r − r0
=

1

∆t
ln

(
1 +

∆r

r − r0

)
(3.41)

≈ 1

r − r0

∆r

∆t
= γL .

So the physical meaning of γL is the Lyapunov exponent of radial motion. The comparison

between the circular orbit and the orbit around it tell us that the worldline will return

their initial θ position after a period of θ motion. The φ-direction is Killing direction, this

symmetry guarantee that the φ-direction of congruence will not change. Then the area of

cross-section A only depends on the radial direction: ∆̃r(∆t) = r + ∆r − r0. Base on the

definition ∆̃r(∆t) = eγL∆t∆̃r of the Lyapunov exponent, we can obtain

A ∝ eγLt. (3.42)

So we have:

A ∝ e−γLt/2. (3.43)

In the following we consider a worldline whose initial coordinates are (t, r, θ, φ) and

will be (t+ ∆t, r+ ∆r, θ, φ+ ∆φ) after a period of θ. In this process, the condition ∂S
∂E = 0

and ∂S
∂Q = 0 implies

∂

∂E

[ ∫ r+∆r

r

√
R(r′)

∆(r′)
dr′ + ∆Sθ

]
= ∆t , (3.44)

∂

∂R

[ ∫ r+∆r

r

√
R(r′)

∆(r′)
dr′ + ∆Sθ

]
= 0 (3.45)

with:

∆Sθ = 2

∫ θ+

θ−

√
Θ(θ′) dθ′ ≡

∮ √
Θ(θ′) dθ′. (3.46)
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Due to the radial r is near r0 and will change little, then the integral with respect to r′

can be changed as the product of integrand and ∆r. Using the Bohr-Sommerfeld condition

∆Sθ = 2(L − |m|) and its total derivative with respect to E is zero as well as R(r) ≈
(r−r0)2

2 R′′, we can obtain [16]

γ =

(
n+

1

2

) √
2R′′0∆0[

∂R
∂E + ∂R

∂Q
(
dQ
dE

)
BS

]
r0

, (3.47)

where ∆0 = ∆(r0).

We can see that this is equivalent with the expression of imaginary part of quasi-

normal frequency. At last we can sum up what we have done: the imaginary part of

massive charged quasi-normal frequency of KN black hole is respond to the Lyapunov

exponent of radial motion of massive charged particle of KN spacetime. The imaginary

part of frequency represents the damping behaviour of wave and the Lyapunov exponent

of particle represent the expansion of the cross section of the worldline congruence around

the unstable circular orbits. Based on the expression (3.47), since R and Q both depend

on q, the charge of the particle plays an important role in the motion.

3.4.2 Angular amplitude correction and the imaginary part of Carter constant

We can see that the Carter constant corresponds to the real part of angular eigenvalue:

Q = ARlm −m2

from the leading order equation, and we know that Alm is complex. We can guess that the

Carter constant can be complex and this equation can still be hold. As we can see that

particle charge does not appear in Θ(θ), so does the angular amplitude correction Aθ, so

charge will not affect the correction. Although Θ(θ) depends on the particle mass, it does

not have essential effect on the correction. Then the meaning of complex Alm can also be

explained by the complex Carter constant.

From eq. (3.34), (3.35), (3.36), (3.37), we can obtain the correction:

Aθ =
exp

(
(−iγ)

[
∂
∂E +

(
dQ
dE

)
BS

∂
∂Q
]
(iSθ)

)
√

sin θ
√

Θ
. (3.48)

All the Q and E previous are real number and in next part we will mark them as QR
and ER and let Q and E be complex, namely Q = QR + iQI and E = ER + iEI . As we

have know that EI = −γ = −ωI , if we let QI = −γ
(
dQ
dE

)
BS

, and see the imaginary part as

a small parameter and expand exp(iSθ) which the parameters are complex, then we can

obtain:

exp(iSθ) = exp

(
i

∫ θ

θ−

√
Θ dθ

)
(3.49)

=

√
sin θ
√

ΘAθ exp(iSRθ ) ,
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where the parameters in SRθ are real [16]. We can see that the AIlm = QI from the expression

of imaginary part of angular eigenvalue.

