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1 Introduction

In this note we expand on certain Green’s functions recently found in [1, 2] when extending

the action of large gauge symmetries from massless to massive particles. The general ideas

behind such studies are as follows.

The works of Strominger and collaborators [3–6] established a way to relate large gauge

symmetries at null infinity with soft theorems appearing in scattering amplitudes. In the

Maxwell case, the large gauge transformations are given by U(1) gauge parameters λ̃ that

asymptote to non-trivial functions on the sphere at null infinity:

lim
r→∞

λ̃(r, u, x̂) = λ(x̂). (1.1)

Ward identities associated to these large symmetries where shown to be equivalent to

Weinberg’s soft photon theorem in [7], for the case where the charged scattering particles

are massless.

In the gravity case, the large gauge transformations are diffeomorphisms generated by

two type of vector fields, exhibiting the following asymptotic value at null infinity:

lim
r→∞

ξaf (r, u, x̂)∂a = f(x̂)∂u, (1.2)

lim
r→∞

ξaV (r, u, x̂)∂a = V A(x̂)∂A + uα(x̂)∂u. (1.3)
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The first ones are known as supertranslations and are parameterized by sphere functions

f(x̂). The second ones are ‘generalized rotations’ and are parametrized by arbitrary vector

field on the sphere V A(x̂) (α = (DAVA)/2).
1

In [5] it was shown that Ward identities associated to supertranslations (1.2) are equiv-

alent to Weinberg’s soft theorem [10] and in [11, 12] it was shown that Ward identities

associated to sphere vector fields (1.3) are equivalent to Cachazo-Strominger (CS) soft

theorem [13].2 As in the Maxwell case, both cases where restricted to massless scattering

particles.

Since soft theorems are valid for both massless and massive particles, it is natural

to ask if there is also a symmetry interpretation in the massive case. At first this seems

not possible: a key fact used in obtaining the Ward identities is that both large gauge

transformations and scattering particles ‘live’ at the same place: null infinity. On the

other hand, scattering massive particles ‘live’ at time-like infinity. How could the above

large gauge transformations act on them?

Now, the various scattering amplitude soft theorems we are referring are obtained from

perturbative calculations which are typically performed under some gauge-fixing condition.

In particular, the expressions that have been used in the above works rest in formulas

derived from perturbative calculations in harmonic gauges. Of course the soft theorems

are gauge invariant, by which we mean invariant under small gauge transformations (i.e.

gauge transformations that die down at infinity). However, as it will become clear below,

the harmonic gauge leaves its imprint in the large gauge transformation relevant for the

discussion of asymptotic symmetries.

In both the Maxwell and gravity cases the harmonic gauge condition leaves ‘residual’

gauge symmetries associated to parameters that satisfy the wave equation:

�λ̃ = 0,

�ξaf = 0,

�ξaV = 0.

(1.4)

We can then try to solve these wave equations with boundary conditions (1.1), (1.2), (1.3)

to get the gauge parameters in spacetime. The asymptotic behaviour of such solutions

at time-like infinity will then tell us how the large gauge transformations act on the scat-

tering massive particles. In practice one obtains Green’s functions that directly give the

asymptotic time-like infinity value in terms of the value at null-infinity. As shown in [1, 2],

the associated Ward identities are then equivalent to the corresponding soft theorems. In

this way, one brings massive particles on equal footing as massless particles regarding the

relation between asymptotic symmetries and soft theorems.

1The standard BMS group (see [8] for a recent review) arises by restricting attention to vector fields

V A that are (global) conformally Killing on S2. Barnich and Troessaert’s ‘extended’ BMS [9] arises by

taking V A to be local (with singularities) conformal Killing vector fields. The ‘generalized’ BMS vector

fields (1.2), (1.3) can be characterized as spacetime vector fields that are asymptotically divergence-free

(rather than Killing as in BMS) at null infinity [11].
2The works [11, 12] where heavily based in the work [6] where Virasoro Ward Identities associated to

the extended BMS group where shown to be implied by CS soft theorem.
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The purpose of this note is to present in a unified fashion the various Green’s functions

that appeared in such studies, and provide derivations of their properties. The presentation

will be in the context of flat Minkowski spacetime. It is the hope that suitable notion of

asymptotically flat spacetimes at null and time-like infinities will allow to extend these

notions to a general context of nonlinear gravity.

