
J
H
E
P
1
1
(
2
0
1
5
)
1
5
9

Published for SISSA by Springer

Received: September 10, 2015

Accepted: November 4, 2015

Published: November 23, 2015

Lattice study on QCD-like theory with exact center

symmetry

Takumi Iritani,a Etsuko Itoub and Tatsuhiro Misumic,d

aDepartment of Physics and Astronomy, Stony Brook University,

Stony Brook, NY 11794-3800, U.S.A.
bKEK Theory Center, High Energy Accelerator Research Organization (KEK),

1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
cDepartment of Mathematical Science, Akita University,

1-1 Tegata Gakuen-machi, Akita 010-8502, Japan
dResearch and Education Center for Natural Science, Keio University,

4-1-1 Hiyoshi, Yokohama, Kanagawa 223-8521, Japan

E-mail: takumi.iritani@stonybrook.edu, eitou@post.kek.jp,

misumi@phys.akita-u.ac.jp

Abstract: We investigate QCD-like theory with exact center symmetry, with emphasis

on the finite-temperature phase transition concerning center and chiral symmetries. On

the lattice, we formulate center symmetric SU(3) gauge theory with three fundamental

Wilson quarks by twisting quark boundary conditions in a compact direction (Z3-QCD

model). We calculate the expectation value of Polyakov loop and the chiral condensate

as a function of temperature on 163 × 4 and 203 × 4 lattices along the line of constant

physics realizing mPS/mV = 0.70. We find out the first-order center phase transition,

where the hysteresis of the magnitude of Polyakov loop exists depending on thermalization

processes. We show that chiral condensate decreases around the critical temperature in a

similar way to that of the standard three-flavor QCD, as it has the hysteresis in the same

range as that of Polyakov loop. We also show that the flavor symmetry breaking due to

the twisted boundary condition gets qualitatively manifest in the high-temperature phase.

These results are consistent with the predictions based on the chiral effective model in the

literature. Our approach could provide novel insights to the nonperturbative connection

between the center and chiral properties.
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1 Introduction

Strong dynamics based on Quantum ChromoDynamics (QCD) induces two main nonper-

turbative phenomena, “quark confinement” and “spontaneous chiral symmetry breaking”,

which are the main themes of research on strong-coupling dynamics. While both of the

two phenomena are caused by infrared physics based on the asymptotic freedom, it is not

fully understood how they are related with each other. Some of lattice QCD simulations

show that these two phenomena are almost simultaneously turned off at a certain tempera-

ture [1–3], where the transition to the quark-gluon plasma (QGP) phase occurs. Regarding

the connection between the two phenomena, we here have several questions: do the tran-

sitions take place at the same temperature? Does one of the transitions induce the other?

Investigating these questions could lead to understanding of the nonperturbative relation

between confining and chiral symmetry breaking. There are several approaches for study

on the linkage between these phenomena, including the analysis on quark confinement in

terms of chiral symmetry breaking [4–11] or vise versa [12, 13] from lattice QCD, and the

effective models motivated by both chiral and center symmetries [14–18].
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In the presence of exact Z3 center symmetry, one can study the confining/deconfining

phase transition by use of the expectation value of the Polyakov loop. Since it is the

order parameter of Z3 center symmetry, it works as an indicator of confining/deconfining

through the quark free energy. Quenched QCD (without dynamical quarks) [1] and adjoint

QCD (with adjoint quarks instead of fundamental ones) [19] are examples of this case.

However, their results on coincidence of the transition temperatures are inconsistent: for

the quenched QCD it is reported that the transition temperatures coincides while they

do not for the adjoint QCD. In the first place, these two theories are too far from the

realistic QCD in a sense that one contains no dynamical quarks while the other contains

an excessive amount of dynamical degrees of freedom of quarks.

For the physical Nf = 2 + 1 QCD, where u- and d-quark masses are degenerated while

s-quark has a heavier mass, things get more involved: the dynamical fundamental quarks

explicitly break center symmetry, so what we can do the best is study the crossover transi-

tion based on the expectation values of the Polyakov loop. In the literature [2, 3], one finds

inconsistent results on coincidence of the crossover temperatures of center and chiral transi-

tions, depending on the scheme and setup of the lattice simulations: some works argue that

the two critical temperatures are very close [2] while the others show that they are not [3].

One ideal situation for studying this topic in details is that the exact center symmetry

and the dynamical fundamental quarks are reconciled. As well-known, the existence of

dynamical fundamental quarks breaks center symmetry explicitly, thus the above accom-

modation seems infeasible. However, appropriate boundary conditions for quarks enable

us to realize such a situation. By imposing three different twisted boundary conditions on

the three fundamental quarks (shifted by 2π/3) in the compact imaginary-time direction,

we realize center symmetric SU(3) gauge theory with three dynamical quarks in fundamen-

tal representation on R3 × S1 (Z3-QCD model) [20–24]. By investigating this model, we

could make progress in elucidating the connection between confining/deconfining and chi-

ral transitions. The analytical study on this theory based on the Polyakov-loop extended

chiral model [15, 16, 18] was initiated in ref. [23], which shows that the center symmetry

is spontaneously broken at certain temperature, associated by the manifestation of flavor

symmetry breaking. Although the chiral model helps understand rough picture of the

nonperturbative properties, we cannot fully eliminate the model artifacts.

In this paper, we numerically investigate finite-temperature Z3-QCD model on the

lattice, with emphasis on center phase transition and its influence on the chiral properties.