In summary, the correction of wave amplitude make the conserved quantity E and

Q be complex, the imaginary part of Carter constant correspond to the next-to-leading

order correction of angular amplitude, then the relationship Q = Alm −m2 can hold for a

complex Q and Alm.

4 Effects of charge on QNMs

4.1 Unstable circular orbit and spherical orbit’s inclination angle

We know that the radial equation:
dr

dλ
=
√
R (4.1)

is the first integral of motion, where:

R(r) =
(
E(r2 + a2)− aLz − qQr

)2 −∆
(
(Lz − aE)2 +Q

)
. (4.2)

The equation of motion is a second order differential equation, namely:

d2r

dλ2
=
d
√
R

dλ

dr

dλ
=

1

2

dR
dr

. (4.3)

Then the condition of unstable circular orbit means that (by [33])

R(r) = 0 = R′(r) , (4.4)

namely

−(∆− a2)ξ2 − 2a
[
(2M − σQ)r −Q2

]
ξ −∆η + (1− µ̃2

?)r
4 (4.5)

−2(σQ− µ̃2
?M)r3 +

[
σ2Q2 + a2 − µ̃?(a2 +Q2)

]
r2

+2a2(M − σQ)r − a2Q2 = 0 ,

−(r −M)ξ2 + a(σQ− 2M)ξ − (r −M)η + 2(1− µ̃2
?)r

3 (4.6)

−3(σQ− µ̃2
?M)r2 +

[
σ2Q2 + a2 − µ̃?(a2 +Q2)

]
r + a2(M − σQ) = 0 .

The conserved quantities η = Q
E2 and ξ = Lz

E can be fixed by the radius r of the orbit

and the charge parameter σ = q
E of the particle. For a null curve, its parameter has a

constant-scaling freedom λ → α−1λ, which induces a scaling transformation for the 4-

velocity Uµ → αUµ. In fact, the equation of motion Uµ∇µUρ = qF ρµUµ has a scaling

symmetry defined by q → αq and Uµ → αUµ. The energy of the massless particle is

E = g(∂t, U), so the parameter σ is a scaling-invariant ratio. Then from the particle point

of view, it is the conserved qualities and q
E that make sense. This is different from that in

the QNM analysis, where the frequency, the counterpart of energy, is vital.

Due to the correspondence, we know that R(r) = 0 and R′(r) = 0 corresponds to

V r(r, ω)|r0,ωR = 0 and V r(r, ω)′|r0,ωR = 0 in the QNM analysis, respectively. All the radii
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of spherical orbits are within r1 to r2, and the inclination angles of these orbits will reach

maximal values when Θ = 0. We can obtain this extreme by taking Θ = 0:

cos2 θ± =
a2(1− µ2)− η − ξ2 +

√(
a2(1− µ2)− η − ξ2

)2
+ 4ηa2(1− µ2)

2a2(1− µ2)
(4.7)

into these two equation.

4.2 Uncharged massless scalar field

4.2.1 Redefinition of parameters

Since the black hole is charged, the gravitational filed around black hole has been changed,

so as the motion of particle even if the particle is uncharged. In this section, we will analyze

this problem. In the following two sections we will see the figure of tendency of quasi-normal

frequency and the spherical orbit’s inclination angle with respect to the parameter of field

as well as spacetime. In these pictures we will obtain a more direct understanding about

the correspondence. Since there are many parameters in this problem and we are mainly

interested in the charge effects, we assume in the following discussions that the mass of

the scalar field is zero. In order to simplify our discussion, we will redefine some new

parameters first.

We define x = r
M , x0 = r0

M (representing the apex of effective potential), y = MΩR

(representing the real part of frequency), λ = a
M (representing the angular momentum of

KN black hole), Ω = ω
L , k = Mq

L = yσ (by the correspondence we know E = ωR), ρ = Q
M

and µ = m
L . When we consider the charged massless scalar field, the effective potential of

its radial equation is V r(r) = L2

M2 g(x, y) with

g(x, y) =
[y(x2 + λ2)− µλ− yσρx]2 − (x2 − 2x+ λ2 + ρ2)

(
1 + λ2

2 (1 + µ2)y2 − 2λµy
)

(x2 + λ2)2
.

