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1 Introduction

The visible universe contains more matter than anti-matter [1]. The guiding principles

for generating this asymmetry have been Sakharov’s three conditions [2]. These three

conditions are

• C/CP violation

• Baryon number violation

• Out of thermal equilibrium

Over the years, counter examples have been found for Sakharov’s conditions. One can avoid

the need for number violating interactions in theories where the negative B − L number

is stored in a sector decoupled from the standard model, e.g. in right handed neutrinos

as in Dirac leptogenesis [3, 4] or in dark matter [5]. The out of equilibrium condition can

be avoided if one uses spontaneous baryogenesis [6], where a chemical potential is used

to create a non-zero baryon number in thermal equilibrium. However, these models still

require a C/CP violating phase or coupling in the Lagrangian.

The visible universe contains baryons and not anti-baryons. The fact that the final

state breaks CP indicates that some sort of CP violation is necessary. In this paper, we

show that the CP violation does not need to come from a CP breaking minima or the

initial conditions. In particular, we explore a baryogenesis mechanism that operates in a

theory whose potential is C/CP invariant, has no C/CP breaking minimum and has initial

conditions which are C/CP invariant. Classically, a theory that satisfies these conditions

can never undergo baryogenesis. Thus quantum fluctuations will necessarily be important.

In order for quantum fluctuations to have a non-trivial impact, they need to grow in size.

There are two options for the growth of quantum fluctuations: either inflation can inflate

quantum fluctuations into classical fluctuations or there is an instability, e.g. a tunneling

process away from a meta-stable minimum.
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To the best of our knowledge, there is only one other approach to baryogenesis which

can operate under the specified conditions. Just like how the vacuum expectation value

(vev) of a massless field undergoes a random walk during inflation, in the presence of

number violating operators, the asymmetry also undergoes a random walk during infla-

tion. After inflation, baryogenesis can proceed by utilizing this asymmetry or by using

the corresponding CP breaking expectation value of the scalar field. In this way, inflation

can give a parametrically large region of space with a non-zero baryon number due solely

to inflationary dynamics. This approach to baryogenesis was first outlined in ref. [7] and

the CP violating aspects of the random walk was emphasized in ref. [8]. We review this

approach to baryogenesis in appendix A.

The other option for causing quantum fluctuations to grow is a tunneling process.

In order to demonstrate how a CP invariant theory can have CP non-invariant tunneling

effects, we consider the following toy model

V =
λ

4

(

|φ|2 − v2

2

)2

+ µ3(φ+ φ†)− δm2(φ2 + φ2,†) (1.1)

where µ and δm are small and all of the couplings are real so as to preserve CP. This

potential has two CP preserving minima at φ ≈ ±v/
√
2. If not for the small tilt in the

potential due to µ and the small stabilizing term δm, there would be a flat direction corre-

sponding to going in a circle. As an example, consider the CP invariant initial conditions

of sitting at the φ ≈ v/
√
2 minimum. There is a CP invariant tunneling process where

Im(φ) remains 0 and Re(φ) tunnels through the barrier. However, as long as µ and δm are

small, the tunneling process will prefer to break CP by rolling either clockwise or counter

clockwise down to the minimum, as the barrier is much smaller for this process.

The end result of this CP violating tunneling process is a universe that is a patchwork

of different volumes which roll to the minimum in different directions. Since we see a

universe which contains many disconnected Hubble volumes all with matter and not anti-

matter, inflation must play a non-trivial role in explaining why the typical size of a region

containing positive baryon number extends over many Hubble volumes. The simplest way

to incorporate inflation into the theory is to make the field φ the inflaton.1 As long as

the time it takes to slow roll down to the true minimum after tunneling is larger than 60

e-folds, then it would explain why our entire universe saw the same CP violating phase.

In section 2, we show in more detail how a CP invariant theory can preferentially

undergo CP violating tunneling. In section 3, we discuss the basics of inflation in the

model. Finally in section 4, we discuss how the non-zero phase can be used to induce

baryogenesis.