We formulate center symmetric SU(3) lattice gauge theory with three fundamental Wilson

quarks by twisting the boundary conditions in the imaginary time direction. We calculate

the expectation value of Polyakov loop and the chiral condensate on 163 × 4 and 203 × 4

lattices with mPS/mV = 0.70 fixed. We find out the first-order center phase transition

at certain temperature, where the hysteresis exists depending on the initial condition for

the configuration generation. We show that the chiral condensate rapidly decreases around

the center critical temperature and has the hysteresis too. We also verify manifestation of

the flavor symmetry breaking in the flavor-diagonal meson sector in the high-temperature

phase, which was predicted in the effective chiral model study.
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The structure of the paper follows: in section 2, we briefly review the construction

of Z3-QCD model in the continuum theory and introduce the expected properties based

on the chiral model study. In section 3, we formulate Z3-QCD model on the lattice and

note details of the simulation setup including the parameter fixing for finite-temperature

simulations. In section 4, we show our results for the phase transitions associated with the

center and chiral symmetries. Section 5 is devoted to summary and discussion.

2 Z3-QCD model

2.1 Formulation as a continuum theory

We give a brief review of Z3 center-symmetric SU(3) gauge theory with three fundamental

quarks on R3 × S1 proposed in refs. [20]. Here, the compact dimension can be seen as

imaginary time direction in the present work. We first consider the partition function Z

in Euclidian spacetime with one compact dimension as

Z =

∫
DΨDΨ̄DA exp[−S], (2.1)

S =

∫
d3x

∫ β

0
dτ

∑
f

Ψ̄f (γµDµ +m)Ψf +
1

2g2
trF 2

µν

 , (2.2)

where Ψf is a quark field for degenerate three-flavor quarks with flavor index f = 1, 2, 3.

Dµ ≡ ∂µ−iAµ is a covariant derivative with the SU(3) gauge field Aµ and the field strength

is given by Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ].

We here regard a compact dimension (τ) as imaginary time direction, and impose an

anti-periodic boundary condition on a quark field in the direction as

Ψf (~x, τ = β) = −Ψf (~x, τ = 0) . (2.3)

By adopting this boundary condition, we now work on the finite-temperature system with

β = 1/T .

It is known that the above action itself is invariant under the Z3 center transformation,

which is generated by the center elements of global color SU(3) transformation. However,

this transformation eventually gives rise to 2π/3 shift of phase of the quark boundary

condition as

Ψf (~x, τ = β) = −ei2πk/3 Ψf (~x, τ = 0) , (2.4)

with k = 0, 1, 2. Thereby, the Z3 center symmetry is explicitly broken via the fundamental-

quark boundary conditions (2.3), (2.4) in the usual three-flavor SU(3) gauge theory, and

of course in the realistic Nf = 2 + 1 QCD.

We now consider a case that the three flavors have distinct boundary conditions as

following,

Ψf (~x, τ = β) = −ei2π(f−1)/3Ψf (~x, τ = 0), (2.5)

for f = 1, 2, 3. It is nothing but SU(3) gauge theory in the presence of three fundamental

quarks with flavor-dependent boundary conditions.

– 3 –
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For this case, the Z3 transformation in eq. (2.4) shifts the quark boundary conditions as

Ψf (~x, τ = β) = −ei2π(k+f−1)/3Ψf (~x, τ = 0). (2.6)

The twisted angles for the three flavors are changed into k+f−1, but this can be straight-

forwardly relabeled as f −1 and returns back to the first place in eq. (2.5). In other words,

we can rename the flavor f+k as f (mod 3). This means that the three-flavor SU(3) gauge

theory with the special twisted boundary condition eq. (2.5) is invariant under the Z3 center

transformation. We call this exactly-center-symmetric model as Z3-QCD model [20–24].

We note that the flavor-dependent twisted boundary condition is translated into the inser-

tion of the flavor-dependent imaginary chemical potential by use of gauge transformation as

shown in appendix A. Hereafter, we use f = u, d, s instead of f = 1, 2, 3 as indices for flavor.

2.2 Chiral structure and flavor symmetry in Z3-QCD model

We here comment on flavor symmetry possessed by Z3-QCD model in the massless limit.

In Z3-QCD, due to the boundary conditions, the flavor-chiral SU(3)L × SU(3)R symmetry

is explicitly broken to its Cartan subgroup U(1)2
L ×U(1)2

R generated by λ3, λ8 of the Gell-

mann matrix elements. However, this influence from the boundary condition disappears

in the infinite compact-circumference limit, or in the zero-temperature limit. Thus, in this

limit, Z3-QCD is reduced to the standard three-flavor QCD at zero temperature.

For nonzero temperature, the effects of the twisted boundary condition exists in prin-

ciple, namely the flavor-chiral symmetry is broken to U(1)2
L × U(1)2

R at the action level.

In this work, we regard this Cartan subgroup as the specific flavor-chiral symmetry of the

Z3-QCD model. Thus, the pattern of the chiral symmetry breaking is basically given by

U(1)2
L × U(1)2

R → U(1)2
Ṽ

in this model. While the chiral transition in the standard three-

flavor QCD model is believed to be first-order in the chiral limit based on the universality

class [25], the same discussion is probably not valid for the Z3-QCD model.

Here, we make a supplemental comment on the flavor-chiral symmetry U(1)2
L×U(1)2

R

in the Z3-QCD model discussed above. It is notable that, indeed, we do not know at

how high temperature the physical quantities start to be affected by the twisted boundary

condition. It may be as soon as the temperature is turned on or may be at a certain nonzero

temperature. Actually, as we will see in the next subsection, the study based on the chiral

effective model indicates that the chiral condensate is insensitive to the boundary condition

below the center phase transition temperature, where the flavor symmetry breaking due to

the boundary condition is not manifest in the effective thermodynamic potential.