The organization of the material is as follows. In section 2 we review the description of

time-like infinity as a unit spacelike hyperboloid H that was used in [1, 2] (inspired by the

description of spatial infinity given by Ashtekar and Romano [14]). The wave equations

satisfied by the gauge parameters translate into elliptic equations on H satisfied by the

(time-like asymptotic value of) gauge parameters, and we review such equations. In sec-

tion 3 we describe general scalar Green’s functions on H and describe the Green’s functions

relevant for the large gauge transformations. In section 4 we describe the relationships be-

tween the Green’s functions for large gauge transformations and the associated ‘soft factors’

that appeared in the soft theorems. In section 5 we make a check of the formulas and verify

that for the Poincare subgroup of the ‘generalized’ BMS group (1.2), (1.3) one recovers the

expected time-like asymptotic values.

2 Hyperboloid description of time-like infinity and asymptotic value of

gauge parameters

Let xµ = (t, ~x) be Cartesian coordinates of Minkowski spacetime. In the region t ≥ r ≡√
~x · ~x we introduce ‘hyperbolic coordinates’ (τ, ρ, x̂):

τ =
√

t2 − r2, ρ =
r√

t2 − r2
, x̂ = ~x/r (2.1)

t = τ
√

1 + ρ2, ~x = ρ τ x̂. (2.2)

Minkowski metric in these coordinates takes the form

ds2 = −dτ2 + τ2dσ2, (2.3)

where

dσ2 =
dρ2

1 + ρ2
+ ρ2γABdx

AdxB =: hαβdx
αdxβ , (2.4)

is the metric of a unit space-like hyperboloid that we denote by H. We use letters A,B, . . .

for sphere coordinates and α, β for coordinates on the hyperboloid. γAB is the unit sphere

metric and hαβ the unit hyperboloid metric. H provides a manifold structure for time-like

infinity, in the same spirit as null infinity is described by the null manifold I. Whereas

asymptotic massless particles have their home at I, asymptotic massive particles of rest

mass m and momentum ~p live at H, according to the identification:

ρ = |~p|/m, x̂ = ~p/|~p|. (2.5)

Our interest is in describing the time-like infinity asymptotic value of the large gauge

parameters described in the introduction. In [1, 2] it was argued that such parameters
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have the τ → ∞ asymptotic form:

lim
τ→∞

λ̃(τ, ρ, x̂) = λH(ρ, x̂)

lim
τ→∞

ξaf (τ, ρ, x̂)∂a = fH(ρ, x̂)∂τ

lim
τ→∞

ξaV (τ, ρ, x̂)∂a = V α
H(ρ, x̂)∂α.

(2.6)

Assuming such limiting behaviour at time-like infinity, then eqs. (1.1), (1.2), (1.3), (1.4)

lead to the following equations on H [1, 2]:3

∆λH = 0, lim
ρ→∞

λH(ρ, x̂) = λ(x̂), (2.7)

∆fH = 3fH, lim
ρ→∞

ρ−1fH(ρ, x̂) = f(x̂), (2.8)

∆V α
H = 2V α

H , DαV
α
H = 0, lim

ρ→∞
V A
H (ρ, x̂) = V A(x̂), (2.9)

where ∆ and Dα are the Laplacian and covariant derivative on H. These boundary-value

differential equation problems can be solved by means of Green’s functions techniques.

Mathematically the problems are equivalent to that of finding certain free fields in Euclidean

AdS3 ≡ H with prescribed boundary value, for which the corresponding Green’s functions

are well known from AdS/CFT literature.