2 CP violating tunneling in CP invariant theories

In this section, we discuss how tunneling between two CP invariant minimum can proceed

preferentially by CP violating tunneling. To this end, we consider the potential shown in

eq. (1.1). To zeroth order, the potential is a double well potential where there is a flat

1There have been many attempts made to connect inflationary physics to baryogenesis, see e.g. [9–19].

All but the stochastic approach require CP violating couplings or initial conditions.
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circular direction connecting the two minima. The linear term µ lifts this flat direction

creating a pair of CP invariant extrema at φ ≈ ±v/
√
2. We take m2

0 ≡ 4δm2 −
√
2ǫ3

v > 0

so that φ ≈ v/
√
2 is a meta-stable minimum rather than a maximum.

This Lagrangian has three distinct tunneling processes. There is a CP invariant

tunneling process where Im(φ) remains 0 and Re(φ) tunnels through the barrier. This

just a standard double-well potential calculation. The thin wall bounce action is B ≈
π2λ2v9/3 215/2µ9 [20]. Aside from the CP conserving tunneling process, there are two CP

violating tunneling processes which occur with equal probability.

To demonstrate that the CP violating tunneling bounce action can be parametrically

smaller than the CP conserving bounce action, we consider the limit where λ and v are

large while µ and δm are small.2 In this limit, the radial mode is frozen in place while the

angular mode, θ, is free to vary. The potential for θ is

V (θ) ≈ v

(√
2µ3 cos

θ

v
− v δm2 cos

2θ

v

)

(2.1)

≈
(

2δm2 − µ3

√
2v

)

θ2 − 1

3v2

(

2δm2 − µ3

4
√
2v

)

θ4 +O
(

1

v4

)

≡ m2
0

2
θ2 − λθ

4
θ4

In order to obtain a simple analytic expression for the bounce action, we consider the limit

where m2
0 ≪ δm2, µ3/v. This limit will also be needed so that there are over 60 e-foldings

of inflation. In this limit, a good approximation for the bounce action is given by the

Fubini instanton.

θ(r) = ±
√

8

λθ

R

r2 +R2
= ±27/4v3/2

µ3/2

R

r2 +R2
B =

8π2

3λθ
=

27/2π2v3

3µ3
(2.2)

The additional parameter R comes about from from the classical scale invariance that is

present when only the quartic term is considered. The validity of this bounce action in the

full theory has been checked numerically.

There are two different CP violating tunneling processes, one going clockwise and the

other counter clockwise. As a result of having a CP invariant Lagrangian, the probability

of tunneling for these two solutions is exactly the same. What we have found is that

the CP violating bounce action is parametrically smaller than the CP preserving bounce

action. Thus we have a theory which preserves CP at all of its minima, but preferentially

undergoes CP violating tunneling.

We will be incorporating inflation into the theory in the next section. As such, it will

be important to study tunneling effects in de Sitter space. To get a zeroth order feel for

when the effects of living in de Sitter space is important, we consider the size of the bubble

R. The value of θ at the center of the bubble will also be important in the next section. To

obtain an estimate of R, we study the differential equations that govern the bounce action

in the small θ limit.

d2θ

dr2
+

3

r

dθ

dr
= m2

0θ − λθθ
3 (2.3)

2Equivalently, we will show is that the CP preserving bounce is a maximum rather than the usual

minimum. Small CP violating deformations of the path will decrease the bounce action.
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We can use the rescaling, θ → m0θ/
√
λθ and r → r/m0 to obtain a dimensionless system

of equations. Thus we see that the size of the bubble R, scales as 1/m0 while value of θ at

the center of the bubble, θ0, scales as m0/
√
λθ ≈ m0v

3/2/µ3/2.

We can also study R and θ0 numerically. To reduce the number of parameters, we

rescale θ → v θ and r → v1/2/µ3/2 r. The potential is then a function of a single dimen-

sionless variable ǫ2 = m2
0v/µ

3. Due to numerical issues we were not able to take ǫ smaller

than 10−6. We fitted R and θ0 as a function of ǫ in the range 10−6 − 10−2 and found

numerically that

R ∼ v1/2

µ3/2
ǫ−0.4 ∼ v0.1

m0.8
0 µ0.3

θ0 ∼ v ǫ0.4 ∼ m0.8
0 v1.4

µ1.2
(2.4)

We see that to the extent to which we can numerically take the small ǫ limit, that the

approximate analytic scalings are a good estimate. In what follows, we will use the simpler

analytic expressions for R and θ0.