The significance of this model is that we can study the phase transition with respect

to the Z3 center symmetry by calculating expectation values of Polyakov loop, even in

the presence of the dynamical fundamental quarks. We here have physical and theoretical

questions: if the phase transition occurs, what is the order of the phase transition? How is

the chiral condensate affected by the center phase transition? We study these topics in the

next section numerically, although our simulations are not carried out in the chiral limit.

The study on such an ideal model with the exact center symmetry may help elucidate the

relation of center and chiral properties from novel viewpoints.

– 4 –
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2.3 Expected properties from chiral model and QCD with a finite chemical

potential

In the study of Z3-QCD based on the Polyakov-loop-extended NJL (PNJL) model [15, 16,

18], the following three properties are predicted [23] (we call this model just as the effective

chiral model in the present paper.):

(i) Z3 center symmetry is spontaneously broken in the high-temperature phase, where

the order of the phase transition is first.

(ii) Although the SU(3) flavor symmetry the standard three-flavor QCD has is spoiled

by the twisted boundary condition at the action level, the effective thermodynamical

potential of the PNJL model in the low-temperature phase is not affected by the

boundary condition. It is expected that the Z3-QCD model becomes SU(3) flavor-

symmetric in the phase. On the other hand, the flavor symmetry breaking becomes

manifest in the high-temperature phase.

(iii) In a chiral limit, even above the critical temperature of the center symmetric phase

transition, the chiral condensate has a nonzero value and the chiral symmetry is still

broken. It might be an artifact coming from the model cutoff in the chiral effective

model. Instead, the value of chiral condensate has a specific jump at the center

critical temperature.

The present model is also related to the works on QCD with finite imaginary chemical

potential. As discussed in refs. [26, 27], the partition function has 2π/3 periodicity in

the imaginary chemical potential. Thus we speculate that the critical temperature for

the chiral phase transition in the present model, which also has 2π/3 periodicity of the

temporal direction, could be the same as that of the standard three-flavor QCD.

3 Simulation setup

We utilize the Iwasaki gauge action with naive Wilson fermions in our lattice numerical

simulation. The definition of the action is given by

S = Sg + Sf ,

Sg = β
∑
x

c0

4∑
µ<ν;µ,ν=1

W 1×1
µν (x) + c1

4∑
µ 6=ν;µ,ν=1

W 1×2
µν (x)

 , (3.1)

Sf =
∑

f=u,d,s

∑
x,y

ψ̄fxMx,yψ
f
y , (3.2)

where β = 6/g2, in which g is a lattice bare gauge coupling constant, c1 = −0.331, c0 =

1−8c1 and W 1×1 and W 1×2 denote the plaquette and rectangular, respectively. In eq. (3.2),

Mx,y = δx,y − κ
4∑

µ=1

{
(1− γµ)Ux,µδx+µ̂,y + (1 + γµ)U †y,µδx,y+µ̂

}
. (3.3)
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β 1.30 1.40 1.50 1.55 1.60 1.70 1.80 1.90 1.95 2.00 2.10 2.20

κ 0.2019 0.1975 0.1921 0.1892 0.1861 0.1793 0.1725 0.1663 0.1636 0.1611 0.1571 0.1539

Table 1. Simulation parameters: β and κ.

Here κ is the hopping parameter. We note that the value of κ in Z3-QCD model is universal

for all flavors.

To realize the twisted boundary condition in eq. (2.5) on the lattice, we introduce the

following boundary conditions for the link variable only in the fermion action eq. (3.2):

U4(~x, τ = Nτ ) = −U4(~x, τ = 0) for u-flavor ,

U4(~x, τ = Nτ ) = −e2πi/3U4(~x, τ = 0) for d-flavor,

U4(~x, τ = Nτ ) = −e4πi/3U4(~x, τ = 0) for s-flavor. (3.4)

These conditions from top to bottom are the same with those for the standard finite-

temperature QCD with imaginary chemical potential; µI = 0, 2π/3 and 4π/3, respectively.

We have to use the Rational Hybrid Monte Carlo (RHMC) algorithm to calculate the

fermion determinant for each flavor, since three fermions have a different boundary condi-

tion with each other.

Firstly, we perform the zero-temperature simulation using 164 lattices to obtain the line

of constant-physics. We carry out the simulations for several values of hopping parameter

κ with each β value and measure the flavor-singlet pseudo-scalar mass (mPS) and vector

meson mass (mV ) for each flavor. The number of trajectories we generate is 2, 000 – 3, 000,

and we measure the correlator of these hadronic states every 10 Monte Carlo trajectories.

The estimated autocorrelation length is around 100 trajectories in this simulation. We

summarize results on mass measurement in table 2 and 3 in appendix C.

We fix the ratio between mPS and mV constant, namely mPS/mV = 0.70, and tune

the value of hopping parameter for each β shown in table 1. Using these parameter sets

in table 1, we perform the finite temperature simulation on 163 × 4 and 203 × 4. The

number of trajectories for the finite temperature lattice setup is 500 – 5, 000. We measure

the Polyakov loop in temporal direction for every Monte Carlo trajectory and the chiral

condensate every 10 trajectories.

We note that the masses of flavor-singlet mesons are the same with that of the standard

three-flavor QCD in zero-temperature. It shows that, at least in the flavor-singlet sector,

the breaking of SU(3)L × SU(3)R flavor-chiral symmetry due to the Z3 twisted boundary

condition (2.5) is not observed for zero-temperature. It is consistent with the general

argument in the previous section and the result of PNJL model in section 2.3.

– 6 –
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Figure 1. Polyakov loop distribution plot in Z3-QCD (left) and the standard three-flavor QCD

(right). Based on 163 × 4 lattice for β = 1.70, 2.00, 2.20 with the same values of κ in both panels.

