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1 Introduction

In recent years thanks to the development of a new method to formulate SUSY gauge
theories on curved spaces initiated by [1] and to the application of Witten’s localisation
technique to the path integral of theories defined on compact spaces, a plethora of new
exact results for SUSY gauge theories in various dimensions have been obtained.

The focus of this note is on 4d theories defined on Hermitian manifolds of the form
M* = S x M3 where M? is a possibly non-trivial U(1) fibration over the 2-sphere, and their
3d reductions. These 4-manifolds can preserve 2 supercharges with opposite R-charge and a
holomorphic Killing vector generating the torus action on M* [2-4].! General results [6, 7]
state that partition functions on these spaces do not depend on the Hermitian metric but
are holomorphic functions of the complex structure parameters and of the background
gauge fields through the corresponding vector bundles. Similar results hold for the 3d
N = 2 reductions of these theories.

For these spaces it has also been observed that the partition function can be expressed
in terms of simpler building blocks. It turns out that for 3-manifolds M;’, which can be
realised by gluing two solid tori D? x S' with an element g € SL(2,7), and likewise for
4-manifolds M; constructed from the fusion of two solid tori D? x T? with appropriate
elements in SL(3,Z), the geometric block decomposition is very non-trivially realised also
at the level of the partition functions.

This phenomenon was first observed for 3d N’ = 2 theories on M g = S3% and Mfd =
52, x St which were shown in [8] and [9] (see also [10-12]) to admit a block decomposition

2
215" =3 | zisyx st = )3 | B2

’ 1.1
o (1)

where the 3d holomorphic blocks B2d are solid tori D? x S! partition functions. The
two blocks are glued by the appropriate SL(2,7Z) element S or id acting on the modular
parameter of the boundary torus and on the mass parameters. The sum is over the super-
symmetric Higgs vacua of the theory which remarkably are the only states contributing to
the sums in (1.1), even though these partition functions, although metric independent, are
not properly topological objects. In fact, in the case of M2 = S3, the factorisation was
proved to follow from a stretching invariance argument [13]. Indeed in [13] it is shown that
it is possible to deform the S3 geometry into two cigars D? x S' connected by a long tube,
which effectively projects the theory into the SUSY ground states, without changing the
value of the partition function.

In [9] it was developed an integral formalism to compute the holomorphic blocks which
builds on the fact that they are solutions to a set of difference equations. The 3d blocks
are obtained by integrating a meromorphic one-form Y34, consisting of the mixed Chern-
Simons, vector and chiral multiplet contributions on D? x S, on an appropriate basis of

middle-dimensional cycles in (C*)IC]

B3 :fé T34, (1.2)

!See also [5].



Later on, in [14], block integrals were derived from localisation on D? x S'. Curiously the
integrand Y34 turns out to be the “square” root of the integrand appearing in the Coulomb
branch partition function on the compact space, so that by combining (1.1) and (1.2) one

finds
)= el = el =] v,

where the gluing rule can be g = S, id. The first term of the equality is a smart rewriting

(1.3)

of the partition function on the Coulomb branch, where the localising locus may contain a
continuous and a discrete part. As observed in [9] this suggestive chain of equalities hints
that factorisation commutes with integration.

The factorisation of partition functions has been observed also on lens spaces L, [15],
on 5% x S! with R-flux (3d twisted index) [16], in 4d A" = 1 theories on S x St (4d
index) [17-19] and on the ellipsoid [20], and in 2d A/ = (2,2) theories on S% [21-23]. In
fact for all these cases the block factorisation can be incorporated in the general analysis of
2d, 3d and 4d tt* geometries [24, 25]. An alternative perspective on the factorisation is the
localisation scheme known as the Higgs branch localisation considered in [21, 22, 26, 27].

Results on block factorisation of partition functions have been obtained also for 5d
N = 1 theories on S° [28, 29], S* x S' [30-32], on YP [33, 34], general toric Sasaki-
Einstein manifolds [35] and for 6d and 7d theories on S, S7 [36].

The goal of this note is to elucidate the block decomposition of partition functions for
theories defined on L,, L, x S!, 5124 x St and S? x T?. The Coulomb branch partition
functions on these spaces have been computed in [16, 37, 38] and [39-41].

Our main result in 3d is the extension of the remarkable identity in (1.3) to the lens
space M3 = L, and to the twisted index M3 = 5124 x S', which are respectively obtained
through the r-gluing implementing the appropriate SL(2, Z) transformation on the bound-
ary of one solid torus to obtain the lens space geometry, and through the A-gluing which
realises the topological A-twist on S2.

We then move to 4d, where for Md = 53 x S1, M} = L, x St and M} = S% x T? we
are able to prove an identical relation

ZIM}) = Zi”»rm ZHB4d ZM T4d (1.4)

In the case of the index S x S' and lens index L, x S, the factorised form of the integrand

emerges after we perform a modular transformation on the complex structure parameters
by means of the remarkable property of the elliptic Gamma function discovered in [42]. This
transformation generates a term which can be identified with the 4d anomaly polynomial
and represents an obstruction to factorisation. However, for anomaly free theories this
factor is one and we can express the integrand as ||[Y44||2. It is then fairly easy to check
that the S2 xT? integrand can also be expressed in terms of the same meromorphic function
| T44)|%. The second step in (1.4) is the actual evaluation of the Coulomb branch sum and
integral on a suitable integration contour yielding the factorisation into 4d holomorphic
blocks B24 which we compute in some explicit cases. The last step in (1.4) introduces the
4d block integrals. In general determining the integration contours I'. is harder than the



3d case, here we give a prescription in few examples based on physical considerations such
as periodicity /invariance under large gauge transformations.

The paper is organised as follows. We begin section 2 with the study of N' = 2
theories on the lens space where, thanks to a new identity for the generalised double Sine
function, we can prove the integrand factorisation. We then show the block factorisation
for two interacting cases. We take a small detour to discuss the T'[SU(2)] theory. In this
case, thanks to the transformation properties of the holomorphic blocks, we are able to
prove that partition functions on generic 3-manifolds admitting a block decomposition are
invariant under mirror symmetry. In section 3 we discuss the 3d twisted index. In section 4
we introduce the lens index partition function and show that the integrand can be expressed
in a factorised form after cancelling the anomalies. We then show two examples of block
factorisation. We check the analogue factorisation of S? x T2 partition functions in section 5.
Finally in section 6 we introduce the 4d block integrals. The paper is supplemented by
several appendices where we discuss many technical details and computations.

2 3d N = 2 partition functions on S3/Z,

We consider the free orbifold S3/Z, of the squashed 3-sphere S% = {(x,y) € C?|b?|z|? +
b—2|y|> = 1}, with the identification

(z,9) ~ (7w, e y). (2.1)

The resulting smooth 3-manifold is the squashed lens space L.

The partition function of N/ = 2 theories on L, has been first obtained in [37] and
revised in [38]. The localising locus is labelled by the continuous variables Z in the Cartan
of the gauge group G and discrete holonomies £ in the maximal torus. The integer variables
0<b <...<{g, ln € [0, — 1], parameterise the topological sectors. The holonomy
is non-trivial since the fundamental group of the background manifold is 7;(L,) = Z, and
breaks the gauge group to?

r—1

G — ]Gk, (2.2)
k=0

where the subgroup G}, has rank given by the number of ,, = k. We also turn on continuous
= and discrete H variables for the non-dynamical symmetries.
The partition function reads

dZ 14 matter
Z[Lr] - ; / m ch X Zl—lOOp X Zl—lOOp 5 (23)

where |Wj| is the order of the Weyl group of Gy. The classical terms is given by the mixed

Chern-Simons action (CS). For example, a pure U(N) CS term contributes as?

8_%HZHZT2L G%RZnZ?L‘ (2‘4)

2Throughout this paper we restrict to U(N) or SU(N) gauge groups, so we do not have to worry about
global issues [43].
3In [15] it has been suggested to add the sign factor €™ >n o in eq. (2.4).



For U(1) factors we can also turn on an FI term ¢

27r12 an 2#12 e 9 (25)

where we have considered a background holonomy 6 also for the topological U(1). The
1-loop contribution of matter multiplets is given by

2oy = HHH Sb,—pi(£)— by (I )( Q( —A;) —pi(Z) - ¢i(5)> , (2.6)
PP @

where ¢ runs over the chiral multiplets, p;, ¢;, are respectively the weights of the represen-
tation of the gauge and flavour groups and A; the Weyl weight. For convenience we will
absorb the Weyl weight into the mass parameter, and we will be denoting the squashing
parameter by b = w2 = wy ! with Q = wi + wy. The 1-loop contribution of the vector

multiplet is given by
ZV 4 h f inh ™ Za 0
1-loop — H -~ .0 > N H sin - + 2 sin ; ? — Wy |, (27)
Sbé ( a0 2

where the product is over the positive roots o of G and we set Z, = a(Z), o = a(¥).
The function 8 g is the projection of the (shifted) double Sine function defined as the
(-regularised product

8b,—m(X) =0(H) 11

ni,n2>0
no—ni=H mod r

niwi + nowsg + Q/2 —iX
nowi + niwg + Q/2 +1iX

(2.8)

In appendix A we have derived a new expression for 5, _p in terms of ordinary double Sine
functions

Sp—m(X) =0(H)Sy (w1 (r—[H]))+Q/2-iX|Q, rw1>52 (wolH]+Q/2—-i1X|Q,rws) . (2.9)

This expression allows us to easily evaluate the asymptotic, locate zeros and poles, take
the residues and express it in a factorised form

im im 27 i i Q 2
Sp—n(X)=e — S (rDH? T 82(Q/2-iX) H(eml (Q/2HX) —ZRH o IW1> H wiow 0 (2:10)
Her—H

where ®7 is a combination of quadratic Bernoulli polynomials defined in (A.5). Notice that
inside the g-Pochhammer symbols we can take [H] ~ H because of the periodicity. More-
over, the sign factor erases the residual dependence on [H| so that the function §, _p(X)
depends only on H.
The sign factor
o(H) = oo (HI(r—[H D=(r—DH?) (2.11)

was introduced by [15] to fix the sign ambiguity among the different holonomy sectors
contributing to the partition function. The factorisation of the partition function was used
as a criterion to determine the sign, which can be naturally introduced by looking at the
block factorisation of non-gauge theories, collections of chiral multiplets and Chern-Simons
couplings. The non-trivial point is then to verify that the introduction of these sign factors
leads to the block factorisation also for interacting theories. Preliminary checks were given
n [15], in this paper we fully confirm this prescription.



2.1 Factorisation

We will now show that by using our expression (2.10) the partition function of theories
with integer effective CS couplings (parity anomaly free) can be expressed in terms of a
suitable set of holomorphic variables and factorised in 3d holomorphic blocks.
We begin with the simplest parity anomaly free theory, the free chiral with —1/2
CS unit
ZA(X, H) = e (DH? =5 22QHX) 5 1 60/2 — X). (2.12)

The subscript A is due the fact that, in the context of the 3d-3d correspondence relating
3d N = 2 theories to analytically continued CS on hyperbolic 3-manifolds, this theory is
associated to the ideal tetrahedron [44]. In this context the fundamental Abelian mirror
duality relating the anomaly free chiral to the U(1) theory with 1 chiral and 1/2 CS unit is
interpreted as a change of polarisation. At the level of lens space partition functions this
duality reads

2mi

r—1
Z/ % e—i%(Z2+QZ(X—iQ/2))6—(r—1)177’(£2+2HZ) ZA(Z, ﬁ) _ ZA(X,H) ] (213)
=0 7R

We prove this equality in appendix B.1.%
The half CS unit in (2.12) has the effect to cancel the quadratic factor in (2.10) so
that the anomaly free result can be written in a block factorised form?®

25X H) = 0 )|, (2.14)

r

in terms of holomorphic variables

27

T = elee@H _ ezmxe@Hj F = grwz 6_@1{ _ e27rir:ile_@}]’
2.15)
@ ; ;i Q . (2.
q= e?ﬂlm _ 627r17" q _ 627r1 g 6271—1”11
The 3d holomorphic block
3d (.. ) — —1.

is the partition function on D? x, S1 of the tetrahedron theory defined in [9]. Notice that
when |g| < 1 we have |¢| > 1 and

(2.17)

(xQQ)oo =

o0 n(n—1) o0 r .
Z (—)"q— 2z 2" _ I[[Zo(1—q"x) if |q] <1
= (@9 12,1 — g ta)™t if g > 1.

Basically blocks in z,q, and Z, ¢, share the same series expansion but they converge to
different functions. This is actually a key feature of holomorphic blocks which has been

4This identity has also been derived from the pentagon identity on the lens space in [44].