(4.8)

If we define

f1 =
[
y(x2 + λ2)− µλ− yσρx

]2− (x2− 2x+ λ2 + ρ2)

(
1 +

λ2

2
(1 + µ2)y2− 2λµy

)
(4.9)

and

f2 = y
[
x2(x− 3) + λ2(x+ 1) + 2ρ2x

]
+ (µλ+ yσρ)x− (λ2 + ρ2)yσρ− µλ , (4.10)

then the conditions f1 = 0 and f2 = 0 correspond to the requirements of QNMs, namely

V r(r, ω)|r0,ωR = 0 and V r(r, ω)′|r0,ωR = 0, respectively. We can solve these two equations

simultaneously to obtain how x and y depend on µ, λ, ρ and σ. We know that d
dr?

=
r2−2Mr+a2+Q2

r2+a2
d
dr and set h(x) = x2−2x+λ2+ρ2

x2+λ2
, then the imaginary part of the frequency is

MΩI(x, y) =

(
n+

1

2

)√2h(x) d
dx

[
h(x) d

dxg(x, y)
]

dg(x,y)
dy

. (4.11)
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(a) The real part of QN frequency (b) The imaginary part of QN frequency

(c) The apex of effective potential (d) The inclination angle of spherical orbit

Figure 1. From non-extreme to nearly extreme. BH angular momentum λ = a
M = 0.8, the

dotdashed dark green line shows ρ = 0.4, the large dashed red line shows ρ = 0.5, the dotted blue

line shows ρ = 0.59, the thick dashed purple line shows ρ = 0.599, the black line shows ρ = 0.59999.

4.2.2 From non-extreme to extreme

Using numerical method, we can solve the equations (4.9), (4.10) and (4.11), and obtain a

series of pictures (figure 1) about how QNMs and their corresponding orbits changed when

KN black hole approach to nearly extreme.

We find that the real part of quasi-normal frequency will increase when the black

hole charge increases, which can be found in figure 1(a). Furthermore, when the black

hole approaches nearly extreme, the relationship between y and µ approaches linear when

0.788 < µ < 1 (strictly speaking, m = −l . . . , l, µ = m/(l + 1/2) never precisely reaches

±1). What is important is that the imaginary part of quasi-normal frequency approach to

zero at 0.788 < µ < 1 when black hole approaches nearly extreme from figure 1(a), whose

range is different from [16]. We denote µ = 0.788 as µc and we call it turning point. When

µ > µc, the imaginary part of frequency will approach to zero in NEKN (nearly extreme KN

spacetime). We can obtain that the apex of effective potential of radial equation of QNMs
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Figure 2. Imaginary part of frequency when σ = 0 and µ = 0.7, λ2 + ρ2 < 1.

tends to horizon in NEKN, which can be found in figure 1(c). In figure 1(d), we show the

unstable spherical orbit outside the black hole as well as its maximum inclination angle.

The horizontal axis tells us the radius range of spherical orbit r ∈ [rmin, rmax]. When black

hole approaches to extreme we can obtain that many spherical orbits of different maximum

inclination angle have nearly the same radius, r ≈ 1, namely the horizon.

Under the geometric-optics correspondence between (E,Lz,Q) and (ω,m,Alm), van-

ishing imaginary part of quasi-normal frequency corresponds to vanishing Lyapunov expo-

nent of radial motion of particle in NEKN: in the aspect of QNMs, that means the mode

will exist slightly outside the horizon for a long time and do not move away very quickly

when µ > µc; in the aspect of particle, that means a lot of particle move near the horizon

with different maximum inclination angle and do not fall or move away after a perturba-

tion. In addition, figure 1(c) tells us that the apex x0 ∈ [xmin, xmax] and we can see that

(xmin, xmax) correspond to (rmin, rmax) of same black hole parameter in figure 1(d). That

supports the geometric-optics correspondence.