From the size of the bubble R, we see that we need to incorporate the effects of finite

horizon size when R ∼ 1/m0 > 1/H, where H is Hubble during inflation. This simple

estimate gives the same parametrics as a more complicated analysis. When V ′′ ∼ m2
0 < H2,

the dominant and sometimes only tunneling effect is the Hawking-Moss instanton [21].

The Hawking-Moss instanton describes the tunneling of an entire Hubble volume from

the meta-stable minimum to the top of a barrier leading to another vacuum. The CP

invariant/breaking tunneling have the bounce actions

BCP ∼ λπ2v4

6H4
B /CP ∼ 4π2m4

0v
3

3H4(m2
0v +

√
2µ3)

(2.5)

This is the same result as a thermal bounce if the system were at a finite temperature

equal to the de Sitter temperature. As before, we see that in the large λ limit that the

CP breaking tunneling probability is much higher. For the CP breaking Hawking-Moss

instanton, we have R ∼ 1/H and θ0 ≃ ±21/4m0(v/µ)
3/2. If we want θ ∼ θ0 to subsequently

roll down to the true minimum as dictated by its equations of motion (e.o.m.) and not be

dominated by the stochastic quantum fluctuations, then we need the change in θ in a time

1/H due to the e.o.m. to be larger than H/2π. This gives the rough bound

mo ≫ H
µ1/2

v1/2
(2.6)

This bound also insures that the Hawking-Moss instanton probability is small and not

order one.

3 Inflation and CP violating tunneling processes

We now consider the case where the field φ is the inflaton. As before, we consider the case

where λ and v are large so that the potential is

V (θ) ≈ v

(√
2µ3 cos

θ

v
− vδm2 cos

2θ

v

)

+
√
2µ3v + v2δm2 (3.1)

– 4 –
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where we have added constants so that the cosmological constant vanishes at the minimum.

θ plays the roll of the inflaton. In the early universe, the universe is inflating and sitting in

the false vacuum θ = 0. At some point in the past, θ undergoes CP violating tunneling to

a point θ0 ∼ ±m0/
√
λθ. As long as the subsequent process of slow-rolling to the minimum

takes over 60 e-folds, then the entire universe will have seen the same CP breaking path

taken by the inflaton.

After tunneling, θ has the initial condition θ0 ∼ ±m0/
√
λθ. We have the slow roll

parameters

ǫ ≈
M2

p θ
6

256πv8
η ≈ −

3M2
p θ

2

32πv4
(3.2)

where we have taken the small θ limit, m0 to be small and used the Planck mass rather

than the reduced Planck mass. Slow roll ends when ǫ ∼ 1 at the value θ ∼ v4/3/M
1/3
p ≪ v,

justifying the small θ limit.

After tunneling, θ slow rolls until the slow roll conditions are broken. While slow

rolling, θ evolves as

θ(t) =

(

1

θ20
− Mptµ

3/2

27/4
√
3πv7/2

)−1/2

(3.3)

where we have approximated the potential as the quartic term only. The number of e-folds

of inflation that occur before the field stops slow rolling is

Ne ≈
16πv4

M2
p θ

2
0

(3.4)

We see that we have to choose θ0 and hence m0 very small so that the number of e-folds

of inflation after the tunneling process is larger than ∼ 60. In particular, one can show

that requiring Ne & 60 implies that m0 . H. Thus we are necessarily in the region of

parameter space where the Hawking-Moss instanton mediates the tunneling.

4 Baryogenesis from a complex inflaton phase

The inflaton obtaining a non-zero phase provides the CP violation necessary for baryo-

genesis. In this section, we show how this non-zero phase may be used to implement

baryogenesis. While the model presented in this section is not elegant, we view it as a

proof of principle.