5The block factorised form (2.14) for the tetrahedron theory on the lens space was derived via projection
in [15] and appeared as the fundmanetal building block for the state integral model for analytically continued
CS at level r [44].



extensively discussed in [9] and will play a crucial role in the example we discuss in sec-
tion 2.3.
The two blocks are glued through the r-pairing acting as

~ . T A 10
T—=T=—7(1)= o 7= (—r 1) , (2.18)
where 7 is to be identified with the modular parameter of the boundary 72, while the

flavour fugacity and holonomy transform as
~ X -

X=X = , H—-H=r—H. (2.19)
rr—1

This gluing rule as expected coincides with the 7 € SL(2,Z) element (composed with the
inversion) realising the L, geometry from a pair of solid tori.

CS terms at integer level and FI terms can be expressed in terms of periodic variables
as r-squares of Theta functions defined in (A.47) by means of (A.49)%

_ir 2 imp2 H® 1 . —2 27(1Z§ 2#1[9 H 8 U q) —2

e er” x —q2s;q , e x — , (2.20)
( ) r @ 17(])6( ,Q) r
. 20 7 2mip 2n ¢ 2mig N .
with s = e17e7+ *“ and u = e ™1°e” 7+ . Similarly, the vector multiplet can be fac-
torised as

Zo, Zy, 1 1\ (2

zy loop = H451nh <+z€ )smh (mzf > O(HH ( Eyfsa?) ] (2.21)

a>0

The o< means that we are dropping background contact terms depending on wi2 and r
only. From now on we will assume equalities up to these constants.

Obviously the factorised expressions are not unique. As pointed out in [9] the ambiguity
amounts to the freedom to multiply the blocks by “g-phases” (elliptic ratios of Theta
functions with unit S,id, r-squares). For example another possibility is to factorise the
vector multiplet contribution as in [9]”

2

1o
2o — H H O(q sm_Q)

(50 @)oo (@523 @)oo

. (2.22)
T

These observations imply that on parity anomaly free theories, where the total effective
CS couplings are integers, we can replace each 1-loop vector multiplet with (2.21), each
chiral contribution with ||B3!(z;¢)||? and then factorise the remaining integer CS units
using (2.20). This procedure allows us to rewrite the partition function as

. dz 2
ZIL,] = e~i7P HTSd
L} =e %:/mnkwky v

For the improved CS term proposed in [15] we simply have e T T ||6(q%s; Q)72
"The vector multiplet factorised form in [9] differs from ours by a sign factor (—1)°. Notice that

10(—42 5a: )12 = (1) [|8(q? sa; ) |12-

(2.23)




with exactly the same integrand Y34 appearing in the analogous factorisation observed
n [9] for S and S x S'. The three cases differ only for the integration measure which can
include also a summation over a discrete set and for the gluing rule. The prefactor e~ "7
is the contribution of background mixed CS terms which can have half-integer coupling
preventing their factorisation.

The integrand Y34 appears also in the definition of 3d blocks via block integrals pro-

B = ?{ 48 yaa (2.24)
I

2ris
(&

posed in [9]

where I'; is an appropriate basis of middle-dimensional cycles in (C*)|G|. Recently block
integrals were rederived via localisation on D? x S! by [14]. In their analysis the B33 (x; q)
block corresponds to imposing Dirichlet (D) boundary conditions

B3 (x;9) = (g7 @)oo = BE (73 q) (2.25)

whereas imposing Neumann (N) boundary conditions leads to

B (z;q) = ) 2.26
V() (23 9)oc (2.26)

the two choices being related by
B\ (;q) = O(x; ¢)BY (z;9) (2.27)

In our language on the 1.h.s. we have a chiral of charge +1, R charge 0 with added —1/2
CS units. On the r.h.s. we have a chiral of charge —1, R charge 2 with added +1/2 CS
units. From the perspective of [14], the Theta functions represent the elliptic genus of a
Fermi multiplet on the boundary torus.

We are then able to extend to the lens space the remarkable Riemann bilinear-like
relation discovered for S and S% x S [9]:

dz H sd||* _ —inp 3d||?
A2t ey
3 Rl e S L ¥

The intermediate step, the block factorisation of the partition function, is checked for two

SO T~k

(2.28)

specific examples in the next subsections, for earlier results see [15]. Notice that, while the
parity anomaly cancellation condition is a sufficient condition to factorise the integrand in
the first step, in the second step it is only a necessary condition. The actual evaluation
of the integral might require additional conditions to ensure convergence. However as
we already mentioned, there are other ways to prove factorisation besides explicit integral
evaluation. For example, Higgs branch localisation, stretching/projection arguments or the
existence of a commuting set of difference operators in x, ¢ and Z, ¢ acting on the partition
functions.



2.2 SQED
We now consider the U(1) theory with N; charge +1 and Ny charge —1 chirals (SQED),

for which we turn on masses X,, X3, and background holonomies H,, H;,. We also turn on
the FI € and the associated holonomy 6. The L, partition function reads
Ny

2771 27r1
Z3QED —Z/ e e Sp—tmpa(—Z — Xa +1Q/2)8 01 1, (Z + X,y +1Q/2)
a,b=1

_Z/ 27riZ£ 21r1£9 H Sb —¢—H, Z X +1Q/2) (229)
omi b1 S, 0-m,(Z — Xy —1Q/2)

where in the last step we simply sent Z — —Z and used the reflection property (A.43). In

order to evaluate the integral we can close the contour in the upper half-plane (assuming
¢ > 0) and take the sum of the residues at the poles of the numerator

Z =Zyy =X +iw [l + H] +1jQ + ikrwy
Z = Zg) = Xe+iwa(r — [0 + Hc]) +1jQ + ikrws,

The details of the computation and notations are given in appendix B.2, the result is

CZl,...,Nf, j,kEZZO. (230)

Ny

27r1
ZSQED —e —in’P Ze po cgeff_Hceeff)
c=1

Ny

2 2i 27 3 ;
(g
27 x  om Ny®Np—1 27’X 2mipg U
ab=1 (ET“’lX“be%Hcg;q ger1“er Hea

? o0

2
. (2.31)

T

where we introduced the notation

Xeog = Xe — Xq, X5=X.—Xp, H,=H.—H,, H;=H.—H,, (2.32)

Ci C

and set
27 27

2mi 27r1
u=e ,wlgeff —70cﬁ‘ U_ e ,w2§eff Ocsr (233)

We can finally express everything in terms of the “holomorphic” variables

2m i 2m
Xq 27 _ 21X @
Tg=e™1 e e Tp =i ter Hb, (2.34)

factorising the classical part as

i —Ly: 2
627" (Xcbei —Hcbesr) = H @(Z‘c v q1> 5 (235)
O(u; q)O(ac 5 ) Ir
where we used (2.20). Therefore, we finally obtain
ZSQED — e (2.36)
where
B3 — @(xc_lu; Q) ﬁ (qxcxgl; Q)oo P Ty - . (2 37)
© T 00w ha) A @ T M et ‘

are the same SQED holomorphic blocks derived for S? and SiQd x St



2.3 T[SU(2)]

As an application of the result obtained in the previous section we consider the mass
deformed T[SU(2)] theory. This is a U(1) theory with 2 charge +1 and 2 charge —1 chirals

m p

and a neutral chiral. We turn on vector and axial masses 7, 5, the FI parameter { and

their respective holonomies @, 5,0 € L.

The T[SU(2)] theory is part of a family of theories T[G] introduced in [45] as boundary
field theories coupled to the bulk 4d NV = 4 SYM with gauge group G for which they
provide S-dual of Dirichlet boundary conditions. T[G] are 3d N/ = 4 theories with G x G*
global symmetry rotating the Coulomb and Higgs branches. 3d mirror symmetry acts by
exchanging Higgs and Coulomb branches hence swapping T[G] to T[G¥].

In [46] it was shown that the S® partition function of the mass deformed T[SU(2)]
theory (the axial mass m coincides with the mass of the 4d adjoint breaking the 4d SYM
to N = 2%) coincides with the S-duality kernel in Liouville theory acting on the torus
conformal blocks. It was also explicitly proved that the S? partition function is invariant
under the action of mirror symmetry. Actually, as we are about to see, the self mirror
property can be proved on generic 3-manifolds that can be decomposed in solid tori. This
result follows from the highly non-trivial tranformations of holomorphic blocks across mir-
ror frames.

The lens space partition function of T'[SU(2)| reads

Z' = Z(m, & p; Hy,0, Ha)

- 5 m o459
= — — e r

. . - : (2.38)
Sb.Ha (1) (=5 Jr 27 Sp—px v _Ha (zx3-4-i%)
where we used the notation fip(£z) = fi(z)f_p(—2). Introducing
i 27 i 2m i
2= erorte Ha, xr = emlme%H‘/, Yy = ererte’ s . (2.39)

and using the result (2.31), we can write®

. 2 2
Z(mvgvll;HV,aHA)ze_lﬂ)(HB?d’IH +HB§’“ ) (2.40)

with

-1 1 1
d,T qr ;4 2z 2x "z 1
B = 1( )oo) 2®1 (q . Tr 2 gy 1>,

(a7 7a) " (2.41)
g — O )0 (q222 "1 q) (@50 g (qiz—l graz! ;qézy1> |
O(yz~159)0(q7 211 q) (g2 1 q) q qz
and
eI — o= o ((r=DHA+24+2(m+p—iQ/2) (6=n—iQ/2) = (Hy +Ha) (0+(r—)Ha)) (2.42)

is the contribution of background CS terms.

8We introduced the index I to distinguish the theory from its mirror as it will be clear later.

~10 -



Mirror symmetry acts by exchanging Higgs and Coulomb branches, correspondently
the vector mass and the FI parameter are swapped while the axial mass is inverted, and
similarly for the associated holonomies

E—m, W= —p, 0 — Hy, Hjis— —Hy, (2.43)
so that the partition function in the mirror frame reads

. 2
72" = Z(&m, —p; =0, —Hy, —Ha) = 7" (Hde’” + HBSd’”
T

2), (2.44)

T
where we used that P is invariant under the mirror map and obtained the blocks in phase
II from the ones in phase I by applying the mirror map ¢ — y, y — =, 2 — 21
3d,11 (v @)oo Q%Z q%y_lz L
By = 172‘1>1< 1 ;q2z_la:_1> ;
(2972 ¢) o 9 9y
1 11
goarr _ Owia)8aryza) (@ide o (a2zq%yz 1 1
2 - ) 1 1 2¥1 ’ q2 z x .
O(zy~ 1 9)0(q22:q) (¢2y21q) a ay

(2.45)

At this point proving that the partition function is invariant under mirror symmetry

amounts to prove the following equality
2 2 2 2

3d,T 3d,T||° _ |[423d,1T 3d,IT
i)+ s = s+ e

(2.46)

r

As we already mentioned the two sets of blocks inside an r-square (with |g] > 1 if |¢| < 1)
share the same series expansion but converge to different functions which crucially have dif-
ferent transformation properties. Indeed by using identities (A.63), (A.64), (A.65), (A.66)
we can show that

3d,01 _ 153d,1 3d,01  1p3d,0 | 13d,]
gl < 1: B =5 lg| > 1: B =B + 5 (2.47)
q : Bgd,n _ Biﬂd,[ _ Bgd,[ q : Bgd,n _ Bgd,[ :

which ensures (2.46). The transformations of the blocks across mirror frames has the
characteristic structure of a jump across a Stokes wall. The interplay between mirror
symmetry and Stokes phenomenon for 3d blocks and its relation to analytically continued
CS theory has been extensively discussed in [9].

Notice that our proof relies only on the blocks transformation properties and makes
no reference to the specific gluing rule, hence it can be extended to all the cases in which
the partition function can be block factorised.