It is worthy to point out that, unlike Kerr case [16], there are infinity ways when KN

black hole approaches to nearly extreme. The parameters of KN (λ and ρ) limit in a unit

circle (λ2 + ρ2 ≤ 1), so there are infinity kinds of extreme KN black hole. We show how

imaginary part of quasi-normal frequency changes when the parameters of KN change in a

unit circle with a fixed µ in figure 2. We can obtain that the imaginary part approach to

zero when λ approach to 1. Furthermore, we can obtain that not every nearly extreme KN

black hole has the phenomenon that the imaginary part of QN frequency decay to zero.

For example, when λ = 0.4, we can require that the charge of black hole is large enough

such that the black hole approach to nearly extreme, we obtain that the imaginary part is

always greater than zero from figure 3. That is different from [16]. In next section, we will

derive the expression of turning point µc and obtain that µc is large than 1 in this case.

4.2.3 The turning point µc

In this section we require that the field is charged but massless. In NEKN, we have

λ2 + ρ2 ≈ 1, we will solve f1 = 0 and f2 = 0 under this condition.
(
x = 1, y = µλ

1+λ2+σρ

)
is
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Figure 3. Imaginary part of frequency, the dotdashed dark green line shows ρ = 0.8, the dashed

red line shows ρ = 0.9, the dotted blue line shows ρ = 0.91, the black line shows ρ = 0.9165.

one of the solutions. f2 = 0 gives

(x− 1)
[
y(x2 − 2x− λ2 + σρ) + µλ

]
= 0 . (4.12)

Then we can take y = − µλ
x2−2x−λ2+σρ

into f1 = 0 and obtain:

(µλ)2(2x− ρσ)2 = (x2 − 2x− λ2 + σρ)2 +
λ2

2
(1 + µ2)(µλ)2

− 2(µλ)2(x2 − 2x− λ2 + σρ) . (4.13)

When considering the turning point of real part of frequency, we take x = 1 into the

equation above and have

1

2
λ4µ4 −

(
3

2
λ2 + ρ2σ2 − 6ρσ + 6

)
λ2µ2 + (λ2 − ρσ + 1)2 = 0 . (4.14)

The physically relevant solution of this quartic equation is

µc =
1√
2λ

√
3λ2 + 12− 12ρσ + 2ρ2σ2 −

√
B (4.15)

with

B = 136 + 56λ2 +λ4− 272ρσ− 56λ2ρσ+ 184ρ2σ2 + 12λ2ρ2σ2− 48ρ3σ3 + 4ρ4σ4. (4.16)

For example, when k = 0, we have

µc =
1

2λ

√
6(λ2 + 4)− 2

√
λ4 + 56λ2 + 136 . (4.17)

This is the turning point of QNMs of uncharged and massless scalar field in nearly extreme

KN black hole (see [34]). This formula (4.17) tells us that µc is less than 1 when λ ∈ [0.5, 1],

µc = 0.744 when λ = 1 and µc = 0.788 when λ = 0.8 which correspond the vanishing

imaginary part of frequency when µ > µc. But when λ ∈ [0, 0.5], the µc will greater than 1,
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for example µc is 1.17 > 1 when λ = 0.4. That corresponds to the fact shows in figure 3.

This agrees with the discussion in the previous section. So unlike kerr case, when the

massless scalar fields are uncharged and the angular momentum a of nearly extreme KN

black hole is larger than 0.5M , the imaginary part of quasi-normal frequency of scalar field

will approach to zero with µ > µc.

Another case is that when σ = 1, we can obtain that µc is limited in the range from 0

to 0.744 by eq. (4.15), so when black hole turn to extreme RN black hole (λ→ 0, ρ→ 1),

the QNMs of charged massless field in RN have zero damping modes (see [5]).

4.3 Charged massless field

In this section we will mainly focus on the effects of field charge.

