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1 Introduction

Discrete symmetries play a fundamental role in particle physics. Charge conjugation

(C) and the discrete spacetime symmetries of parity (P) and time reversal (T ) are such

that CPT is necessarily conserved for a local, Lorentz-symmetric, and Hermitian theo-

ry. There is, however, no reason for all of the latter requirements to be essential in the

building of viable models. This has been shown, for example, in ref. [1], where locality

is dropped, leading to a Lorentz-symmetric description of neutrino physics, which is odd

under CPT . In the present article we keep locality but consider a non-Hermitian (Lorentz-

symmetric) model.

The last 15 years have seen much interest in and research activity on theories de-

scribed by non-Hermitian Hamiltonians. Such theories have remarkable and often unex-

pected properties. For example, the eigenvalues of the non-Hermitian CPT -symmetric

quantum-mechanical Hamiltonians H = p2 + ix3 and H = p2 − x4 are real, positive, and

discrete [2, 3].

One idea that has been pursued repeatedly is to study the properties of a non-Hermitian

version of quantum electrodynamics (QED). The Hamiltonian for QED becomes non-

Hermitian if the unrenormalized electric charge e is chosen to be imaginary. Then, if

the electric potential is chosen to transform as a pseudovector rather than a vector, the

Hamiltonian becomes CPT symmetric. The resulting non-Hermitian theory of electro-

dynamics becomes a multi-component analog of a self-interacting spinless quantum field

theory (QFT), comprising a pseudoscalar field φ with a cubic self-interaction term of the

form iφ3. This pseudoscalar QFT was studied in detail in ref. [4], and the non-Hermitian

version of QED was studied in ref. [5]. This non-Hermitian version of electrodynamics is
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particularly interesting because it is asymptotically free and the version of this theory with

massless fermions appears to have a nontrivial fixed point (see refs. [6–8]). A perturbative

calculation of a metric with respect to which this theory is unitary is given in ref. [9].

A detailed analysis of CPT -symmetric non-Hermitian fermionic theories was done by

Jones-Smith and Mathur [10]. In this work it was emphasized that for fermions the time-

reversal operator T has the property that T 2 = −1. This represents a significant departure

from the case of bosonic theories, where T 2 = 1. (Further work on the properties of CPT -

symmetric representations of fermionic algebras may be found in ref. [11].) In addition,

Jones-Smith and Mathur showed that free noninteracting CPT -symmetric Dirac equations

have the remarkable feature that massless neutrinos can exhibit species oscillations [12].

The discovery of neutrino oscillations and the observation of the baryon asymmetry

of the universe (BAU) (see ref. [13]) have been driving forces in the study of the neutrino

sector of the SM. Neutrino oscillations consistent with experimental observations can

occur if the SM neutrinos have small but finite masses. The misalignment of the mass

and flavour eigenbases then gives rise to the PMNS [14, 15] mixing matrix, analogous to

the CKM [16, 17] mixing matrix of the quark sector. In order to generate the BAU, it is

necessary to satisfy the Sakharov conditions [18]: namely the presence of out-of-equilibrium

dynamics and the violation of baryon number B, charge C, and charge-parity CP . Both

the CKM and PMNS matrices contain a complex phase, which provides a source of CP
violation in the SM. In the quark sector this gives rise to the CP violation observed in

K-, D-, B- and Bs-meson mixing (see ref. [13]). However, the magnitude of this CP
violation is insufficient to have generated the observed BAU. An elegant framework in

which both experimental observations may be accommodated is provided by the scenario

of leptogenesis [19] (for reviews, see refs. [20–23]). Therein, the SM is supplemented with

heavy Majorana neutrinos. The smallness of the light neutrino masses arises by means of

the see-saw mechanism [24–28] and the baryon asymmetry through the decays of the heavy

neutrinos in the expanding early universe. By virtue of the lepton-number L-violating

Majorana mass terms and complex Yukawa couplings, which provide an additional source

of C and CP violation, these decays are able to generate an initial lepton excess, which is

subsequently converted to a baryon excess via the (B+L)-violating electroweak-sphaleron

interactions of the SM [29].

In this article we examine an extension of QED that involves the usual Dirac mass

term mψψ and an anti-Hermitian mass term µψγ5ψ. The fermion field is coupled to the

photon through both vector and axial-vector couplings. The anti-Hermitian mass term is

separately C even, P odd and T even, and is consistent with unitarity for µ2 ≤ m2. We

study the gauge symmetry of this model and show that, although gauge invariance is lost

in the massive case, it is recovered in the specific situation where the Hermitian and anti-

Hermitian mass terms have equal amplitude µ2 = m2. In this limit we find that the model

reduces to that of a massless left- or right-chiral Weyl fermion. Moreover, we illustrate

that by choosing the ratio µ/m we may obtain an arbitrarily small but finite mass for the

fermion and give more or less prominence to one chirality. This observation, combined

with the maximal CP violation of the anti-Hermitian mass term, may be directly relevant

to neutrino physics.
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The paper is organized as follows: section 2 begins by summarizing the essential prop-

erties of the free non-Hermitian fermion theory studied already in refs. [30] and [31]. Sub-

sequently, the gauge interactions are introduced and the tree-level properties of the model

are described. Therein, emphasis is given to the restoration of gauge invariance in the

limit µ2 = m2. Section 3 presents the one-loop self-energy and vertex corrections, the

details of which are given in appendix A. Here, the recovery of gauge invariance is made

explicit through the expected vanishing of the longitudinal component of the vacuum po-

larization. Section 4 describes an analogous non-Hermitian Yukawa model and discusses

possible implications for the neutrino sector of the SM. A novel mechanism for generating

the light neutrino masses as well as the presence of an additional source of CP violation is

highlighted. Concluding remarks are given in section 5.

2 Description of the Model

2.1 General description

We begin with the free fermion non-Hermitian Lagrangian considered in ref. [30]:

L0 = ψ
(
i/∂ −m− µγ5

)
ψ , (2.1)

with µ2 ≤ m2, such that the energies ω are real for all three-momenta ~p; that is,

ω2 = ~p 2 +M2 ≥ 0 , (2.2)

where

M2 = m2 − µ2 . (2.3)

It is shown in ref. [31] that the conserved current for this model is

jρ = ψγρ
(

1 +
µ

m
γ5
)
ψ (2.4)

and that the equation of motion is obtained by taking the variation of the action with re-

spect to ψ for fixed ψ. The anti-Hermitian mass term in eq. (2.1) is even under both charge

conjugation C and time-reversal T , and odd under parity P. Thus, it is odd under CPT .