2.4 SQCD

We now continue our examples with the SU(2) theory with Ny fundamentals and Ny
antifundamentals chirals (SQCD). The partition function reads

7’71 2Nf A .
4z 2 2 Sptert (2= X +iQ/2
Zsaep =Y | 5o dsinh ——(Z—iwyf) sinh ——(Z+iwnl) x [[ e (Z-Xy+1Q/2)
/=0 R <71 rwi LC) a'b=1 Sb,*f*ﬁb/ (ZiXb’ 71Q/2)
(2.48)
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where we defined
Xy = (Xm _Xb) = _Xb/ ; Hy = (HCH _ﬁb) = _Hb’ : (2'49)

In this form the matter sector reads formally the same as the previous Abelian theory with
the replacements a — a’, b — b'. In fact also the vector multiplet contribution is equivalent
to a pair of charge +2 chirals. Therefore, there is a canonical Abelian theory Zsqcpl€, 0]

associated to the SU(2) theory, for which we also turn on an FI coupling T

~ 9 Since
the vector multiplet does not bring any pole, the residue computation proceeds exactly as

in the SQED case and the SU(2) partition function can be obtained from the limit

Zsqep = lim Z 0], 2.50
sqop = lim ' Zsqopl€, 0] (2.50)
where
2Nf 2Nf f:’ Xc’a’ 27 1ol
7. — o—imP 20 (X ot —H o Oefr) (qe ! € r e ,q)oo
Zsqepl§, 0] = e Z e it 5 H e
=1 o =1 (eM1 e r b ;q)oo
2T X 2mipy
2 erwy ¢ b er c’b’; 2
3 i 2 (X — e — Q) 8
rwi rw Xc’a’ 2mipy /. r
n>0 (qe 1 e Hela ’q)n
(2.51)
with
geﬁ:§+ZXa/—leQ, eeﬁze—(r_l)ZHa/ (252)
a’ a

3 3d twisted index

We now consider ' = 2 theories with R-symmetry on S% x S with a topological A-
twist on S2. This background has been recently reconsidered in [16]. The topological
twist is performed by turning on a background for the R-symmetry proportional to the
spin connection with a quantised magnetic flux, as a consequence R-charges are integers.
Magnetic fluxes are also turned on for all the flavour symmetries.

The path integral on this space localises on BPS configurations labelled by continu-
ous variables Z in the Cartan and discrete variables £ in the maximal torus of the gauge
algebra. The integer variables £ parameterise the magnetic flux while z = 2™ is the
holomorphic combination of the S holonomy and of the real scalar. We also turn on anal-
ogous continuous and discrete variables for the non-dynamical symmetries. The partition
function reads

dz
Z[5% x 81 = g%}}( prpe] Zo X Ziygop X Z7N0CT. (3.1)

The integration contour is prescribed by the Jeffrey-Kirwan residue [47].
The contributions to the classical part come from (mixed) CS terms. In particular, a
pure CS and FI read
2, 20t (3.2)
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where &, 6, are the holonomy and flux associated to the topological U(1) symmetry. The
contribution of a chiral multiplet with R-charge R is given by

B
z2
(67 z4)p

where the shifted R-charge B = ¢ — R 4+ 1 is quantised. Finally the vector multiplet
contribution is given by

2v(six S =[] a ‘ZS"(1—q 'z;%), (3.4)
a>0
where we used the usual shorthand notation f(z)f(z7') = f(z*). We refer the reader
to [16] for a detailed analysis of the integration contour in (3.1).

Geometrically, the twisted index background is realised by gluing two solid tori twisted
in the same direction so to realise the A-twist on S2. We then expect that also in this case
the partition function can be expressed in terms of the universal blocks B34

We begin by studying the free chiral with R-charge 0 and —1/2 CS unit (the tetrahe-
dron theory). It is easy to see that by defining the A-gluing acting as

T —T, 7 — 7, or qg—q z2—z, (3.5)

we obtain the twisted index of the tetrahedron theory by A-fusing two 3d blocks

2 240 246 1 1
e, = (%0 (1)~ - o)
0 229),, (@2 %49,

(3.6)
where the the holomorphic variable z is identified with the combination z = z~1¢~%2. As
expected

B
2
;

ZP)[S% x 8" = Za[S% x Sz (3.7)

with the factor 25/2 contributing the 41/2 CS unit.
CS terms at integer level and FI terms can also be expressed as A-squares of the same
blocks appearing in (2.20)

(" us q)
H@ :q0)O(u; q

ot~ dk:a) =+ 7= 9

where u = ¢?/2¢. Finally also the vector multiplet can be factorised as in (2.21)

_ltal tal
| TI (s2 - s )H F(1-q % 2E) = 20185 x S, (3.9)
a>0
with sq = g7 */*z5" or alternatively®
o =qr z,,  or alternatively
1+£a ) 9
2 Zaiq _ltal ltal
HH e re P | R (R B CA T
w0 (472 za,q)oo(q 2 203 q) a0

9Up to a factor (—1)‘, see discussion in [16].
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From egs. (3.6), (3.7), (3.8) and (3.9) it follows straightforwardly that for parity
anomaly free theories the integrand is factorised

218 x §'] = %:f[fm %‘ZMHTSCIHZ (3.11)

Clearly one expects the result of the contour integral to take factorised form too. Indeed
in [16] it has been observed that this is the case. For example it is an easy exercise to show
that the SQED partition function can be written in terms of the 3d holomorphic blocks

’i (3.12)

ZsqQED = €~

We will not show the details of the computation because we will perform an almost identical
computation for the S? x T? case in section 5.
In the end we can extend also to the twisted index case the identity

ZJQ{K 2mz|w\H 3d ZH/ QmST3d (3.13)

suggesting that factorisation commutes with integration.

4 4d N =1 lens index

In this section we consider A/ = 1 theories formulated on L, x S!. The lens index of a
chiral multiplet of R-charge R and unit charge under a U(1) symmetry is [43]

I (w, H) = o (H)Z3"? (w, H)I{ (w, H) , (4.1)
with
R R
I (w, H) =T ((pq) > wpl™; pq, p") T ((pq) 2 wg" ;s pg, p") | (4.2)

where w is the U(1) fugacity and H the holonomy along the non-contractible circle of L.
Zo(w, H) is the zero-point energy

L > r— r— r— r—
T3 (w, H) = ((pg) % w) "2 0D (g ar I =D (=1 i W =LHD 21D (4.3)

and the sign factor o(H) is defined in (2.11).
For a chiral multiplet in a given representation of a gauge group GG and global flavour
group, the lens index reads

[TZ (p(2)6(¢), p(8) + $(H)) , (4.4)

where z, {, are respectively the gauge and global fugacities associated to the Cartan, p, ¢,
the weights of the gauge and flavour representations, while £, H, are respectively the gauge
and background holonomies in the maximal torus, which can be represented by vectors
with components in Z,. The gauge theory lens index is then obtained by summing over the
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dynamical holonomies 0 < ¢; < ... < €|G‘ <r—1,4¢, € [0,r—1] and integrating the matter
contribution with integration measure given by the vector multiplet of the unbroken gauge
group

I—Z]{MMMHIV z),a(l))
< TITITIZ (pi(2)64(€). ps(®) + du(H)) , (45)
i pi ¢

where « denote the gauge roots, and we defined
Tv(w, H) = o(H)Zo v (w, H) Ty (w, H) (4.6)

with
1

z H) =
viw, H) T (w=tpr =1l pg, pr)T (w=tqtH); pg, q7)

and zero-point energy
Tow (w, H) = w3 0D () =2 =) (=1 =i HIe—TH)—20H) (4 g)

If the gauge group has an Abelian factor we can introduce an FI term which contributes

to the partition function as
54(1

zTe%w, (4.9)
where we turned on also a background holonomy 6 for the topological U(1) symmetry. As
argued in [48] the 4d FI parameter $ needs to be quantised. This allows the index, which
is independent on continuous couplings, to actually depend on the FI parameter.

In the following we will show that by performing a modular transformation and can-
celling the anomalies it is possible to express the lens index integrand in a very neat
factorised form.

4.1 Chiral multiplet

Let us consider the index of a single chiral and introduce the following parametrisation

2mi -2
w=es p=TG, g=TE, pg=eT, (4.10)
where () = w1 + wy, and w3 = %’r measures the (inverse) S' radius 3. For convergence,
we also assume Im (wl 2) > 0. Also, since it is going to appear quite often, we define the
combination .
X = QT + M. (4.11)

By using the modular transformation (A.61) and the reflection properties of the elliptic
Gamma function (appendix A) we can rewrite

j}((R)(w’H) — o (3P3(X)+5P2(X)) o ZM(X, H), (4.12)

~15 —



where

e T H(r=1) . T 22(Q—X)

The cubic polynomial ®3(X) is defined in (A.11). As we will see in section 4.3, these

Z3NX,H) = (4.13)

polynomials contribute to the 4d gauge and global anomalies. In the above expression we
introduced the function'®

omi : Q _ 9o W3 27 _ i Q _o9sw3
g(X, H) _ F(eml (X+w1[H)) e2mm1 e 2mi ok )F(em2 (X +wa(r [H]));e2mrw27e 2mm2) ,

7

(4.14)
satisfying ‘
G(X, H)G(Q — X, —H) = e+ HIr=Hein®2(X), (4.15)
and which can be factorised as
2
Q(X, H) = F({L‘; qr, QU)F(-%'; qr, q~o) = HF(wQ qr, qa) 7 (4'16)
where the 4d r-pairing acts according to
g = 2 _ 2T G — 2y (27
Gy = 6_27ri:“31 _ 627ri(7’ G, = 6_27ri:"32 _ 627ri&’ (4.17)
T = efsiXe%H = ezmxe?H T = 63:; e_%H = e27ri)~<e?g’
with .
_ T . o . X ~
[—— T -1 X= 1 " ( )
Notice that in the 3d limit ws — 4+oor (or ¢g» — 0), we have
} ‘12)0 (%’5571; q7')OO = B]s)d(x; QT) s (4‘19)
F(Qﬁﬂi s 47, QJ)
and
; 400 . . .
Z3(X, H) =57 5, _p(iQ/2 — iX), (4.20)

with the quadratic polynomial ®2(Q — X)) in (4.13) contributing the correct half CS unit
in 3d. The function ZA;‘zd(X , H) satisfies

~4d Z4d _
ZMX, H)ZMQ - X, -H) =1, (4.21)

compatible with a superpotential term W oc ¥ W, for two chiral superfields ¥y 9, which
disappear from the IR physics. In the case r =1, Z;‘zd can be shown to reduce to the result
for a chiral multiplet found in [39, 50].11

We see that there are two natural ways to rewrite the lens index for a chiral

f(R)(w,H) — i (3P +582(X)) o e%m(r_l)e—ig%()()Hgﬁd(x;qﬂqa)

2
( . (422)

r

For r = 1, G coincides with the so-called modified elliptic Gamma function, see for example [49)].
11p order to compare with the result of [50], we need (3(0, z|w1, w2, ws) = —éng(x\wh w2, ws3) and some
property of the Bernoulli polynomials and elliptic Gamma function summarised in appendix A.

~16 —



or

~ . i im 2
(9w, H) = ¢ (3030430200 o (= S -D 50200 g o (423)

T

T3 qr, qo)

where, in analogy with the 3d case, we defined the 4d holomorphic blocks for the anomaly
free chiral

1

B (x: = B (2 =T (z; 4.24
D (CU,QWQU) T(qTﬂc_l;qT,qg) > N (xa%'aqg) (x7QT7QO')7 ( )

with
BE (2547, ¢5) = (73 ¢-) B (23 ¢, o) - (4.25)

We interpret the 4d blocks as partition functions on D? x, T2, where € = 7/R; is the cigar
equivariant parameter and o is the torus modular parameter. From (4.22) and (4.23) we
see that the polynomials ®3, ®9, which we will identify with anomaly contributions, are
obstructions to factorisation, while the anomaly free chiral indexes

g (4.26)

T

Zole x 81 = B wige 0o 2l x 8] = |[B 00

r

have a neat geometric realisation as 4d blocks glued through the 4d r-pairing (4.18), which
implements the gluing of two solid tori D? x, T2 to form the L, x S' geometry.

Similarly to the 3d case, 4d holomorphic blocks are annihilated by a set of difference
operators which can be interpreted as Ward identities for surface operators wrapping the
torus T2 and acting at the tip of the cigar.

For example for B]%d we find!?

1 B Oz qp)

T‘,r -0 x_l;qU B4d T qr,4o) =
( qr,T ( )) D( ) F(.%'_ISQWQU) F(QTx_l;q’”qU)

=0, (427

where Ty . f(x) = f(qz) is the g-shift operator acting on . The lens index is annihilated
also by another equation for the tilde variables

(Ty, o — Oz Y5 40)) Zp[Ly x SY] = (T3, — ©(3 4 G,)) Zp[Ly x ST =0, (4.28)

and similarly for Bid, Zn[L, x S

The existence of two commuting sets of difference operators annihilating the lens index
indicates that it might be expressed in a block factorised form. Indeed we will shortly see
that anomaly free interacting theories can also be factorised in 4d holomorphic blocks.
We also expect that our 4d holomorphic blocks will be the building blocks to construct
partition functions on more general geometries through suitable pairings. For example, in
section 5 we will discuss the S? x T? case.