During inflaton, we have nφ ∼ vθ̇ 6= 0 so that there is non-zero φ number density.

After inflation ends, the inflaton is dominated by the number breaking mass term in its

potential and oscillates about its minimum. At this point nφ ∼ vθ̇ ≈ 0 so that it becomes

unsuitable for Affleck-Dine baryogenesis. Rather than using the inflaton before it becomes

dominated by the mass term, we introduce a new complex field, ψ. During inflation, ψ

number violating processes will be in equilibrium. After inflation ends, ψ number violating

– 5 –
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processes will be turned off and any ψ number generated during inflation will be conserved.

We will associate ψ number with baryon number. The potential for ψ is

V =
λψ

4
|ψ2 −

(

φ+
v√
2

)2

|2 (4.1)

where λψ is a small number so that the vev of the field ψ lags behind the vev of φ. All

parameters are real so that the Lagrangian preserves CP. This potential was chosen so that

after inflation ends, the potential for ψ is dominated by a number conserving operator.

We start in the false vacuum where φ ≈ v/
√
2 and ψ ≈

√
2v. At some point, θ tunnels

away from the false vacuum and Ne e-foldings later inflation ends. After θ tunnels, ψ

evolves in such a way that it picks up a non-vanishing number density. We approximate

the situation as at t = 0, θ tunnels to θ0. At this point, because of a non-zero λψ, the ψ

vev picks up an imaginary part resulting in a non-vanishing asymmetric number density.

If λψ is small, then this effect is small and the ψ vev “lags” behind the inflaton vev. After

Ne e-foldings of inflation, θ stops slow rolling and quickly runs to 0. At this point, the

potential for ψ becomes dominated by the number preserving quartic interaction and the

number density of ψ stops changing.

The number density for ψ is

J0 = ψrψ̇i − ψiψ̇r (4.2)

where ψ = (ψr + iψi)/
√
2. Using the slow rolling e.o.m. we find that

3Hinf ψ̇i ≈ − ∂V

∂ψi ψi=0,ψr=2v,θ≪v

≈ 2λψv
2θ(t) (4.3)

3Hinf ψ̇r ≈ −3

2
λψvθ(t)

2 (4.4)

We see that to lowest order in θ0 that ψr does not change. In order for the evolution of ψi to

be determined by the equations of motion rather than the stochastic de Sitter fluctuations,

we require that in one Hubble time that ∆ψi > H. This translates to a lower bound on λψ

λψ ≫ µ6

m0v2M3
p

(4.5)

An upper bound on λψ can be found by imposing that ψi is smaller than φi since we have

assumed that ψi was small compared to θ. This gives the upper bound

λψ ≪ m2
0

v2
(4.6)

Combined with the fact that we have m0 . H, we have λψv
2 ≪ H2

inf justifying the

assumption that the field ψ is slow rolling during inflation.

If we have λψv
2 ≪ m2

inflaton ∼ µ3/v, then after inflation ends, θ relaxes to its minimum

quickly and all number violating operators are out of equilibrium by the time ψ starts to

oscillate. The potential is then dominated by the number preserving quartic interaction

and the number density does not change. We approximate the situation as a changing

– 6 –
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number density for ψ until the slow roll parameters become large. At this point, we

assume that inflation ends and θ relaxes to the origin quickly so that the number density

ceases to change.

Using the slow roll equations of motion, the number density at the end of inflation is

J0 ≈ λψv
2θψr

H
≈ λψv

4m0Mp

µ3
(4.7)

We have dropped order one coefficients as the final result is much like Affleck-Dine baryo-

genesis in that it typically overproduces the baryon asymmetry. To compare with obser-

vations, one needs to convert this estimate into an abundance, Y . Redshifting the number

density until reheating, we find that

Y =
nψ

s
=

λψv
3m0MpTRH

µ6
(4.8)

where s is the entropy density of a thermal system and TRH is the reheat temperature.

This ψ asymmetry can eventually be converted to a baryon asymmetry. For example, one

could imagine that ψ decays into lepton number carrying fermions νL through the coupling

ψνLνL. νL can then decay via the coupling νLLH. The lepton asymmetry is then be

converted into a baryon asymmetry via electroweak sphalerons.