However, this does not contradict invariance under Lorentz-symmetry, since Hermiticity

has been relaxed.

In this article we gauge this model and include both vector and axial-vector coupling

to an Abelian U(1) gauge field Aµ:

L = −1

4
FµνFµν + ψ

[
i/∂ − /A(gV + gAγ

5)−m− µγ5
]
ψ , (2.5)

where Fµν = ∂µAν − ∂νAµ. In the massless case m = µ = 0 the action is invariant under

the combined vector and axial gauge transformation

Aµ −→ Aµ − ∂µφ , (2.6a)

ψ −→ exp
[
i
(
gV + gAγ

5
)
φ
]
ψ , (2.6b)

ψ −→ ψ exp
[
i
(
−gV + gAγ

5
)
φ
]
. (2.6c)

However, in the massive case m 6= 0 and/or µ 6= 0 this gauge invariance is lost.
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The free fermion propagator of this theory is

iS = i
/p+m− µγ5
p2 −M2 + iε

, (2.7)

where ε = 0+. We see immediately that eq. (2.7) has a light-like pole for µ = ±m (M2 = 0),

like that of a massless theory, with the propagator taking the form

iS = i
/p+m (I4 ∓ γ5)

p2 + iε
. (2.8)

The mass term in the numerator is proportional to the chiral projection operators

PR(L) =
1

2

(
I4 + (−)γ5

)
, (2.9)

where In is the n× n unit matrix. Separating the right- and left-chiral components ψR =

PRψ and ψL = PLψ in the current (2.4), we see that the probability density may be

written as

ρ =
(

1 +
µ

m

)
|ψR|2 +

(
1− µ

m

)
|ψL|2 . (2.10)

Evidently, for µ = +(−)m the contribution to the probability density is entirely from the

right-(left)-handed degree of freedom. Therefore, it appears that in the limit µ = +m

we obtain a massless right-handed theory, and in the limit µ = −m we obtain a massless

left-handed theory. This feature is the focus of this article. Moreover, in section 4, we

comment on potential implications of this non-Hermitian theory for the neutrino sector of

the SM and, in particular, the smallness of the light-neutrino masses.

The preceding observations suggest that it proves illustrative to consider this theory

in an explicit chiral basis. We do so in the following section and show explicitly that

invariance under the gauge transformation in eq. (2.6) is recovered in the limit µ → ±m,

as we would anticipate for a theory that appears to be effectively massless.

2.2 Chiral basis

In order to recast eq. (2.5) in an explicit chiral basis, we first rotate from the Dirac basis

to the Weyl basis via the orthogonal transformation

ψW =

(
ψL
ψR

)
=

1√
2

(
I2 − I2
I2 I2

)
ψ . (2.11)

We may then work directly with the two-component right- and left-chiral spinors ψR
and ψL.

In the Weyl basis the gamma matrices take the form

γµW =

(
0 σµ

σ̄µ 0

)
, γ5W =

(
−I2 0

0 I2

)
, (2.12)
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where σµ = (σ0, σi) and σ̄µ = (σ0,−σi), and σi are the Pauli matrices. To avoid a

proliferation of subscripts and superscripts, throughout this paper we suppress SU(2) spinor

indices (see appendix A). In addition, the projection operators are given by

PL =

(
I2 0

0 0

)
, PR =

(
0 0

0 I2

)
. (2.13)

The fermionic sector Lagrangian is then

Lferm =
(
ψ†L ψ

†
R

)(iσ̄ ·D− −m+

−m− iσ ·D+

)(
ψL
ψR

)
, (2.14)

where

m± = m± µ , (2.15)

and the covariant derivatives are given by

Dµ
± = ∂µ + ig±A

µ , (2.16)

with

g± = gV ± gA . (2.17)

Notice that γ5 matrices no longer appear explicitly in the Lagrangian eq. (2.14). Instead,

the non-Hermitian nature of this theory is manifest in the asymmetry between the right-

and left-chiral components of the original four-component Dirac spinor.

We may study the on-shell structure of the Lagrangian in eq. (2.14). For the case

µ = +m the Lagrangian takes the form

Lferm
∣∣
µ=+m

= ψ†Liσ̄ ·D−ψL + ψ†Riσ ·D+ψR − 2mψ†LψR , (2.18)

giving the following equations of motion for ψR and ψL:

δS

δψ†R
= 0 ⇒ iσ ·D+ψR = 0 , (2.19a)

δS

δψ†L
= 0 ⇒ iσ̄ ·D−ψL = 2mψR . (2.19b)

Since the left-chiral field does not appear in the equation of motion for the right-chiral field

[eq. (2.19a)], we may integrate it out, giving the tree-level on-shell Lagrangian

Ltreeon−shell = ψ†Riσ ·D+ψR , (2.20)

which describes a massless theory of right-handed Weyl fermions. This is precisely what we

saw in the probability density [eq. (2.10)]. Moreover, the on-shell Lagrangian [eq. (2.20)]

respects the full vector and axial-vector gauge invariance [see eq. (2.6)]; that is,

Aµ −→ Aµ − ∂µφ , ψR −→ exp (ig+φ)ψR . (2.21)

For the case µ = −m we need only make the replacements ψR ↔ ψL, σ̄ ↔ σ, and

D+ ↔ D− in eq. (2.20), yielding a massless theory of left-handed Weyl fermions. The next

subsection gives a more explicit argument to justify the restoration of gauge invariance for

the light-like case µ2 = m2.
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2.3 Hidden gauge invariance

In this subsection we show that gauge invariance is recovered when µ2 = m2. To do so, we

construct a two-component spinor basis in which gauge invariance is explicit.