2For the free chiral case, there is an apparent symmetry between g, and ¢, for example we also have

(To — G)(a:_l;qT))m
clearly visible if we realise these 4d theories as defects in 6d theories engineered on elliptic Calabi-Yau’s. In

= 0. However there is a profound difference between ¢, and ¢,. This

that setup ¢, corresponds to a Kéhler parameter while ¢, is related to the topological string coupling.
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We close this section by observing that our definition of the blocks 84 and BN via
factorisation or as solutions to difference equations suffers from an obvious ambiguity. It
is clear that we have the freedom to multiply our blocks by ¢r-phases c¢(z; g, ) satisfying

2
=1. (4.29)

r

C(QT13QQT) = C(x;QT) ) HC(CC;QT)

The first condition ensures that the c¢(x;¢;) is a g--constant passing through the difference
operator while the second condition ensures that these ambiguities disappear once two
blocks are glued. 4d blocks for more complicated theories will be defined up to g.-phases
as well, which can be expressed as elliptic ratios of Theta functions.

4.2 Vector multiplet

Repeating the steps we have done for the chiral multiplet, we can also bring the vector
multiplet contribution to the following form

[T v (a(z), a(e) = e Za(52a@)+32:2) « Z4d(7 p), (4.30)

with
— g (r=1)a(0)? ) 'F ®2(a(2))

wezo=l—(cuzee

[0}

(4.31)

27i

where z = e=s 2. Also in this case the prefactor of (4.30) is an exponential of a cubic
polynomial contributing to the anomaly, which we will discuss in subsection (4.3). In the
3d limit w3 — 4+oor we have

o0 1
22,0 P : , (4.32)
L Shae) (1Q/2+1a(Z))
matching the 3d vector contribution (2.7) with the identifications ( ) = (iZa,lo)
It the case r =1, Z{4,d reduces to the contribution of the vector multlplet in [50]. By using
the factorised form of the G function we can express Z{ﬁd as
1T S 7 7y Yo L
28(2.4) = [[ ||sa - 4rta 247 90) H\ 526055 00)|| (4.33)
as0 F(Sa 34T, QU r
where we used (A.48), (A.49), (A.56), and defined the holomorphic variables
27i i
5o = 71 M) 2Rl (4.34)

In this form we immediately see that in the 3d limit ¢, — O, ZA%/d matches the 3d vector
contribution (2.21) (notice that O(z;0) = 1 — x). We then define

Bég«:({sa}; qdr, QU) = H Sé@(3;1§ QU) s (4.35)

a>0

such that

2
24(2.0) = Bl ({sa Y a0) | - (4.36)
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Other choices of Bid

o are clearly possible. For example we can also write

1 2
Z?;%Z,E) = H H@<Q7?Sa§QT)F(QTSZtSQWQU) s (4.37)
a>0 r
with
1
Byec({sa}iar o) = [ @(qT2 sa;qT)F(qu(f;qT,qg), (4.38)
a>0

which in the 3d limit g, — 0 reduces to the 3d block (2.22).

Finally, we observe that the FI terms can also be naturally factorised as in 3d (2.20)

2mi g€ g, H O (s tugq; gr) —2
ozt o 4.39
@ u4d7q7')®(3 lvqT) T ’ ( )
with
27i i _ 2mi WlwWg ¢4d i
s=ermiZe Tl g me e ws o e 0, (4.40)

4.3 Anomalies and factorisation

We now return to the polynomials ®3, ®, appearing in the modular transforma-
tions (4.12), (4.30). We will see that their total contribution reconstructs the 4d anomaly
polynomial. This interplay between modular transformations and anomalies was first ob-
served in [49] (see also [50, 51]).

Collecting the contributions of the chiral multiplets we find

QR;
2

Pi2,2) = 10 L 4 5(2) +0:2) ) + oo

. L2 @), @Ay

271'1 =

where we introduced the exponentiated flavour fugacities ¢ = e«s~. Similarly, the vector
contributes with a factor e 1" 2a Po_ where

S Pu(2) =~ (;cpg (a(2)) + 5> (a(Z))) . (4.42)

[0}

In total we find

Peot(Z,B)=> > PiZ,E)+ Y PulZ) = Pioc(Z,E) + Pa(E), (4.43)

i pisi

where in the last step we further distinguished between local (gauge (G)) and global (flavour
(F), R-symmetry (R) and gravity (g)) contributions.
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Gauge and mixed gauge anomalies. Collecting the various powers of Z we get

GGG Z 37"&]1&]2(4}3 (444)
i pi,di
pi(Z)? a(Z)?
: @ — 1 Q1 4.4
Gk ;p ; 2TW1WZW3Q(RZ )+ ; QTW1WQW3Q ( 5)
pi(Z (=
F (2 4.4
GG Z Z rwiwaws Z ) ( 6)
iopidi
pi(Z) 2
: o oo =1 4.4
GRR Z drwiwaws (Q(RZ )) (4.47)
iopidi
: pi(Z C_ (=
GRE: sz rorise, QH — 1Doi(E) (4.48)
. pi(Z (= 2
GFF: ) > o e(® (4.49)
iopidi
2,2 2 2
s zz: pz: 12rw1w2w3 (205 —wi — wp + Aorwa(r” ~1)). (4.50)

All these terms have to vanish on physical theories, leading to conditions on the R-charges
and on the flavour fugacities.

Global anomalies. For the Z independent terms we have

FFF : 4.51
Z Z 3rw1w2w3 ( )

¢ pml

3
Qi —1))" Q1)

RRR : —_— 4.52
ZZ: Z; 24rw1w2(,U3 + Za: 24rwiwows ( )

PisPi
FFR : -1 4.53
Z Z 2rw1w2w3 ) ( )

i pidi

2

FRR : QR;—1 4.54
Z Z 4rw1w2w;3 )) ( )

i pisdi

. 2 2 2 2

Fgg: ZZ: Z 12rw1w2w3 (2wg — wi — wi + 2wiws(r® — 1)) (4.55)

PisPi

Rgg : (2w; — wf — wj +2 2_1).
- (zszz: 247~w1w2w3 Z 247“w1w2w3> wy —wi = wy o+ Anwa(r )

(4.56)

In [52] it was observed that partition functions on M3 x Sé have a divergent limit when
the S! radius 3 shrinks to zero. The leading term is

2
In Z[M? x S} P2° _% Tr(R)Lp[M?] — @ Tr (U(1)) Lp[M?] + subleading, ~ (4.57)

—90 —



where Lp p[M?3] are integrals of local quantities which can be computed for the given 3d
(Seifert) manifold M3 and supergravity background. In the M3 = Sg‘ case in particular
2 -1
=0 wrg(b+0b7")
In Z[S§ x S4] "~ ————Tr(R) —
n Z[Sy ,3] 63 (R)
where m is a real mass for the U(1) symmetry and r3 the Sg’ scale. By using the asymptotics
of &3, ®o, it is not difficult to verify that

—inPy W3 Fo0 17Tw3 B . _ imws '
e 12rwywy (Z Z QU = 1)+ ZQ 1) 6rwiws Z Z 9i(C)

i piydi a i piydi
(4.59)

reproducing the expected universal divergent factor with the identifications § = 3)—7;, iw =
b

-2,

Finally we consider the extra exponential quadratic terms appearing in the definition

of Zﬁd in (4.13). We already observed that in the 3d limit w3z — +oog, these polynomials

Tr (U(1)), (4.58)

iwg = —%, the volume being rescaled by 1/r.

contribute the expected half CS units. These polynomials are actually w3 independent, and
for convenience we refer to their total contribution as 3d anomaly. Each chiral of weights
pi, ¢i, contributes with

r—1
P = ¥<2¢’2(Q2 L+ pil2) + ¢z’(5)> - 7(/%‘(5) + ¢z’(H))2> ; (4.60)
where the sign F depends on the choice (4.22) or (4.23) respectively. In total we find

=YY PM(z5) =Pz E)+P}E). (4.61)

iopidi

[I]

tot

On physical 4d theories, where the 4d gauge anomaly is cancelled, the would be 3d parity

anomaly is also automatically cancelled, namely in the 3d limit e~Pise would contribute

: 3d . .
—imPise can always be factorised in Theta

integer CS units. This implies that the factor e
functions as in (2.20).

We arrive at the conclusion that, on physical theories where there is no obstruction
from anomalies, the lens index integrand can be expressed in terms of the holomorphic

variables and arranged in the factorised form

. dz 2
[ = o—in(PatPE) 7{ ' HT4d
Ze: 2miz [}, (Whl r

up to prefactors due to the non-dynamical anomalies. As we will see in some explicit case,

(4.62)

for anomaly free theories we also have

[ = mPatP) Bd||” (4.63)
T

We are thus led to try to use the integrand Y*d to define 4d blocks via block integrals as
in the 3d case. We will return to this in section 6.
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In [50] it was pointed out that the anomaly cancellation conditions are necessary to
express the partition function on Hopf surfaces Hy, , ~ S 1% 83 in terms of periodic variables
(under S! shifts) consistent with the invariance under large gauge transformations.

To understand the effect of large gauge transformations at the level of the blocks, it
is useful to look first at the semiclassical limit 7 = Rje — 0, where we remove the -
deformation on the disk by turning off the equivariant parameter (¢ — 0). In this limit
the theory is effectively described by a twisted superpotential obtained by summing over
the KK masses R% and }.T‘Tl due to the torus compactification of the 4d theory [53]. The
contribution of a chiral multiplet to the twisted superpotential is given by

Wi(a) = H;Z <a + ];(an + m)><1n (a + };(on + m)> - 1) . (4.64)

This sum needs to be regularised, in appendix B.3 we briefly review how one can do that,
the result is

— —27rR1ak
W(a) = f'Pg(lRla Z 20 (4.65)
L %0
where
X3 X2(1+0) X(14+0B+0) (1+60(l+0))
Py(X) =5 -+ oo - = : (4.66)

We can immediately identify in (4.65) the semiclassical limit of the anomaly free chiral
e ) o 1 e e,
o k(1 —qgk)(1—qk) 2mir o k2(1 — ¢¥) €
(4.67)

while P53 contributes to the anomaly polynomial on R? x T2.

As it will become important later on, we observe that while the twisted superpotential
as defined in (4.64) is invariant under large gauge transformations being manifestly doubly
periodic on the torus 72, i.e. invariant under a — a + 7 (cm + m), the regularisation pro-
duces polynomial terms Wthh explicitly break the perlodlclty Therefore the semiclassical
analysis shows that anomalies represent an obstruction to the periodicity/gauge invariance
of the superpotential.'3

We then see that the block integrands of anomaly free theories defined in (4.62), in

the semiclassical limit
og 44 =9 W (4.68)
€

are doubly periodic on the torus. In section 6 we will return to this point and see that at
the quantum level the invariance under large gauge transformation will be preserved only
up to gr-phases.

13See [25] for a thorough analysis of the periodicity in the context of the 4d tt* equations.
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4.4 SQED

We will now study two interacting theories to illustrate the general mechanism of factori-
sation. Our first example will be the U(1) theory with Ny chirals and Ny antichirals, with
R-charge R and an FI terms (SQED). In this case the lens index reads

4

ISQED—Zf R TL 2070t BB (G 0~ ), (4

a,b=1

where we parametrise the fugacities as

2mi 2mi _ 2mi 77

z=ev Ca = enga, Cb = eEMbv (470)

with associated holonomies ¢, H,, Hy. It is also useful to introduce the combinations

R - R
Xa:%+Ma, Xb:—%+Mb (471)
We evaluate the lens index by taking the sum of the residues inside the unit circle at the
poles
Zny = jQ+krwi + Xe+wi[(+H], Zoy = jQ+krwy+Xc+wa(r—[(+H]), (4.72)

where j, k € Z>¢. The detailed computation is performed in appendix B.4, here we report
the key steps. We first perform the modular transformation using (4.22) for the fundamen-
tals and (4.23) for the antifundamentals, and we get

T2 ot + H)Z (20, —€ — Hy)

— e—i7r gle_iﬂ—PloC H €2T(€+Hb) - _%qDQ(Z_Xb) g(Z — Xba —{ — gb)
) oo ((HHa)2(r=1) ;=15 92(Q+Z2-Xa) G(Q + Z — Xq, —{ — Hy,)

— i (Pat P i (Proc+PRL) G(Z — Xy, —( — Hy) A
e g 1 HQQ+Z Xa’_e H) (73)

As we discussed, the modular transformation produces polynomials contributing to the
global and local anomalies. The dynamical part of the 4d anomaly (Pj,.) must vanish
on this physical theory. In fact, as this theory is non-chiral, the GGG anomaly vanishes
automatically, while the cancellation of the GGF anomaly requires the balancing of the
U(1) flavour charges of fundamentals and antifundamentals

YD hi(E) =) Ma—> M,=0. (4.74)
®i a b

This is actually automatic since the symmetry group is SU(Nf) x SU(Ny) x U(1) with fun-
damentals and antifundamentals oppositely charged under the baryonic symmetry. Then
we also have

> Hy—> Hy=0 modr. (4.75)
a b
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In order to cancel the GGR anomaly the condition is'*

NyTa(f)(R — 1) + NyTo(f)(R — 1) + Talad) - 1 =0, (4.76)

which fixes R = 1. For the vanishing of the GFF anomaly we must require

NS wiE?=>"M2-> mE=o, (477)
i bi a b
Y Hi-) H=0. (4.78)
a b

The other anomalies also vanish without imposing any further constraint. What is left of
the 4d anomaly is the global part (Pg1), which reduces just to the FFF term.