4 Simulation results

4.1 Polyakov loops and center symmetry

We first show the existence of Z3 center symmetry in the present model based on the

distribution plot of Polyakov loop (L),

L =
1

V

∑
~x

1

3
tr

[
Nτ∏
i=1

Uτ (~x, i)

]
. (4.1)

Here V denotes the spacial volume in a lattice unit. As shown in the left panel of figure 1,

the Polyakov loops are distributed around the origin in the low β regime while three vacua

exist in the high β regime for Z3-QCD. On the other hand, those in the standard three-

flavor SU(3) gauge theory in the right panel of figure 1 indicate explicit breaking of Z3

center symmetry. These results obviously show that the Z3-QCD model possesses exact

Z3 center symmetry at the action level while it seems to undergo spontaneous breaking of

the symmetry in the high-temperature phase.

Next, we investigate temperature dependence of the Polyakov loop by varying β along

with the line of constant-physics, namely mPS/mV = 0.70, shown in table 1. We generate

configurations with two types of initial condition; cold start and hot start. In both panels

of figure 2, the triangle (blue) symbol denotes the data started with “cold start”. The

corresponding initial configuration lives in the ordered phase, and we set all initial link

variables to unity. On the other hand, the circle (red) symbol denotes the ones started

with “hot start”. The corresponding configuration is in the disordered phase, and the

initial link variable is a random number. The square (black) symbol shows the result of

the standard three-flavor QCD with the periodic boundary condition for spacial directions

– 7 –



J
H
E
P
1
1
(
2
0
1
5
)
1
5
9

Figure 2. β dependence of the magnitude of Polyakov loop (〈|L|〉) for the Z3-QCD and standard

three-flavor QCD on 163 × 4 (left) and 203 × 4 (right) lattices. For the Z3-QCD model, the data of

〈|L|〉 started with the cold start (triangle (blue) symbols) have a clear jump from zero to non-zero

values around the region 1.55 ≤ β ≤ 1.60 in both panels, while the jump occurs in 1.80 ≤ β ≤ 1.90

(left) and 1.90 ≤ β ≤ 1.95 (right) for the data generated by the hot start (circle (red) symbols). In

the regions between these two jumps, the hysteresis exists in Z3-QCD model. On the other hand,

the data of the standard three-flavor (Nf = 3) QCD (square (black) symbols) do not show such a

jump from zero to nonzero nor hysteresis.

and the anti-periodic condition for temporal direction with the same values of β and κ as

Z3-QCD simulations.

Now, let us look into the results in details.

Firstly, for the Z3-QCD model, we find hysteresis in the range of 1.55 < β < 1.90

depending on the initial conditions (cold or hot). On the other hand, we find that there

are no hysteresis in the data for the standard three-flavor QCD. We note that the hysteresis

is a signal of the first order phase transition.

Secondly, in the low-temperature phase, the magnitude of Polyakov loop is exactly zero

for the Z3-QCD model. It originates in the existence of exact Z3 center symmetry. From

these results, we argue that the Z3-QCD model undergoes first-order phase transition,

where the Z3 center symmetry is spontaneously broken, while the standard three-flavor

QCD undergoes the crossover transition.

Figure 3 shows the Polyakov loop susceptibility defined by

χ〈|L|〉 ≡ V
[
〈|L|2〉 − 〈|L|〉2

]
. (4.2)

The meaning of colors of symbols is the same as the one in figure 2. The data for the

Z3-QCD model has a relatively clear signal of peaks around β = 1.60 and β = 1.90 for cold

and hot starts, respectively. The peak appears because of the co-existing states between

the two phases associated with the phase transition [28]. On the other hand, the standard

three-flavor QCD does not show a clear transition point. Actually, such a situation makes

it difficult to determine the critical temperature in the physical QCD [29–31].

We also investigate the volume dependence of the critical β and find small finite volume

effect, which we will not discuss further in the present paper. The precise determination of

the critical temperature in the large volume and continuum limits remains as a future work.

– 8 –
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Figure 3. Polyakov loop susceptibility χ〈|L|〉 as a function of β on 203 × 4 lattices. Circle (red)

and triangle (blue) symbols denote the data generated with hot and cold starts in Z3-QCD model,

respectively. Square (black) symbol shows the data for standard three-flavor (Nf = 3) QCD model.

Our results on center symmetric phase transition indicates the following points:

(1) Z3-QCD model on the lattice possesses exact Z3 center symmetry.

(2) Z3 center symmetry is spontaneously broken in the high-temperature phase.

(3) The order of the center phase transition is first.

4.2 Chiral condensates

Here, we investigate the chiral property in the finite-temperature Z3-QCD mode, which

is characterized by the chiral condensate. In the chiral limit, the non-vanishing chiral

condensate is a signal of the spontaneous chiral symmetry breaking. As we discussed in

section 2.2, because of the twisted boundary condition, the symmetry breaking pattern is

expected to be U(1)2
L × U(1)2

R → U(1)2
V̄

in the present model. On the other hand, as we

have discussed in section 2.3, the result of the chiral model implies that the flavor symmetry

breaking due to the flavor-dependent twisted boundary condition gets manifest only in the

high-temperature phase [23]. To investigate this conjecture, we will investigate the chiral

condensate for each flavor independently.

Since our simulation is performed for heavy mass region mPS/mV = 0.70 and utilize

the Wilson fermion, no chiral phase transition takes place. Nevertheless, we expect that,

in the system with massive fermions, decrease of chiral condensate indicates effective and

approximate restoration of chiral symmetry. Actually, several lattice numerical simulations

– 9 –
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in these years reveal the chiral property for the realistic Nf = 2+1 QCD at finite tempera-

ture based on chiral condensate and its susceptibility as the effective order parameter. We

note that the recent lattice results using the staggered fermions and domain-wall fermions

give the consistent chiral critical temperature [29–31] .