Written in block form, where the LL (left-left) element is located in the top left 2 × 2

block, the mass matrix is given by

M =

(
0 m+

m− 0

)
, (2.22)

having eigenvalues ±M = ±
√
m2 − µ2 and eigendirections

e± =
1√
2

(
±x+
x−

)
with x± ≡

√
1± µ/m . (2.23)

We rotate to the mass eigenbasis but first allow for a rescaling of the left- and right-handed

components:

ψL(R) −→ ψ′L(R) = aL(R)ψL(R) , (2.24)

where aL(R) are to be determined later, as explained below. This leads to the transforma-

tion (
ψ+

ψ−

)
≡ V −1

(
ψL
ψR

)
, (2.25)

with

V −1 =
1√
2

(
aLx− aRx+
−aLx− aRx+

)
and V =

1√
2

(
1/(aLx−) −1/(aLx−)

1/(aRx+) 1/(aRx+)

)
. (2.26)

The Lagrangian then becomes

Lferm =
(
ψ†+ ψ†−

)
V T

(
iσ ·D− −m+

−m− iσ ·D+

)
V

(
ψ+

ψ−

)

=
(
ψ†+ ψ†−

)(A B

C D

)(
ψ+

ψ−

)
, (2.27)

where

A =
iσ ·D+

2a2Rx
2
+

+
iσ ·D−
2a2Lx

2
−
− m

aRaLx+x−
, (2.28a)

B =
iσ ·D+

2a2Rx
2
+

− iσ ·D−
2a2Lx

2
−
− µ

aRaLx+x−
, (2.28b)

C =
iσ ·D+

2a2Rx
2
+

− iσ ·D−
2a2Lx

2
−

+
µ

aRaLx+x−
, (2.28c)

D =
iσ ·D+

2a2Rx
2
+

+
iσ ·D−
2a2Lx

2
−

+
m

aRaLx+x−
, (2.28d)
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and the two-component spinors ψ+ and ψ− are given by

ψ± =
1√
2

(
x+ψ

′
R ± x−ψ′L

)
. (2.29)

The next step is to determine the coefficients aL(R). To make gauge invariance explicit

in the limit µ → +(−)m, that is, x+(−) → 0, only the covariant derivative D+(−) should

remain. A reasonable choice for the field rescaling is

1

2a2Rx
2
+

=
x2+
a2

and
1

2a2Lx
2
−

=
x2−
a2

, (2.30)

where a is an overall numerical coefficient. Thus, we have

aR =
a√
2x2+

and aL =
a√
2x2−

, (2.31)

and we obtain

a2Lferm =
(
ψ†+ ψ†−

)(x2+iσ ·D+ + x2−iσ ·D− x2+iσ ·D+ − x2−iσ ·D−
x2+iσ ·D+ − x2−iσ ·D− x2+iσ ·D+ + x2−iσ ·D−

)(
ψ+

ψ−

)

− 2M
(
ψ†+ ψ†−

)( 1 µ/m

−µ/m − 1

)(
ψ+

ψ−

)
. (2.32)

Note that the mass matrix is not diagonal, even in the mass eigenbasis, because of the

anti-Hermitian mass term controlled by µ.

In the limit µ → ±m the mass term vanishes, and we are left with a massless theory

that is invariant under the gauge transformation

Aµ −→ Aµ − ∂µφ , ψ± −→
{

exp (ig+φ)ψ± , µ = +m,

exp (ig−φ)ψ± , µ = −m.
(2.33)

Moreover, from eq. (2.29), we have

ψ± =

{
ψ′R , µ = +m,

±ψ′L , µ = −m,
(2.34)

and we find that

Lferm =

{
ψ†Riσ ·D+ψR , µ = +m,

ψ†Liσ̄ ·D−ψL , µ = −m,
(2.35)

for massless right- and left-chiral theories, as observed in the preceding subsections.

The coefficients aL(R) and the transformation in eq. (2.26) are singular in the limit

µ→ ±m. However, the coefficients aL(R) do not appear in the final Lagrangian [eq. (2.32)],

which remains finite in the limit µ → ±m. Furthermore, the functional Jacobian of the

field rescaling in eq. (2.24), although also singular, cancels out in the normalization of Z

with the partition function Z0 of the corresponding free theory. Thus, the limit µ→ ±m
may be taken safely, as done above.

– 7 –



J
H
E
P
1
1
(
2
0
1
5
)
1
1
1

2.4 Exceptional points

An N -dimensional Hermitian matrix always has N real eigenvalues and associated with

each eigenvalue is a distinct eigenvector. For non-Hermitian matrices the situation is more

elaborate. Consider, for example, the non-Hermitian 2-dimensional matrix

A =

(
a+ ib g

g a− ib

)
, (2.36)

where a and b are real parameters and g is a real coupling constant. The eigenvalues of

A are E(g) = a ±
√
g2 − b2. Thus, there are two phases: a broken phase (for g2 < b2)

in which the eigenvalues are complex and an unbroken phase (for g2 > b2) in which the

eigenvalues are real. At the boundary between the phases (g = ± b) the eigenvalues merge,

and the matrix is said to be defective because there is only one eigenvalue E = a and one

eigenvector instead of two: (i, 1) for g = + b and (1, i) for g = − b. The point g2 = b2 is

called an exceptional point.

In general, at an exceptional point a pair of eigenvalues of a non-Hermitian matrix

merge, and one of the eigenvectors disappears. (It is possible for more than two eigenvalues

to merge at an exceptional point, but this is not common.) If the exceptional point occurs

when a parameter g has the value g0, the eigenvalues E(g) exhibit a square-root singularity

at g = g0.

Hermitian matrices do not have exceptional points. Nevertheless, exceptional points

play a crucial role in explaining their behavior. For example, in conventional Hermitian

quantum theory the radius of convergence of a perturbation expansion in powers of a

coupling constant is precisely the distance to the nearest exceptional point (a square-root

singularity) in the complex-coupling-constant plane [32].

In the limit µ = ±m the mass matrix M is defective and, as explained above, the

transformation in eq. (2.26) becomes singular. For instance, for µ = +m the mass matrix

has the Jordan normal form

M = 2m

(
0 1

0 0

)
, (2.37)

with zero eigenvalues. In this limit we have chiral flips biased from left to right, depleting

the probability density of the left-handed component, as we saw in eq. (2.10). In other

words, we again arrive at a massless theory of right-handed fields. Conversely, in the limit

µ → −m we arrive at a massless theory dominated by left-handed fields with chiral flips

biased from right to left.