3 Green’s functions on H

As before we use (ρ, x̂) as ‘bulk’ coordinates for H. The sphere boundary of H will be

parametrized by q̂. We denote by GU(1)(ρ, x̂; q̂), GST(ρ, x̂; q̂) and Gα
B(ρ, x̂; q̂) the Green’s

functions associated to the respective boundary-value problems (2.7), (2.8) and (2.9). That

is, we write the solution to these equations as [1, 2]:

λH(ρ, x̂) =

∫

S2

d2q̂ GU(1)(ρ, x̂; q̂)λ(q̂), (3.1)

fH(ρ, x̂) =

∫

S2

d2q̂ GST(ρ, x̂; q̂)f(q̂), (3.2)

V α
H(ρ, x̂) =

∫

S2

d2q̂ Gα
A(ρ, x̂; q̂)V

A(q̂), (3.3)

with the Green’s functions satisfying:

∆GU(1) = 0, lim
ρ→∞

GU(1)(ρ, x̂; q̂) = δ(2)(x̂, q̂), (3.4)

∆GST = 3GST, lim
ρ→∞

ρ−1GST(ρ, x̂; q̂) = δ(2)(x̂, q̂), (3.5)

∆Gα
B = 2Gα

B, DαG
α
B = 0, lim

ρ→∞
GA

B(ρ, x̂; q̂) = δABδ
(2)(x̂, q̂), (3.6)

where ∆ and Dα act on the (ρ, x̂) variables. In the following sections we describe these

Green’s functions. It will however be useful to first describe general scalar Green’s functions

on H, of which GU(1) and GST are special cases. We will then describe the sphere vector

field Green’s function Gα
B.

3By different considerations, the differential equation in (2.8) was already proposed in [17] as a way to

define an action of supertranslations on massive fields.
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3.1 General scalar Green’s functions

In this section we describe a family of scalar Green’s functions G(n)(ρ, x̂; q̂) parametrized

by a real number n > 1:

G(n)(ρ, x̂; q̂) =
(n− 1)

2n−1

√

γ(q̂)

2π

(

√

1 + ρ2 − ρ q̂ · x̂
)−n

(3.7)

(
√

γ(q̂) denotes the area element of the boundary sphere). These are ‘global coordinates’

version of the free field Green’s functions described in [15, 16], specialized to the case of

Euclidean AdS3 ≡ H. Below we show these functions satisfy:

∆(ρ,x̂)G
(n) = n(n− 2)G(n), lim

ρ→∞
ρ2−nG(n)(ρ, x̂; q̂) = δ(2)(x̂, q̂). (3.8)

For n = 2, 3 eq. (3.8) becomes eq. (3.4), (3.5) respectively, so that:

GU(1) = G(2), GST = G(3). (3.9)

We will later see that G(4) is relevant for the sphere vector field Green’s function Gα
B.

To show the first equation in (3.8), we ‘undo’ the change of coordinates presented in

section 2 and think of (ρ, x̂) 7→ G(n)(ρ, x̂; q̂) as a function on (the t > r region of) Minkowski

space that depends only on the hyperboloid direction. In these coordinates, a space-time

point xµ is parametrized as:

xµ = τ(
√

1 + ρ2, ρx̂). (3.10)

Let

qµ = (1, q̂), (3.11)

be the future null 4-vector associated to q̂. Then the function we are interested may be

written as:
(

√

1 + ρ2 − ρ q̂ · x̂
)−n

= (q · x/τ)−n (3.12)

where q · x = qµx
µ = x0 − ~x · q̂. (In this section only we use opposite signature convention

to that of section 2 as it simplifies expressions.) In these coordinates the flat space wave

operator takes the form

� = ∂2
τ − τ−2∆, (3.13)

where ∆ ≡ ∆(ρ,x̂) is the Laplacian in the unit hyperboloid. The action of ∆ on (3.12) may

be computed by writing the Laplacian as

∆ = −τ2
(

�+ ∂2
τ

)

, (3.14)

and acting on the function in the form given by the r.h.s. of (3.12). Since the action of ∂τ
on this function vanishes, we only need to compute the � = ∂µ∂µ term. Using

∂µτ = τ−1xµ, ∂µ(q · x) = qµ, qµq
µ = 0, (3.15)

one finds

− τ2�(q · x/τ)−n = n(n− 2)(q · x/τ)−n, (3.16)