We consider the following flavor-diagonal expectation value of the subtracted chiral

condensate [32–34] for each flavor [35–37] (we do not consider flavor-mixing condensate in

the present paper.),

〈ψ̄fψf 〉subt. = (2mPCAC)(2κ)2
∑
x

〈P (~x, t)P †(~0, 0)〉. (4.3)

Here, mPCAC is partially conserved axial current (PCAC) mass, and P denotes the pseudo

scalar state defined by P ≡ ψ̄fγ5ψ
f , for the corresponding flavor (f) in l.h.s. . The PCAC

mass is defined via axial Ward identity;

2mPCAC =

∑
~x ∂4〈A4(~x, t)P †(~0, 0)〉∑
~x〈P (~x, t)P †(~0, 0)〉

, (4.4)

where Aµ corresponds to the axial vector current defined by Aµ = ψ̄fγ5γµψ
f . Here again,

the label of flavor (f) is fixed. The values of mPCAC are summarized in appendix C.

Before showing our results of numerical simulation for chiral condensates for each fla-

vor, we comment on the notation of flavor in this study. To fix the name of quarks, we

firstly observe the complex phase (φ) of Polyakov loop given as L = |L|eiφ for each config-

uration. As discussed in the previous section, in the center-symmetric phase the definition

of the complex phase is meaningless since 〈|L|〉 = 0, while in the center broken phase we

can define the value of φ.1 Next, we measure the correlators in eq. (4.3) using the Dirac

operator given in eq. (3.3), where the link valuable has the boundary condition given by

Uτ (~x, τ = Nτ ) = −eiθUτ (~x, 0), (4.5)

where θ takes value 0 or ±2π/3. We define the flavor u as in

φ+ θ = 0 (mod 2π) for u-flavor, (4.6)

while the flavor d and s are defined with the following total phases;

φ+ θ = 2π/3 (mod 2π) for d-flavor, (4.7)

φ+ θ = 4π/3 (mod 2π) for s-flavor. (4.8)

Figure 4 shows the β dependence of the chiral condensate for u-flavor of the Z3- and

three-flavor QCD. Circle (red), triangle (blue) and square (black) symbols stand for those

data associated with the hot start and cold start in Z3-QCD model and the standard

three-flavor QCD at finite temperature, respectively. All results have common qualitative

properties, where the chiral condensate gradually decreases as β increases. It is also notable

1In principle the vacuum tunneling between three equivalent vacua makes difficult giving a clear definition

of the phase. However, in our simulations, we did not encounter such difficulty.

– 10 –
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Figure 4. β dependence of the expectation values of subtracted chiral condensates 〈ūu〉subt. for

Z3-QCD and three-flavor QCD on 203 × 4 lattices. Circle (red), triangle (blue) and square (black)

symbols stand for those data associated with the hot start and cold start in Z3-QCD model and the

standard three-flavor QCD, respectively. The error bar denotes the statistical error coming from

the pseudo-scalar correlator in eq. (4.3).

that β dependence of chiral condensates in Z3-QCD model has hysteresis between the

cold and hot starts as with that of the Polyakov loop. These results imply that effective

restoration of the chiral symmetry is progressing from β = 1.55 to β = 1.95 for the Z3-QCD

model. These values of β where the hysteresis exists are the same as those of the center

phase transition. Furthermore, the decreasing rate of chiral condensate in Z3-QCD model

is relatively larger than the one in the standard three-flavor QCD.

According to the arguments in refs. [26, 27], the partition function for QCD has 2π/3

periodicity in the imaginary chemical potential, and it is expected that the chiral phase

transition temperature in our model is the same as that of the standard three-flavor QCD.

On the other hand, since the flavor-chiral symmetry in Z3-QCD model in the chiral limit

is broken to U(1)2
L × U(1)2

R due to the twisted boundary condition, we may have the

smaller number of Nambu-Goldstone modes than the usual three-flavor QCD, which lifts

the phase transition temperature in general [38]. (As we have discussed, the chiral effective

model indicates that the full flavor symmetry is effectively preserved in the low-temperature

phase, and in such a case we should have the common number of Nambu-Goldstone modes.)

Our results in figure 4 indicate qualitatively the same chiral crossover temperature in Z3-

QCD and three-flavor QCD, while, to be quantitative, the temperature in Z3-QCD seems

slightly higher than that in the three-flavor QCD. We do not yet have sufficient ingredients

to conclude on this question. Higher statistics and investigation of its susceptibility are

necessary to determine the critical temperature in the massless limit. It is of well-known
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Figure 5. β and flavor dependences of the expectation values of subtracted chiral condensates 〈q̄q〉
for each flavor in Z3-QCD model. The lattice size is 203 × 4. Circle (red), square (orange) and

triangle (violet) symbols denote u-, d- and s-flavor generated with hot start, respectively.

difficulty to determine the critical temperature of the chiral phase transition.2

We also note that the absolute values of the chiral condensates in Z3- and three-

flavor QCD are different in the low-temperature phase, which may indicate the qualitative

difference of the chiral property between the two theories.