The appearance of defective matrices is rare in physics, especially in field theory, and

it is worth considering what this singular behaviour signals. For µ2 < m2 we have right-

and left-chiral components with positive mass-squared M2 > 0 (time-like) and real-valued

energies ω ∈ R. For µ > 0 the right-chiral component dominates; for µ < 0 the left-chiral

component dominates; for µ = 0 we have exact symmetry between both components. On

the other hand, for µ2 > m2 we still have right- and left-chiral components, but these are

now tachyonic, having negative mass-squared M2 < 0 (space-like) and imaginary-valued

– 8 –



J
H
E
P
1
1
(
2
0
1
5
)
1
1
1

m

µ

M
2

=
0
, R

−→
L

M
2
=
0
, L

−→
R

M
2

=
0
, R

−→
L

M
2
=
0
, L

−→
R

M2 > 0M2 > 0

M2 < 0

M2 < 0

R > L

L > RR > L

L > R

Figure 1. Schematic representation of the m–µ plane, where the tachyonic region (cross-hatched)

is bounded by the lines µ2 = m2, along which the mass matrix becomes defective: µ = +m (red)

corresponds to total left-chiral domination, and µ = −m (blue) corresponds to total right-chiral

domination. Along the line µ = 0 the symmetry between the right- and left-chiral components

is restored.

energies iω ∈ R. For the special case µ2 = m2 we have a massless fermion M2 = 0 (light-

like) and real-valued energies ω = |~p | ∈ R. For µ = +m this field is completely dominated

by its right-chiral component and for µ = −m it is completely dominated by its left-chiral

component. The mass matrix becomes defective at the boundary between the time-like

particle and space-like tachyonic regimes. This is indicated graphically in figure 1.

3 One-loop corrections

We give here the one-loop corrections to the fermion and photon self-energies, as well

as the three-point vertex. The technical details of the calculations are given explicitly in

appendix A. For our purposes it is convenient to express the one-loop results in terms of the

Passarino-Veltman form factors [33], the definitions of which are also given in appendix A.

We work in the Feynman gauge throughout, with the gauge-fixing term

Lgf =
1

2

(
∂µA

µ
)2
, (3.1)

in which the photon propagator has the simple form

iDµν(k) =
iηµν
k2 + iε

. (3.2)

Fermion self-energy. There are four contributions to the one-loop fermion self-energy:

one with two vector couplings, one with two axial couplings, and two with one vector

– 9 –
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and one axial coupling. Employing dimensional regularization and working in d = 4 − 2ε

dimensions, we find the total self-energy

Σ(p) =
2− d
16π2

(gV − gAγ5)2 /pB1 +
d

16π2
(g2V − g2A)(m+ µγ5)B0 , (3.3)

where we have suppressed the arguments on the form factors B0;1 ≡ B0;1(p,M, 0). Isolating

the logarithmically-divergent part, we obtain

Σ(p) =
1

16π2ε

(
/p(gV + gAγ

5)2 + 4(g2V − g2A)(m+ µγ5)
)

+ finite , (3.4)

where higher orders in p are omitted.

The RL and LR components of the fermion self-energy are given by

ΣRL(p) =
g+g−
16π2

dm−B0 , (3.5a)

ΣLR(p) =
g+g−
16π2

dm+B0 . (3.5b)

For µ = ±m we see that one of these components vanishes such that it remains the case

that only the operator ψ†LψR (µ = +m) or ψ†RψL (µ = −m) is present, preserving the

argument in subsection 2.2. Specifically, the equations of motion for the renormalized right-

and left-chiral fields at order g2 are given by

ZRiσ
µ ·D+ψR = 0 , (3.6a)

ZLiσ̄
µ ·D−ψL = (2m+ δm− ΣLR(p))ψR , (3.6b)

where δm is the mass counterterm and in the on-shell scheme the wavefunction renormal-

ization ZR(L) is given by

ZR(L) = 1− d

d/p
ΣRR(LL)(p)

∣∣∣∣
p2 =0

. (3.7)

We may again integrate out the left-chiral component, obtaining a massless right-handed

theory also at order g2.

Polarization tensor. There are also four contributions to the one-loop photon polariza-

tion tensor, and we find the total polarization tensor

Πµν(p) = −g
2
V + g2A
2π2

(
pµpν − ηµνp2

)(
B21 +B1

)
+
g2A
π2

ηµνM2B0 . (3.8)

The form factors are evaluated as B0;1;21 ≡ B0;1;21(p,M,M). As expected from the loss of

gauge invariance in the case of axially-coupled massive fermions, the polarization tensor is

not transverse and contains the longitudinal part

Πµν(p) ⊃ g2A
π2

ηµνM2B0 . (3.9)

Nevertheless, this longitudinal part vanishes and the polarization tensor becomes transverse

when µ2 = m2 (that is, when M = 0). Hence, as a consequence of the restoration of
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gauge invariance (see subsection 2.3), the polarization tensor satisfies the standard QED

Ward identity.

Isolating the logarithmic divergences in eq. (3.8), we obtain

Πµν(p) =
g2V + g2A
12π2ε

(pµpν − ηµνp2) +
g2A
π2ε

M2ηµν + finite, (3.10)

where higher orders in p are omitted.

Vertex. The four different contributions to the three-point vertex lead to the total one-

loop correction

Λµ(p, q) =
2− d
16π2

(gV + gAγ
5)

×
{

(gV + gAγ
5)2
[
(2− d)γµC24 + γργµγκFκρ

]
+ (g2V + g2A)γµM2C0

}
+

1

4π2
(g2V + g2A)(m− µγ5)

×
{
gV

[
pµ
(
2C11 + C0

)
+ qµ

(
2C12 + C0

)]
− gAγ5(pµ + qµ)C0

}
, (3.11)

where we have defined

Fκρ = pκ pρ
(
C11 +C21

)
+ qκ qρ

(
C22 +C12

)
+ pκ qρ

(
C23 +C11

)
+ qκ pρ

(
C23 +C12

)
. (3.12)

The three-point form factors (see appendix A) are evaluated with arguments p1 = p, p2 = q,

m1 = m3 = M , and m2 = 0. The divergent contribution to eq. (3.11) arises from the form

factor C24 and is given by

Λµ ⊃ 1

16π2ε
(gV + gAγ

5)3γµ , (3.13)

which is consistent with the self-energy [eq. (3.4)], as imposed by the Ward identity for

gA → 0, describing the usual gauge invariance of vectorially-coupled massive QED.