– 5 –
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from which the first equation in (3.8) follows. To see the second equation in (3.8) we note

that the ρ → ∞ behaviour of G(n) depends on whether x̂ and q̂ coincide or not according to:

ρ2−nG(n)(ρ, x̂; q̂) =

{

O(ρ2(1−n)) if x̂ 6= q̂

O(ρ2) if x̂ = q̂
(3.17)

On the other hand, the integral of G(n) over the sphere q̂ can be computed and is given by,

∫

d2q̂ G(n)(ρ, x̂; q̂) =
1

2n−1ρ

[

(
√

1 + ρ2 + ρ)n−1 − (
√

1 + ρ2 − ρ)n−1
]

, (3.18)

from which it follows that

lim
ρ→∞

ρ2−n

∫

d2q̂ G(n)(ρ, x̂; q̂) = 1. (3.19)

Equations (3.17) and (3.19) imply that ρ2−nG(n)(ρ, x̂; q̂) approaches the delta function as

desired. This completes the proof of (3.8).

We close by noting that from eq. (3.9) and eq. (3.18) for n = 2, 3 one finds:

∫

d2q̂ GU(1) = 1,

∫

d2q̂ GST =
√

1 + ρ2. (3.20)

The first condition implies that global U(1) transformation at null infinity (λ(x̂) = 1) are

indeed mapped to global U(1) transformations at time-like infinity (λH(ρ, x̂) = 1). As

we will see in section 5, the second condition implies similar agreement regarding time-

translations at null and time-like infinity.

3.2 Sphere vector field Green’s function

The sphere vector field Green’s function Gα
B has the tensor structure of a bulk vector and

boundary covector. A natural way to incorporate such tensor structure is in terms of bulk

and boundary Lorentz generators. In spacetime notation, the bulk Lorentz generators are

given by:

Jµν = xµ∂ν − xν∂µ µ, ν = 0, 1, 2, 3. (3.21)

Note that although written in spacetime notation, we are regarding (3.21) as a set of 6 vec-

tor fields on H (the explicit form in terms of (ρ, x̂) coordinates is given in eqs. (5.5), (5.6)).

On the other hand, the Lorentz generators on the boundary sphere are given by

LB
µν = qµD

Bqν − qµD
Bqν µ, ν = 0, 1, 2, 3, (3.22)

with qµ as in eq. (3.11) and DB the 2-d boundary derivative. We show below that in terms

of these bulk and boundary Lorentz generators, the sphere vector field Green’s function is

given by:

Gα
B∂α = −G(4)Lµν

B Jµν (3.23)

(the index B is lowered with the metric γAB of the boundary sphere).

– 6 –
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We employ the same method of the previous section and realize GB ≡ Gα
B∂α as a

vector field in Minkowski space that depends only on the hyperboloid direction. Up to

x-independent proportionality factors, the vector field of interest can be written as:

GB ∝ (q · x/τ)−4Xµ∂µ, Xµ = ǫµνσρxνqσ∂Bqρ, (3.24)

where ǫµνσρ is the totally antisymmetric symbol. Since GB is independent of τ , one verifies

that the 4-d divergence coincides with the 3-d divergence as a vector field on H. From

the 4-d perspective it is then immediate to check that the divergence of (3.24) vanishes.

The statement that the vector field is annihilated by the differential operator ∆ − 2 on

H is equivalent to the statement that vector field satisfies the wave equation from the 4-d

perspective. The latter can easily be calculated:

�
[

(q · x/τ)−4Xµ
]

= Xµ
�(q · x/τ)−4 + 2∂α(q · x/τ)−4∂αXµ + (q · x/τ)−4

�Xµ = 0, (3.25)

where we used eq. (3.16) for n = 4, as well as equations (3.15) and �Xµ = 0. This

concludes the proof of the differential equation identities in (3.6).