Next, we focus on the flavor symmetry breaking in the high-temperature phase. Fig-

ure 5 shows the expectation values of chiral condensates for each flavor. Here, circle (red),

square (orange) and triangle (violet) symbols denote u-, d- and s-flavor generated with

hot start, respectively. Three components of chiral condensate are degenerate in the low-

temperature phase. On the other hand, in the high-temperature phase, there appears clear

flavor symmetry breaking. Two of them, whose total complex phase (φ+ θ) are nontrivial,

are degenerated because of the momentum shift of the twisted boundary condition. It

indicates that at least the Z3 center of SU(3) flavor symmetry, which commutes with the

Cartan subgroup, is effectively preserved in the low-temperature phase, while the breaking

of this symmetry gets manifest in the high-temperature phase. Although our simulation

cannot fully verify the conjecture of the chiral model shown in (ii) of section 2.3, which

states that the SU(3) flavor symmetry is not affected by the twisted boundary condition in

the low-temperature phase, the above result on the Z3 flavor symmetry is consistent with

this conjecture. On the other hand, figure 4 shows the different values of chiral conden-

sates between the Z3 and three-flavor QCD, thus the two theories seem to have difference

in chiral and flavor properties. Further study is required to understand the structure of

flavor and chiral symmetry in the Z3-QCD model.

2See the references in [39].
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5 Summary and discussion

In this work we numerically simulate the finite-temperature Z3-QCD model on the lattice by

introducing flavor-dependent twisted boundary conditions, with emphasis on center phase

transition and its influence on the chiral properties. We calculate the finite-temperature

expectation value of Polyakov loop and the flavor-diagonal chiral condensates on 163×4 and

203 × 4 lattices on the line of constant physics realizing mPS/mV = 0.70. We find out the

first-order center phase transition at a certain temperature with the hysteresis depending

on the initial conditions for configuration generation. The chiral crossover transition takes

place around the critical temperature of center transition, where it also has hysteresis in the

same range as that of the center phase transition. By comparing this approximate chiral

restoration to that of the standard three-flavor QCD, we find that the decrease of chiral

condensate in Z3-QCD is more rapid while temperatures of the two crossover transitions

are almost the same. We also obtain the result which supports the manifestation of flavor

symmetry breaking due to the boundary condition in the high-temperature phase, which

was predicted in the study of the effective chiral model.

One of motivations for this work is study how the chiral condensate reacts to the center

phase transition. Our preliminary result indicates not only that the chiral condensate has

rapid decrease around the center critical temperature, but also that it has the hysteresis in

the same range as that of the center phase transition. Based on this result, we argue that

the chiral and center properties at finite temperature have a strong correlation at least in

the present model. One possible reason for the correlation is that the first-order center

phase transition might work as a trigger to the rapid decrease of chiral condensate. On

the other hand, the argument in ref. [27] implies that the chiral critical temperature in the

present model is the same as that of the standard three-flavor QCD, thanks to the 2π/3

periodicity of imaginary chemical potential. Our result on comparison of the two chiral

(crossover) transition temperatures is consistent with this conjecture. The precise study

on the critical temperature in the Z3-QCD model may help determine chiral crossover

temperature Tc in the standard three-flavor QCD.

By comparing our results to those of the effective chiral model, we have supported the

several conjectures based on the chiral model: first-order center phase transition, latency

of flavor symmetry breaking in the low-temperature phase, and manifestation of flavor

symmetry breaking in the high-temperature phase. In particular, we have observed that

Z3 center part of the SU(3) flavor symmetry seems to be intact in the low-temperature

phase, while its breaking becomes manifest in the high temperature phase, accompanying

the spontaneous breaking of Z3 center of the SU(3) color symmetry. This is consistent

with the conjecture of the effective chiral model, but is not sufficient to draw a conclusion.

On the other hand, we could not find the specific jump of the chiral condensate right at

the center critical temperature, which was seen in the chiral model as discussed in (iii) of

section 2.3. Although our simulation is not performed in the chiral limit, we may be able to

interpret the jump seen in the chiral model as a model artifact and a remnant of the rapid

decreasing of the chiral condensate seen in our simulation since the cut-off effect may be

visible at the high-temperature in the effective model. Further study is required to clarify

the flavor and chiral properties in the Z3-QCD model.
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For future works, we address following points.

Towards a chiral limit: by approaching a chiral limit, the Z3-QCD model has both

exact center and exact chiral symmetries in presence of fundamental quarks. We may be

able to determine the both center and chiral critical temperatures using the exact order

parameters, Polyakov loop and chiral condensate. Therein, we can compare the two critical

temperatures and discuss relation of confining and chiral properties in more details.

Towards smaller lattice and larger volumes: to obtain the critical temperatures, we

have to take a continuum limit to remove a lattice artifact and take large volume limit to

estimate finite volume effects. Several works for the three-flavor real QCD near the physical

points have been progressing, so that in principle it is doable at present. Comparison with

the critical temperatures between the Z3-QCD and the standard three-flavor QCD in these

limits must be interesting for understanding the center and chiral structure.

Towards topological objects (fractional instantons): in the presence of center-

symmetric Polyakov loop holonomy, or equivalently the center-symmetric twisted boundary

conditions, fundamental topological objects become fractional instantons with fractional

topological charge as 1/N with N being the rank of gauge group [40, 41]. In our simula-

tions, we expect that 1/3 fractional instantons are present, and have influence on physical

observables such as topological susceptibility. It could be valuable to investigate the topo-

logical properties in relation to the recent interest in the novel topological objects [42–44].

Towards further application of gauge theory with twisted boundary conditions:

our result is of significance in a sense that we first observed the center first-order phase

transition in the lattice QCD simulation with dynamical fundamental quarks by introducing

the twisted boundary condition (See also appendix B). It is notable that the only difference

between the standard three-flavor QCD and our Z3-QCD model is the twisted boundary

condition, and this difference disappears in the zero-temperature limit. It means that, by

choosing appropriate boundary conditions for quarks, we can realize an ideal situation that

the confining/deconfining properties are well described by center symmetry and Polyakov

loop. We consider that such a technique using the twisted boundary conditions helps

understand broader topics on nonperturbative aspects of strong-coupling physics.