We now briefly reiterate all of the conditions the parameters of this theory need to

satisfy and then present a set of numerical points which satisfy them and generate the

observed value of Y ∼ 10−10 [22].

• λ ≫ 1 and v ≫ µ,m0: this is needed so that the inflaton can be described as an

angular mode with the radial mode fixed.

• m0 & Hinf
µ1/2

v1/2
: this is required so that evolution of the inflaton is dominated by the

classical e.o.m. rather than the quantum stochastic fluctuations.

• 16πv4

M2
pθ

2
0

& 60: so that there are over 60 e-foldings of inflation.

• m2
0

v2
≫ λψ ≫ µ6

m0v2M3
p
: the first inequality comes about from requiring that the final

value of ψi is small compared to θ0 while the second inequality comes from enforcing

that the stochastic fluctuations are small.

• λψv
2 ≪ m2

inflaton ∼ µ3/v: so that the time scale for the relaxation of the inflaton is

much smaller than the time scale associated with ψ.

Many of these assumptions are present only for computational simplicity, e.g. it is easier to

treat the inflaton as a purely angular mode. As an example of a data point which satisfies

all of the different criteria, we have in the units of GeV: v = 1016, µ = 1012, m0 = 107,

mψ = 107, λψ = 10−20, TRH = 108. The extremely small value of λψ is needed so as not to

produce too many baryons.
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5 Conclusion

In this paper we have considered baryogenesis in the context of a CP conserving model

without CP breaking minimum. We have presented a toy model which illustrates that

it is possible for CP violating tunneling effects to produce the observed baryon number

asymmetry. Because CP invariance requires the existence of two tunneling effects with

opposite CP phase and equal probability of occurring, inflation necessarily plays a non-

trivial role in explaining why the entire visible universe sees baryons and not anti-baryons

as well.

It would be very interesting if this mechanism can be applied to electroweak baryoge-

nesis. The resulting CP violating parameter from this approach is much larger than what

is present in the Lagrangian, which is zero. If the small CP violating CKM angle was used

to bias the tunneling in one direction, then it would explain how the small CP violating

parameter observed in the Standard model is responsible for baryogenesis. For example, in

the model shown in eq. (1.1), if µ3 had a small imaginary piece of size ∼ m3
0/
√
λθ, then it

would bias the tunneling completely in one direction. This approach to electroweak baryo-

genesis would have many interesting phenomenological implications. While the majority of

Hubble patches would contain matter, some of them would contain anti-matter. Depend-

ing on the size of these Hubble volumes full of anti-matter and when they annihilate, they

could change the primordial abundances of the various elements [23–26], leave imprints on

the CMB [27, 28], or create regions of space with lower baryon asymmetry than others.

A Baryogenesis from inflationary fluctuations

In this appendix, we consider baryogenesis in a CP invariant theory that utilizes the

stochastic movement of light fields during inflation. This discussion is a stochastic cal-

culation based on the ideas in refs. [7, 8].

To illustrate the features of this approach, we consider the following toy theory.

L = ∂φ∂φ† −m2φφ† − λ

4
(φφ†)2 − δλ

4
(φ4 + φ†,4) (A.1)

=
1

2
∂φr∂φr +

1

2
∂φi∂φi −

1

2
m2(φ2

r + φ2
i )−

λ

16
(φ2

r + φ2
i )

2 − δλ

8
(φ4

r − 6φ2
rφ

2
i + φ4

i )

where in the second line we have expanded the field in terms of the real and imaginary

pieces. We assume that all parameters in the Lagrangian are real. There is a single

minimum of the theory which preserves CP. The additional term δλ breaks a U(1)φ and is

assumed to be small so as not to destabilize the potential. This term is required so that

baryogenesis can occur.

Before inflation, we have a CP invariant theory with CP invariant initial conditions,

φ = 0. As inflation occurs, the field φ moves away from the origin as quantum fluctuations

are inflated into classical excitations. Because it renders the theory more predictive, we

will assume that inflation has proceeded long enough that φ has reached its equilibrium de

Sitter distribution. It is simple to generalize to the case where this has not occurred.