4.3.1 Charge effects in non-extreme KN black hole

Firstly, we want to see the influence in non-extreme KN black hole. We can observe that

the real and imaginary parts of the frequency become greater while the apex of effective

potential become smaller when the field charge changes from −10 to 2 from figure 4(a),

figure 4(b) and figure 4(c). When the field charge is opposite to the charge of the black

hole, the electromagnetic force is attractive like gravity, these perturbations are located

at high orbits and possess relatively smaller energy which contain the gravitational and

electromagnetic energy. The electromagnetic forces change from attraction to repulsion

when the field charge changes from −10 to 2, then these perturbations need stronger

gravity to balance the electromagnetic force, so they are located at positions closer to the

horizon and possess relatively higher energy.

As we know, the particle orbits that have the maximal and minimal radii locate at the

equator, of which the Carter constant is zero. We can rewrite the equation R = 0 as

r2 − σQr + a(a− ξ) = ±(ξ − a)A , (4.18)

A =
√
r2 − 2r + a2 +Q2 . (4.19)

Then we substitute this into R′ = 0 and obtain

σ

[
±AQ− (r − 1)Qr

a±A

]
= ±2rA− (r − 1)r2

a±A
. (4.20)

When we draw the σ-r picture, we find that we should choose “+”. For example, see

figure 5(a) (λ = a/M = 0.8, ρ = Q/M = 0.4).

Figure 5(a) shows that the range of σ has an upper bound rH
Q , which is saturated as

r → rH . Actually, when we set σ to be rH
Q in this KN black hole, we can draw the apex

of the effective potential (figure 5(b)) in the QNM analysis and obtain that the apex will

approaches the horizon when µ approaches 1.

When the orbit of particle does not totally lying on the equator, or in other words,

the Carter constant is not zero, we can not use this method and obtain the range of σ

easily. In this case, the behaviour of the worldline is much more complicated, and will be

considered in future works.
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(a) The real part of QN frequency (b) The imaginary part of QN frequency

(c) The apex of effective potential (d) The inclination angle of spherical orbit

Figure 4. The influence of particle charge in non-extreme BH. The BH parameters λ = a/M = 0.8,

ρ = Q/M = 0.4. The dotdashed dark green line represents σ = q/E = −10, the large dashed red

line shows σ = −2, the thick dotted blue line shows σ = 0, the thick dashed purple line shows

σ = 1, and the black line shows σ = 2.

(a) Charge r (b) Apex µ

Figure 5. The range of charge and apex in non-extremal KN BH.
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(a) The real part of QN frequency (b) The imaginary part of QN frequency

(c) The apex of effective potential (d) The inclination angle of spherical orbit

Figure 6. The influence of particle charge when KN BH approach to nearly extreme, with σ =

q/E = 1 and the angular momentum of the BH λ = a
M = 0.8. The dotdashed dark green line

represents the BH parameters ρ = Q/M = 0.4, large dashed red line for ρ = Q/M = 0.5, thick

dotted blue line for ρ = Q/M = 0.59, thick dashed purple line for ρ = Q/M = 0.599 and black for

ρ = Q/M = 0.59999.

4.3.2 From non-extreme black hole to extreme black hole

In this section we analyse the QNMs and their geometric correspondence when black hole

approach to extreme.

1. Influence of charge of black hole.

We can also obtain the phenomenon of vanishing imaginary part of frequency when

black hole approaches to extreme with σ = q/E = 1 and black hole angular mo-

mentum λ = a/M = 0.8, which is shown in figure 6(c). (The reasons why we set

σ = q/E = 1 and λ = a/M = 0.8 are that we want get the charge effects and there

exists zero damping modes in this case.) The phenomenons of real part of frequency,

the apex and the inclination angle of spherical orbit are the same like in figure 1.

One of main differents is the position of turning point. From the previous equation

of µc (4.15) we have derived, we can obtain that µc = 0.688 when λ = a/M = 0.8
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and σ = q/E = 1, figure 6(c) also shows us that when 0.688 < µc < 1, the imaginary

part of frequency approach zero. The second different is that when the field has the

same charge like black hole, the real part of quasi-normal frequency (figure 6(a)) will

be larger than that of uncharged field (figure 1(a)) and the apex of effective potential

(figure 6(c)) is less than that of uncharged field (figure 1(c)). The explanation is

that the electromagnetic force is repulsion and need more gravity to balance. So the

charged perturbations will be located near black hole and possess higher total energy

than that of uncharged perturbations.