Acknowledgments

We are grateful to K. Kashiwa, H. Kouno and M. Yahiro for their valuable comments and

correspondences on their related work during the entire course of our study. We would like

to thank P. de Forcrand, A. Nakamura, H. Suganuma and M. Ünsal for useful discussions
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A The flavor-dependent b.c. as imaginary chemical potential

Consider the transformation where the fermion fields Ψf in eq. (2.5) are transformed as

Ψf → ei(f−1)τ/βΨf . (A.1)

Then, the action (2.2) is translated into

S =

∫
d3x

∫ β

0
dτ

∑
f

Ψ̄f (γµDµ + i(f − 1)γ4/β +m)Ψf +
1

2g2
trF 2

µν

 . (A.2)

This is the theory with the flavor-dependent imaginary chemical potentials and the usual

anti-periodic boundary conditions eq. (2.3).

B Comment on the other possible Z3 symmetric theory

In the canonical ensemble, it is known that the Polyakov loop has exact zero expectation

value [45], which is similar to that of Z3-QCD. Here, we briefly discuss the difference

between the canonical ensemble and our Z3-QCD model.

The grand canonical partition function can be written by

ZGC(T, µ) =

∫
[DU ]e−Sg [β,U ] detM(U, µ), (B.1)

where µ denotes a quark (real) chemical potential. Using ZGC(T, µ), the canonical partition

function can be expressed as

ZC(T,Q) =

∫ ∞
−∞

d
(µI
T

)
e−QµI/TZGC(T, µ = iµI). (B.2)

with the quark number Q.

By using (2πT/3)-periodicity of the grand canonical partition function as ZGC(T, i(µI+

2πT/3)) = ZGC(T, iµI), the canonical partition function can be expressed as

ZC(T,B) =
1

2π

∫ π

−π
d
(µI
T

)
e−i3BµI/TZGC(T, iµI) (B.3)

for the baryon number B(= Q/3), apart from a normalization factor.

Insertion of the imaginary chemical potential with

µI =
2πTk

3
for k = 0, 1, 2, (B.4)

can be translated by the center transformation (z(k) ≡ ei2πk/3) acting only on the link

variables in the fermion action,

U4(~x, x4 = 0)→ z(k)U4(~x, x4 = 0). (B.5)
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Therefore, the Dirac determinant satisfies

detM(z(k)U, iµI) = detM(U, iµI − i2πTk/3). (B.6)

Using the periodicity of ZGC(T, iµI) and the above relation, the canonical partition

function is expressed as

ZC(T,B) =
1

2π

∫ π

−π
d
(µI
T

)
e−i3BµI/T

×1

3
[ZGC(T, iµI) + ZGC(T, iµI − i2πT/3) + ZGC(T, iµI − i4πT/3)] ,

=
1

2π

∫ π

−π
d
(µI
T

)
e−i3BµI/T

1

3

∫
[DU ]e−Sg [β,U ]

2∑
k=0

detM(z(k)U, iµI), (B.7)

which means that ZC(T,B) is the average of three center sector. It leads the exact zero

expectation values of the Polyakov loop as

〈L〉ZC(T,B) ∝ 1 + e−i2π/3 + e−i4π/3 = 0. (B.8)

On the other hand, the Z3-QCD model introduces the flavor dependent imaginary

chemical potential. Thus, the partition function is given by

ZZ3-QCD(T ) =

∫
[DU ]e−Sg [U,β]

2∏
k=0

detM(U, µ = i2πkT/3). (B.9)

This partition function keeps center symmetry, since the integrand is invariant under the

center transformation as follows:

detM(U, µ = 0) detM(U, µ = i2πT/3) detM(U, µ = −i2πT/3),

→ detM(ei2π/3U, µ = 0) detM(ei2π/3U, µ = i2πT/3) detM(ei2π/3U, µ = −i2πT/3),

= detM(U, µ = −i2πT/3) detM(U, µ = 0) detM(U, µ = i2πT/3). (B.10)

C PCAC mass and PS meson mass

Here, we summarize pseudo-scalar (mPS), vector (mV), their ratio (mPS/mV), and PCAC

(mPCAC) masses at the zero-temperature simulation using 164 lattice in table 2 and 3.

Figure 6 shows the hopping parameter dependence of mPCAC and m2
PS with the fit results

using (1/κ−1/κc). For smaller masses, both are proportional to (1/κ−1/κc), and they be-

come zero at almost the same κ up to O(amPCAC), which are expected behaviors of Wilson

type fermion [37]. For the tuning of the mass parameter at mPS/mV = 0.70, we interpolate

mPS and mV as a function of (1/κ− 1/κc) and determine the line of constant physics.
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β = 1.40, κc = 0.2054
β = 1.50, κc = 0.1981
β = 1.55, κc = 0.1939
β = 1.60, κc = 0.1909
β = 1.70, κc = 0.1824
β = 1.80, κc = 0.1749
β = 1.90, κc = 0.1680
β = 1.95, κc = 0.1653
β = 2.00, κc = 0.1628
β = 2.10, κc = 0.1590
β = 2.20, κc = 0.1560
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β = 1.40, κc = 0.2051
β = 1.50, κc = 0.1996
β = 1.55, κc = 0.1943
β = 1.60, κc = 0.1924
β = 1.70, κc = 0.1841
β = 1.80, κc = 0.1754
β = 1.90, κc = 0.1687
β = 1.95, κc = 0.1659
β = 2.00, κc = 0.1629
β = 2.10, κc = 0.1593
β = 2.20, κc = 0.1563

Figure 6. The hopping parameter κ dependence PS and PCAC masses. Lines denote fit results

using (1/κ− 1/κc)-type function.