We now show the Green’s function satisfies the desired boundary condition. To this

end, we need to write Jµν in (ρ, xA) coordinates, and look at the ∂A components. If we

introduce the 4-vector

Pµ := (
√

1 + ρ2, ρx̂), (3.26)

the components of interest can be written as (see eqs. (5.5), (5.6)):

JA
µν = 2ρ−2P[µD

APν]. (3.27)

Next, we need to compute the contraction

Lµν
B JA

µν = 2ρ−2
[

q · P∂BD
A(q · P )− ∂B(q · P )DA(q · P )

]

. (3.28)

To proceed, we choose (w, w̄) coordinates for q̂ and (z, z̄) coordinates for x̂ so that

q̂ = (1 + ww̄)−1(w + w̄,−i(w − w̄), 1− ww̄) (3.29)

x̂ = (1 + zz̄)−1(z + z̄,−i(z − z̄), 1− zz̄). (3.30)

For B = w̄ one finds

Lµν
w̄ JA

µν∂A =
2

ρ(1 + ww̄)2
[

(
√

1 + ρ2 + ρ)(w − z)2∂z − (
√

1 + ρ2 − ρ)(1 + wz̄)2∂z̄
]

. (3.31)

The Green’s function as defined in eq. (3.23) is obtained by multiplying (3.31) with −G(4).

From (3.17) and (3.31) we see that

Gz
w̄ =

{

O(ρ−4) if x̂ 6= q̂

0 if x̂ = q̂
(3.32)

so that Gz
w̄ → 0. For the other component we have:

Gz̄
w̄ = G(4) ×

[

ρ−2 (1 + wz̄)2

(1 + zz̄)2
+O(ρ−3)

]

→ δ(2)(w − z), (3.33)

where we expanded (3.31) in 1/ρ and used the limiting condition (3.8) for n = 4. One can

repeat the analysis for the the B = w component to find thatGz̄
w → 0 andGz

w → δ(2)(w−z).

This concludes the proof of the boundary condition in (3.6).
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4 Green’s functions and soft factors

The Green’s functions described above where encountered in relation with ‘soft factors’ that

appear in the various soft theorems of scattering amplitudes. In this section we describe

such relations. To this end let us parametrize H by a 3-momentum ~p according to (2.5) and

parametrize q̂ in terms of (w, w̄) as in eq. (3.29). Then, the relations between the Green’s

functions and the soft factors are [1, 2]:

GU(1)(~p/m;w, w̄) =
1

2π
∂w̄

(√
γww̄

ε · p
q · p

)

, (4.1)

GST(~p/m;w, w̄) = − 1

2πm
∂w̄

(

γww̄∂w̄

(

γww̄
(ε · p)2
q · p

))

, (4.2)

Gα
w̄(~p/m;w, w̄)∂α = − 1

4π
∂3
w̄

(

ε · p
q · p εµqν

)

Jµν . (4.3)

Here εµ = 1/
√
2(w̄, 1,−i,−w̄) is a positive helicity polarization vector associated to qµ ≡

(1, q̂), γww̄ = 2(1+ww̄)−2, pµ the 4-momentum associated to ~p and Jµν = 2p[µ∂ν] the bulk

Lorentz vector fields.4

The general structure of the r.h.s. of equations (4.1), (4.2), (4.3) is that of a 2-d

boundary differential operator acting on the soft factors that feature in the soft theorems.

The precise form of the 2-d differential operator is dictated by the ‘soft charges’ associated

to the given symmetry, which in turn can be obtained from phase space methods.

To show the above relations it is convenient to use a different normalization for the

vectors that appear in the soft factors. Define:

Wµ := (1 + ww̄,w + w̄,−i(w − w̄), 1− ww̄) = (1 + ww̄)qµ, (4.4)

Eµ := ∂wW
µ =

√
2 ε(w, w̄), (4.5)

Pµ := (
√

1 + ρ2, ρx̂) = pµ/m. (4.6)

We will denote the dot product between such vectors by EP = EµP
µ, etc. A key identity

to show the relations is:

∂w̄(EP )WP − EP∂w̄(WP ) = 1, (4.7)

which can be verified by explicit computation. From (4.7) it immediately follows that:

∂w̄
EP

WP
= (WP )−2. (4.8)

Expressing (4.8) in terms of the original vectors q, ε, p, one obtains eq. (4.1).