2. Influence of angular momentum of black hole.

When we set a fixed σ = q/E = 1 and black hole charge ρ = Q/M = 0.8 and let

KN black hole approach to nearly extreme (figure 7), we can obtain the phenomenon

of vanishing of imaginary part of quasi-normal frequency in NE KN (ρ = 0.8, λ =

0.59999). when 0.61 < µ < 1 and µc = 0.61 from figure 7(b), that correspond to

what we have gotten by equation (4.15).

3. Disappearance of zero damping modes in NEKN.

When we use eq. (4.15) to calculate the turning point when λ = 0.8, ρ = 0.6 with

σ = −1, we get µc = 0.857, however, when we choose λ = 0.6, ρ = 0.8 with σ = −1,

we get µc = 1.049 > 1. We can obtain that there is no zero damping modes in

nearly extreme KN black hole of the last case in figure 8. Considering the variety

of NEKN which is different from Kerr case, we show the imaginary part of quasi-

normal frequency with fixed µ = 1 and σ = −1 in figure 9. We can obtain that

there are zero damping modes in a fraction of NEKN, but another fraction of NEKN

do not have these modes when λ > 0.63. In the latter case, the angular drag effect

of the rotating black hole is not strong enough, so the gravity and the attractive

electromagnetic force will pull the particle into black hole, resulting in no circular

orbits or zero damping modes. So the angular momentum of black hole has a more

important role to zero damping modes. When the angular momentum is not big

enough under extreme case, the imaginary part of quasi-normal frequency will not

approach to zero (see 9).

5 Conclusion

In this paper, we utilize the method of ref. [16] to study the QNMs of charged massive scalar

field in KN spacetime. We analyse the QNMs by WKB method in eikonal limit (l� 1) and

get the expression of imaginary part of quasi-normal frequency first. Then we study the

Hamilton-Jacobi equations. The charge of particle make the world line congruence be non-

geodesic, but we can also find the geometric-optic correspondence under this non-geodesic

case and obtain the corresponding relationships between the parameters of QNMs and the

conserved qualities of particle in leading order and next-to-leading order by identifying

terms in the Hamilton-Jacobi equations and Teukolsky equations. We use these results

to study the influence of charge in details. We can observe the phenomenon of vanishing
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(a) The real part of QN frequency (b) The imaginary part of QN frequency

(c) The apex of effective potential (d) The inclination angle of spherical orbit

Figure 7. The influence of particle charge when KN BH approach to nearly extreme. σ = q/E = 1,

BH charge ρ = Q/M = 0.8, the dotdashed dark green line represent λ = a
M = 0.4, the large dashed

red line is 0.5, the thick dotted blue line is 0.59, the thick dashed purple line is 0.599, the black line

is 0.59999.

Figure 8. Imaginary part of frequency in NEKN with σ = −1, the black line shows λ = 0.6 and

ρ = 0.79999, the dotted blue line shows λ = 0.8 and ρ = 0.59999.

– 21 –



J
H
E
P
1
1
(
2
0
1
5
)
1
6
7

Figure 9. Imaginary part of frequency with µ = 1 and σ = −1.

imaginary part of quasi-normal frequency in extreme KN black hole by numerical method

and then we obtain the expression of turning point by analytical method. The expression

of turning point which depends on the parameters of black hole as well as charge of field

gives us the range of zero damping modes. We also obtain a rough range of the charge of

field about when QNMs can exist in KN black hole.

Under the geometric-optics correspondence, the massive scalar field should correspond

to timelike worldlines, instead of null ones, so the behaviour will be more complicated.

Furthermore, in the case with the massive scalar field, the black hole will in general develops

a super-radiant instability (see, e.g., [35, 36]), but it is not yet clear how (if possible) to see

signals of such instability in the WKB approximation.1 This is also an interesting topic

and should be considered in future.
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