Since we used (4.22) for the fundamentals and (4.23) for the antifundamentals, the Z2
terms in PP4 are automatically cancelled. We could have also used (4.23) (or (4.22)) for
both fundamentals and antifundamentals as well. This would have led to a different but
of course equivalent form of the integrand. Altogether the 3d anomaly contributions yield
the global factor Pgld and a renormalisation of ¢%9, #, which are however trivial once we
impose (4.74), (4.75), (4.77) and (4.78).

Finally we find

2
Isqep = e~ ™Pa ‘ 4.79
SQED = Z 7{ 27”2 SQED ) ( )
with
@(3 u4d’q 3$51'QT QU)
TSQED o — H — , (4.80)
(u4d7 QT S ) QT ab= qux& s 4Ty qg)
where we introduced the holomorphic variables
2mi i 2mi i 2mi i _ 2mi W1W2 c4d i
s=em™1 6_2TZ, Toy = eror X g a Iy = ele”eQT b uyg=e ™1 @3 e 279,
(4.81)
and used (A.49) to write
_ 27 5 i s~ 2
oSz 2y _ H O(s  uaq; qu) , (4.82)
@ u4d7Q7‘)@(S 7Q’T) r

as in 3d. Notice the integrand TSQED in (4.80) could have been assembled by adding a 4d
block B]‘%)d for each chiral and a block B4d for each antichiral plus the FI contribution. In
this case the polynomial P>¢ defined in (4.61) vanishes.

Finally by taking the sum of the residues at the poles (4.72), we obtain

—inPgl (4.83)

2
4d
Isqep = e B,
.

MWe denote Trr(TwTm) = T2(R)dmn. For SU(N.) the fundamental and adjoint generators are nor-
malised according to T2(f) =1/2, T2(ad) = N..
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with

_ Ny -1 ——1
O(z; tuag; ¢r) D(xeZ;, 5 Gry qo) LT
BM = < e b =T N, EN,—1 b iGr Qo uad |
© O(usa; ¢r)O (x5 gr) a,1b_£1 T(groera'qrgo) | \arzeag

(4.84)
where the elliptic series yEn_; is defined in (A.67). For r = 1 our result agrees with [18]
(after a modular transformation). Notice that the cancellation of the GGF anomaly is
related to the balancing condition (A.68) of the elliptic series, while the GFF anomaly
cancellation to its modular properties (A.73). The sum over ¢ runs over the supersymmetric
vacua given by the minima of the the twisted superpotential discussed in the previous
section.
It is easy to write down a difference operator for these blocks. We find that the elliptic
hypergeometric series (A.67) is annihilated by the operator

N N
H(Z,y;u, Ty, 4) = <H (g, WiTy w3 o) — H O(xi Ty, u; qg)> . (4.85)
i=1 i=1
Since
4d ey !
B¢ o t(ugq; xc)NfENf—1 1397, 405U4d | (4.86)
drZcly

where for convenience we denoted

O(x, tugq; qr)

t(ugd; Te) = - , (4.87)
O (uad; ¢-)O(zc ' ¢r)
satisfying
T(Z—,ut(u4d; xc)il = $;nt(U4d; l'c)il’ (488)

we see that the blocks B24 are annihilated by the difference operator
t(uad; o) H(wewy by graeag Vs uads Ty, w)t(uag; ve) ™ = H(Zy Y grog s uaa, Ty, ) s (4.89)

for c =1,...,Ny. As we have already noticed in the case of the free chiral, if we define
the blocks Bﬁd as solutions to this difference equation, with the additional requirement
that their r-square reproduces the partition function (4.83), we still have the ¢,-phases
ambiguity. For example we can multiply the blocks by the elliptic ratio of Theta functions

Ny

O (usaZy ‘5 qr)
c(ugq; = , 4.90
(ads o) agl O(usagraa s qr) (490

which satisfies ¢(qru4q; ¢r) = ¢(u4q; ¢r) and has unit r-square when the anomaly cancella-
tion conditions (4.74), (4.75), (4.77), (4.78) are imposed. It is also easy to check that since
G)(ql/ 2:v;qT) < exp (— im (Réi)Q), eq. (4.90) has a trivial semiclassical limit. Indeed in

general g,-phases are not visible in the the semiclassical asymptotics.
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We conclude by checking the 3d limit of our results. At the level of the 4d blocks this
amounts to take g, — 0, yielding

B (F; wad; 4r, 4o) — BT usa, q) (4.91)
with the obvious identifications

ar = ¢, (iXa, Ha)‘4d = (Xa, Ha) (1Xs, Hb)‘4d = (XZN Hb)‘g,d : (4.92)

lsa-

Notice that the 3d mass parameters are still restricted to satisfy the 4d anomaly can-
cellation conditions. As explained in [54], the reduction of the 4d index to 3d generates
theories with the same gauge and matter content of the original theory but with a compact
Coulomb branch and with non-trivial superpotential terms enforcing the restriction on the
masses [54]. Moreover the relation between 4d and 3d FI parameters

€4d w3—>4-00 ~3d
i ¢ (4.93)

w3

is consistent with a continuous 3d FI.

4.5 SQCD

We now move to the SU(2) theory with Ny chirals and Ny antichirals. The lens index
reads

Ny
Isqcp = Z 7{ Ty (272, 220) [[ U9 (27, 2+ H)IUV (G 70— Hy) . (4.94)
ab=1

We can collect the flavour fugacities and background holonomies into
Car = (CaaCb ) Cb’ ) Hy = (Haa _Hb) = _Hb’ ) a/7b/ =1,... 72Nf (495)

We also define OR OR
Xo=Lomy =%, =%y, (4.96)

where M, = (My, —M,) = —Mjy. In this notation the matter sector reads exactly the
same as the SQED theory with the replacements a — a’ and b — V', the only differences
being the different R-charge and the “reality” constraints X, = — Xy, Hy = —Hy. The
set of poles inside the unit circle we will sum over is also formally unchanged with respect
to the Abelian case (4.72) because the vector does not bring any pole.

The first step is to perform the modular transformation, which upon imposing the
anomaly cancellation allows us to factorise the integrand as

Isqep = ¢ " (PartPei) Z}I{ B
7TIZ

2
, (4.97)

SQCD‘

with .
T4dc o SF(qT‘SQ;(bv(JU) F(Sjb' ;q‘f‘aqa)
SQCD — —
Q F(SQ;QTvQU) al b F(qTS:Call;qT7q0')

, (4.98)
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where

27i 27 27i 27i
—_— =t !/ ==
s=e™ e rg, Ty = €71 o/ o= Har

(4.99)

The GGF cancellation parallels the Abelian case. The GGR anomaly cancellation
NfTQ(f)(R — 1)+ NfTo(f)(R—1) + Ta(ad) - 1 =0, (4.100)

in this case yields R = N“ for SU(N,). All other anomalies vanish without imposing
further conditions.

Also in this case we observe that the integrand TSQCD in (4.98) can be obtained by
adding a 4d block BD N for each chiral/antichiral plus the vector multiplet contribution.
In this case however we need to take into account the polynomial Ploc which, once the 4d
anomaly cancellation conditions are imposed, contributes a factor |[s2||? to the partition
function.

We then take the sum of the residues at the poles. The detailed computation is
performed in appendix B.5, here we give the final result in the fully factorised form

2N,
Isqcp = e el Z HB“d

(4.101)

with

U'(zeza; gr, q
Bé —xc/@( /,qU)H ( = a_l T J) 2Nf+4E2Nf+3(xc/;xc/xa/;QTu(:IU;1); (4102)
’ F(QTxc’xa/ ;qT7QO')

a

where we introduced the very-well-poised elliptic hypergeometric series defined in (A.74).
For r = 1 our result agrees with [18] (after a modular transformation).

5 AN =1 theories on S? x T?

We now turn to the manifold S? x T2 which supports N’ = 1 supersymmetric theories with
R-symmetry. To preserve supersymmetry the theories need to be topologically twisted on
S? and the R-charges need to be quantised. This background has been studied in [39, 40]
and more recently in [16, 41] and [55].

As in the twisted index case reviewed in section 3, the localising locus is parameterised
by continuous variables Z in the Cartan and discrete variables £ in the maximal torus of
the gauge algebra. The integer variables £ parameterise the quantised magnetic flux while
z = €2™Z ig a combination of the two holonomies on the torus. We also turn on analogous
continuous and discrete variables for the non-dynamical symmetries. The partition function

reads d
z matter
7 K.

The contributions to the classical part come only from possible FI terms for U(1) factors

f'\/ol (T?)¢e _ gf (52)
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The contribution of a chiral multiplet with R-charge R, U(1) fugacity z and flux h is

given by!®
|B|-1 B g
_B 2 1 J12,%
(B)rq2 21 _ B _ do "2
ZNS" X T =g P22 O(¢z; o )7 (B) = ; (5.3)
k:_‘ -1 TR G)(qT Z;QT7QU)B

2

where we used the definition of ©-factorials in (A.58) and defined B = h — R+ 1. The
vector multiplet contribution is given by'®

Zy[S? x T? = H q;l%‘@(q%zf;qg) . (5.4)

2mioc

In the above expressions ¢, = e is identified with the torus complex modulus and

¢ = ¥™7 with the angular momentum fugacity. By using that ©(z;0) = 1 — a, it is
immediate to check that in the ¢, — 0 limit the 1-loop contributions (5.3) and (5.4) tend
to their counterpart on S% x S (up to the zero-point energy factor).

Geometrically, the S2 x, T? background is realised by gluing two solid tori D? x, T2
twisted in the same direction yielding the A-twist on S?. We then expect that also in this
case the partition functions can be expressed in terms of the universal blocks de fused

with the A-gluing defined by
T T, o—=0, Z—=Z, O ¢G—=q¢, G4, z2—z. (5.5)

As clear from our discussion on anomalies, the free chiral alone is not expected to
factorise, we need instead to look at an anomaly free object, for example

2 1
HB]%d(ﬂU;qT,qU) ‘A: 2+h —2th ) (56)
(gr? 2¢r,60)T(r ? 2567, 40)
1
= — = Zp[S? x T?], (5.7)

O(¢r? 2¢r,40) g

where we identified the holomorphic variable z with the combination z = 2z ¢, h2 o As

expected
B

ZP)S? x T = Zp[S? x T?] x 22 ¢, 2, (5.8)
showing that we need to multiply the anomaly free chiral by the factor z5/2, which in the
3d twisted index limit we identified with a half CS unit, and by the zero-point energy.

FI terms can also be expressed as A-squares as in (3.8). Similarly, the vector multiplet

contribution can be obtained by fusing two 4d blocks Bid. (4.35) with s, = 2, 1qr ba/2
3 1 2 el el o 2., 2
H [T 53065 5 90) ‘ =]l G(qTZ za;qa) = Zy[S® x T7]. (5.9)
a>0 A a>0

5The relation between our Theta function ©(z; ¢, ) and the theta function 9: (x; ¢, ) appearing in [16, 39—
. . & 1 -
1] is 1(23 4o) = 10(go)go” 272 O(23 4o), 1(40) = 45" (403 4o )oo-
Up to a zero-point energy contribution n(qg)mc‘ IL. ga? which can be absorbed in the integration
measure. In [16] an extra (—1)‘> appears in the definition of the vector multiplet.
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So we arrive at the conjectured relation
. dz 2
7162 % T2| — o—inP j'{ HTMH
[ ] € zg: JK. 27TIZ’W| A

The first equality states the factorisation of the integrand of the Coulomb branch partition

2
‘A. (5.10)

function. This follows from the above discussion on chiral and vector multiplets. For
anomaly free theories, the induced effective half CS units either cancel between chirals and
antichirals or add up to integer values and can be factorised as in (3.8).