The relevant identity for supertranslations is:

∂w̄

[

(1 + ww̄)2∂w̄

(

EP

(1 + ww̄)

EP

WP

)]

= 2(1 + ww̄)(WP )−3, (4.9)

which can be shown by repeatedly using eqs. (4.7), (4.8) as well as,

∂2
w̄W

µ = ∂2
w̄E

µ = 0. (4.10)

Multiplying (4.9) by −(4π)−1 one recovers eq. (4.2).

4In this and remaining sections we are back to (−1,+1,+1,+1) signature convention.
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We finally discuss eq. (4.3). In terms of the W,P,E vectors it takes the form:

Gw̄ = − 1

8π
∂3
w̄

[(

EP

WP

)

EP Wµ∂µ − EPEµ∂µ

]

. (4.11)

where ∂µ ≡ ∂/∂Pµ. Since ∂2
w̄E

µ = 0, the second term in (4.11) gives vanishing contribution.

Using the identities (4.7), (4.8), (4.10) one finds:

Gw̄ = − 3

4π
(WP )−4(WP∂w̄W

µ − ∂w̄(WP )Wµ)∂µ. (4.12)

The vector field in (4.12) can be written as

(WP∂w̄W
µ − ∂w̄(WP )Wµ)∂µ = W [µ∂w̄W

ν]Jµν , (4.13)

where

Jµν = Pµ∂ν − Pν∂µ (4.14)

are the bulk Lorentz vector fields. The factor multiplying Jµν in (4.13) can be seen to be

related with the boundary Lorentz generators (3.22) by

W [µ∂w̄W
ν] =

(1 + ww̄)2

2
Lµν
w̄ (4.15)

Substituting these expressions in (4.12) and writing everything in terms of the original

vectors q, ε, p, one recovers eq. (4.3).

5 Poincare subgroup of generalized BMS group

Let xµ = (t, ~x) be Cartesian coordinates of Minkowski spacetime. The spacetime Poincare

generators are given by the vector fields:

∂µ, Jµν := xµ∂ν − xν∂µ, µ, ν = 0, 1, 2, 3. (5.1)

By going to outgoing null coordinates r, u := t− r, x̂ and taking r → ∞, one finds that the

corresponding generators at null infinity are:

T0(q̂) := 1 time translations

Ti(q̂) := −q̂i space translations

LA
ij(q̂) := q̂iD

Aq̂j − q̂jD
Aq̂i rotations

LA
i0(q̂) := DAq̂i boosts

(5.2)

These are the generators of the Poincare subgroup inside the generalized BMS group of

eqs. (1.2), (1.3).5

On the other hand, expressing the vector fields (5.1) in the hyperbolic coordinates of

section 2 one finds:

∂0 =
√

1 + ρ2 ∂τ +O(τ−1) (5.3)

5In the present case there is a preferred Poincare subgroup associated to the Minkowski metric. In a

generic asymptotically flat spacetime there is no unique asymptotic Poincare subgroup [8].
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∂i = −ρ x̂i ∂τ +O(τ−1) (5.4)

Jij = (x̂iD
Ax̂j − x̂jD

Ax̂i)∂A (5.5)

Ji0 =
√

1 + ρ2(ρ−1DAx̂i∂A + x̂i∂ρ). (5.6)

We now verify that the time-like asymptotic value of the Poincare vector

fields (5.3), (5.4), (5.5), (5.6) coincide with what is obtained from the Green’s function

formulas (3.2), (3.3) applied to the boundary generators (5.2).

5.1 Spacetime translations

We recall that the supertranslation Green’s functions is given by eq. (3.7) for n = 3. Then,

according to (3.2) the asymptotic τ component of the spacetime translations (5.3), (5.4) is

given by:

ξ̊τ (ρ, x̂) =

∫

d2q̂ G(3)(ρ, x̂; q̂)Tµ(q̂). (5.7)

For time translations T0(q̂) = 1 the integral is given by eq. (3.18) for n = 3 which becomes:

∫

d2q̂ G(3) =
√

1 + ρ2 (5.8)

in agreement with (5.3). In order to evaluate the integral (5.7) for spatial translations

Ti(q̂) = −q̂i we express the integrand in terms of derivatives of G(2) as follows.