Finally, the RL and LR components of the vertex, that is, those mediating right-to-left

and left-to-right chiral flips, are given by

ΛµRL =
g+g−
4π2

m−

[
(g+ + g−)

(
pµC11 + qµC12

)
+ g−(pµ + qµ)C0

]
, (3.14a)

ΛµLR =
g+g−
4π2

m+

[
(g+ + g−)

(
pµC11 + qµC12

)
+ g+(pµ + qµ)C0

]
. (3.14b)

Like the RL and LR components of the fermion self-energies, these terms are proportional

to m− and m+, respectively, so we have only left-to-right chiral flips for µ = +m and right-

to-left chiral flips for µ = −m, which preserves the structure observed in subsection 2.2

for µ2 = m2 also at order g3.

4 Implications for neutrino masses

This section highlights potential implications of the behavior of this non-Hermitian theory

for the neutrino sector of the SM. We extend the SM with a right-handed singlet neutrino

νR. In the Dirac basis we write the non-Hermitian neutrino Yukawa sector, assuming only

a single generation for now, as

L = LLi /DLL + νRi/∂νR − h−LLφ̃νR − h+νRφ̃†LL , (4.1)
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where LL = (νL, eL) is the SU(2) lepton doublet, φ̃ = iσ2φ
∗ is the isospin conjugate of the

Higgs doublet and Dµ is the usual covariant derivative of the SM gauge groups. Note that

we have swapped + and − relative to the non-Hermitian model of QED in the preceding

sections. The non-Hermitian Yukawa couplings are

h± = h± η , (4.2)

where, for now, we assume that h, η ∈ R. Since the electroweak sector of the SM is already

written in terms of chiral fields, no γ5 appears explicitly in the non-Hermitian Lagrangian.

Even so, in the symmetry-broken phase, the non-Hermitian Yukawa couplings give rise to

a Hermitian mass m = vh and an anti-Hermitian mass µ = vη, with m± = v(h ± η), in

complete analogy to the non-Hermitian Abelian theory considered in section 2.

In the unitary gauge and after spontaneous symmetry breaking, the Higgs doublet

takes the form

φ =
1√
2

(
0

v +H

)
, φ̃ =

1√
2

(
v +H

0

)
. (4.3)

Hence, the neutrino sector becomes

Lν = νLi/∂νL + νRi/∂νR − h−
v√
2
νLνR − h+

v√
2
νRνL −

h−√
2
νLHνR −

h+√
2
νRHνL . (4.4)

The first four terms of the Lagrangian in eq. (4.4) can be written in the matrix form

Lν ⊃
(
νL νR

)( i/∂ −h− v√
2

−h+ v√
2

i/∂

)(
νL
νR

)
, (4.5)

where the neutrino mass matrix

M =
v√
2

(
0 h−
h+ 0

)
(4.6)

has eigenvalues

±M = ± v√
2

√
h2 − η2 . (4.7)

Proceeding in analogy to subsection 2.3, we make the field redefinition (a =
√

2)

νL(R) −→ ν ′L(R) =
νL(R)

x2−(+)

, (4.8)

where

x± ≡
√

1± η/h . (4.9)

We then move to the mass eigenbasis spanned by the two-component spinors(
ν+
ν−

)
=

1√
2

(
x+ x−

x+ −x−

)(
ν ′L
ν ′R

)
, (4.10)
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with

ν± =
1√
2

(
x+ν

′
L ± x−ν ′R

)
. (4.11)

Thus, in the limit η → h and in analogy to subsection 2.3, we obtain a theory of massless

left-handed neutrinos, which is the “original” Standard Model. However, arranging for

η ∼ h with η < 0, we obtain a nonzero but arbitrarily small mass for the neutrinos, with

the propagating state still dominated by its left-chiral component.

In the above minimal extension of the SM the singlet neutrino νR does not couple to the

SU(2)L gauge fields, and we cannot make use of an analogy to the non-Hermitian Abelian

gauge couplings of subsection 2.1. However, in the so-called left-right SM [34–36], where

the SM gauge groups are extended from SU(2)L ⊗U(1)Y to SU(2)L ⊗ SU(2)R ⊗U(1)B−L,

the SU(2)R gauge fields couple directly to the right-handed neutrino current. Thus, by

introducing couplings g+ = gV +gA and g− = gV −gA of the left- and right-handed currents

to the charged gauge fields W± ,µL and W± ,µR , and g′+ = g′V + g′A and g′− = g′V − g′A to the

neutral gauge fields ZµL and ZµR, those of the right-handed neutrino may be suppressed for

gV
(′) ∼ gA

(′). This, of course, amounts only to choosing different values for the tree-level

SU(2)L and SU(2)R gauge couplings, which need not result from a non-Hermitian theory.

Nevertheless, this construction might provide a common origin for such a structure in the

gauge and Yukawa sectors.

The masses of the left- and right-handed neutrinos are degenerate in this construction,

both being light for η ∼ h. However, since the right-handed neutrino is still a singlet of

the SM gauge groups, we are not precluded from adding a Majorana mass term

Lν ⊃ −mR ν
C
R νR , (4.12)

where C denotes charge conjugation. In this case, the Lagrangian takes the form

− Lν ⊃
1

2

(
νL ν

C
R

)( 0 m−
m+ mR

)(
νCL
νR

)
+

1

2

(
νCL νR

)( 0 m−
m+ mR

)(
νL
νCR

)
. (4.13)

For mR � 2M the masses of the light and heavy neutrinos are mL = −M2/mR and mR,

which drives up the mass of the right-handed neutrino and further suppresses that of the

left-handed neutrino by means of the see-saw mechanism [24–28].