The second non-trivial equality states the factorisation of the S? x T2 partition function
in terms of the very same 4d blocks B2d found in the L, x S* case.

Let us explicitly check this relation in the SQED case. The partition function is
given by

ZSQED[S X T2 Zj{[( ori 2’5 Zl loop(z C C,B B)

LEL
Nf —% 57 i -1+ i (511)
: A go ' (2Ca) 2 ¢o 2( BE
Zl—loop(27C7C7BvB) = H 1-Ba B ’ )
a,b=1 @(QT * 2Gq; QquT) @( _ICb Qo> qT)
where
By =1+he+¢, By=1+hy—¢. (5.12)

In this case the anomaly cancellation conditions are

[[¢G =1 D (ha+h)+2N;=0, Hcaa“chb“ (5.13)
a,b

a,b
By using the definition of ©-factorials in (A.58) it is easy to show that we can equivalently
rewrite the partition function as

2

ZSQED[S % T2] e~ 1mPsQED Z% i ’Tg%EDHA’ (5.14)
J.K.

with the SQED integrand defined in (4.80) with the identifications

:\

ha

z Tq=qr ° C;la Ty = q Cb ) Ugd = (_1)Nf€7 (5‘15)

RISIEN

and _
e—iﬂ"PSQED — (_1)%Ea,b(ha_hb)' (516)

The integration contour is prescribed by the Jeffrey-Kirwan residue which in this case sim-
ply amounts in taking the contribution from the simple poles associated to the fundamental
matter (mod ¢Z). Such factors have poles only for B. = £+ h, + 1 > 0, which are then at

Be—1-2k 1 O+he—2k

=z, =Clqr 2 =Clqr T k=0,....04 h¢, c=1,....,Ny. (5.17)
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Therefore

Cthe
Zsqup[S® x T?] = e~ Psaep Ny = 3 = 3" TSQEDH (5.18)
c (>—he k=0

and we can replace

L+he

SN = S ki=ttho—k, =k (5.19)

>—he k=0 k1,k2>0

Substituting s, = ¢z, = q’ﬁlxc, 5, = ¢ Y%, = qT_k%Y:c into (5.18), with the help
of (A.58), (A.59), one can finally show that

. 2
Zsqep[S? x T?) = e~ 1™Psarn Z HBj}d (A, (5.20)

with the very same B2¢ defined in (4.84). This is result agrees perfectly with the expected
result following our analysis.!”
The SU(2) case is essentially the same, since the vector multiplet does not bring new

poles to the integrand. We define

Cr =) =Gty har = (hay o) = hyy, (5.21)
and Ty = (24,7, ') = Z,' with the same parametrisation as in (5.15). The anomaly
cancellation requires

[[¢w=1, D ho+2N—4=0. (5.22)
a’ a’

As expected also the SQCD can be expressed in terms of the blocks Bf,d given in (4.102)

. 2
Zsqop|S? x T?) = e~ imPsaco Z HBﬁ,d . (5.23)
C

6 4d holomorphic blocks

In this section we would like to develop a formalism to compute the holomorphic blocks
from first principles by extending to 4d the 3d formalism introduced in [9]. We tentatively
define 4d blocks via block integrals as

B :f 48 yaa (6.1)
T

2ris
c

where Y44 is the “square root” of the compact space integrand. As we have seen in
sections 4.3 and 5, when there are no obstructions from anomalies it is always possible to
factorise the compact space integrand. Alternatively one can assemble directly Y. For

n [65] it has been observed that by choosing an alternative set of integration contours the sum over
fluxes truncates and, in certain special cases, only one term survives. In these special cases the S% x T?
partition functions can be identified with the elliptic genera of N' = (0, 2) theories.
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each chiral multiplet we insert a factor B4d or B4d and add the ratio of Theta functions
associated to 77100, to cancel the induced mixed CS units. We then add B2, for each vector
multiplet and in presence of U(1) gauge factors, we multiply by the FI contributions given
n (4.39).

Before discussing the integration contour it is important to make the following ob-
servation. In section 4.3 we pointed out that as a result of invariance under large gauge
transformations, block integrals are semiclassically doubly periodic on the torus T, 3 As
we anticipated, at the quantum level there is a mild modification, that is under the shift
s — 8¢, the blocks are multiplied by ¢,-phases with unit r, A-square, representing the
intrinsic ambiguity in their definition.

For example consider the SQCD block integrand

T(s%y'; ry 4o
THen(s) = s0(s% ) [ o0 i 4o)

= : (6.2)
a’,b’ F(quxa/l; Q’T7 q{)’)

It is easy to check that the effect of the shift s — sq, is simply to multiply the integrand
by the g,-phase

T o /7T T gs
Thenlted) _ aqq Stien - ThooU)r gy

TLSI%CD( a b q7—8$ ) QT) Té%CD A

To see this we observe that thanks to the anomaly cancellation condition ) ,(Q —2Xy) =
4Q) we have

(s '10r) |2 2= o 2
I H i) |7 _ HGWMZ(Q 2Xar) _ oy 229 _ H54 , (6.4)
o' b @qTSx/, )T a "
and similarly
(7, ,qT ‘ 249h, 2 _ H 4H2 6.5
H H@ qux ! H C (0

Y
for [[, ¢ =1, > har + 2Ny —4 = 0. As g--phases have trivial semiclassical limit, the
doubly periodicity is indeed restored in the semiclassical limit.

This observation will guide us in the definition of the integration contour. For example
the SQCD block integrand (6.2) has poles at s = r+q*¢?*! and s = Z.q- % q¢; ", k,n € Z>.
However our discussion indicates that we should restrict to a ¢, period. Indeed a shift
by ¢ (where n may be negative) would only multiply the integrand and the integrated
result by a ¢,-phase. We then suggest that the proper integration contour I'. will encircle
the poles located at s = xc/q’j coming from the fundamental chirals. Indeed it is easy to
check that

ds
fr4d —
f;:xch 2ris SQCD
F($ /j_/l'QT QG) @($2/q2k'q ) 6('%' ’j_ll'QU QT)k
xc/@( /7QU)H i b_’l 7 CQT’ ¢ - b_71 ’ q’ﬁ? (6.6)
al b F(QTl'c’xa/ QQWQU) Q(xc/;qa) al b @(QTxc’ma/ $Gos 7 )k
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and integrating over I'. we recover the SQCD blocks defined in (4.102)

?g 2(:3 Tihep = B (6.7)
In general determining convergent contours could be quite delicate. For example the
analogy with the 3d case suggests that by moving in the moduli space we could encounter
Stokes walls where contours jump [9]. We leave the general discussion of integration con-
tours to future analysis. However, we can check that our prescription works also in the
SQED case, where blocks can be obtained by integrating the SQED integrand (4.79)

O(s  uad; ¢r) I T'(sz, " ¢r, qo)

T , 6.8
saen(s) = O(uaa; ¢r)O (5715 0r) + 3 Tlgrsza s 4r, 4o) 05
along the contour I'. encircling the poles located at z = mcqf
ds
— ey =B 6.9
}é 55 Lsqep = Be” (6.9)

with B4 defined in (4.84). Notice that also in this case we are using the prescription to
restrict to a g, period. However, in this case the FI term explicitly breaks the periodicity
already at the semiclassical level. Nevertheless we find that also in this case a g,-shift has
a trivial effect

Tsqep(40s)  O(gy's tuaa; ¢-)O(s 5 qr) 11 O(sz; s qr)

— . 6.10
Ysqep(s)  O(s'uaa; ¢-)O(qo 575 0r) £ 3 Olgrsma i ar) (6.10)
Indeed the second factor is a ¢,-phase
2
HH ot o) Py (6.11)
O(grsza';gr)lna

once we impose all the anomaly cancellations. The first factor also has unit square

-n -n

H o"s a3 ¢)O(s " 4r) ’2 1
O(s 1u4d,qT)®(qE”8‘1;qr) A
(6.12)

H 55 Muaa; ¢-)O(s 7 gr) |12
O(s 1U4d,qT)@(q;”s‘1;qT) r

27i c4d
:eiTé n = 1’

since £4d /7 is integer on the lens index.
Summarising we have argued that for L, x S! (which includes S3 x S') and S? x T?
we have the following remarkable Riemann bilinear-like relations

% ozt =Tl 5
Z%K 27T1Z|W\ H 4d ZH% zmsT4d : (6.14)

This identities seem to be quite ubiquitous for these backgrounds and it would be impor-

(6.13)

tant to have a deeper understanding of their geometrical meaning. Riemann bilinear-like
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identities appear also in the analytic continuation of Chern-Simons theory [56] and in the
the study of ¢t* geometries [24].

While 3d holomorphic blocks have been relatively well studied, here we have only
initiated the study of 4d blocks and there are various directions to explore. For example
it would be interesting to study the behaviour of 4d blocks under 4d dualities. It should
be also fairly simple to re-derive our 4d block integrand prescription via localisation on
D? x T?, however the general definition of integration contours seems quite challenging.
Another aspect to investigate is the relation of 4d blocks to integrable systems and to
CFT-like correlators. 3d block integrals have been identified with g-deformed Virasoro
free field correlators in [57, 58]. The possibility to interpret 4d block integrals as free field
correlators in an elliptic deformation of the Virasoro algebra will be investigated in [59].
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A Special functions

A.1 Bernoulli polynomials

The quadratic Bernoulli polynomial Bag is

2
BQQ(X|W1,0J2) == 1 ((X — Q> — w% +w%> 5 Q = W1 —I—WQ . (Al)

wiw?2

Useful properties are

BQQ()\X’)\wl, )\LUQ) = BQQ(X’U)l, wQ) s A 7& 0 s (AQ)
2X —w

BQQ(X + WQ’LA.Jl, (.UQ) = BQQ(X’wl, wg) + Tl R (A3)

BQQ(X’wl, (,(.)2) = BQQ(Q — X\wl,u)g) . (A4)

We define the combination

P2 (X) = B (X|Q,rw1) + Baa(X + rws|Q, rwo)

= Boa(X + 1w1|Q, rwi) 4+ Boa(X|Q, 7we) = $2(Q — X). (A.5)
We also have
1 r2—1
CI)Q(X) = ;BQQ(X|W1,(A}2) + o (AG)

The cubic Bernoulli polynomial Bs3 is

2 2 2
Ba3(X]wr, wa, wg) = wlcjzwzs (X—Cj_(};?’> <<X_§) o <X_§) - ZW2> - (A7)
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Useful properties are
Bss(AX | \wi, Awa, Aws) = Bss(X|wi, wa,ws), A#£0,
B33(X + w3|wi,wa,w3) = B3z(X|w,ws,w3) + 3B (X|wi,wa) ,
Bs3(X|w1, w2, —w3) = —B33(X + ws|wi, wa,w3) .
We define the combination

O3(X) = B33(X|Q, rwi,ws) + Bag(X + rws|Q, rwa, ws) .

We also have

1 r?—1 r?—1
O5(X) = —Bg3(X 2X — —
3(X) . 33(X|wi, wa,ws) + 1o ( Q) e

P3(X + w3) = 30o(X) + P3(X) = —P3(Q — X) .