Let ~P = ρx̂ so that ρ =
√

~P · ~P . The integrand we are interested can then be written

as:

G(3)(~P ; q̂)q̂i =
1

2

∂

∂Pi
G(2)(~P ; q̂) +

Pi
√

1 + ρ2
G(3)(~P ; q̂). (5.9)

Integrating over q̂ and using eq. (3.18) for n = 2 (which gives 1 and hence gives zero

contribution in (5.9)) and eq. (5.8) one obtains

∫

d2q̂ G(3)(ρ, x̂; q̂)q̂i = ρx̂i, (5.10)

in agreement with (5.4).

5.2 Boosts

Using the form of the Green’s function given in (3.23), the integral formula (3.3) for the

hyperboloid vector field associated to the boost V B(q̂) = LB
i0 takes the form:

ξ̊α(ρ, x̂) = −
∫

d2q̂ G(4)(ρ, x̂; q̂)LB
i0(q̂)L

µν
B (q̂)Jα

µν , (5.11)

where Jα
µν∂α is given by eqs. (5.5), (5.6) and Lµν

B (q̂) by eq. (3.22) (or equivalently eq. (5.2)).

Note that Jα
µν∂α is independent of q̂ so that it can be taken outside the integral. The

contraction LB
i0(q̂)L

µν
B can be evaluated with help of the identity:

DAq̂iDAq̂j = δij − q̂iq̂j (5.12)
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and gives

LB
i0(q̂)L

j0
B (q̂) = q̂iq̂

j − δji (5.13)

LB
i0(q̂)L

jk
B (q̂) = q̂jδki − q̂kδji . (5.14)

In order to evaluate (5.11) we then need the integrals of G(4), q̂iG
(4) and q̂iq̂jG

(4). The

first one is given in eq. (3.18) for n = 4 and reads:
∫

d2q̂ G(4) = 3/4 + ρ2. (5.15)

For the two other ones we use similar trick as in eq. (5.9). Taking derivative of G(3) one

finds:

G(4)(~P ; q̂)q̂i =
1

4

∂

∂Pi
G(3)(~P ; q̂) +

Pi
√

1 + ρ2
G(4)(~P ; q̂). (5.16)

Integrating (5.16) over the sphere and using (5.8), (5.15) one gets:
∫

d2q̂ G(4)(ρ, x̂; q̂)q̂i = ρ
√

1 + ρ2 x̂i (5.17)

Finally, multiplying (5.16) by q̂j and using eqs. (5.10), (5.17) one finds:
∫

d2q̂ G(4)(ρ, x̂; q̂)q̂iq̂j =
1

4
δij + ρ2x̂ix̂j . (5.18)

Collecting all results in (5.11) one arrives at:

ξ̊α = Jα
i0 − 2ρ2[x̂ix̂

kJα
k0 − Jα

i0 + ρ−1
√

1 + ρ2x̂kJki]. (5.19)

Using the expressions for Jα
µν given in (5.5), (5.6) one can verify that the term in the square

bracket vanishes an we recover the boost vector field (5.6).

5.3 Rotations

Since the verification of rotations goes along the same lines as for boosts we give a sum-

marized version. The boundary vector field in (5.11) is now taken to be LB
ij(q̂) (in place of

LB
i0(q̂)). The contractions are now:

LB
ij(q̂)L

k0
B (q̂) = −2q̂[iδ

k
j] (5.20)

LB
ij(q̂)L

kl
B (q̂) = −2q̂[iδ

k
j]q̂

l − k ↔ l. (5.21)

The relevant integrals can be evaluated from (5.17), (5.18). Using identities such as

x̂kx̂k = 1, x̂kDAx̂k = 0 and the vanishing of the square bracket in (5.19) one obtains

ξ̊α = Jα
ij .
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