It is worth commenting on the generalization to complex Hermitian and anti-Hermitian

Yukawa couplings h and η. In this case, the Yukawa sector takes the form

Lν ⊃ −h−
v√
2
νLνR − h∗+

v√
2
νRνL . (4.14)

The mass-squared is then given by

M2 =
v2

4

(
|h|2 − |η|2 − 2iImh∗η

)
, (4.15)

which delivers real masses only when Im h∗η vanishes, i.e. when h = η. Thus, if we want

small but finite masses, we are required to take h and η to be real.
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The situation is somewhat different, however, when we consider the extension of the

above model to include N generations:

L = L
k
Li /DLL,k + ναRi/∂νR,α − [h−] αk L

k
Lφ̃νR,α − [h+]kαν

α
Rφ̃
†LL,k , (4.16)

where we have assumed only Dirac masses in the first instance. We have employed the

flavour-covariant notation of ref. [37], where the left- and right-handed sectors transform

in the fundamental representation of two flavour groups UL(N) and UR(N), respectively,

and flavour indices are raised and lowered by complex conjugation. We have taken the

number of left- and right-handed fields to be equal for simplicity in what follows; this need

not be the case in general. Under a general transformation in UL(N)× UR(N), we have

LL,k −→ L′L,k = V l
k LL,l , LkL ≡ (LL,k)

† −→ L′L
k

= V k
lL
l
L , (4.17a)

νR,α −→ ν ′R,α = U β
α νR,β , ναR ≡ (νR,α)† −→ ν ′R

α
= Uαβν

β
R , (4.17b)

where V k
l ≡ (V l

k )∗ ∈ UL(N) and Uαβ ≡ (U β
α )∗ ∈ UR(N). The Yukawa coupling matrices

h± = h±η transform as tensors of UL(N)×UR(N) and flavour covariance of the Lagrangian

requires the transformation property

[h±] αk −→ [h′±] αk = V l
k U

α
β [h±] βl . (4.18)

In general, there will not exist a flavour basis in which the Yukawa matrices h+ and h− are

simultaneously diagonal. As a result, there can be a three-fold misalignment for general

Yukawa matrices, i.e. the weak, + Yukawa and − Yukawa bases can point in three different

directions in flavour space. Hence, for three generations, neutrino oscillations in this model

are governed by 6 rather than 3 mixing angles and 2 rather than 1 CP-violating phases.

This additional source of CP violation is of particular relevance to the potential embedding

of this non-Hermitian theory within the scenario of leptogenesis.

In the symmetry-broken phase, for the case of two generations (N = 2), the mass

spectrum contains four mass eigenstates with masses given by the roots of

M2
1(2) =

v2

4

[
trh†+h− − (+)

(
2 tr

(
h†+h−

)2 − (trh†+h−)2)1/2] . (4.19)

It is clear that one may obtain the massless limit by choosing h = ±η. However, such a

constraint is not a necessary condition for obtaining a spectrum with massless states. In

the case that

deth†+h− = 0 ⇒ tr
(
h†+h−

)2
=
(
trh†+h−

)2
, (4.20)

we obtain two massless states (±M1 = 0) and two states with masses given by the roots of

M2
2 =

v2

2
trh†+h− =

v2

2

[
trh†h− trη†η − 2iIm trh†η

]
. (4.21)

For M2 to be real, we require

Im trh†η = 0 . (4.22)
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Subsequently imposing the additional constraint that

trh†h = trη†η , (4.23)

we also obtain M2 = 0, giving a massless spectrum. In complete analogy to the single-

flavour case, we may obtain an arbitrarily small but finite mass splitting ∆M2 = M2
2 −M2

1

by choosing

trh†h ∼ trη†η . (4.24)

As a result, there is the potential to obtain sub-eV scale Dirac neutrino masses from Her-

mitian and anti-Hermitian Yukawa couplings, whose orders of magnitude may themselves

be much closer to the other SM Yukawa couplings and larger than the unnatural 10−12

that would otherwise be required for agreement with neutrino oscillation data.

Note that eqs. (4.20), (4.22) and (4.23) comprise three constraints on the total of 16

parameters in the complex-valued 2×2 matrices h and η. These three necessary conditions

provide a much weaker constraint on the elements of h and η than the condition h = η.

Moreover, they do not, as in the single-flavour case, require h and η to be real-valued

matrices.

As for the single-flavour case, we can include a Majorana mass term of the form

− Lν ⊃
1

2
νCR,αm

αβ
R νR,β + H.c. , (4.25)

where the mass matrix mR transforms as a rank-2 tensor of UR(N), i.e.

mαβ
R −→ m′R

αβ = UαγU
β
δm

γδ
R . (4.26)

In block form the mass terms are given by

−Lν ⊃
1

2

(
νkL ν

C
R,α

)( 0 [m−] βk
[m+]αl mαβ

R

)(
νC,lL
νR,β

)

+
1

2

(
νCL,k ν

α
R

)( 0 [m−] k
β

[m+]l α mR,αβ

)(
νL,l
νC,βR

)
. (4.27)

The mass matrix

M =

(
0 m−
mT

+ mR

)
(4.28)

can be block diagonalized by a unitary transformation of the form M̂ = W TMW , giving

the physical neutrinos(
NL

NCR

)
= W T

(
νL
νCR

)
,

(
NCL
NR

)
= W †

(
νCL
νR

)
, (4.29)

where the NL are the light neutrinos, whose mass matrix is given by the non-Hermitian

see-saw formula

mL = −m−m−1R mT
+ , (4.30)

and the NR are the heavy Majorana neutrinos, whose mass matrix is mR.
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For N = 2 the mass spectrum of the light neutrinos is given by

M1(2) = − v
2

4

[
trh−m

−1
R h

T
+ − (+)

(
2 tr

(
h−m

−1
R h

T
+

)2 − (trh−m−1R hT
+

)2)1/2]
. (4.31)

We trivially obtain a massless spectrum for h = ±η. However, as before, when

deth−m
−1
R h

T
+ = 0 ⇒ tr

(
h−m

−1
R h

T
+

)2
=
(
trh−m

−1
R h

T
+

)2
, (4.32)

we obtain the spectrum

M1 = 0 , M2 = −v
2

2
trh−m

−1
R h

T
+ . (4.33)