A.2 Double Gamma and Sine functions

The Barnes double Gamma function I's is defined as the (-regularized product

1
To(X = .
2(X w1, wp) H X 4+ niwa + nawo
ni,n2>0
It satisfies the functional relation
Lo(X + walwi,wa) 1
FQ(X’U)l, w2) Fl(X]wl) ’
X3
w1
where I'y is simply related to the Euler I" function, 'y (X|wy) = wl\/ﬁ I‘(w%)

The double Sine function S, is defined as the (-regularized product

SQ(X|W1,UL)2) = H

n1,n2>0

niwi + nowg + X
n1w1+n2w2+Q—X’

where () = w1 + wy. The regularised expression is given by

(@ — X|wi,w2)
Fo(X|wr,wa)

Sg(X]wl, wg) =
For irrational 5—;, the S has simple poles and zeros at

zeros : X = —njwi — Nowsy
; ny,ng € Zxo .
poles : X = Q + niwi + nows

It enjoys the properties

SQ(X|W]_,W2)SQ(Q — X’WLWZ) =1,
So(X + walwy,wa) 1

SQ(X|OJ1,W2) N Sl(X|w1) ’
SQ()\X\)\wl,)\wg) :SQ(X|(,U1,(U2), )\750,

where the S; function is simply related to the sine function, Sy(X|wi) = 2sin ( n

~ 34—

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)
(A.20)

(A.21)



For ny,ng € Z>o, formulas (A.15), (A.20) are generalized to

Lo(X + njwy + nowslwr,we) Hnl ! i 1(X + jwy + kwy) ! (A.22)
Do (X|wr,ws) 105 T (X + jwlm) Hg DX + kwalwr) '

[y (X — njwi — nowslwi, wo) _ Hj:l (X - JW1’W2) k:1 (X — kwa|wr) (A.23)
Do (X|wr,wo) [T TT2 (X = jwr — kwo) ’ '

and

Sa(nws + nows + Xlwi,we) (—1)mn2 (A.24)
SQ(X|LU1,OJ2) Hnl 151(]001 —|—X|WQ) HZ Sl(k(dQ —i—X\wl) ’

Sg(nlwl — Nowsy + X|W1,WQ) _ ( )n1n2 HZ Sl(k'WQ + Q X|w1) ' (A.25)

So (X |wr,wo) [1725" S (wn + Xlws)

For Im (£ ) # 0, using the ¢g-Pochhammer defined in eq. (2.17) we can express the double
sine functlon in a factorised form:

im 2mi 2mi 1
SQ(X|W1,W2) — 6?322(X|w17w2) (e w1X 27r1w1) (6 sz;€27le2) . (A26)
o0 o
In order to compute contour integrals, we will also be interested in the asymptotic behaviour
of Sy for X — oo

'3 B22(X)

if arg(wy) < arg(X) < arg(ws) +7

(A.27)
if arg(w) — 7 < arg(X) < arg(w2) .

Another useful function is the shifted double Sine function s
Sb(X) = SQ(Q/2 - iX|(,c)1,ch2) y (A28)
in which case it is usually assumed wy = w; " = b.

A.3 Generalised double Sine function

The following (-regularised product

H niwi + nows + X

So (X)) = ,
Q’h( ) nowi +niwe + Q — X

(A.29)

n1,n2>0
na—ni1=h mod r
defines a generalisation of the S function (which is recovered for r» = 1).!® The parameters
w1, wp and r are not displayed amongst the arguments for compactness. For irrational 2t
it has simple zeros and poles at

zeros 1 X = —njwi — Nowsy
, no —np=h modr, ni,ng € ZZQ . (A?)O)
poles : X = Q + njws + nown

18 Another class of generalised multiple Sine functions has been extensively studied in [60].
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We can rewrite Sa 5, in terms of the ordinary So as follows. First of all, we can resolve the
constraint no —n; = h mod r as

ng =ni + [h] +kr >0, keZ, (A.31)

where [h] denotes the smallest non negative number mod r.! Then we can write (A.29) as

S H H niwi + (n1 + [h] + kr)ws + X
2.1 (X
M0 mh) (n1 + [B] + kr)wi + nwe + Q — X
(s=[h)w1+(s+kr)wa+X
Hs>0 Hk> LSJ (s+kr)w1+1(s—[h])w2+2Q7X
[h]—1 hDwi+(s+kr)wst X
LG The 1) oo

(A.32)

where we set s = n; + [h]. Moreover, for a generic sequence of functions f;j we have

Iso s jse) for Hs,kzo Tskit Fsthr -k 7 (A.33)

T s ey Foe T T foe

where in the last step we used that in the denominator s € [0, — 1] < r so that |s/r| = 0.

Substituting the actual expression (A.32) for fs, we finally get

San(X) = S, (w1 (r — [h]) + X|Q, rw1> Sa (walh] + X|Q, rws) , (A.34)

where we used the definition (A.17) of S and repeatedly used the relation (A.15). It is
easy to check the following reflection property

S2.h(X)S2,-n(Q@ —X) =1. (A.35)
From (A.34) we see that zeros and poles are located at

zeros: X = —wi(r— [h]) — kQ — nrwy X = —ws[h] — Qk — nrwy,

poles : X =Q+wilh] + kQ + nrwy X:Q+wQ(r—[h])+kQ+m‘w2,
(A.36)
for k,n € Z>o, which are all simple and distinct as long as £l is irrational. Using (A.26)
we can obtain the factorised form

52,h<x>:ef;%m<v~f[hne%%<)<>(ef:f;(X [hlen). %irfi) (63£;<X+[h1w2> %i&)

“(A.37)
This leads us to define the r-pairing

2

ZJlei = f(wl,wg, [h])f(w%wbr - [h]) ) (A38)

[#nsn | = [ onon )

exchanging wi, we and reflecting the holonomy variable, so that S;j; can be compactly
represented as

Q 2

Son(X) = e~ =1 Fea(X H(efj;(x [hlwr). 2wim> (A.39)

T

9For positive h we have h = [h] + r|h/r]|, while for negative h we have h = [h] 4+ r([h/r] — 1). Also, for
non-zero h we have [—h] = r — [h]. In any case, we have h = [h] + rny, [h] > 0 for a suitable n, € Z.
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Notice we may remove the [-] inside the g-Pochhammer symbols because of the periodicity.
Moreover, the asymptotic behaviour of Sy}, for X — oo can be deduced from (A.27)

— ) (r=[h) T e2(X)  if X
e 2 ez i arg(wi) < arg < arg(wsg) +m
Syux) o {£ T TR0 it arglen) < arg(X) < are(on) )
627«[ 1(r—[ })e 7 P2(X) if arg(wl) —T< arg(X) < arg(w2)'
In the main text we need also to introduce an improved Sy 3, defined by
Sg’h(X) = U(h)SQ’h(X) , o'(h) — eizij—([h](7"*[h])*(7’*1)/12)7 (A.41)

where o(h) is a sign factor, namely o(h) = +1 depending on the value of h. Also, it is
convenient to introduce the improved s; function

o n(X) = S90(Q/2 —iX), (A.42)
satisfying the reflection property
8p,n(X)8p—n(—X) =1. (A.43)

In the particular case » = 1 (and hence h = 0), we obtain an interesting identity for
the ordinary Ss. In fact, for »r = 1 the product in (A.29) is not actually restricted, and we
obtain the relation

59,0(X)|r=1 = S2(X|wi,w2) = Sa(w1 + X|Q,w1)52(X|Q, w), (A.44)

or, in terms of the modular parameter 7 = 2

X T
1 = 1 1,1 —|1 A4
Sa(x11,7) = a1+ 3111+ 08 (1 ). (A.45)
where we rescaled x = X/wy. This identity already appears in eq. (3.38) of [61], where
67%B22(Z‘17T)SQ(Z’1,T) = <I><z ! —;T; 7') (A.46)

in their notation.

A.4 Elliptic functions
The short Jacobi Theta function is defined by

O(x;9) = (% 9)o0(q2 ™15 @)oo - (A.47)
Useful properties are
O(¢"x1q) (m—1)/2y—m O(g "z q) _ —1_(m+1)/2y—m
o(mg) M ™ O(mg) 1 ™ (4.49)

where m € Z>o. We will be using the generalised modular transformation property of the
Theta function

2mi x 2mi i< 2mi 2mi < : im
@(erwlxeTh; ezmm1>®<em2xe_7h; 627”7"‘*’2) = i P2(X) g Th(r=h), (A.49)
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which for r = 1 reduces to the standard modular transformation of the Theta function (see
for example [62]).
The elliptic Gamma function is defined by

—1.
(Pgr™"5p @)oo (A.50)
(2P, @)oo
where the double g-Pochhammer symbol is defined by

I'(z;p,q) =

o

(@50, @)oo = ] (1 — 22¢"). (A.51)

J,k=0

It is assumed |p|, |¢| < 1 for convergence, and it can be extended to |g| > 1 by means of
o 1

(¢, a7 oo

The elliptic Gamma function I'(z;p, q) has zeros and poles outside and inside the unit

(750, @)oo (A.52)

circle at

zeros : x = pmHlgntl

m,n € Z>g. (A.53)

—-—m  ,—n

poles : x=p Mg ",

For m,n € Z>o, useful properties of the elliptic Gamma function are

U(z;p,9)T(pgz ' p,q) = 1, (A.54)
L(p™"q"x — n— —mn
u;(;;)> = (—apm DRI (4 p, ) O34, D), (A55)
I(p™g"x) P(m=1)/2~ (n+1)/2ym O(z;¢:p)m
— = m= " — T A.56
M " S gm0 (4:56)
D(tie™) _ (—pg g~ V)/2plm—1)/2)mn
Resg—ypmqn — — = Resym1 T() =g P D OOT P (A.57)
where we introduced the O-factorial
O p, ) = L(¢"zip,q) _ [1;= ©(zd*; p) ifn>0 (A58)
Y [(z;p,q) I,Crial@(q Lyg=k:p)=1 ifn<0.
A useful propety which can be derived from the definition is
O(z;p,q)—n = O(q "z;p,q);," = O(q "5, a7 1), (A.59)

The elliptic Gamma function has a very non-trivial behaviour under modular transforma-
tions [42, 62]
r (e%ix; e%i%’ ezm%f)f‘ (e X eQmié, 62ﬂ1%> r <e iMX 627”7«;, 62#1%) — ¢~ § Baa(X|wrwaws)
(A.60)
Expression (A.60) is valid for Im (w o ) # 0. In particular, by assuming Im ("Jl “’2) >0
J

w3’ w3
we get

mix  omill  ogi¥2
T'(ews™ ;e w3, e W3 =

im _ 2mix ori¥2  _oni¥s 2y opi¥l  _ori¥s
e 3 Bas(X|wiwa, “3)1“(6“1 ;e “le wl)l“(ewz ;e “2,e wz). (A.61)
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Basic hypergeometric identities. The g-hypergeometric function

2(13’1 (a b X u) = Z Wuk, (A.62)

cq

for |q| < 1 satisfies the following identities

. . —1
L, (@0 = BiDe(ade o feb™u ) (A.63)
cq (4; @)oo (€ @) 0 au q
a b\ _ (bi@)eo(ca™5q)o0 (a5 ¢)oc(ga™ v g)oo a qact qc
204 = 2Py _ .

cq’ (6 Doo(ba™@)00 (U5 @)oo (qu™5 )00

(a3 @)oo (™ @)oo (b1 @)oo (gb™ ™% ) oo . b e g
(a)o(ab 50 (5 @)oclauTi0)o0 '

+

ab

a q;u) with |g| > 1. In this case we have

Now consider 2<I>1(

ab™"5 @)oo (abe ™ u; Doo(Gea b D)oo o (@ Gact ge

ac™ ()oe (bem s @)oo (Geb™ M u™t; §) o gab=' G abu

(@¢”"5 @)oo (@ba"; @)oo (abe™ s D)oo (Gea” b7 u™1)i Qoo o b gbet ge
§Q)m(dbc_1;6)m (ac_lu§(j)oo(dca_lu_1)§5)oo qba_l q Tabu |

(A.65)

Also, for |¢| > 1 we have the following identity

O -1 —1p—1,—1
2(1)1(@6‘“)_(@0 U5 @)oo (¢ 0) 2¢1< b= geaT b u ;‘”). (A.66)

cq’ (gb15 @)oo (be™ ;) o qcb~tu~t q c

A.5 Elliptic series

Let us consider the elliptic hypergeometric series [63]

f xl’ )
NEN-1 <g;q7,qa;U> > H SIGULCL SIS (A.67)

n>04,j= 1 y]aqO'7Q7')

This series is usually considered to be balanced, namely

H xiy;1 =1. (A.68)

We now introduce the parametrisation

qr = 627r1‘r’ 0o = 627”0, T = 627r1X¢, y; = 627r1Yj’ (A69)
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and study the modular properties of the series under

1 X; Y;
o ——, -, X; = = Y; —» —-2L. (A.70)
o o o o
Using the modular transformation property
@(6—%)(; 6_%) — ei7rB22(X|1,a)®(e27TiX; 627ricr) ’ (A?l)

Qe 627r10 627'(17')

— 2T N iX.
11 ' = 11 G o)
1 . Y5 oni : - 1 @(627rin;€27rio7e27riT>n

N
x T e (Y=o D) (4 79)

Once the balancing condition (A.68) >, (X; —Yj) = 0 is imposed, the series can be made
modular invariant either by imposing

d (X7 -Y}) =0, (A.73)
i7j
or by a suitable transformation of the expansion parameter u.
Next, let us consider the very-well-poised elliptic hypergeometric series [63]

00 N4

- @ Oq ,QU @ totl;Q(HQT)n n
N+1EN(to; t; 47, g u) = - (qru)™, (A.74)
Y ,;) O(t3; o) ZHO O(grtot; ' Gor G )n

subject to the balancing condition

H ti=q 7. (A.75)

In this case, proceeding as above, it is easy to see that the series is automatically modular

invariant.