β κ amPS amV mPS/mV amPCAC

1.20 0.2000 0.9521(18) 1.1883(37) 0.8012(29) 0.0901(1)
1.20 0.2025 0.8704(11) 1.1355(26) 0.7665(20) 0.0744(0)
1.20 0.2050 0.7803(9) 1.0851(28) 0.7191(20) 0.0617(0)
1.20 0.2100 0.5616(23) 1.0003(108) 0.5614(65) 0.0360(3)

1.30 0.1900 1.1378(23) 1.2988(42) 0.8760(33) 0.1257(2)
1.30 0.1950 0.9960(11) 1.2075(23) 0.8248(18) 0.0970(1)
1.30 0.2000 0.8222(11) 1.1027(29) 0.7456(22) 0.0724(0)
1.30 0.2050 0.5873(13) 0.9917(48) 0.5922(32) 0.0382(0)

1.40 0.1900 1.0345(31) 1.2380(43) 0.8356(38) 0.1043(8)
1.40 0.1925 0.9442(15) 1.1690(25) 0.8077(22) 0.0860(1)
1.40 0.1950 0.8472(11) 1.1074(26) 0.7650(21) 0.0662(1)
1.40 0.1975 0.7277(14) 1.0429(41) 0.6978(31) 0.0508(1)

1.50 0.1875 0.9503(24) 1.1668(44) 0.8144(37) 0.0883(2)
1.50 0.1900 0.8358(17) 1.0909(36) 0.7662(30) 0.0674(1)
1.50 0.1915 0.7522(19) 1.0399(35) 0.7233(30) 0.0564(1)
1.50 0.1925 0.6838(16) 1.0032(42) 0.6816(33) 0.0499(1)

1.55 0.1860 0.8919(31) 1.1176(48) 0.7980(44) 0.0785(2)
1.55 0.1875 0.8104(26) 1.0627(58) 0.7626(48) 0.0709(2)
1.55 0.1890 0.7098(24) 1.0143(59) 0.6998(47) 0.0543(3)
1.55 0.1900 0.6153(30) 0.9308(56) 0.6610(51) 0.0401(2)

1.60 0.1800 1.0368(23) 1.2159(37) 0.8527(32) 0.1096(2)
1.60 0.1830 0.8910(21) 1.1120(36) 0.8013(32) 0.0790(1)
1.60 0.1850 0.7687(21) 1.0326(34) 0.7444(32) 0.0586(1)
1.60 0.1860 0.6784(23) 0.9652(49) 0.7029(43) 0.0556(1)

1.70 0.1750 0.9794(18) 1.1537(26) 0.8489(25) 0.0979(1)
1.70 0.1775 0.8160(26) 1.0329(48) 0.7900(45) 0.0702(1)
1.70 0.1790 0.6746(33) 0.9310(48) 0.7246(51) 0.0549(1)
1.70 0.1800 0.5246(45) 0.8351(60) 0.6282(70) 0.0355(2)

Table 2. Summary of pseudo-scalar, vector, and PCAC masses for β = 1.20 − 1.70 using 164

lattice.
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β κ mPSa mVa mPS/mV mPCACa

1.80 0.1600 1.3487(36) 1.4365(50) 0.9389(41) 0.1715(3)

1.80 0.1700 0.8583(25) 1.0399(28) 0.8254(33) 0.0888(1)

1.80 0.1720 0.6644(26) 0.8944(37) 0.7428(42) 0.0565(1)

1.80 0.1725 0.5906(26) 0.8392(40) 0.7038(46) 0.0459(1)

1.90 0.1600 1.0644(49) 1.1807(60) 0.9015(62) 0.1233(6)

1.90 0.1650 0.6968(34) 0.8849(51) 0.7874(59) 0.0663(1)

1.90 0.1660 0.5710(43) 0.7905(43) 0.7223(67) 0.0510(1)

1.90 0.1665 0.4920(31) 0.7310(52) 0.6731(64) 0.0367(1)

1.95 0.1610 0.7852(28) 0.9393(35) 0.8359(43) 0.0866(1)

1.95 0.1620 0.6959(29) 0.8642(39) 0.8053(49) 0.0731(1)

1.95 0.1630 0.5861(31) 0.7871(40) 0.7446(55) 0.0526(1)

1.95 0.1640 0.4325(47) 0.6754(51) 0.6404(85) 0.0351(1)

2.00 0.1550 0.9948(48) 1.0942(91) 0.9092(87) 0.1167(23)

2.00 0.1600 0.6203(28) 0.7914(42) 0.7838(55) 0.0633(1)

2.00 0.1610 0.4948(31) 0.6996(35) 0.7073(57) 0.0457(1)

2.00 0.1615 0.4231(37) 0.6524(44) 0.6485(72) 0.0299(1)

2.10 0.1525 0.8455(25) 0.9464(36) 0.8934(43) 0.1180(7)

2.10 0.1550 0.6563(16) 0.7934(27) 0.8272(35) 0.0774(1)

2.10 0.1560 0.5683(24) 0.7244(33) 0.7845(49) 0.0623(1)

2.10 0.1570 0.4576(25) 0.6423(34) 0.7124(54) 0.0406(1)

2.20 0.1500 0.7675(31) 0.8677(31) 0.8845(48) 0.1040(3)

2.20 0.1525 0.5769(27) 0.7107(30) 0.8117(51) 0.0636(1)

2.20 0.1540 0.4354(25) 0.6283(41) 0.6930(60) 0.0383(0)

2.20 0.1545 0.3845(41) 0.6116(50) 0.6287(84) 0.0285(1)

Table 3. Summary of pseudo-scalar, vector, and PCAC masses for β = 1.80 − 2.20 using 164

lattice.
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