For M2 to be real, we now require

Im trh−m
−1
R h

T
+ = 0 , (4.34)

and we obtain a completely massless spectrum if, in addition, we require that

Re trh−m
−1
R h

T
+ = 0 . (4.35)

Again, the conditions eqs. (4.32), (4.34) and (4.35) provide much weaker constraints on the

form of the Yukawa matrices than h = ±η. In addition, we can obtain an arbitrarily small

but finite mass splitting ∆M2, independent of the Majorana mass term mR, by choosing

the Yukawa couplings such that

Re trhm−1R h
T ∼ Re tr

(
ηm−1R η

T + hm−1R η
T − ηm−1R hT

)
. (4.36)

This ability to tune the mass splitting of the light neutrinos independent of the magnitude

of the Majorana mass term may have interesting implications in the light of the com-

bined constraints provided by neutrino oscillation data and the current limits on lepton-

flavour-violating and lepton-number-violating observables, including neutrinoless double-

beta decay.

A comprehensive phenomenological study of the aforementioned variations of this non-

Hermitian Yukawa model in the context of current constraints from collider experiments

and both astrophysical and cosmological observations (for recent reviews, see refs. [38, 39])

is beyond the scope of this article and will be presented elsewhere.

5 Conclusions

We have considered an extension of QED, whose non-Hermitian nature permits the sym-

metry between the left- and right-chiral components of a Dirac fermion to be broken by the

presence of an anti-Hermitian mass term. We have shown that the full gauge invariance of

this theory is restored when the Hermitian and anti-Hermitian masses are of equal magni-

tude. Moreover, we have highlighted an intriguing possibility for explaining the smallness

of the light neutrino masses and providing an additional source of CP violation through

an analogous extension of the SM. Further phenomenological studies of this model and its
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variations are required in the context of the current low-energy neutrino data as well as

both cosmological and astrophysical observations.

Finally, we mention another direction of study, which deals with the dynamical genera-

tion of the non-Hermitian mass term through nonperturbative quantum effects. Dynamical

mass generation for neutrinos (with a vanishing bare mass) has been obtained in the con-

text of Lorentz-symmetry violation [40–42], where the physical mass scale is provided by

higher-order spatial derivatives. A nonperturbative mechanism could also be responsible

for the non-Hermitian mass term in the present context, although the natural mass scale

would be provided by the Higgs mechanism, instead of Lorentz-symmetry-violating opera-

tors. In order to explore this avenue, one needs to derive a nonperturbative gap equation

and study the possibility of a non-Hermitian mass term solution. Such a nontrivial solution

could arise in a theory involving an axial coupling and is left for future work.
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A One-loop corrections

This appendix summarizes the technical details of the one-loop calculations described in

section 3. The elements AIJ of a matrixA in the chiral field space are indexed by upper-case

Roman indices I, J,K,M, · · · = L,R, where the LL element is in the top left.

Passarino-Veltman parametrization. In d = 4− 2ε the two-point Passarino-Veltman

form factors [33] are

B0;µ;µν(p,m1,m2) =

∫
ddk

iπ2
1; kµ; kµkν(

k2 −m2
1 + iε

)(
(p+ k)2 −m2

2 + iε
) . (A.1)

These may be related to the scalar form factors B1, B21 and B22 via

Bµ(p,m1,m2) = pµB1(p,m1,m2) , (A.2a)

Bµν(p,m1,m2) = pµpνB21(p,m1,m2) + ηµνB22(p,m1,m2) , (A.2b)

whose divergent parts are

B0(p,m1,m2) ⊃
1

ε
, B1(p,m1,m2) ⊃ −

1

2ε
, (A.3)

B21(p,m1,m2) ⊃
1

3ε
, B22(p,m1,m2) ⊃ −

1

4ε

(
m2

1 +m2
2 +

p2

3

)
. (A.4)

In addition, we make use of the algebraic identities

p2B1(p,m1,m2) =
1

2

[
A(m1)−A(m2)− (p2 −m2

1 −m2
2)B0(p,m1,m2)

]
, (A.5a)

p2B21(p,m1,m2) + dB22(p,m1,m2) = A(m2) +m2
1B0(p,m1,m2) , (A.5b)

p2B21(p,m1,m2) +B22(p,m1,m2) =
1

2

[
A(m2) + (m2

1 −m2
2 − p2)B1(p,m1,m2)

]
, (A.5c)
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where A(m) is the tadpole form factor

A(m) =

∫
ddk

iπ2
1

k2 −m2 + iε
. (A.6)

Lastly, for m1 = m2 we have the identity

B1(p,m,m) = −1

2
B0(p,m,m) . (A.7)

The three-point form factors are

C0;µ;µν =

∫
ddk

iπ2
1; kµ; kµkν

(k2 −m2
1 + iε)

(
(k + p1)2 −m2

2 + iε
)(

(k + p1 + p2)2 −m2
3 + iε

) , (A.8)

where the arguments of C0;µ;µν ≡ C0;µ;µν(p1, p2,m1,m2,m3) have been suppressed for

notational brevity. We also define scalar form factors via

Cµ = p1µC11 + p2µC12 , (A.9a)

Cµν = p1µp1νC21 + p2µp2νC22 + p1(µp2ν)C23 + ηµνC24 . (A.9b)

The only divergent form factor is C24, having the logarithmic divergence

C24 ⊃
1

4ε
. (A.10)

Feynman rules. In the chiral basis, the Feynman rules of the model are [43–46]

• To each photon line associate the factor (in the Feynman gauge)

iDµν(p) =
iηµν
p2 + iε

. (A.11)

• To each chiral fermion line associate the factor

iSIJ(p) = i
δIJ σ̄J · p +MIJ

p2 −M2 + iε
. (A.12)

To avoid proliferation of sub- and superscripts, the spinor index assignment, denoted

by the lower-case Gothic characters a and b, is understood as follows:

iSLL(p) ≡ [iSLL(p)]aḃ =
ip · σaḃ

p2 −M2 + iε
, (A.13a)

iSRR(p) ≡ [iSRR(p)]ȧb =
ip · σ̄ȧb

p2 −M2 + iε
, (A.13b)

iSRL(p) ≡ [iSRL(p)]ȧ
ḃ

=
im−δ

ȧ
ḃ

p2 −M2 + iε
, (A.13c)

iSLR(p) ≡ [iSLR(p)] b
a =

im+δ
b

a

p2 −M2 + iε
, (A.13d)

with

σ̄µL = σµ ≡ σµ
aḃ
, σ̄µR = σ̄µ ≡ σ̄µ,ȧb . (A.14)

• To each vertex associate a factor of − igIJσµJ , where g = diag (g−, g+).