– 8 –
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For simplicity, we will consider the case where the equilibrium distribution of the field

φ is dominated by its mass term. As derived in ref. [29], for a real free scalar field, we have

〈φr(x1, t1)φr(x2, t2)〉 =
H2

inf(1− c)(2− c)

16π sin(π(1− c))
F

(

c, 3− c, 2;
1 + z

2

)

(A.2)

c =
3

2
−
√

9

4
− m2

H2
inf

z = cosh(Hinft1 −Hinft2)−
H2

inf

2
a20e

Hinft1+Hinft2 |x1 − x2|2

where F is the hyper-geometric function and z is invariant under the de Sitter symmetries.

We first consider the case where t1 = t2, x1 = x2 and m ≪ Hinf. We see that

〈φ2
r(x, t)〉 =

3H4
inf

8π2m2
(A.3)

Thus, the average patch, sees a value of |φr| ∼ H2
inf/m despite the fact that 〈φr〉 = 0. To

investigate the correlation length, we expand eq. (A.2) in the large distance limit and the

small m limit to find

〈φr(x, t)φr(x+ r, t)〉 ≈ 3H4
inf

8π2m2

1

(Hinfr)
2m2

3H2
inf

(A.4)

If we define the correlation length Rc to be the length scale at which the correlation function

falls to half of its original value. We see that

Rc =
1

Hinf

2
3H2

inf

2m2 (A.5)

which can very easily be exponentially larger than our 60 e-foldings sized observable uni-

verse. As long as m . 0.1Hinf, our universe roughly sees a spatially uniform expectation

value for the fields φr and φi

〈|φr|〉 , 〈|φi|〉 ≈
√

3

8π2

H2
inf

m
(A.6)

We now take into account the zeroth order effect of a small non-zero δλ. To see the

effect, consider the equations of motion for the baryon number density nB = φiφ̇r − φrφ̇i.

dnB

dt
= −3HnB + 2δλ(φrφ

3
i − φiφ

3
r) neq

B =
2δλ(φrφ

3
i − φiφ

3
r)

3H
(A.7)

The equilibrium value of nB can also be obtained by plugging in the slow roll equations

of motion for φr,i into the explicit expression of nB. As expected, we see that 〈nB〉 = 0.

However, just like the case for the expectation values of the fields, what is important is the

local value and not the global value.

If the potential is dominated by the mass term, then the distribution of φr,i is approx-

imately gaussian; it’s determined completely by the two point function. We have in the

small and large r limits that the two point function is

〈nB(x)nB(x+ r)〉|Hinfr≫1 ≈
27 δλ2H16

inf

256π8m8H2

1

(Hinfr)
8m2

3H2
inf

(A.8)

〈nB(x)nB(x)〉 =
27 δλ2H16

inf

256π8m8H2
(A.9)
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We have a non-zero baryon number present in our Hubble volume due to the effects of

inflation itself. We see that the correlation length for the number density of baryons is

1
Hinf

2
3H2

inf

8m2 so that as long as m is small, this can be much larger than the size of the

observable universe.

After inflation ends, the field φ is frozen in place until H ∼ m. While frozen in place,

the non-zero expectation value of φ is constantly generating baryon number as can be seen

from eq. (A.7). When H ∼ m, the potential for φ is dominated by the number conserving

mass term and baryon number is no longer being produced. The final number density of

baryons is

nφ(H = m) =
3
√
3 δλH8

inf

16π4m5
(A.10)

If we assume, as before, that that the energy density of φ never dominates the energy

density of the universe and that the universe has reheated by the time H = m, then we

can calculate the abundance

Y =
nφ

s
=

951/4H8
inf δλ

8
√
2g

1/4
⋆ m13/2M

3/2
p π15/4

(A.11)

We see that we can easily accommodate Y ∼ 10−10. Note that what we have done is to

calculate the average value of Y an observer living in a Hubble patch would see. While we

usually assume that we live in a typical region of space, it could be possible that we live

on the tails of the distribution so that we observe a much larger or smaller value of Y .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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