B Computations

B.1 Fundamental Abelian relation

The free chiral theory with —1/2 Chern-Simons units has a mirror given by the U(1) theory
with 1 chiral and 1/2 Chern-Simons units (also for the holonomies).

At the level of lens space partition functions the duality reads (up to a trivial propor-
tionality constant)

I (Z2422(6-1Q/2)) ,—(r—) T (2420) 7 (7 P _ .
Z/2771 € A(Z, ) A&, 0), (B.1)
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where we have also turned on the FI and 0 terms. To prove this identity we evaluate the
Lh.s. integral by closing the contour in the lower half-plane (assuming £ > 0) and taking
the sum of the residues at the poles of Za. By using (A.36) we can see that there are two
sets of poles located at

Z = Z(l) = —iw1£ - le - ikrwl R

k€ ZZO . (B.2)
Z = Z(Q) = —i(,L)Q(T — 6) — le - ik"l"(,UQ,
The integral is then given by
Z% — Z2+2§Z IQZ) (r—l)%(f2+259) ZA(Z Z) — Il +IQ (BS)
27r1 ’ ’
with
J(G=1)/2 Gtkr+j)(t+kr+j—1)/2 _2ne amig\J _ _2mE amig\ bRt
11=H(q;q) q ! ( (—ae e ) (= gem e’ :
é 0 j,k>0 q;q an)@-‘rkr—i—j
(B.4)

The sum of the residues at the second set of poles is simply obtained by w; < we and
{1 —{,0 < r—0. Combining the two sums we see that the original integral (B.3) has
the schematic form

r—1 r—1
hLh+1= Z Z Jij+erkr + Z Z Jr—ttkr+jj - (B.5)
=0 j,k>0 (=0 j,k>0

Since £+ kr runs from 0 to co while r— ¢+ kr runs from 1 to co, we can replace r—¢ — £+1,
set 7/ = j + £+ kr, and write

L+ 1= Z fign + Z firv1s = Z figr + Z fin

53" =3 53" =3 53" 23 3i"2g+1
E f]j” + § f]j” - E f]j”> (BG)
733"=23 J3"323"+1 J,3"">0

so that we find as expected

_2n¢ 7@9
I1+120<H<qe rwie ;q)
oo

= Za(§,0). (B.7)

B.2 SQED lens space partition function

Here we compute the residues at the poles given in eq. (2.30) of the partition function

r—1
—i 27i
ZSQED —e inP § : § : § ReSZ 20 e Z£eft6 T3 00,¢s H H

i=1,2 (=0 {Z((f)} a,b=1

27
erwi ( iQ+Z2—-Xao— 1W1[€+HGD7 q)

)
T

(B.8)

e Z X[, 1w1[Z+Hb])
(e7 ¢ 1)

where

g=e&"r = gy g=e ™2 =gq, (B.9)
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and

_ N _ _
b =63 S0 - X)~i5Q,  ba=0+ S (H-H). (B
a,b a,b

The latter must be integer (we can add contact terms to ensure that it is). The exponential
prefactor is

eITP = % L (X5 =X2) o= §F S (Xa+X0) o 51 (r=1) g o (HF = HZ) (B.11)

representing background CS terms. We rewrite the classical part evaluated at the first set
of poles Z(y) as follows2’

i i i i _QJ UtHc]tkrtj i s
B T AT e AP (% TR )

wo wi’er
2ni _2mi i [e+He]+kr+j
= ¢ e Xe g =2 el Hel o 7 [P HelHhr by (B.12)
where
— e —2mig ~ -2 Lot , 2700
u=e ™1 "e ol =y, u=e "2 v el = g, (B.13)

and similarly for the second set of poles Z(3). Summing over (2.30) yields?!

Ny
ZsQED = e—imP § 62f'(X ot — HOexr) Z Z { [£+H +kr4j

0=0 j,k>0

A (IQ+Xca+iwi[Hea] (iIQ+Xca—iwz[Hea) (j+[€+Hc]+kr)_
2 ’q2)o<>

X H ql’ql) (e””
_ 27 ~ [0+ H.+k
i eml XepHwr [H, cbqu @) (ew(xb iws [H Cb]q§a+[+ I+ r);q2)oo

r—[{0+H.]+kr+j _7
+ ul )

2r (Q+Xca+1W1[Hba]) r—[{+H. ]+k}7‘+] 1 27 (1Q+Xca—iwz[Heal) ,j
a1

10 (e”l

a,b=1 erwl

1q1) (72 933 42)
otionlal) ARy (o il gy ’
’ 0o

(B.14)

where we defined

Xeo = Xe — Xa, X5=X.—Xp, He,=H.—H,, Hjz=H.—H,. (B.15)

Ci Ci

20We use wiws = 1, [+ H.] — [He] = [f] mod r, and Besl = [Oent][¢] mod r, this is why we need Oes to
be integer.
211t is understood that we are taking the residue of the a = ¢ term.
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(739) 00
(x;Q)n ’

Using (¢"2; )00 = we get

Ny
&mEnze‘”PE:e%“X&w—Hﬁw>

e“ﬂ (1Q+Xca+1wl[Hca]7 C]l) (e,wz (IQ+Xca— 1w2[Hca]’q2)oo

(67‘2;1 (ch""lWl[ch}ql) (ei:; (Xep—iwa[Hg]. q2)
[o'e) )

Ny
<[]

a,b=1

r—1
i [+ Ho ket
X{E E ujlu[Q+ [Hkrj

£=0 4,k>0

(X cptiwi [Hg] 2 (X ep—iwa [Heg),
‘h)j (7 42) [0+ He)+kr+j

Ch) (6 o5 (1Q+Xca—iwz[Heal.
J

(erwl

(IQ+Xca+iwi[Hea],

XH
a,b=1 erwl
r—1
—W+H:|+kr+j 3
£ ey

’ q2> C+H:]+kr+j

=0 j,k>0
25 (X opt+iwi[H,p)) 2 (Xep—iwa[H5)).
y H (e e T ’ql)r—[£+HC]+kr+j<e 2 e e ’q2)j
25 (1Q+Xcatiwi [Heal). ) ( (1Q+Xca—iwz[Heal) )
a,b=1 s q1 r—[0+H]+kr+j ;42 j

(B.16)

We see that the first term in brakets is a sequence f; ;i (o1 H ]+ kr, Whereas the second one
18 fjpr—[e+H.)+krj- Since [f] + kr runs from 0 to +oo while r — [¢ + H] + kr runs from 1
to 400, we can replace r — [{ + H.| — [{ + H.] + 1, set j” = [{ + H.| + kr, and write

Z fj,j”"’ Z fj”+1,j Z fJ,J”"‘ Z fJ”J

3:3"23 3:3"23 3:3"2J 33" 25+1
E : Fign + E : figm = § : fig- (B.17)
733"=23 J"323"+1 3,320

Therefore we find Zsqep can be expressed in terms of the r-square of the g-hypergeometric

series
= N
P T - (T )k B B8
NPN-1]| ;U *ZH()uy YN =4¢, (B.18)
Yy E>01i,5=1 Y5 4)k
namely
Ny
ZSQED - eiiﬂ-'P E eQ:l(Xcgeff H.Oot)
c=1
2 . '
Ny eﬁXcae?Hca. %XCE @Hd; ,
q 14) oo > e e '
X H Zch— 2TrnH Ny¥Ng—1 ,,?Tﬂ-Xca 2mipy U wywy
a,b=1 (eﬂul s Q) ge™1 er Her—H
(B.19)

B.3 Twisted superpotential

In this appendix we briefly review how the double sum defining the twisted superpoten-
tial (4.64) can be regularized in two steps, first regularizing the sum over m, and then
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over n.%? In order to regularise the sum over m, let us consider the exponential derivative
_ d . . .
s = exp (da Z <a + ém)(ln(a + Rilm) = 1)) = H <a + Am) . (B.20)
meZ meZ

By using the definition
H <a + 1m> = 2sinh(7R;a), (B.21)
Ry
meEZ
by integrating we find

i i 1 . _ TRy
— 1 — -1) = L Imfiay 4 T2 B.22
E <a+Rm><n<a+Rm> > ey ia(e )+ 5 0 ( )

meZ 1 1

up to linear terms. Next, we shift a — a + R%na and compute

1 o TRy i 2
L 2ri(no+iR1a) _ —
27TR17% is(e )—i—% 5 a+R1na

1 6—27TR1ak
2Ry o k2(1 —gk)

1 2 . 2
+ nlt Z (7; + 27%(no — iRya) + 27%(no — iRla)Q) + Z %Rl (a + Bilna> ,

n>1

where we used

Lis(e ™) = —Lis(e”) + % X - T (B.24)

We regularize the other infinite sums by means of Hurwitz ¢(-function?® and we get

1 2 i 2
onEy nz>:1 <7; + 27%(no — iRya) + 27 (no — iRla)2) —l—% %Rl <a + };lng> = P3(iRya) .
- (B.25)

B.4 SQED lens index

In this appendix we provide the explicit derivation of (4.83), which amounts to the eval-
uation of the residues of the integrand (4.73) on the poles (4.72) given in the main text.
First of all, expanding the polynomials ®o we get the exponential factor

I ()2 (r1) g T 02 (2~ )

I+
) oo (L Ho)2(r—1) )= T ®2(Q+2—-Xa)
a,

501 Z o (I —HE) 37ty Lo Ma= M) iy S o (Mat M) Q(R-1)

X e

— 2mip(r—1) Za,b(Ha,Hb)6—2Wizm(Q(R—l)Nf—l—za’b(Mu—Mb)) (B.26)

22We verified the 1-step regularization by means of double Gamma functions yields the same result.
. s 2 3 2
B X) =T s0(X +n) 7 (LX) ==+ 5 - 5. (-2 X) == + 5 -
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—igP3d

The first line represent the global prefactor e sl . In the second line the dynamical term

~2mig o) S (Ha—Hy)

e can be absorbed into a renomalisation of 8

b =0 " 5 2 %}(Ha — Hy), (B.27)

Z2'rw1w2 ( (R 1)Nf+za b( Mb))

. . o =2 : .
provided f.g is integer, while e goes into a renormalisa-

tion of ¢44
d
é—;lﬁ _ §4d N 1

TWy  TwW3  2rwiws

<NfQ(R —1)+ > (M, - Mb)> . (B.28)

a,b

Then, the residues series reads as>*

27i be E_ 'Hb)

Isqep = ¢ PR TN Z D et WMH G( Q+Z Xo,—0—H,)’

c s=1,2/¢=0 5,k>0
(B.29)

Using the definition (4.14) of G and the properties in appendix A, on the first family of

poles the ratio of G functions yields
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while on the second family of poles we simply have j — j+ kr+r — [+ H.] and j + kr +
[l + H.] — j in the subindex of the ©-factorials. The FI terms on the first family read as

2
e 7:;;5 Z(1)62:\”ZQCH —

. » . w1 ead j+kr+[0+H.
. T:}r;g X, 271-19€HH( Qﬂ-lrws ot - 27r10eff) <6727T1Tw1359362:19 )J [ l’], (B31)

and similarly on the second family. We can now resolve the sum by using (B.6) as in 3d,
and we find Isqep can be written in terms of the r-square of the elliptic hypergeometric
series yEn_1 defined in (A.67)
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241t is understood that we are taking the residue of the a = ¢ term.
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B.5 SQCD lens index

Here we present the derivation of (4.101). For the chiral multiplets the discussion parallels
the SQED case, so we focus on the vector multiplet. From (4.30) we find

N . _ 2miZQ 27 -9

where we used the reflection property (4.15). The first factor can be neglected as it con-
_ 2miZQ
tributes to the vanishing of the total gauge anomaly. The factor e "~1v2 combines with an

analogue contribution from the chiral multipltes (B.26)

__inZ _  —M,,
o Twray (QUE=L2Ns+3 o1y (M1 =M, ))7 (B.34)
to give a total contribution
27iZ  27iZ
e ez (B.35)
when the anomaly cancellation conditions R = Nj\};z and >, My = — >, My = 0 are

imposed. When evaluated on the first family of poles these exponential factors give the
expansion parameters
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while the ratio of the G functions in (B.33) yields
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Similar results hold also for the other family of poles, we have just to consider the substitu-
tions j — j+kr+r—[{+Hy] and j+kr+[(+Hy| — j. By the usual argument for resolving
the sums we find Isqcp can be written in terms of the r-square of a very-well-poised elliptic
hypergeometric series y11En defined in (A.74)
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