• For any closed fermion loop include a factor of −1 and trace over the Lorentz indices.

In the calculation of the one-loop corrections outlined below, we also make heavy use

of the product and trace identities of the Pauli matrices, as listed in appendix B of [46].
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Fermion self-energy. The one-loop chiral fermion self-energies are given by

iΣIJ(p) = (− i)2 gIK gNJ
∫

ddk

(2π)4
σµK iSKN (k + p)σνN iDµν(k) , (A.15)

where we note that the couplings g± are dimensionful for d = 4− 2ε. The numerator is

(2− d) δKN σN · k + dMKN . (A.16)

Rewriting in terms of the Passarino-Veltman form factors, we get

ΣIJ(p) =
1

16π2
gIK gNJ

[(
2− d) δKN σK · pB1(p,M, 0) + dMKN B0(p,M, 0)

]
. (A.17)

Hence, we obtain

ΣLL =
g2−

16π2
(2− d) σ̄ · pB1(p,M, 0) , (A.18a)

ΣRR =
g2+

16π2
(2− d)σ · pB1(p,M, 0) , (A.18b)

ΣRL =
g+g−
16π2

d m−B0(p,M, 0) , (A.18c)

ΣLR =
g+g−
16π2

d m+B0(p,M, 0) . (A.18d)

The full fermion self-energy of the original Dirac field is obtained from the sum over

the chiral indices I and J with correct weighting by projection operators. Specifically,

Σ = PRγ
0ΣLLPL + PLγ

0ΣRRPR + PLΣRLPL + PRΣLRPR , (A.19)

giving

Σ =

(
0 0

1 0

)
ΣLL +

(
0 1

0 0

)
ΣRR +

(
1 0

0 0

)
ΣRL +

(
0 0

0 1

)
ΣLR . (A.20)

Summing these contributions, we obtain the result in eq. (3.3).

Polarization tensor. The polarization tensor is given by

iΠµν(p) = (− 1)(− i)2 gIK gNJ Tr

∫
ddk

(2π)4
σµK iSIJ(p+ k)σνN iSNK(k) . (A.21)

Performing the trace over the Lorentz indices, we obtain the numerator

2
[(

2kµkν + p(µkν) − ηµνk2 − ηµνp · k
)
δIJ δNK + ηµνMIJMNK + iηIJNK ε

µκνλ (p+ k)κkλ
]
,

(A.22)

where εµκνλ is the Levi-Civita tensor. Here, we have defined ηIJNK = 1, if I = J = K =

N = L, ηIJNK = −1, if I = J = N = K = R, and ηIJNK = 0 otherwise.

Rewriting in terms of the Passarino-Veltman form factors, we are left with

Πµν(p) = −gIK gNJ
4π2

{(
pµpν − ηµνp2

)(
B21 +B1

)
δIJδNK

− ηµν
(
M2δIJδNK −MIJMNK

)
B0

+ iεµκνλ
[
pκpλ

(
B21 +B1

)
+ ηκλ p

2B22

]
ηIJNK

}
. (A.23)

When we sum over the chiral indices, the terms proportional to the Levi-Civita tensor

cancel, and we obtain the result in eq. (3.8).
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Three-point vertex. The three-point vertices are given by

iΛµIJ(p, q) = (−i)3 gIK gNP gQJ
∫

ddk

(2π)4
σνK iSKN (k) iDνλ(k + p)σµP iSPQ(k + p+ q)σλQ ,

(A.24)

where p and q are the fermion momenta. The numerator is proportional to

(2− d)
[
σρQ σ̄

µ
P σ

κ
K kκ (k + p+ q)ρ δKN δPQ + σµP MKN MPQ

]
+ 4

[
kµ δKN MPQ + (k + p+ q)µMKN δPQ

]
, (A.25)

such that the vertices can be written

ΛµIJ =
gIK gNP gQJ

16π2
(A.26)

×
{

(2− d)
[(

(2− d)σµP C24 + σρQ σ̄
µ
P σ

κ
K Fκρ

)
δKN δPQ + σµP MKN MPQ

]
+ 4

(
pµC11 + qµC12

)(
δKN MPQ +MKN δPQ

)
+ 4 (p+ q)µC0MKN δPQ

}
.

Herein, we have defined

Fκρ = pκ pρ
(
C11 +C21

)
+ qκ qρ

(
C22 +C12

)
+pκ qρ

(
C23 +C11

)
+ qκ pρ

(
C23 +C12

)
. (A.27)

The three-point form factors are evaluated at p1 = p, p2 = q, m1 = m3 = M and m2 = 0.

Hence, element by element, we find that

ΛµLL =
g2−

16π2
(2− d)

[
g−

(
(2− d)σ̄µC24 + σ̄ρσµσ̄κFκρ

)
+ g+σ̄

µM2C0

]
, (A.28a)

ΛµRR =
g2+

16π2
(2− d)

[
g+

(
(2− d)σµC24 + σρσ̄µσκFκρ

)
+ g−σ

µM2C0

]
, (A.28b)

ΛµRL =
g+g−
4π2

m−

[
(g+ + g−)

(
pµC11 + qµC12

)
+ g−(pµ + qµ)C0

]
, (A.28c)

ΛµLR =
g+g−
4π2

m+

[
(g+ + g−)

(
pµC11 + qµC12

)
+ g+(pµ + qµ)C0

]
. (A.28d)

As in the case of the self-energy, we have

Λµ =

(
0 0

1 0

)
ΛµLL +

(
0 1

0 0

)
ΛµRR +

(
1 0

0 0

)
ΛµRL +

(
0 0

0 1

)
ΛµLR . (A.29)

Summing over the contributions, we obtain the result for the total vertex in eq. (3.11).
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